WO2014126251A1 - Laminated glass, and structure having same mounted thereto - Google Patents

Laminated glass, and structure having same mounted thereto Download PDF

Info

Publication number
WO2014126251A1
WO2014126251A1 PCT/JP2014/053698 JP2014053698W WO2014126251A1 WO 2014126251 A1 WO2014126251 A1 WO 2014126251A1 JP 2014053698 W JP2014053698 W JP 2014053698W WO 2014126251 A1 WO2014126251 A1 WO 2014126251A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
thickness
laminated glass
core layer
Prior art date
Application number
PCT/JP2014/053698
Other languages
French (fr)
Japanese (ja)
Inventor
神吉 哲
貴弘 浅井
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to CN201480000757.9A priority Critical patent/CN104136391A/en
Priority to JP2014534695A priority patent/JP5647380B1/en
Publication of WO2014126251A1 publication Critical patent/WO2014126251A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating

Definitions

  • the present invention relates to a laminated glass used for a windshield of an automobile and a mounting structure to which the glass is mounted.
  • Patent Document 1 describes a laminated glass for automobiles that maintains the sound insulation performance at a predetermined frequency while reducing the surface density. This laminated glass has a resin intermediate film disposed between a pair of glass plates.
  • the figure is a graph showing the result of simulating the relationship between frequency and sound transmission loss (STL).
  • This graph is composed of laminated glass (hereinafter referred to as first laminated glass) composed of two glass plates having a thickness of 1.5 mm and different glass plates having thicknesses of 2.0 mm and 1.0 mm.
  • laminated glass hereinafter referred to as first laminated glass
  • second laminated glass Laminated glass
  • a resin intermediate film is disposed between two glass plates.
  • the sound transmission loss of the second laminated glass is lower than that of the first laminated glass in the frequency range of 3000 to 5000 Hz. That is, it was found that the use of glass plates having different thicknesses reduces the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear.
  • the present invention has been made to solve the above problems, and provides a laminated glass composed of glass plates having different thicknesses, which achieves both weight reduction and sound insulation, and a mounting structure to which the laminated glass is attached. With the goal.
  • the laminated glass according to the present invention includes an outer glass plate, an inner glass plate disposed opposite to the outer glass plate and having a smaller thickness than the outer glass plate, and an intermediate film sandwiched between the outer glass plate and the inner glass plate.
  • the inner glass plate has a thickness of 0.6 to 1.8 mm
  • the intermediate film is composed of a plurality of layers including at least a core layer, and the Young's modulus of the core layer is 100 Hz. , At 20 ° C., 1 to 20 MPa, which is lower than the Young's modulus of the other layers.
  • the inner glass plate can have a thickness of 0.8 to 1.6 mm.
  • the inner glass plate can have a thickness of 1.0 to 1.4 mm.
  • the inner glass plate can have a thickness of 0.8 to 1.3 mm.
  • the thickness of the core layer can be 0.1 to 2.0 mm.
  • the thickness of the outer glass plate can be 1.8 to 5.0 mm.
  • the Young's modulus of the core layer can be 1 to 16 MPa at a frequency of 100 Hz and a temperature of 20 ° C.
  • the tan ⁇ of the interlayer film can be set to 0.5 to 3.0 at a frequency of 100 Hz and a temperature of 20 ° C.
  • the laminated glass attachment structure according to the present invention includes any one of the laminated glasses described above and an attachment portion for attaching the laminated glass to a vertical attachment angle of 45 degrees or less.
  • an attachment structure is, for example, an automobile or a building, and the attachment portion is a frame or the like for attaching laminated glass.
  • a laminated glass can be attached with a well-known method with respect to an attaching part.
  • the present invention it is possible to provide a laminated glass made of glass having different thicknesses, which achieves both weight reduction and sound insulation, and a mounting structure on which the glass is mounted.
  • FIG. 1 It is sectional drawing which shows one Embodiment of the laminated glass which concerns on this invention. It is the front view (a) and sectional view (b) which show the amount of doubles of a curved laminated glass. It is a graph which shows the relationship between the general frequency and sound transmission loss of a curved glass plate and a planar glass plate. It is a schematic plan view which shows the measurement position of the thickness of a laminated glass. It is an example of the image used for the measurement of a core layer. It is the schematic which shows the attachment method of a laminated glass. It is a graph which shows the relationship between the frequency when changing the thickness of a single plate glass, and sound transmission loss. It is a graph which shows the result of evaluation of an outside glass board.
  • FIG. 1 is a cross-sectional view of a laminated glass according to the present embodiment.
  • the laminated glass according to this embodiment includes an outer glass plate 1, an inner glass plate 2, and an intermediate film 3 sandwiched between these glasses.
  • the outer glass 1 is a glass plate disposed on the side susceptible to disturbance
  • the inner glass 2 is a glass plate disposed on the opposite side. Therefore, for example, when this laminated glass is used as a window glass of an automobile, the glass plate on the outside of the vehicle becomes an outer glass plate, and when used as a building material, the side facing outward becomes an outer glass plate. However, depending on the disturbance that can be received, the arrangement may be opposite.
  • each member will be described.
  • known glass plates can be used, and they can be formed of heat ray absorbing glass, general clear glass, green glass, or UV green glass.
  • this laminated glass is used for a window glass of an automobile, it is necessary to realize visible light transmittance in accordance with the safety standard of the country where the automobile is used.
  • the required solar radiation absorption rate can be secured by the outer glass plate 1, and the visible light transmittance can be adjusted by the inner glass plate 2 so as to satisfy the safety standard.
  • a composition of clear glass and an example of a heat ray absorption glass composition are shown.
  • the composition of the heat-absorbing glass for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO
  • the ratio of 2 is 0 to 2% by mass
  • the ratio of TiO 2 is 0 to 0.5% by mass
  • the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO.
  • the composition can be reduced by an increase of 2 and TiO 2 .
  • the outer glass plate 1 mainly needs durability and impact resistance against external obstacles.
  • the outer glass plate 1 has impact resistance performance against flying objects such as pebbles. is necessary.
  • the thickness of the outer glass plate 1 is preferably 1.8 mm or more, 1.9 mm or more, 2.0 mm or more, 2.1 mm or more, or 2.2 mm or more.
  • the upper limit of the thickness of the outer glass is preferably 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 mm or less, 2.4 mm or less. Among them, it is preferably larger than 2.1 mm and 2.5 mm or less, particularly preferably 2.2 mm or more and 2.4 mm or less.
  • the inner glass plate 2 needs to be thinner than the outer glass plate 1 in order to reduce the weight of the laminated glass. Specifically, as will be described later, it is preferably in the range of 1.2 mm ⁇ 0.6 mm, which is easily affected by the frequency range of 2000 to 5000 Hz that is easy for humans to hear. Specifically, the thickness of the inner glass plate 2 is preferably 0.6 mm or more, 0.8 mm or more, 1.0 mm or more, and 1.3 mm or more. On the other hand, the upper limit of the thickness of the inner glass plate 2 is preferable in the order of 1.8 mm or less, 1.6 mm or less, 1.4 mm or less, 1.3 mm or less, and less than 1.1 mm. Among these, for example, 0.6 mm or more and less than 1.1 mm is preferable.
  • the shape of the outer glass plate 1 and the inner glass plate 2 according to the present embodiment may be either a planar shape or a curved shape.
  • the curved shape of the STL since the curved shape of the STL is lowered, the curved glass particularly requires an acoustic measure. The reason why the STL value is lower in the curved shape than in the planar shape is that the curved shape is more influenced by the resonance mode.
  • the double amount is an amount indicating the bending of the glass plate. For example, when a straight line L connecting the center of the upper side and the center of the lower side is set as shown in FIG. The largest distance between and is defined as the amount of double.
  • FIG. 3 is a graph showing a result of simulating a general frequency and STL relationship between a curved glass plate and a planar glass plate.
  • the curved glass plate has no significant difference in STL in the range of the doubly amount of 30 to 38 mm, but the STL decreases in a frequency range of 4000 Hz or less compared to the planar glass plate.
  • the amount of double is better, but for example, when the amount of double exceeds 30 mm, the Young's modulus of the core layer of the intermediate film is 20 MPa (frequency) as will be described later. 100 Hz, temperature 20 ° C.) or less.
  • a method for measuring the thickness when the glass plate is curved will be described.
  • the measuring instrument is not particularly limited, and for example, a thickness gauge such as SM-112 manufactured by Teclock Co., Ltd. can be used.
  • SM-112 manufactured by Teclock Co., Ltd.
  • Teclock Co., Ltd. Teclock Co., Ltd.
  • it is arranged so that the curved surface of the glass plate is placed on a flat surface, and the end of the glass plate is sandwiched by the thickness gauge and measured. Even when the glass plate is flat, it can be measured in the same manner as when the glass plate is curved.
  • the intermediate film 3 is formed of a plurality of layers, and as an example, as shown in FIG. 1, a soft core layer 31 can be configured by three layers sandwiched by a harder outer layer 32. . However, it is not limited to this configuration, and it may be formed of a plurality of layers having the soft core layer 31. For example, two layers including the core layer 31 (one core layer and one outer layer), or an odd number of five or more layers arranged around the core layer 31 (one core layer and one outer layer) 4 layers), or an even number of layers including the core layer 31 inside (the core layer is one layer and the other layers are outer layers).
  • the core layer 31 is softer than the outer layer 32, but in this respect, the material can be selected based on the Young's modulus. Specifically, it is preferably 1 to 20 MPa, more preferably 1 to 16 MPa at a frequency of 100 Hz and a temperature of 20 degrees. Further, it is preferably 1 to 10 MPa.
  • a measuring method for example, frequency dispersion measurement can be performed with a strain amount of 0.05% using a solid viscoelasticity measuring device DMA-50 manufactured by Metravib.
  • the Young's modulus is a value measured by the above method. However, the measurement when the frequency is 200 Hz or less uses an actual measurement value. When the frequency is higher than 200 Hz, a calculation value based on the actual measurement value is used. The calculated value is based on a master curve calculated by using the WLF method from the actually measured value.
  • the Young's modulus of the outer layer 32 is not particularly limited as long as it is larger than the core layer. For example, it is preferable in the order of 560 MPa or more, 650 MPa or more, 1300 MPa or more, 1764 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees.
  • the upper limit of the Young's modulus of the outer layer 32 is not particularly limited, but can be set from the viewpoint of workability, for example. For example, it is empirically known that when it becomes 1750 MPa or more, workability, particularly cutting becomes difficult.
  • the tan ⁇ of the core layer 31 of the intermediate film 3 is preferably 0.5 to 3.0, more preferably 0.7 to 2.0, and more preferably 1.0 to 1.0 at a frequency of 100 Hz and a temperature of 20 degrees. A ratio of 1.5 is particularly preferred.
  • tan ⁇ is in the above range, sound is easily absorbed, and sound insulation performance is improved. However, if it exceeds 3.0, the intermediate film 3 becomes too soft and difficult to handle, which is not preferable. On the other hand, if it is less than 0.5, the impact resistance is lowered, which is not preferable.
  • tan ⁇ of the outer layer may be a value smaller than that of the core layer 31, and can be determined between 0.1 and 3.0 at a frequency of 100 Hz and a temperature of 20 degrees, for example.
  • the material constituting each of the layers 31 and 32 is not particularly limited, but it is necessary that the material has at least a Young's modulus in the above range.
  • the outer layer 32 can be comprised by polyvinyl butyral resin (PVB). Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate.
  • the core layer 31 can be made of an ethylene vinyl acetate resin (EVA) or a polyvinyl acetal resin softer than the polyvinyl butyral resin constituting the outer layer. By sandwiching the soft core layer between them, the sound insulation performance can be greatly improved while maintaining the same adhesion and penetration resistance as the single-layer resin intermediate film.
  • the hardness of the polyvinyl acetal resin is controlled by (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can do. Therefore, by appropriately adjusting at least one selected from these conditions, even with the same polyvinyl butyral resin, a hard polyvinyl butyral resin used for the outer layer and a soft polyvinyl butyral resin used for the core layer It can be made separately.
  • the hardness of the polyvinyl acetal resin can also be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of aldehydes or pure acetalization with a single aldehyde. Although it cannot generally be said, the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer.
  • the core layer has an aldehyde having 5 or more carbon atoms (for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n- Octyl aldehyde) can be used as a polyvinyl acetal resin obtained by acetalization with polyvinyl alcohol.
  • a predetermined Young's modulus it is not limited to the said resin.
  • the total thickness of the intermediate film 3 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred.
  • the thickness of the core layer 31 is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 0.6 mm. This is because if the thickness is smaller than 0.1 mm, the influence of the soft core layer 31 is difficult to reach, and if the thickness is larger than 2.0 mm or 0.6 mm, the total thickness increases and the cost is increased.
  • the thickness of the outer layer 32 is not particularly limited, but is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 1.0 mm. In addition, the total thickness of the intermediate film 3 can be made constant, and the thickness of the core layer 31 can be adjusted therein.
  • the thickness of the core layer 31 can be measured as follows, for example. First, the cross section of the laminated glass is enlarged and displayed by 175 times using a microscope (for example, VH-5500 manufactured by Keyence Corporation). And the thickness of the core layer 31 is specified visually, and this is measured. At this time, in order to eliminate visual variation, the number of measurements is set to 5 times, and the average value is set as the thickness of the core layer 31. For example, an enlarged photograph of a laminated glass as shown in FIG. 5 is taken, and the core layer is specified in this and the thickness is measured.
  • a microscope for example, VH-5500 manufactured by Keyence Corporation
  • the thickness of the intermediate film 3 does not have to be constant over the entire surface, and may be a wedge shape for laminated glass used for a head-up display, for example.
  • the thickness of the intermediate film 3 is measured at a portion having the smallest thickness, that is, the lowermost side portion of the laminated glass.
  • the outer glass plate 1 and the inner glass plate 2 are not arranged in parallel.
  • Such an arrangement is also included in the “opposing arrangement” between the outer glass plate and the inner glass plate in the present invention.
  • the “opposing arrangement” of the present invention includes an arrangement of the outer glass plate 1 and the inner glass plate 2 when the intermediate film 3 whose thickness is increased at a change rate of 3 mm or less per 1 m, for example.
  • the manufacturing method of the intermediate film 3 is not particularly limited, for example, after blending resin components such as the above-mentioned polyvinyl acetal resin, a plasticizer, and other additives as necessary, and uniformly kneading, each layer is collectively And a method of laminating two or more resin films prepared by this method by a pressing method, a laminating method or the like.
  • the resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure.
  • the manufacturing method of the laminated glass which concerns on this embodiment is not specifically limited, The manufacturing method of a conventionally well-known laminated glass can be employ
  • the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2, placed in a rubber bag, and pre-bonded at about 70 to 110 ° C. while sucking under reduced pressure.
  • Other methods can be used for the preliminary adhesion.
  • the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa.
  • the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa.
  • preliminary adhesion is completed.
  • the pre-bonded laminated glass is subjected to main bonding by an autoclave at 8 to 15 atm and 100 to 150 ° C. Specifically, the main bonding can be performed under the conditions of 14 atm and 145 ° C. Thus, the laminated glass according to the present embodiment is manufactured.
  • Laminated glass mounting structure The laminated glass mentioned above can be attached to attachment structures, such as a car and a building, for example. At this time, the laminated glass is attached to the attachment structure via the attachment portion.
  • the attachment portion corresponds to, for example, a frame such as a urethane frame for attachment to an automobile, an adhesive, a clamp, or the like.
  • pins 50 are attached to both ends of the laminated glass 10, and the adhesive 60 is applied to the automobile frame 70 to be attached. .
  • a through hole 80 into which a pin is inserted is formed in the frame. And the laminated glass 10 is attached to the flame
  • the pin 50 is inserted into the through hole 80 and the laminated glass 10 is temporarily fixed to the frame 70. At this time, since a step is formed in the pin 50, the pin 50 is inserted only halfway through the through-hole 80, whereby a gap is generated between the frame 70 and the laminated glass 10. And since the adhesive material 60 mentioned above is apply
  • the attachment angle of the laminated glass 10 is preferably 45 degrees or less from the vertical N as shown in FIG.
  • the following effects can be obtained by setting the Young's modulus of the core layer 31 constituting a part of the intermediate film 3 to a small value of 1 to 20 MPa at a frequency of 100 Hz and a temperature of 20 degrees. .
  • the Young's modulus of the intermediate film is large, even a laminated glass has a strong property as a single plate.
  • the coincidence frequency generally shifts to a higher frequency side as the thickness and Young's modulus of glass become smaller.
  • the Young's modulus of the intermediate film 3 when the Young's modulus of the intermediate film 3 is large, even if the total thickness is 4 mm, the coincidence frequency is 3 to 4 kHz as in the case of a single plate having a thickness of 4 mm. The performance drops in a frequency band that is easy to hear.
  • the Young's modulus decreases, the performance of the laminated glass is the sum of the two glass plates. For example, if it is a laminated glass consisting of a 2 mm glass plate and a 1 mm glass plate, its performance tends to be the sum of the performances of the two glass plates. That is, since the thickness of each glass plate shown in FIG.
  • FIG. 7 is smaller than 4 mm, the coincidence frequency shifts to the high frequency side, and the 2 mm glass plate has a coincidence frequency around 5000 Hz, and the 1 mm glass plate has a coincidence at 8000 Hz. There is a frequency. And since the performance of the laminated glass of these 1 mm and 2 mm thick glass plates is the sum of them, the coincidence frequency exists between 5000 and 8000 Hz.
  • FIG. 7 is a graph which shows the result of having simulated the relationship between the frequency and STL of the single plate which is not a laminated glass.
  • the Young's modulus of the core layer 31 constituting a part of the intermediate film 3 is 1 to 20 MPa at a frequency of 100 Hz and a temperature of 20 degrees.
  • the total is added to the glass plate 2.
  • the coincidence frequency is shifted to the high frequency side by reducing the thickness of the inner glass plate 2. Therefore, as described above, it is possible to increase the sound transmission loss that is reduced in the frequency region of 2000 to 5000 Hz due to the thinning of the inner glass plate 2.
  • the present inventor has found that when the Young's modulus of the outer layer 32 of the intermediate film 3 is improved, the sound insulation performance in a frequency range of about 4000 Hz or more is improved.
  • the outer layer 32 having a Young's modulus of 560 MPa (20 ° C., 100 Hz) is used for the outer layer having a Young's modulus of 441 MPa (20 ° C., 100 Hz)
  • the STL is 0.3 dB at a frequency of 6300 Hz. I found it to improve.
  • a human since it is assumed that a human can recognize a change in sound of 0.3 dB or more, by increasing the Young's modulus, a sound insulation effect that can be recognized by a human can be obtained in a high frequency range.
  • each laminated glass includes an outer glass plate, an inner glass plate, and an intermediate film sandwiched between them.
  • the thicknesses of the core layer and the outer layer were 0.1 mm and 0.33 mm, respectively, and the Young's modulus was 10 MPa and 441 MPa (20 ° C., 100 Hz), respectively.
  • the above laminated glasses were arranged at an angle of 60 degrees from the vertical, and granite having an average particle diameter of about 5 to 20 mm was collided with each laminated glass at a speed of 64 km / h. Thirty granites collided with each laminated glass, and the occurrence rate of cracks was calculated. The result is as shown in FIG. As shown in the figure, in the laminated glasses 1 to 4 having an outer glass plate thickness of 2.0 mm, the occurrence rate of cracks was 5% or less regardless of the thickness of the inner glass plate. On the other hand, in the laminated glasses 5 and 6 in which the thickness of the outer glass plate was 1.8 mm or less, the occurrence rate of cracks was 8% regardless of the thickness of the inner glass. Therefore, from the viewpoint of impact resistance against flying objects, the thickness of the outer glass plate is preferably 1.8 mm or more as described above. More preferably, it is 2.0 mm or more.
  • Each glass plate was formed of the above-described clear glass.
  • the intermediate film was comprised with the core layer and a pair of outer layer which clamps this.
  • the thickness of the intermediate film was 0.76 mm
  • the thickness of the core layer was 0.1 mm
  • the thicknesses of both outer layers were 0.33 mm.
  • the Young's modulus of both outer layers was adjusted to 441 MPa (20 ° C., 100 Hz).
  • the sound transmission loss was evaluated by simulation for the above examples and comparative examples.
  • the simulation conditions are as follows.
  • the simulation was performed using acoustic analysis software (ACTRAN, manufactured by Free Field technology).
  • ACTRAN acoustic analysis software
  • the sound transmission loss (transmitted sound pressure level / incident sound pressure level) of the laminated glass can be calculated by solving the following wave equation using the finite element method.
  • Model setting Figure 9 shows the model of laminated glass used in this simulation.
  • a laminated glass is defined in which an outer glass plate, an intermediate film, an inner glass plate, and a urethane frame are laminated in this order from the sound source side.
  • the reason why the urethane frame is added to the model is that there is a considerable influence on the calculation result of sound transmission loss due to the presence or absence of the urethane frame, and between the laminated glass and the vehicle windshield. This is because it is generally considered that a urethane frame is used and bonded.
  • Input condition 1 (dimensions, etc.)
  • the size of the glass plate 800 ⁇ 500 mm
  • the STL value tends to worsen because the larger the size, the larger the constrained portion and the greater the resonance mode.
  • the tendency of the relative value for each frequency that is, the laminated glass made of glass plates with different thicknesses becomes worse in a predetermined frequency band than the laminated glass made of glass plates with the same thickness. The trend is the same.
  • the random diffuse sound wave in Table 3 is a sound wave having a sound wave of a predetermined frequency transmitted with an incident angle in any direction with respect to the outer glass plate, and a sound source in a reverberation chamber for measuring sound transmission loss.
  • the above simulation method is the same in the following items 3, 4, and 5.
  • the STL value due to the different thickness can be suppressed by setting the Young's modulus of the core layer to 20 MPa (20 ° C., 100 Hz) or less as in Examples 1 to 4. Further, as in Examples 2 to 4, by setting the Young's modulus of the core layer to 16 MPa (20 ° C., 100 Hz) or less, compared with Comparative Example 1 in which both glasses have the same thickness, in a frequency region of 2000 to 5000 Hz. Sound transmission loss is high.
  • the laminated glass which concerns on an Example and a comparative example was prepared as follows. Here, the thickness of the core layer was changed and the sound transmission loss was calculated by the simulation method.
  • the intermediate film was composed of three layers, and the thickness of the core layer and the outer layer was changed without changing the total thickness.
  • the Young's modulus of the core layer was 10 MPa (20 ° C., 100 Hz), and the Young's modulus of the outer layer was 441 Mpa (20 ° C., 100 Hz).
  • the thicknesses of the outer glass plate and the inner glass plate were 2.0 mm and 1.0 mm, respectively.
  • the sound transmission loss was evaluated by simulation for the above examples and comparative examples. The results are as shown in FIG. According to the figure, it can be seen that when the thickness of the core layer is smaller than 0.1 mm, the sound transmission loss is reduced in the frequency range of 2000 to 5000 Hz. Therefore, in order to increase the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear, the thickness of the core layer is preferably set to 0.1 mm or more.
  • the mounting angle of laminated glass was evaluated by a simulation in which the incident angle of sound was changed.
  • the sound transmission loss was calculated by changing the angle from the vertical to 0 to 75 degrees.
  • Each glass plate was formed of the above-described clear glass.
  • the intermediate film was comprised with the core layer and a pair of outer layer which clamps this. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm.
  • the Young's modulus of the core layer was 10 MPa (20 ° C., 100 Hz), and the Young's modulus of both outer layers was 441 MPa (20 ° C., 100 Hz). Moreover, the thickness of the glass plate was 2.0 mm and 1.0 mm.
  • Example 13 and 14 are shown in FIG.
  • the Young's modulus of the core layer In the evaluation of the Young's modulus of the core layer described above, it was found that when the Young's modulus is 20 MPa or less, the sound transmission loss is increased in a frequency range of 2000 to 5000 Hz that is easy for humans to hear.
  • the Young's modulus of the outer layer was changed while keeping the Young's modulus of the core layer constant. As a result, as shown in FIG. 13, in Example 14 where the Young's modulus of the outer layer was high, it was found that the sound transmission loss was high in a high frequency region of 5000 Hz or higher.
  • the Young's modulus of the core layer is further lowered and the Young's modulus of the outer layer is increased.
  • the sound transmission loss in the frequency region of 2000 to 5000 Hz is higher than those in Examples 13 and 14, but in Examples 13 and 14, the frequency is higher than 5000 Hz.
  • the sound transmission loss in the frequency domain is not high.
  • the Young's modulus of the outer layer exceeds 1764 MPa, the sound transmission loss in a high frequency region of 5000 Hz or higher hardly increases.

