JP2004075