Abstract

[Problem] To provide laminated glass which can improve sound insulation properties, can provide infrared transmittance to a prescribed range, and is formed from sheets of glass having different thicknesses. [Solution] This laminated glass has: an outer glass sheet; an inner glass sheet which is arranged to face the outer glass sheet, and which is thinner than the outer glass sheet; and an intermediate film which is sandwiched between the outer glass sheet and the inner glass sheet. The transmittance of the laminated glass for light having a wavelength of 870-940nm is 30-80%. The thickness of the outer glass sheet is 1.8-2.3mm. The thickness of the inner glass sheet is 0.6-2.0mm. The intermediate film is formed from a plurality of layers including at least a core layer, and the Young's modulus of the core layer at a frequency of 100Hz and a temperature of 20°C is 1-20MPa, and lower than the Young's modulus of the other layers.

Description

合わせガラス、及びこれが取り付けられた取付構造体Laminated glass and mounting structure to which the glass is mounted
 本発明は、自動車のウインドシールドなどに用いられる合わせガラス及びこれが取り付けられた取付構造体に関する。 The present invention relates to a laminated glass used for a windshield of an automobile and a mounting structure to which the glass is mounted.
 近年、自動車の燃費性向上の観点から、装着されるウインドシールドなどのガラスの軽量化が求められ、それに伴い厚みの小さいガラスの開発が進められている。しかしながら、厚みを小さくすると、遮音性能が低下するため、車外の音が車内に流入し、車内環境が悪化するという問題がある。これを解決するため、例えば、特許文献1には、面密度を低下させつつ所定の周波数における遮音性能を維持する自動車用の合せガラスが記載されている。この合わせガラスは、一対のガラス板の間に、樹脂製の中間膜を配置したものである。 In recent years, from the viewpoint of improving the fuel efficiency of automobiles, it has been required to reduce the weight of glass such as windshields to be mounted, and accordingly, development of glass with a small thickness has been promoted. However, if the thickness is reduced, the sound insulation performance is lowered, so that there is a problem that sound outside the vehicle flows into the vehicle interior and the vehicle interior environment deteriorates. In order to solve this problem, for example, Patent Document 1 describes a laminated glass for automobiles that maintains the sound insulation performance at a predetermined frequency while reducing the surface density. This laminated glass has a resin intermediate film disposed between a pair of glass plates.
特開2002-326847号公報JP 2002-326847 A
 ところで、特許文献1のような合わせガラスでは、厚みを小さくすることにより遮音性能の低下をある程度防止することはできるが、車外側のガラスの厚みも小さくなることから、車外側の外力によるガラス割れが発生しやすくなるという問題がある。これを解決すべく、車外側のガラスの厚みは従来と同等にしつつ車内側のガラス板のみを薄くして、全体として面密度を低下させる方法が考えられる。この点について、本発明者は、以下のように検討した。 By the way, in laminated glass like patent document 1, although the fall of sound insulation performance can be prevented to some extent by making thickness small, since the thickness of the glass of the vehicle outside also becomes small, the glass cracking by the external force of the vehicle outside There is a problem that is likely to occur. In order to solve this, a method of reducing the surface density as a whole by reducing the thickness of the glass on the outside of the vehicle while reducing the thickness of only the glass plate on the inside of the vehicle is conceivable. In this regard, the present inventor examined as follows.
 まず、本発明者らは、車内側と車外側のガラスの厚みを異なる構成とすると、図15に示すように、同厚の場合に比して、人間が聞き取りやすい2000~5000Hzの周波数域の遮音性能が低下することを見出した。同図は、周波数と音響透過損失(STL)との関係をシミュレーションした結果を示すグラフである。このグラフには、厚みが1.5mmの2枚のガラス板で構成された合わせガラス(以下、第1合わせガラスという)と、厚みが2.0mmと1.0mmの異なるガラス板で構成された合わせガラス(以下、第2合わせガラスという)が表示されている。いずれの合わせガラスも、2つのガラス板の間に樹脂製の中間膜が配置されている。このグラフによれば、3000~5000Hzの周波数域において、第2合わせガラスの音響透過損失が、第1合わせガラスに比べて低下していることが分かる。すなわち、厚みの異なるガラス板を用いることで、人間が聞き取りやすい2000~5000Hzの周波数域の遮音性能が低下することが分かった。 First, when the thicknesses of the glass inside and outside the vehicle are different, the present inventors have a frequency range of 2000 to 5000 Hz that is easy for humans to hear, as shown in FIG. It was found that the sound insulation performance deteriorates. The figure is a graph showing the result of simulating the relationship between frequency and sound transmission loss (STL). This graph is composed of laminated glass (hereinafter referred to as first laminated glass) composed of two glass plates having a thickness of 1.5 mm and different glass plates having thicknesses of 2.0 mm and 1.0 mm. Laminated glass (hereinafter referred to as second laminated glass) is displayed. In any laminated glass, a resin intermediate film is disposed between two glass plates. According to this graph, it can be seen that the sound transmission loss of the second laminated glass is lower than that of the first laminated glass in the frequency range of 3000 to 5000 Hz. That is, it was found that the use of glass plates having different thicknesses reduces the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear.
 このように、厚みの異なるガラスを組み合わせると、軽量化は図れるものの、音響透過損失が低下するという問題が発生する。特に、人間が聞き取りやすい2000~5000Hzの周波数域における遮音性能が低下し、車内環境が悪化するという問題が発生する。このような問題は、自動車のガラスのみならず、軽量化と遮音性が要求される合わせガラス全般に起こり得る問題である。 As described above, when glass with different thicknesses are combined, although the weight can be reduced, there is a problem that sound transmission loss is reduced. In particular, the sound insulation performance in the frequency range of 2000 to 5000 Hz, which is easy for humans to hear, is deteriorated, resulting in a problem that the in-vehicle environment is deteriorated. Such a problem is a problem that can occur not only in automobile glass but also in laminated glass that requires weight reduction and sound insulation.
 本発明は、上記問題を解決するためになされたものであり、軽量化と遮音性を両立する、異なる厚みのガラス板で構成された合せガラス、及びこれが取り付けられた取付構造体を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a laminated glass composed of glass plates having different thicknesses, which achieves both weight reduction and sound insulation, and a mounting structure to which the laminated glass is attached. With the goal.
 本発明に係る合わせガラスは、外側ガラス板と、前記外側ガラス板と対向配置され、前記外側ガラス板よりも厚みが小さい内側ガラス板と、前記外側ガラス板及び内側ガラス板の間に挟持された中間膜と、を備え、前記内側ガラス板の厚みが0.6~1.8mmであり、前記中間膜は、少なくともコア層を含む複数の層で構成されており、前記コア層のヤング率は、100Hz,20℃において、1~20MPaであり、他の前記層のヤング率よりも低い。 The laminated glass according to the present invention includes an outer glass plate, an inner glass plate disposed opposite to the outer glass plate and having a smaller thickness than the outer glass plate, and an intermediate film sandwiched between the outer glass plate and the inner glass plate. The inner glass plate has a thickness of 0.6 to 1.8 mm, and the intermediate film is composed of a plurality of layers including at least a core layer, and the Young's modulus of the core layer is 100 Hz. , At 20 ° C., 1 to 20 MPa, which is lower than the Young's modulus of the other layers.
 上述した合わせガラスにおいては、前記内側ガラス板の厚みを、0.8~1.6mmとすることができる。 In the laminated glass described above, the inner glass plate can have a thickness of 0.8 to 1.6 mm.
 上述した合わせガラスにおいては、前記内側ガラス板の厚みを、1.0~1.4mmとすることができる。 In the laminated glass described above, the inner glass plate can have a thickness of 1.0 to 1.4 mm.
 上述した合わせガラスにおいては、前記内側ガラス板の厚みを、0.8~1.3mmとすることができる。 In the laminated glass described above, the inner glass plate can have a thickness of 0.8 to 1.3 mm.
 上述した合わせガラスにおいては、前記コア層の厚みを0.1~2.0mmとすることができる。 In the laminated glass described above, the thickness of the core layer can be 0.1 to 2.0 mm.
 上述した合わせガラスにおいては、前記外側ガラス板の厚みを、1.8~5.0mmとすることができる。 In the laminated glass described above, the thickness of the outer glass plate can be 1.8 to 5.0 mm.
 上述した合わせガラスにおいては、前記コア層のヤング率を、周波数100Hz,温度20℃において、1~16MPaとすることができる。 In the laminated glass described above, the Young's modulus of the core layer can be 1 to 16 MPa at a frequency of 100 Hz and a temperature of 20 ° C.
 上述した合わせガラスにおいては、前記中間膜のtanδを、周波数100Hz,温度20℃において、0.5~3.0とすることができる。 In the laminated glass described above, the tan δ of the interlayer film can be set to 0.5 to 3.0 at a frequency of 100 Hz and a temperature of 20 ° C.
 また、本発明に係る合わせガラスの取付構造体は、上述したいずれかの合わせガラスと、前記合わせガラスを、垂直からの取付け角度が45度以下に取り付ける取付部と、を備えている。このような取付構造体は、例えば、自動車、建築物などであり、取付部とは合わせガラスを取り付けるフレームなどである。また、取付部に対し、合わせガラスは公知の方法で取り付けることができる。 Moreover, the laminated glass attachment structure according to the present invention includes any one of the laminated glasses described above and an attachment portion for attaching the laminated glass to a vertical attachment angle of 45 degrees or less. Such an attachment structure is, for example, an automobile or a building, and the attachment portion is a frame or the like for attaching laminated glass. Moreover, a laminated glass can be attached with a well-known method with respect to an attaching part.
 本発明によれば、軽量化と遮音性を両立する、異なる厚みのガラスで構成された合せガラス、及びこれが取付けられた取付構造体を提供することができる。 According to the present invention, it is possible to provide a laminated glass made of glass having different thicknesses, which achieves both weight reduction and sound insulation, and a mounting structure on which the glass is mounted.
本発明に係る合わせガラスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the laminated glass which concerns on this invention. 湾曲状の合わせガラスのダブリ量を示す正面図(a)及び断面図(b)である。It is the front view (a) and sectional view (b) which show the amount of doubles of a curved laminated glass. 湾曲形状のガラス板と、平面形状のガラス板の、一般的な周波数と音響透過損失の関係を示すグラフである。It is a graph which shows the relationship between the general frequency and sound transmission loss of a curved glass plate and a planar glass plate. 合わせガラスの厚みの測定位置を示す概略平面図である。It is a schematic plan view which shows the measurement position of the thickness of a laminated glass. コア層の測定に用いる画像の例である。It is an example of the image used for the measurement of a core layer. 合わせガラスの取付方法を示す概略図である。It is the schematic which shows the attachment method of a laminated glass. 単板ガラスの厚さを変化させたときの周波数と音響透過損失の関係を示すグラフである。It is a graph which shows the relationship between the frequency when changing the thickness of a single plate glass, and sound transmission loss. 外側ガラス板の評価の結果を示すグラフである。It is a graph which shows the result of evaluation of an outside glass board. 音響透過損失を出力するためのシミュレーションのモデル図である。It is a model figure of the simulation for outputting sound transmission loss. コア層のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of a core layer. コア層の厚みに関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the thickness of a core layer. 合わせガラスの取付角度に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the attachment angle of a laminated glass. アウター層のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an outer layer. アウター層のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an outer layer. 従来の合わせガラスにおける周波数と音響透過損失の関係を示すグラフである。It is a graph which shows the relationship between the frequency and sound transmission loss in the conventional laminated glass.
1 外側ガラス板
2 内側ガラス板
3 中間膜
31 コア層
32 アウター層
DESCRIPTION OF SYMBOLS 1 Outer glass plate 2 Inner glass plate 3 Intermediate film 31 Core layer 32 Outer layer
 以下、本発明に係る合わせガラスの一実施形態について、図面を参照しつつ説明する。図1は、本実施形態に係る合わせガラスの断面図である。同図に示すように、本実施形態に係る合わせガラスは、外側ガラス板1、内側ガラス板2、及びこれらのガラスの間に挟持される中間膜3で構成されている。外側ガラス1とは、外乱を受けやすい側に配置されるガラス板であり、内側ガラス2は、その反対側に配置されるガラス板である。したがって、例えば、この合わせガラスを自動車の窓ガラスとして用いる場合には、車外側のガラス板が外側ガラス板になり、建築材として用いる場合には、屋外を向く側が外側ガラス板になる。但し、受け得る外乱によっては、これとは反対の配置になることもある。以下、各部材について説明する。 Hereinafter, an embodiment of a laminated glass according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a laminated glass according to the present embodiment. As shown in the figure, the laminated glass according to this embodiment includes an outer glass plate 1, an inner glass plate 2, and an intermediate film 3 sandwiched between these glasses. The outer glass 1 is a glass plate disposed on the side susceptible to disturbance, and the inner glass 2 is a glass plate disposed on the opposite side. Therefore, for example, when this laminated glass is used as a window glass of an automobile, the glass plate on the outside of the vehicle becomes an outer glass plate, and when used as a building material, the side facing outward becomes an outer glass plate. However, depending on the disturbance that can be received, the arrangement may be opposite. Hereinafter, each member will be described.
 <1.外側ガラス板及び内側ガラス板>
 外側ガラス板1及び内側ガラス板2は、公知のガラス板を用いることができ、熱線吸収ガラス、一般的なクリアガラスやグリーンガラス、またはUVグリーンガラスで形成することもできる。但し、この合わせガラスを自動車の窓ガラスに用いる場合には、自動車が使用される国の安全規格に沿った可視光線透過率を実現する必要がある。例えば、外側ガラス板1により必要な日射吸収率を確保し、内側ガラス板2により可視光線透過率が安全規格を満たすように調整することができる。以下に、クリアガラスの組成の一例と、熱線吸収ガラス組成の一例を示す。
<1. Outer glass plate and inner glass plate>
As the outer glass plate 1 and the inner glass plate 2, known glass plates can be used, and they can be formed of heat ray absorbing glass, general clear glass, green glass, or UV green glass. However, when this laminated glass is used for a window glass of an automobile, it is necessary to realize visible light transmittance in accordance with the safety standard of the country where the automobile is used. For example, the required solar radiation absorption rate can be secured by the outer glass plate 1, and the visible light transmittance can be adjusted by the inner glass plate 2 so as to satisfy the safety standard. Below, an example of a composition of clear glass and an example of a heat ray absorption glass composition are shown.
 (クリアガラス)
SiO2:70~73質量%
Al23:0.6~2.4質量%
CaO:7~12質量%
MgO:1.0~4.5質量%
2O:13~15質量%(Rはアルカリ金属)
Fe23に換算した全酸化鉄(T-Fe23):0.08~0.14質量%
(Clear glass)
SiO 2 : 70 to 73% by mass
Al 2 O 3 : 0.6 to 2.4% by mass
CaO: 7 to 12% by mass
MgO: 1.0 to 4.5% by mass
R 2 O: 13 to 15% by mass (R is an alkali metal)
Total iron oxide converted to Fe 2 O 3 (T-Fe 2 O 3 ): 0.08 to 0.14% by mass
 (熱線吸収ガラス)
 熱線吸収ガラスの組成は、例えば、クリアガラスの組成を基準として、Fe23に換算した全酸化鉄(T-Fe23)の比率を0.4~1.3質量%とし、CeO2の比率を0~2質量%とし、TiO2の比率を0~0.5質量%とし、ガラスの骨格成分(主に、SiO2やAl23)をT-Fe23、CeO2およびTiO2の増加分だけ減じた組成とすることができる。
(Heat ray absorbing glass)
The composition of the heat-absorbing glass, for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO The ratio of 2 is 0 to 2% by mass, the ratio of TiO 2 is 0 to 0.5% by mass, and the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO. The composition can be reduced by an increase of 2 and TiO 2 .
 外側ガラス板1は、主として、外部からの障害に対する耐久性、耐衝撃性が必要であり、例えば、この合わせガラスを自動車のウインドシールドとして用いる場合には、小石などの飛来物に対する耐衝撃性能が必要である。この観点から、外側ガラス板1の厚みは1.8mm以上、1.9mm以上、2.0mm以上、2.1mm以上、2.2mm以上の順で好ましい。一方、外側ガラスの厚みの上限は、5.0mm以下、4.0mm以下、3.1mm以下、2.5mm以下、2.4mm以下の順で好ましい。この中で、2.1mmより大きく2.5mm以下、特に、2.2mm以上2.4mm以下が好ましい。 The outer glass plate 1 mainly needs durability and impact resistance against external obstacles. For example, when this laminated glass is used as a windshield of an automobile, the outer glass plate 1 has impact resistance performance against flying objects such as pebbles. is necessary. From this viewpoint, the thickness of the outer glass plate 1 is preferably 1.8 mm or more, 1.9 mm or more, 2.0 mm or more, 2.1 mm or more, or 2.2 mm or more. On the other hand, the upper limit of the thickness of the outer glass is preferably 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 mm or less, 2.4 mm or less. Among them, it is preferably larger than 2.1 mm and 2.5 mm or less, particularly preferably 2.2 mm or more and 2.4 mm or less.
 一方、内側ガラス板2は、合わせガラスの軽量化のため、外側ガラス板1よりも厚みを小さくする必要がある。具体的には、後述するように、人間が聞き取りやすい音の周波数領域である2000~5000Hzで影響を受けやすい、1.2mm±0.6mmの範囲であることが好ましい。具体的には内側ガラス板2の厚みは、0.6mm以上、0.8mm以上、1.0mm以上、1.3mm以上の順で好ましい。一方、内側ガラス板2の厚みの上限は、1.8mm以下、1.6mm以下、1.4mm以下、1.3mm以下、1.1mm未満の順で好ましい。この中で、例えば、0.6mm以上1.1mm未満が好ましい。 On the other hand, the inner glass plate 2 needs to be thinner than the outer glass plate 1 in order to reduce the weight of the laminated glass. Specifically, as will be described later, it is preferably in the range of 1.2 mm ± 0.6 mm, which is easily affected by the frequency range of 2000 to 5000 Hz that is easy for humans to hear. Specifically, the thickness of the inner glass plate 2 is preferably 0.6 mm or more, 0.8 mm or more, 1.0 mm or more, and 1.3 mm or more. On the other hand, the upper limit of the thickness of the inner glass plate 2 is preferable in the order of 1.8 mm or less, 1.6 mm or less, 1.4 mm or less, 1.3 mm or less, and less than 1.1 mm. Among these, for example, 0.6 mm or more and less than 1.1 mm is preferable.
 また、本実施形態に係る外側ガラス板1及び内側ガラス板2の形状は、平面形状及び湾曲形状のいずれであってもよい。しかしながら、STLは湾曲形状の方が低下するため、湾曲形状ガラスは特に音響対策が必要である。湾曲形状の方が平面形状よりSTL値が低下するのは湾曲形状の方が共振モードによる影響が大きいためと考えられる。 Further, the shape of the outer glass plate 1 and the inner glass plate 2 according to the present embodiment may be either a planar shape or a curved shape. However, since the curved shape of the STL is lowered, the curved glass particularly requires an acoustic measure. The reason why the STL value is lower in the curved shape than in the planar shape is that the curved shape is more influenced by the resonance mode.
 さらに、ガラスが湾曲形状である場合には、ダブリ量が大きくなると遮音性能が低下するとされている。ダブリ量とは、ガラス板の曲げを示す量であり、例えば、図2に示すように、ガラス板の上辺の中央と下辺の中央とを結ぶ直線Lを設定したとき、この直線Lとガラス板との距離のうち最も大きいものをダブリ量と定義する。 Furthermore, when the glass has a curved shape, the sound insulation performance decreases as the amount of double increases. The double amount is an amount indicating the bending of the glass plate. For example, when a straight line L connecting the center of the upper side and the center of the lower side is set as shown in FIG. The largest distance between and is defined as the amount of double.
 図3は、湾曲形状のガラス板と、平面形状のガラス板の、一般的な周波数とSTLの関係をシミュレーションした結果を示すグラフである。図3によれば、湾曲形状のガラス板は、ダブリ量が30~38mmの範囲では、STLに大きな差はないが、平面形状のガラス板と比べると、4000Hz以下の周波数域でSTLが低下していることが分かる。したがって、湾曲形状のガラス板を作製する場合、ダブリ量は小さい方がよいが、例えば、ダブリ量が30mmを超える場合には、後述するように、中間膜のコア層のヤング率を20MPa(周波数100Hz,温度20℃)以下とすることが好ましい。 FIG. 3 is a graph showing a result of simulating a general frequency and STL relationship between a curved glass plate and a planar glass plate. According to FIG. 3, the curved glass plate has no significant difference in STL in the range of the doubly amount of 30 to 38 mm, but the STL decreases in a frequency range of 4000 Hz or less compared to the planar glass plate. I understand that Therefore, when producing a curved glass plate, the amount of double is better, but for example, when the amount of double exceeds 30 mm, the Young's modulus of the core layer of the intermediate film is 20 MPa (frequency) as will be described later. 100 Hz, temperature 20 ° C.) or less.
 ここで、ガラス板が湾曲している場合の厚みの測定方法の一例について説明する。まず、測定位置については、図4に示すように、ガラス板の左右方向の中央を上下方向に延びる中央線S上の上下2箇所である。測定機器は、特には限定されないが、例えば、株式会社テクロック製のSM-112のようなシックネスゲージを用いることができる。測定時には、平らな面にガラス板の湾曲面が載るように配置し、上記シックネスゲージでガラス板の端部を挟持して測定する。なお、ガラス板が平坦な場合でも、湾曲している場合と同様に測定することができる。 Here, an example of a method for measuring the thickness when the glass plate is curved will be described. First, about a measurement position, as shown in FIG. 4, it is two places up and down on the center line S extended in the up-down direction at the center of the left-right direction of a glass plate. The measuring instrument is not particularly limited, and for example, a thickness gauge such as SM-112 manufactured by Teclock Co., Ltd. can be used. At the time of measurement, it is arranged so that the curved surface of the glass plate is placed on a flat surface, and the end of the glass plate is sandwiched by the thickness gauge and measured. Even when the glass plate is flat, it can be measured in the same manner as when the glass plate is curved.
 <2.中間膜>
 中間膜3は、複数の層で形成されており、一例として、図1に示すように、軟質のコア層31を、これよりも硬質のアウター層32で挟持した3層で構成することができる。但し、この構成に限定されるものではなく、軟質のコア層31を有する複数層で形成されていればよい。例えば、コア層31を含む2層(コア層が1層と、アウター層が1層)、またはコア層31を中心に配置した5層以上の奇数の層(コア層が1層と、アウター層が4層)、あるいはコア層31を内側に含む偶数の層(コア層が1層と、他の層がアウター層)で形成することもできる。
<2. Interlayer>
The intermediate film 3 is formed of a plurality of layers, and as an example, as shown in FIG. 1, a soft core layer 31 can be configured by three layers sandwiched by a harder outer layer 32. . However, it is not limited to this configuration, and it may be formed of a plurality of layers having the soft core layer 31. For example, two layers including the core layer 31 (one core layer and one outer layer), or an odd number of five or more layers arranged around the core layer 31 (one core layer and one outer layer) 4 layers), or an even number of layers including the core layer 31 inside (the core layer is one layer and the other layers are outer layers).
 コア層31はアウター層32よりも軟質であるが、この点については、ヤング率を基準として材料を選択することができる。具体的には、周波数100Hz,温度20度において、1~20MPaであることが好ましく、1~16MPaであることがさらに好ましい。更には、1~10MPaであることが好ましい。測定方法としては、例えば、Metravib社製固体粘弾性測定装置DMA 50を用い、ひずみ量0.05%にて周波数分散測定を行うことができる。以下、本明細書においては、特に断りのない限り、ヤング率は上記方法での測定値とする。但し、周波数が200Hz以下の場合の測定は実測値を用いるが、200Hzより大きい場合には実測値に基づく算出値を用いる。この算出値とは、実測値からWLF法を用いることで算出されるマスターカーブに基づくものである。 The core layer 31 is softer than the outer layer 32, but in this respect, the material can be selected based on the Young's modulus. Specifically, it is preferably 1 to 20 MPa, more preferably 1 to 16 MPa at a frequency of 100 Hz and a temperature of 20 degrees. Further, it is preferably 1 to 10 MPa. As a measuring method, for example, frequency dispersion measurement can be performed with a strain amount of 0.05% using a solid viscoelasticity measuring device DMA-50 manufactured by Metravib. Hereinafter, unless otherwise specified, in this specification, the Young's modulus is a value measured by the above method. However, the measurement when the frequency is 200 Hz or less uses an actual measurement value. When the frequency is higher than 200 Hz, a calculation value based on the actual measurement value is used. The calculated value is based on a master curve calculated by using the WLF method from the actually measured value.
 一方、アウター層32のヤング率は、特には限定されず、コア層より大きければよい。例えば、周波数100Hz,温度20度において560MPa以上、650MPa以上、1300MPa以上、1764MPa以上の順で好ましい。一方、アウター層32のヤング率の上限は特には限定されないが、例えば、加工性の観点から設定することができる。例えば、1750MPa以上となると、加工性、特に切断が困難になることが経験的に知られている。また、コア層31を挟む一対のアウター層32を設ける場合、外側ガラス板1側のアウター層32のヤング率を、内側ガラス板2側のアウター層32のヤング率よりも大きくすることが好ましい。これにより、車外や屋外からの外力に対する耐破損性能が向上する。 On the other hand, the Young's modulus of the outer layer 32 is not particularly limited as long as it is larger than the core layer. For example, it is preferable in the order of 560 MPa or more, 650 MPa or more, 1300 MPa or more, 1764 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees. On the other hand, the upper limit of the Young's modulus of the outer layer 32 is not particularly limited, but can be set from the viewpoint of workability, for example. For example, it is empirically known that when it becomes 1750 MPa or more, workability, particularly cutting becomes difficult. Moreover, when providing a pair of outer layer 32 which pinches | interposes the core layer 31, it is preferable to make the Young's modulus of the outer layer 32 by the side of the outer side glass plate 1 larger than the Young's modulus of the outer layer 32 by the side of the inner side glass plate 2. Thereby, the damage resistance performance with respect to the external force from the outside of a vehicle or the outdoors improves.
 中間膜3のコア層31のtanδは、周波数100Hz,温度20度において、0.5~3.0であることが好ましく、0.7~2.0であることがさらに好ましく、1.0~1.5であることが特に好ましい。tanδが上記範囲にあると、音を吸収しやすくなり、遮音性能が向上する。しかし、3.0よりも大きくなると、中間膜3が柔らかくなりすぎ、取り扱いが困難になるため、好ましくない。また、0.5より小さくなると耐衝撃性能が低下して好ましくない。 The tan δ of the core layer 31 of the intermediate film 3 is preferably 0.5 to 3.0, more preferably 0.7 to 2.0, and more preferably 1.0 to 1.0 at a frequency of 100 Hz and a temperature of 20 degrees. A ratio of 1.5 is particularly preferred. When tan δ is in the above range, sound is easily absorbed, and sound insulation performance is improved. However, if it exceeds 3.0, the intermediate film 3 becomes too soft and difficult to handle, which is not preferable. On the other hand, if it is less than 0.5, the impact resistance is lowered, which is not preferable.
 一方、アウター層のtanδは、コア層31よりも小さい値であればよく、例えば、周波数100Hz,温度20度において、0.1から3.0の間で定めることができる。 On the other hand, tan δ of the outer layer may be a value smaller than that of the core layer 31, and can be determined between 0.1 and 3.0 at a frequency of 100 Hz and a temperature of 20 degrees, for example.
 また、各層31,32を構成する材料は、特には限定されないが、少なくともヤング率が上記のような範囲とすることができる材料であることが必要である。例えば、アウター層32は、ポリビニルブチラール樹脂(PVB)によって構成することができる。ポリビニルブチラール樹脂は、各ガラス板との接着性や耐貫通性に優れるので好ましい。一方、コア層31は、エチレンビニルアセテート樹脂(EVA)、またはアウター層を構成するポリビニルブチラール樹脂よりも軟質なポリビニルアセタール樹脂によって構成することができる。軟質なコア層を間に挟むことにより、単層の樹脂中間膜と同等の接着性や耐貫通性を保持しながら、遮音性能を大きく向上させることができる。 Further, the material constituting each of the layers 31 and 32 is not particularly limited, but it is necessary that the material has at least a Young's modulus in the above range. For example, the outer layer 32 can be comprised by polyvinyl butyral resin (PVB). Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate. On the other hand, the core layer 31 can be made of an ethylene vinyl acetate resin (EVA) or a polyvinyl acetal resin softer than the polyvinyl butyral resin constituting the outer layer. By sandwiching the soft core layer between them, the sound insulation performance can be greatly improved while maintaining the same adhesion and penetration resistance as the single-layer resin intermediate film.
 一般に、ポリビニルアセタール樹脂の硬度は、(a)出発物質であるポリビニルアルコールの重合度、(b)アセタール化度、(c)可塑剤の種類、(d)可塑剤の添加割合などにより制御することができる。したがって、それらの条件から選ばれる少なくとも1つを適切に調整することにより、同じポリビニルブチラール樹脂であっても、アウター層に用いる硬質なポリビニルブチラール樹脂と、コア層に用いる軟質なポリビニルブチラール樹脂との作り分けが可能である。さらに、アセタール化に用いるアルデヒドの種類、複数種類のアルデヒドによる共アセタール化か単種のアルデヒドによる純アセタール化かによっても、ポリビニルアセタール樹脂の硬度を制御することができる。一概には言えないが、炭素数の多いアルデヒドを用いて得られるポリビニルアセタール樹脂ほど、軟質となる傾向がある。したがって、例えば、アウター層がポリビニルブチラール樹脂で構成されている場合、コア層には、炭素数が5以上のアルデヒド(例えばn-ヘキシルアルデヒド、2-エチルブチルアルデヒド、n-へプチルアルデヒド、n-オクチルアルデヒド)、をポリビニルアルコールでアセタール化して得られるポリビニルアセタール樹脂を用いることができる。なお、所定のヤング率が得られる場合は、上記樹脂等に限定されることはい。 In general, the hardness of the polyvinyl acetal resin is controlled by (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can do. Therefore, by appropriately adjusting at least one selected from these conditions, even with the same polyvinyl butyral resin, a hard polyvinyl butyral resin used for the outer layer and a soft polyvinyl butyral resin used for the core layer It can be made separately. Furthermore, the hardness of the polyvinyl acetal resin can also be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of aldehydes or pure acetalization with a single aldehyde. Although it cannot generally be said, the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer. Therefore, for example, when the outer layer is made of polyvinyl butyral resin, the core layer has an aldehyde having 5 or more carbon atoms (for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n- Octyl aldehyde) can be used as a polyvinyl acetal resin obtained by acetalization with polyvinyl alcohol. In addition, when a predetermined Young's modulus is obtained, it is not limited to the said resin.
 また、中間膜3の総厚は、特に規定されないが、0.3~6.0mmであることが好ましく、0.5~4.0mmであることがさらに好ましく、0.6~2.0mmであることが特に好ましい。一方、コア層31の厚みは、0.1~2.0mmであることが好ましく、0.1~0.6mmであることがさらに好ましい。0.1mmよりも小さくなると、軟質なコア層31の影響が及びにくくなり、また、2.0mmや0.6mmより大きくなると総厚があがりコストアップとなるからである。一方、アウター層32の厚みは特に限定されないが、例えば、0.1~2.0mmであることが好ましく、0.1~1.0mmであることがさらに好ましい。その他、中間膜3の総厚を一定とし、この中でコア層31の厚みを調整することもできる。 The total thickness of the intermediate film 3 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred. On the other hand, the thickness of the core layer 31 is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 0.6 mm. This is because if the thickness is smaller than 0.1 mm, the influence of the soft core layer 31 is difficult to reach, and if the thickness is larger than 2.0 mm or 0.6 mm, the total thickness increases and the cost is increased. On the other hand, the thickness of the outer layer 32 is not particularly limited, but is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 1.0 mm. In addition, the total thickness of the intermediate film 3 can be made constant, and the thickness of the core layer 31 can be adjusted therein.
 コア層31の厚みは、例えば、以下のように測定することができる。まず、マイクロスコープ(例えば、キーエンス社製VH-5500)によって合わせガラスの断面を175倍に拡大して表示する。そして、コア層31の厚みを目視により特定し、これを測定する。このとき、目視によるばらつきを排除するため、測定回数を5回とし、その平均値をコア層31の厚みとする。例えば、図5に示すような合わせガラスの拡大写真を撮影し、このなかでコア層を特定して厚みを測定する。 The thickness of the core layer 31 can be measured as follows, for example. First, the cross section of the laminated glass is enlarged and displayed by 175 times using a microscope (for example, VH-5500 manufactured by Keyence Corporation). And the thickness of the core layer 31 is specified visually, and this is measured. At this time, in order to eliminate visual variation, the number of measurements is set to 5 times, and the average value is set as the thickness of the core layer 31. For example, an enlarged photograph of a laminated glass as shown in FIG. 5 is taken, and the core layer is specified in this and the thickness is measured.
 なお、中間膜3の厚みは全面に亘って一定である必要はなく、例えば、ヘッドアップディスプレイに用いられる合わせガラス用に楔形にすることもできる。この場合、中間膜3の厚みは、最も厚みの小さい箇所、つまり合わせガラスの最下辺部を測定する。中間膜3が楔形の場合、外側ガラス板1及び内側ガラス板2は、平行に配置されないが、このような配置も本発明における外側ガラス板と内側ガラス板との「対向配置」に含まれるものとする。すなわち、本発明の「対向配置」は、例えば、1m当たり3mm以下の変化率で厚みが大きくなる中間膜3を使用した時の外側ガラス板1と内側ガラス板2の配置を含む。 Note that the thickness of the intermediate film 3 does not have to be constant over the entire surface, and may be a wedge shape for laminated glass used for a head-up display, for example. In this case, the thickness of the intermediate film 3 is measured at a portion having the smallest thickness, that is, the lowermost side portion of the laminated glass. When the intermediate film 3 is wedge-shaped, the outer glass plate 1 and the inner glass plate 2 are not arranged in parallel. Such an arrangement is also included in the “opposing arrangement” between the outer glass plate and the inner glass plate in the present invention. And That is, the “opposing arrangement” of the present invention includes an arrangement of the outer glass plate 1 and the inner glass plate 2 when the intermediate film 3 whose thickness is increased at a change rate of 3 mm or less per 1 m, for example.
 中間膜3の製造方法は特には限定されないが、例えば、上述したポリビニルアセタール樹脂等の樹脂成分、可塑剤及び必要に応じて他の添加剤を配合し、均一に混練りした後、各層を一括で押出し成型する方法、この方法により作成した2つ以上の樹脂膜をプレス法、ラミネート法等により積層する方法が挙げられる。プレス法、ラミネート法等により積層する方法に用いる積層前の樹脂膜は単層構造でも多層構造でもよい。 Although the manufacturing method of the intermediate film 3 is not particularly limited, for example, after blending resin components such as the above-mentioned polyvinyl acetal resin, a plasticizer, and other additives as necessary, and uniformly kneading, each layer is collectively And a method of laminating two or more resin films prepared by this method by a pressing method, a laminating method or the like. The resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure.
 <3.合わせガラスの製造方法>
 本実施形態に係る合わせガラスの製造方法は、特に限定されず、従来より公知の合わせガラスの製造方法を採用することができる。例えば、まず、中間膜3を外側ガラス板1及び内側ガラス板2の間に挟み、これをゴムバッグに入れ、減圧吸引しながら約70~110℃で予備接着する。予備接着は、これ以外の方法を用いることもできる。例えば、中間膜3を外側ガラス板1及び内側ガラス板2の間に挟み、オーブンにより45~65℃で加熱する。続いて、この合わせガラスを0.45~0.55MPaでロールにより押圧する。次に、この合わせガラスを、再度オーブンにより80~105℃で加熱した後、0.45~0.55MPaでロールにより再度押圧する。こうして、予備接着が完了する。
<3. Manufacturing method of laminated glass>
The manufacturing method of the laminated glass which concerns on this embodiment is not specifically limited, The manufacturing method of a conventionally well-known laminated glass can be employ | adopted. For example, first, the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2, placed in a rubber bag, and pre-bonded at about 70 to 110 ° C. while sucking under reduced pressure. Other methods can be used for the preliminary adhesion. For example, the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa. Next, the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa. Thus, preliminary adhesion is completed.
 次に、本接着を行う。予備接着がなされた合わせガラスを、オートクレーブにより、8~15気圧で、100~150℃によって、本接着を行う。具体的には、14気圧で145℃の条件で本接着を行うことができる。こうして、本実施形態に係る合わせガラスが製造される。 Next, this bonding is performed. The pre-bonded laminated glass is subjected to main bonding by an autoclave at 8 to 15 atm and 100 to 150 ° C. Specifically, the main bonding can be performed under the conditions of 14 atm and 145 ° C. Thus, the laminated glass according to the present embodiment is manufactured.
 <6.合わせガラスの取付構造>
 上述した合わせガラスは、例えば、自動車、建築物などの取付構造体に取付けることができる。このとき、合わせガラスは、取付部を介して取付構造物に取付けられる。取付部とは、例えば、自動車に取付けるためのウレタン枠などのフレーム、接着材、クランプなどが該当する。自動車への取付の一例を挙げると、図6(a)に示すように、まず、合わせガラス10の両端にピン50を取付けておき、取付対象となる自動車のフレーム70に接着材60を塗布する。フレームには、ピンが挿入される貫通孔80が形成されている。そして、図6(b)に示すように、合わせガラス10をフレーム70に取付ける。まず、ピン50を貫通孔80に挿入し、合わせガラス10をフレーム70に対して仮止めする。このとき、ピン50には段差が形成されているため、ピン50は貫通孔80の途中までしか挿入されず、これにより、フレーム70と合わせガラス10との間に隙間が生じる。そして、この隙間には上述した接着材60が塗布されているため、時間の経過とともに接着材60を介して合わせガラス10とフレーム70が固定される。
<6. Laminated glass mounting structure>
The laminated glass mentioned above can be attached to attachment structures, such as a car and a building, for example. At this time, the laminated glass is attached to the attachment structure via the attachment portion. The attachment portion corresponds to, for example, a frame such as a urethane frame for attachment to an automobile, an adhesive, a clamp, or the like. As an example of attachment to an automobile, as shown in FIG. 6A, first, pins 50 are attached to both ends of the laminated glass 10, and the adhesive 60 is applied to the automobile frame 70 to be attached. . A through hole 80 into which a pin is inserted is formed in the frame. And the laminated glass 10 is attached to the flame | frame 70 as shown in FIG.6 (b). First, the pin 50 is inserted into the through hole 80 and the laminated glass 10 is temporarily fixed to the frame 70. At this time, since a step is formed in the pin 50, the pin 50 is inserted only halfway through the through-hole 80, whereby a gap is generated between the frame 70 and the laminated glass 10. And since the adhesive material 60 mentioned above is apply | coated to this clearance gap, the laminated glass 10 and the flame | frame 70 are fixed via the adhesive material 60 with progress of time.
 このような合わせガラスの取付構造体への取付において、合わせガラス10の取付角度はθは、図6(c)に示すように、垂直Nから45度以下にすることが好ましい。 In the attachment of the laminated glass to the attachment structure, the attachment angle of the laminated glass 10 is preferably 45 degrees or less from the vertical N as shown in FIG.
 <6.特徴>
 本実施形態によれば、中間膜3の一部を構成するコア層31のヤング率を周波数100Hz,温度20度において、1~20MPaという小さい値にすることで、次の効果を得ることができる。まず、中間膜のヤング率が大きいと、合わせガラスであっても、単板として性質が強くなる。また、以下の数式に示すように、ガラスは一般的に厚みやヤング率が小さくなるほどコインシデンス周波数は高周波側にシフトする。
Figure JPOXMLDOC01-appb-M000001
<6. Features>
According to the present embodiment, the following effects can be obtained by setting the Young's modulus of the core layer 31 constituting a part of the intermediate film 3 to a small value of 1 to 20 MPa at a frequency of 100 Hz and a temperature of 20 degrees. . First, when the Young's modulus of the intermediate film is large, even a laminated glass has a strong property as a single plate. Moreover, as shown in the following formula, the coincidence frequency generally shifts to a higher frequency side as the thickness and Young's modulus of glass become smaller.
Figure JPOXMLDOC01-appb-M000001
 これらを考慮すると、例えば、中間膜3のヤング率が大きいと、合計の厚みが4mmの合わせガラスであっても、4mmの厚みを有する単板と同様に、コインシデンス周波数が3~4kHzとなり、人が聞きやすい周波数帯で性能が低下する。一方、ヤング率が小さくなれば、合わせガラスの性能は2枚のガラス板の合算になる。例えば、2mmのガラス板と1mmのガラス板からなる合わせガラスであれば、その性能は、2枚のガラス板の性能の合算となる傾向がある。すなわち、図7に示す各ガラス板の厚みは4mmよりも小さいため、コインシデンス周波数は高周波側にシフトし、2mmのガラス板は5000Hzあたりにコインシデンス周波数が存在するとともに、1mmのガラス板は8000Hzにコインシデンス周波数が存在する。そして、これら1mmと2mmの厚さのガラス板の合わせガラスの性能はその合算であるため、コインシデンス周波数は、5000~8000Hzの間に存在することになる。なお、図7は、合わせガラスではない単板の、周波数とSTLとの関係をシミュレーションした結果を示すグラフである。 Considering these, for example, when the Young's modulus of the intermediate film 3 is large, even if the total thickness is 4 mm, the coincidence frequency is 3 to 4 kHz as in the case of a single plate having a thickness of 4 mm. The performance drops in a frequency band that is easy to hear. On the other hand, if the Young's modulus decreases, the performance of the laminated glass is the sum of the two glass plates. For example, if it is a laminated glass consisting of a 2 mm glass plate and a 1 mm glass plate, its performance tends to be the sum of the performances of the two glass plates. That is, since the thickness of each glass plate shown in FIG. 7 is smaller than 4 mm, the coincidence frequency shifts to the high frequency side, and the 2 mm glass plate has a coincidence frequency around 5000 Hz, and the 1 mm glass plate has a coincidence at 8000 Hz. There is a frequency. And since the performance of the laminated glass of these 1 mm and 2 mm thick glass plates is the sum of them, the coincidence frequency exists between 5000 and 8000 Hz. In addition, FIG. 7 is a graph which shows the result of having simulated the relationship between the frequency and STL of the single plate which is not a laminated glass.
 そこで、本実施形態においては、中間膜3の一部を構成するコア層31のヤング率を周波数100Hz,温度20度において、1~20MPaとしているため、合わせガラスの性能を外側ガラス板1と内側ガラス板2との合算となるようにしている。これにより、内側ガラス板2の厚みを0.4~2.0mmのように小さくしても、人間が聞き取りやすい周波数においては遮音性能は低下しない。すなわち、内側ガラス板2の厚みを小さくすることでコインシデンス周波数が高周波側にシフトする。そのため、上述したように、内側ガラス板2の薄厚化に起因して2000~5000Hzの周波数領域において低下した音響透過損失を上昇させることが可能となる。その結果、合わせガラスの軽量化とともに、人間が聞き取りやすい2000~5000Hzの周波数領域での遮音性能を向上することができる。 Therefore, in this embodiment, the Young's modulus of the core layer 31 constituting a part of the intermediate film 3 is 1 to 20 MPa at a frequency of 100 Hz and a temperature of 20 degrees. The total is added to the glass plate 2. As a result, even if the thickness of the inner glass plate 2 is reduced to 0.4 to 2.0 mm, the sound insulation performance does not deteriorate at a frequency that is easy for humans to hear. That is, the coincidence frequency is shifted to the high frequency side by reducing the thickness of the inner glass plate 2. Therefore, as described above, it is possible to increase the sound transmission loss that is reduced in the frequency region of 2000 to 5000 Hz due to the thinning of the inner glass plate 2. As a result, it is possible to improve the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear, as well as reducing the weight of the laminated glass.
 また、本発明者は、中間膜3のアウター層32のヤング率を向上すると、約4000Hz以上の周波数域での遮音性能が向上することを見出した。例えば、一般的に用いられるヤング率が441MPa(20℃、100Hz)のアウター層に対し、ヤング率が560MPa(20℃、100Hz)のアウター層32を用いると、周波数6300Hzにおいて、STLが0.3dB向上することを見出した。一般的に、人間は0.3dB以上の音の変化を認識できるとされているため、ヤング率を高めることで、高周波数域において、人間が認識できるほどの遮音効果を得ることができる。また、アウター層32のヤング率は高くなるほど、遮音性能が高くなることが見出されており、例えば、ヤング率を880MPa(20℃、100Hz)以上とすると、周波数6300Hzにおいて、1.0dB以上STLが向上し、1300MPa(20℃、100Hz)以上とすると、さらにSTLが向上することが見出されている。 Further, the present inventor has found that when the Young's modulus of the outer layer 32 of the intermediate film 3 is improved, the sound insulation performance in a frequency range of about 4000 Hz or more is improved. For example, when the outer layer 32 having a Young's modulus of 560 MPa (20 ° C., 100 Hz) is used for the outer layer having a Young's modulus of 441 MPa (20 ° C., 100 Hz), the STL is 0.3 dB at a frequency of 6300 Hz. I found it to improve. In general, since it is assumed that a human can recognize a change in sound of 0.3 dB or more, by increasing the Young's modulus, a sound insulation effect that can be recognized by a human can be obtained in a high frequency range. Further, it has been found that the higher the Young's modulus of the outer layer 32, the higher the sound insulation performance. For example, when the Young's modulus is 880 MPa (20 ° C., 100 Hz) or higher, the STL is 1.0 dB or higher at a frequency of 6300 Hz. It has been found that STL is further improved when the pressure is 1300 MPa (20 ° C., 100 Hz) or higher.
 一方、1000~3500Hzの低周波数域では、アウター層のヤング率を向上すると、STLが低下することが分かっている。しかしながら、その低下は小さいことも見出されている。 On the other hand, in the low frequency range of 1000 to 3500 Hz, it is known that the STL decreases when the Young's modulus of the outer layer is improved. However, it has also been found that the decrease is small.
 以下、本発明の実施例について説明する。但し、本発明は以下の実施例に限定されない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the following examples.
 <1.外側ガラス板の厚みの評価>
 まず、外側ガラス板の厚みの評価を行った。ここでは、以下に示す7つの合わせガラスを準備した。各合わせガラスは、外側ガラス板、内側ガラス板、及びこれらに挟持される中間膜で構成されている。中間膜は、コア層、アウター層の厚みがそれぞれ0.1mm、0.33mm、ヤング率がそれぞれ10MPa、441MPa(20℃、100Hz)とした。
Figure JPOXMLDOC01-appb-T000002
<1. Evaluation of thickness of outer glass plate>
First, the thickness of the outer glass plate was evaluated. Here, the following seven laminated glasses were prepared. Each laminated glass includes an outer glass plate, an inner glass plate, and an intermediate film sandwiched between them. In the intermediate film, the thicknesses of the core layer and the outer layer were 0.1 mm and 0.33 mm, respectively, and the Young's modulus was 10 MPa and 441 MPa (20 ° C., 100 Hz), respectively.
Figure JPOXMLDOC01-appb-T000002
 上記各合わせガラスを垂直から60度の角度をなすように配置し、平均粒径が約5~20mmの花崗岩を時速64kmで各合わせガラスに衝突させた。各合わせガラスには、それぞれ30個の花崗岩を衝突させ、亀裂の発生率を算出した。結果は、図8の通りである。同図に示すように、外側ガラス板の厚さが2.0mmである合わせガラス1~4は、内側ガラス板の厚さに関わらず、亀裂の発生率が5%以下であった。一方、外側ガラス板の厚みが1.8mm以下である合わせガラス5,6は、内側ガラスの厚さにかかわらず、亀裂の発生率が8%となった。したがって、飛来物に対する耐衝撃性の観点から、外側ガラス板の厚さは、上記のように、1.8mm以上であることが好ましい。更に好ましくは2.0mm以上である。 The above laminated glasses were arranged at an angle of 60 degrees from the vertical, and granite having an average particle diameter of about 5 to 20 mm was collided with each laminated glass at a speed of 64 km / h. Thirty granites collided with each laminated glass, and the occurrence rate of cracks was calculated. The result is as shown in FIG. As shown in the figure, in the laminated glasses 1 to 4 having an outer glass plate thickness of 2.0 mm, the occurrence rate of cracks was 5% or less regardless of the thickness of the inner glass plate. On the other hand, in the laminated glasses 5 and 6 in which the thickness of the outer glass plate was 1.8 mm or less, the occurrence rate of cracks was 8% regardless of the thickness of the inner glass. Therefore, from the viewpoint of impact resistance against flying objects, the thickness of the outer glass plate is preferably 1.8 mm or more as described above. More preferably, it is 2.0 mm or more.
 <2.コア層のヤング率に関する評価>
 以下の通り、実施例及び比較例に係る合わせガラスを準備した。
Figure JPOXMLDOC01-appb-T000003
<2. Evaluation of Young's modulus of core layer>
The laminated glass which concerns on an Example and a comparative example was prepared as follows.
Figure JPOXMLDOC01-appb-T000003
 各ガラス板は、上述したクリアガラスで形成した。また、中間膜はコア層とこれを挟持する一対のアウター層で構成した。中間膜の厚みは0.76mm、コア層の厚みは0.1mm、両アウター層の厚みは0.33mmとした。両アウター層のヤング率は441MPa(20℃、100Hz)に調整した。 Each glass plate was formed of the above-described clear glass. Moreover, the intermediate film was comprised with the core layer and a pair of outer layer which clamps this. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm. The Young's modulus of both outer layers was adjusted to 441 MPa (20 ° C., 100 Hz).
 上記実施例及び比較例について、音響透過損失をシミュレーションにより、評価した。シミュレーション条件は、以下の通りである。 The sound transmission loss was evaluated by simulation for the above examples and comparative examples. The simulation conditions are as follows.
 まず、シミュレーションは、音響解析ソフト(ACTRAN、Free Field technology社製)を用いて行った。このソフトでは、有限要素法を用いて次の波動方程式を解くことにより、合わせガラスの音響透過損失(透過音圧レベル/入射音圧レベル)を算出することができる。
Figure JPOXMLDOC01-appb-M000004
First, the simulation was performed using acoustic analysis software (ACTRAN, manufactured by Free Field technology). In this software, the sound transmission loss (transmitted sound pressure level / incident sound pressure level) of the laminated glass can be calculated by solving the following wave equation using the finite element method.
Figure JPOXMLDOC01-appb-M000004
 次に、算出条件について説明する。
(1) モデルの設定
 本シミュレーションで用いた合わせガラスのモデルを図9に示す。このモデルでは、音の発生源側から外側ガラス板、中間膜、内側ガラス板、ウレタン枠の順で積層した合わせガラスを規定している。ここで、ウレタン枠をモデルに追加しているのは、ウレタン枠の有無により音響透過損失の算出結果に少なからず影響があると考えられる点、及び、合わせガラスと車両のウインドシールドの間にはウレタン枠が用いられて接着していることが一般的である点を考慮したためである。
(2) 入力条件1(寸法等)
Figure JPOXMLDOC01-appb-T000005
Next, calculation conditions will be described.
(1) Model setting Figure 9 shows the model of laminated glass used in this simulation. In this model, a laminated glass is defined in which an outer glass plate, an intermediate film, an inner glass plate, and a urethane frame are laminated in this order from the sound source side. Here, the reason why the urethane frame is added to the model is that there is a considerable influence on the calculation result of sound transmission loss due to the presence or absence of the urethane frame, and between the laminated glass and the vehicle windshield. This is because it is generally considered that a urethane frame is used and bonded.
(2) Input condition 1 (dimensions, etc.)
Figure JPOXMLDOC01-appb-T000005
 なお、ガラス板の寸法である800×500mmは、実際の車両で用いられるサイズよりも小さい。ガラスサイズが大きくなるとSTL値は悪くなる傾向にあるが、これは、サイズが大きいほど拘束箇所が大きくなり、それにともない共振モードが大きくなるからである。但し、ガラスサイズが異なっても、周波数毎の相対的値の傾向、つまり、異なる厚みのガラス板からなる合わせガラスが同厚のガラス板からなる合わせガラスに比して所定の周波数帯で悪くなる傾向は同じである。 Note that the size of the glass plate, 800 × 500 mm, is smaller than the size used in an actual vehicle. As the glass size increases, the STL value tends to worsen because the larger the size, the larger the constrained portion and the greater the resonance mode. However, even if the glass size is different, the tendency of the relative value for each frequency, that is, the laminated glass made of glass plates with different thicknesses becomes worse in a predetermined frequency band than the laminated glass made of glass plates with the same thickness. The trend is the same.
 また、上記表3のランダム拡散音波とは、所定の周波数の音波が外側ガラス板に対してあらゆる方向の入射角をもって伝番していく音波であり、音響透過損失を測定する残響室での音源を想定したものとなっている。
(3) 入力条件2(物性値)
Figure JPOXMLDOC01-appb-T000006
[コア層及び両アウター層のヤング率及び損失係数について]
 主な周波数毎に異なった値を用いた。これは、コア層及び両アウター層は粘弾性体のため、粘性効果によりヤング率は周波数依存性が強いためである。なお、温度依存性も大きいが、今回は温度一定(20℃)を想定した物性値を用いた。
Figure JPOXMLDOC01-appb-T000007
 なお、以上のシミュレーション方法は、以下の3,4,5項においても同じである。
Further, the random diffuse sound wave in Table 3 is a sound wave having a sound wave of a predetermined frequency transmitted with an incident angle in any direction with respect to the outer glass plate, and a sound source in a reverberation chamber for measuring sound transmission loss. Is assumed.
(3) Input condition 2 (property value)
Figure JPOXMLDOC01-appb-T000006
[About Young's modulus and loss factor of core layer and both outer layers]
Different values were used for each main frequency. This is because the Young's modulus is strongly frequency dependent due to the viscous effect because the core layer and both outer layers are viscoelastic bodies. In addition, although the temperature dependence is large, the physical property value which assumed temperature constant (20 degreeC) was used this time.
Figure JPOXMLDOC01-appb-T000007
The above simulation method is the same in the following items 3, 4, and 5.
 結果は、図10のグラフに示すとおりである。この結果によれば、実施例1~4のように、コア層のヤング率を20MPa(20℃、100Hz)以下とすることで、異厚によるSTL値を抑えることができる。また、実施例2~4のように、コア層のヤング率を16MPa(20℃、100Hz)以下とすることで、両ガラスが同厚である比較例1と比べ、2000~5000Hzの周波数領域で音響透過損失が高くなっている。更に、実施例3,4のように、コア層のヤング率を10MPa(20℃、100Hz)以下とすることで、両ガラスが同厚である比較例1と比べ、2000~5000Hzの周波数領域で音響透過損失が明らかに高くなっている。したがって、内側ガラス板を外側ガラス板よりも薄くし、且つコア層のヤング率を20MPa以下とすることで、人間に聞き取りやすい2000~5000Hzの周波数領域での遮音性能が高くなることが分かった。 The results are as shown in the graph of FIG. According to this result, the STL value due to the different thickness can be suppressed by setting the Young's modulus of the core layer to 20 MPa (20 ° C., 100 Hz) or less as in Examples 1 to 4. Further, as in Examples 2 to 4, by setting the Young's modulus of the core layer to 16 MPa (20 ° C., 100 Hz) or less, compared with Comparative Example 1 in which both glasses have the same thickness, in a frequency region of 2000 to 5000 Hz. Sound transmission loss is high. Further, as in Examples 3 and 4, by setting the Young's modulus of the core layer to 10 MPa (20 ° C., 100 Hz) or less, compared with Comparative Example 1 in which both glasses have the same thickness, in a frequency region of 2000 to 5000 Hz. The sound transmission loss is clearly high. Therefore, it has been found that by making the inner glass plate thinner than the outer glass plate and setting the Young's modulus of the core layer to 20 MPa or less, the sound insulation performance in a frequency range of 2000 to 5000 Hz that is easy for humans to hear is improved.
 <3.コア層の厚みに関する評価>
 以下の通り、実施例及び比較例に係る合わせガラスを準備した。ここでは、コア層の厚みを変化させ、音響透過損失を上記シミュレーション方法により算出した。中間膜は3層で構成し、総厚を変化させず、コア層とアウター層の厚みを変化させた。コア層のヤング率は10MPa(20℃、100Hz),アウター層のヤング率は441Mpa(20℃、100Hz)とした。また、外側ガラス板及び内側ガラス板の厚みはそれぞれ2.0mm、1.0mmとした。
Figure JPOXMLDOC01-appb-T000008
<3. Evaluation of core layer thickness>
The laminated glass which concerns on an Example and a comparative example was prepared as follows. Here, the thickness of the core layer was changed and the sound transmission loss was calculated by the simulation method. The intermediate film was composed of three layers, and the thickness of the core layer and the outer layer was changed without changing the total thickness. The Young's modulus of the core layer was 10 MPa (20 ° C., 100 Hz), and the Young's modulus of the outer layer was 441 Mpa (20 ° C., 100 Hz). The thicknesses of the outer glass plate and the inner glass plate were 2.0 mm and 1.0 mm, respectively.
Figure JPOXMLDOC01-appb-T000008
 上記実施例及び比較例について、音響透過損失をシミュレーションにより評価した。結果は、図11に示すとおりである。同図によれば、コア層の厚みが0.1mmより小さくなると、2000~5000Hzの周波数領域で、音響透過損失が低下していることが分かる。したがって、人間に聞き取りやすい2000~5000Hzの周波数領域での遮音性能を高くするためには、コア層の厚みを0.1mm以上とすることが好ましい。 The sound transmission loss was evaluated by simulation for the above examples and comparative examples. The results are as shown in FIG. According to the figure, it can be seen that when the thickness of the core layer is smaller than 0.1 mm, the sound transmission loss is reduced in the frequency range of 2000 to 5000 Hz. Therefore, in order to increase the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear, the thickness of the core layer is preferably set to 0.1 mm or more.
 <4.合わせガラスの取付角度に関する評価>
 続いて、音の入射角を変化させたシミュレーションにより、合わせガラスの取付角度について評価を行った。ここでは、垂直からの角度を0~75度に変化させて音響透過損失を算出した。各ガラス板は、上述したクリアガラスで形成した。また、中間膜はコア層とこれを挟持する一対のアウター層で構成した。中間膜の厚みは0.76mm、コア層の厚みは0.1mm、両アウター層の厚みは0.33mmとした。コア層のヤング率は10MPa(20℃、100Hz),両アウター層のヤング率は441MPa(20℃、100Hz)とした。また、ガラス板の厚みは、2.0mm、1.0mmとした。
Figure JPOXMLDOC01-appb-T000009
<4. Evaluation of the mounting angle of laminated glass>
Subsequently, the mounting angle of the laminated glass was evaluated by a simulation in which the incident angle of sound was changed. Here, the sound transmission loss was calculated by changing the angle from the vertical to 0 to 75 degrees. Each glass plate was formed of the above-described clear glass. Moreover, the intermediate film was comprised with the core layer and a pair of outer layer which clamps this. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm. The Young's modulus of the core layer was 10 MPa (20 ° C., 100 Hz), and the Young's modulus of both outer layers was 441 MPa (20 ° C., 100 Hz). Moreover, the thickness of the glass plate was 2.0 mm and 1.0 mm.
Figure JPOXMLDOC01-appb-T000009
 上記実施例及び比較例について、音響透過損失を上記シミュレーション方法により、評価した。但し、入力条件として合わせガラスの取付角度を追加してシミュレーションを行った。結果は、図12に示すとおりである。同図によれば、取付角度が60度を超えると、3000Hz付近の周波数で、音響透過損失が急激に低下していることが分かる。したがって、人間に聞き取りやすい2000~5000Hzの周波数領域での遮音性能を高くするためには、合わせガラスの垂直からの取付角度を45度以下とすることが好ましいことが分かった。また、60度以下であれば、遮音性能を高めることができ、場合によっては、75度以下とすることで、遮音性能を高めることができる。 For the above examples and comparative examples, sound transmission loss was evaluated by the above simulation method. However, a simulation was performed by adding a laminated glass mounting angle as an input condition. The results are as shown in FIG. According to the figure, it can be seen that when the mounting angle exceeds 60 degrees, the sound transmission loss sharply decreases at a frequency near 3000 Hz. Therefore, it has been found that in order to increase the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear, it is preferable that the mounting angle of the laminated glass from the vertical is 45 degrees or less. Moreover, if it is 60 degrees or less, sound insulation performance can be improved, and sound insulation performance can be improved by setting it as 75 degrees or less depending on the case.
 <5.アウター層のヤング率に関する評価>
 アウター層のヤング率に関する評価を行うため、以下の通り、実施例及び比較例に係る合わせガラスを準備した。ここでは、外側ガラス及び内側ガラスの厚みを一定にした上で、中間膜のアウター層及びコア層のヤング率を変化させ、音響透過損失を上記シミュレーション方法により算出した。各ガラス板は、上述したクリアガラスで形成し、中間膜はコア層とこれを挟持する一対のアウター層で構成した。中間膜の厚みは0.76mm、コア層の厚みは0.1mm、両アウター層の厚みは0.33mmとした。
Figure JPOXMLDOC01-appb-T000010
<5. Evaluation of Young's modulus of outer layer>
In order to evaluate the Young's modulus of the outer layer, laminated glasses according to Examples and Comparative Examples were prepared as follows. Here, the thickness of the outer glass and the inner glass was made constant, the Young's modulus of the outer layer and the core layer of the intermediate film was changed, and the sound transmission loss was calculated by the simulation method. Each glass plate was formed of the above-described clear glass, and the intermediate film was composed of a core layer and a pair of outer layers sandwiching the core layer. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm.
Figure JPOXMLDOC01-appb-T000010
 結果は、以下の通りである。まず、図13に実施例13及び14の結果を示した。上述したコア層のヤング率の評価では、ヤング率を20MPa以下にすると、人間が聞き取りやすい2000~5000Hzの周波数領域で音響透過損失が高くなっていることが分かった。これに対して、実施例13及び14では、コア層のヤング率を一定にした上で、アウター層のヤング率を変化させた。その結果、図13に示すように、アウター層のヤング率が高い実施例14では、5000Hz以上の高い周波数領域で、音響透過損失が高くなることが分かった。 The results are as follows. First, the results of Examples 13 and 14 are shown in FIG. In the evaluation of the Young's modulus of the core layer described above, it was found that when the Young's modulus is 20 MPa or less, the sound transmission loss is increased in a frequency range of 2000 to 5000 Hz that is easy for humans to hear. On the other hand, in Examples 13 and 14, the Young's modulus of the outer layer was changed while keeping the Young's modulus of the core layer constant. As a result, as shown in FIG. 13, in Example 14 where the Young's modulus of the outer layer was high, it was found that the sound transmission loss was high in a high frequency region of 5000 Hz or higher.
 また、実施例15~18では、コア層のヤング率をさらに下げるとともに、アウター層のヤング率を大きくしている。図14に示すように、これらの例では、実施例13及び14に比べ、2000~5000Hzの周波数領域での音響透過損失が高くなっているものの、実施例13及び実施例14ほど5000Hz以上の高い周波数領域での音響透過損失は高くなっていない。特に、アウター層のヤング率が1764MPaを超えると、5000Hz以上の高い周波数領域での音響透過損失はほとんど高くならない。 In Examples 15 to 18, the Young's modulus of the core layer is further lowered and the Young's modulus of the outer layer is increased. As shown in FIG. 14, in these examples, the sound transmission loss in the frequency region of 2000 to 5000 Hz is higher than those in Examples 13 and 14, but in Examples 13 and 14, the frequency is higher than 5000 Hz. The sound transmission loss in the frequency domain is not high. In particular, when the Young's modulus of the outer layer exceeds 1764 MPa, the sound transmission loss in a high frequency region of 5000 Hz or higher hardly increases.

Claims (9)

  1.  外側ガラス板と、
     前記外側ガラス板と対向配置され、前記外側ガラス板よりも厚みが小さい内側ガラス板と、
     前記外側ガラス板及び内側ガラス板の間に挟持された中間膜と、
    を備え、
     前記内側ガラス板の厚みが0.6~1.8mmであり、
     前記中間膜は、少なくともコア層を含む複数の層で構成されており、
     前記コア層のヤング率は、周波数100Hz,温度20℃において、1~20MPaであり、他の前記層のヤング率よりも低い、合わせガラス。
    An outer glass plate,
    An inner glass plate disposed opposite to the outer glass plate and having a smaller thickness than the outer glass plate,
    An intermediate film sandwiched between the outer glass plate and the inner glass plate;
    With
    The inner glass plate has a thickness of 0.6 to 1.8 mm;
    The intermediate film is composed of a plurality of layers including at least a core layer,
    The laminated glass having a Young's modulus of the core layer of 1 to 20 MPa at a frequency of 100 Hz and a temperature of 20 ° C., which is lower than the Young's modulus of the other layers.
  2.  前記内側ガラス板の厚みは、0.8~1.6mmである、請求項1に記載の合わせガラス。 The laminated glass according to claim 1, wherein the inner glass plate has a thickness of 0.8 to 1.6 mm.
  3.  前記内側ガラス板の厚みは、1.0~1.4mmである、請求項1に記載の合わせガラス。 The laminated glass according to claim 1, wherein the inner glass plate has a thickness of 1.0 to 1.4 mm.
  4.  前記内側ガラス板の厚みは、0.8~1.3mmである、請求項1に記載の合わせガラス。 The laminated glass according to claim 1, wherein the inner glass plate has a thickness of 0.8 to 1.3 mm.
  5.  前記コア層の厚みが0.1~2.0mmである、請求項1から4のいずれかに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 4, wherein the core layer has a thickness of 0.1 to 2.0 mm.
  6.  前記外側ガラス板の厚みは、1.8~5.0mmである、請求項1から5のいずれかに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 5, wherein the outer glass plate has a thickness of 1.8 to 5.0 mm.
  7.  前記コア層のヤング率は、周波数100Hz,温度20℃において、1~16MPaである請求項1から6のいずれかに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 6, wherein the Young's modulus of the core layer is 1 to 16 MPa at a frequency of 100 Hz and a temperature of 20 ° C.
  8.  前記中間膜は、前記コア層と接触し、周波数100Hz,温度20℃において、560MPa以上の少なくとも1つのアウター層を有する請求項1から7のいずれかに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 7, wherein the intermediate film is in contact with the core layer and has at least one outer layer of 560 MPa or more at a frequency of 100 Hz and a temperature of 20 ° C.
  9.  請求項1から7のいずれかに記載の合わせガラスと、
     前記合わせガラスを、垂直からの取付け角度が45度以下に取り付ける取付部と、を備えている、合わせガラスの取付構造体。
    The laminated glass according to any one of claims 1 to 7,
    An attachment structure for laminated glass, comprising: an attachment portion for attaching the laminated glass to a vertical attachment angle of 45 degrees or less.
PCT/JP2014/053698 2013-02-18 2014-02-18 Laminated glass, and structure having same mounted thereto WO2014126251A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480000757.9A CN104136391A (en) 2013-02-18 2014-02-18 Laminated glass, and structure having same mounted thereto
JP2014534695A JP5647380B1 (en) 2013-02-18 2014-02-18 Laminated glass and mounting structure to which the glass is mounted

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013029508 2013-02-18
JP2013-029508 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014126251A1 true WO2014126251A1 (en) 2014-08-21

Family

ID=51354249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053698 WO2014126251A1 (en) 2013-02-18 2014-02-18 Laminated glass, and structure having same mounted thereto

Country Status (3)

Country Link
JP (3) JP5647380B1 (en)
CN (1) CN104136391A (en)
WO (1) WO2014126251A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041324A1 (en) * 2013-09-19 2015-03-26 日本板硝子株式会社 Laminated glass
WO2016024625A1 (en) * 2014-08-15 2016-02-18 日本板硝子株式会社 Laminated glass
JP2016108222A (en) * 2014-11-10 2016-06-20 株式会社クラレ Intermediate film for glass laminate and glass laminate
JP2018002592A (en) * 2013-02-18 2018-01-11 日本板硝子株式会社 Mounting structure of glass laminate
JP2018505831A (en) * 2014-12-08 2018-03-01 サン−ゴバン グラス フランスSaint−Gobain Glass France Laminated glass with small thickness for head-up display (HUD)
JPWO2017094884A1 (en) * 2015-12-04 2018-10-11 Agc株式会社 Laminated glass for automobiles
JP2019511987A (en) * 2016-03-17 2019-05-09 サン−ゴバン グラス フランス Composite pane with conductive coating for head-up display
US10450215B2 (en) 2017-02-20 2019-10-22 Corning Incorporated Shaped glass laminates and methods for forming the same
US10525677B2 (en) 2014-09-12 2020-01-07 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US11236003B2 (en) 2017-10-18 2022-02-01 Corning Incorporated Methods for controlling separation between glasses during co-sagging to reduce final shape mismatch therebetween

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178738B2 (en) * 2014-02-27 2017-08-09 日本板硝子株式会社 Laminated glass and mounting structure to which the glass is mounted
JP6193777B2 (en) * 2014-02-14 2017-09-06 日本板硝子株式会社 Laminated glass and mounting structure to which the glass is mounted
EP3106443A4 (en) * 2014-02-14 2017-08-30 Nippon Sheet Glass Company, Limited Laminated glass
US10343379B2 (en) 2016-03-04 2019-07-09 Solutia Inc. Polymeric interlayers and multiple layer panels made therefrom exhibiting enhanced properties and performance
US10525675B2 (en) 2016-03-04 2020-01-07 Solutia Inc. Polymeric interlayers and multiple layer panels made therefrom exhibiting enhanced properties and performance
JP6874764B2 (en) * 2016-05-25 2021-05-19 Agc株式会社 Laminated glass
FR3054169B1 (en) * 2016-07-22 2018-08-17 Saint Gobain VISCOELASTIC PLASTIC INTERIOR FOR VIBRO-ACOUSTIC DAMPING AND GLAZING COMPRISING SUCH AN INTERCALAR
US9812111B1 (en) * 2016-10-19 2017-11-07 Solutia Inc. Sound insulation panels having high interlayer thickness factors
US20200282706A1 (en) * 2017-10-06 2020-09-10 Central Glass Company, Limited Laminated Glass for Automobile, and Method for Manufacturing Same
WO2023127677A1 (en) * 2021-12-28 2023-07-06 Agc株式会社 Laminated glass and method for manufacturing laminated glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165235A (en) * 1995-09-15 1997-06-24 Saint Gobain Vitrage Soundproof laminated glasspane
JPH1086659A (en) * 1996-08-13 1998-04-07 Saint Gobain Vitrage Protective device for occupant in vehicle subjected to side impact
JP2002326847A (en) * 2001-03-01 2002-11-12 Asahi Glass Co Ltd Laminated glass
JP2004175593A (en) * 2002-11-25 2004-06-24 Central Glass Co Ltd Laminated glass
WO2012176813A1 (en) * 2011-06-20 2012-12-27 旭硝子株式会社 Method for producing laminated glass, and laminated glass

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529870Y2 (en) * 1987-07-13 1993-07-30
EP0844075B2 (en) * 1996-11-26 2016-05-25 Saint-Gobain Glass France Use of a laminated glazing to dampen solid-transmitted vibrations in a vehicle
JPH10338556A (en) * 1997-06-09 1998-12-22 Sekisui Chem Co Ltd Different kind laminated glass
ATE335211T1 (en) * 1998-11-30 2006-08-15 Asahi Glass Co Ltd ANTI-REFLECTION FILM FOR WINDOWS OF A TRANSPORT DEVICE, GLASS WITH ANTI-REFLECTION FILM, LAMINATED GLASS AND PRODUCTION METHOD
JP4371462B2 (en) * 1999-03-25 2009-11-25 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
EP1216147B1 (en) * 1999-08-26 2008-08-06 AGC Flat Glass Europe SA Glazing
JP3851633B2 (en) * 2001-03-15 2006-11-29 三井化学株式会社 Laminated body and display device using the same
JP2004075501A (en) * 2002-08-22 2004-03-11 Asahi Glass Co Ltd Curved laminated glass
JP4339745B2 (en) * 2003-08-22 2009-10-07 積水化学工業株式会社 Laminated glass and interlayer film for laminated glass
JP2007070200A (en) * 2005-09-09 2007-03-22 Asahi Glass Co Ltd Laminated glass
US8101267B2 (en) * 2005-12-30 2012-01-24 E. I. Du Pont De Nemours And Company Multilayer polymeric laminates and high strength laminates produced therefrom
JP2007197288A (en) * 2006-01-30 2007-08-09 Nippon Sheet Glass Co Ltd Laminated glass and glass window structure using the same
JP5258542B2 (en) * 2008-12-24 2013-08-07 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
FR2944521B1 (en) * 2009-04-20 2012-08-24 Saint Gobain METHOD FOR DIMENSIONING LAMINATED GLAZING AND LAMINATED GLAZING
JP2011088782A (en) * 2009-10-22 2011-05-06 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
KR101728930B1 (en) * 2009-12-28 2017-04-20 세키스이가가쿠 고교가부시키가이샤 Interlayer for laminated glass, and laminated glass
GB201020311D0 (en) * 2010-12-01 2011-01-12 Pilkington Group Ltd Laminated glazing
WO2012137742A1 (en) * 2011-04-01 2012-10-11 旭硝子株式会社 Laminated glass and process for producing same
US10596783B2 (en) * 2012-05-31 2020-03-24 Corning Incorporated Stiff interlayers for laminated glass structures
WO2014126251A1 (en) * 2013-02-18 2014-08-21 日本板硝子株式会社 Laminated glass, and structure having same mounted thereto

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165235A (en) * 1995-09-15 1997-06-24 Saint Gobain Vitrage Soundproof laminated glasspane
JPH1086659A (en) * 1996-08-13 1998-04-07 Saint Gobain Vitrage Protective device for occupant in vehicle subjected to side impact
JP2002326847A (en) * 2001-03-01 2002-11-12 Asahi Glass Co Ltd Laminated glass
JP2004175593A (en) * 2002-11-25 2004-06-24 Central Glass Co Ltd Laminated glass
WO2012176813A1 (en) * 2011-06-20 2012-12-27 旭硝子株式会社 Method for producing laminated glass, and laminated glass

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002592A (en) * 2013-02-18 2018-01-11 日本板硝子株式会社 Mounting structure of glass laminate
WO2015041324A1 (en) * 2013-09-19 2015-03-26 日本板硝子株式会社 Laminated glass
WO2016024625A1 (en) * 2014-08-15 2016-02-18 日本板硝子株式会社 Laminated glass
US10967611B2 (en) 2014-09-12 2021-04-06 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US11407205B2 (en) 2014-09-12 2022-08-09 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US11141958B2 (en) 2014-09-12 2021-10-12 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US10525677B2 (en) 2014-09-12 2020-01-07 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US11135811B2 (en) 2014-09-12 2021-10-05 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US10967612B2 (en) 2014-09-12 2021-04-06 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
JP2016108222A (en) * 2014-11-10 2016-06-20 株式会社クラレ Intermediate film for glass laminate and glass laminate
JP2018505831A (en) * 2014-12-08 2018-03-01 サン−ゴバン グラス フランスSaint−Gobain Glass France Laminated glass with small thickness for head-up display (HUD)
JPWO2017094884A1 (en) * 2015-12-04 2018-10-11 Agc株式会社 Laminated glass for automobiles
US10828872B2 (en) 2016-03-17 2020-11-10 Saint-Gobain Glass France Composite pane having electrically conductive coating for a head-up display
JP2019511987A (en) * 2016-03-17 2019-05-09 サン−ゴバン グラス フランス Composite pane with conductive coating for head-up display
US10954154B2 (en) 2017-02-20 2021-03-23 Corning Incorporated Shaped glass laminates and methods for forming the same
US10773988B2 (en) 2017-02-20 2020-09-15 Corning Incorporated Shaped glass laminates
US10450215B2 (en) 2017-02-20 2019-10-22 Corning Incorporated Shaped glass laminates and methods for forming the same
US11465927B2 (en) 2017-02-20 2022-10-11 Corning Incorporated Shaped glass laminates
US11236003B2 (en) 2017-10-18 2022-02-01 Corning Incorporated Methods for controlling separation between glasses during co-sagging to reduce final shape mismatch therebetween

Also Published As

Publication number Publication date
JP6629809B2 (en) 2020-01-15
JP6223314B2 (en) 2017-11-01
CN104136391A (en) 2014-11-05
JPWO2014126251A1 (en) 2017-02-02
JP2018002592A (en) 2018-01-11
JP5647380B1 (en) 2014-12-24
JP2015051919A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP6223314B2 (en) Laminated glass
WO2016024625A1 (en) Laminated glass
JP6392166B2 (en) Laminated glass
JP6193777B2 (en) Laminated glass and mounting structure to which the glass is mounted
US11130316B2 (en) Laminated glass
JP6267007B2 (en) Laminated glass
JP2017149604A (en) Interlayer for laminated glass, and laminated glass
JP6720984B2 (en) Laminated glass
JP6947176B2 (en) Laminated glass
JP6223375B2 (en) Laminated glass and mounting structure to which the glass is mounted
JP6295104B2 (en) Laminated glass and mounting structure to which the glass is mounted
JP6267006B2 (en) Laminated glass
JP6178738B2 (en) Laminated glass and mounting structure to which the glass is mounted
JP2017214274A (en) Laminated glass
JP6295096B2 (en) Laminated glass
JP6267008B2 (en) Laminated glass
JP2015168598A (en) laminated glass
JP2015168599A (en) Glass laminate production method and glass laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014534695

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14752027

Country of ref document: EP

Kind code of ref document: A1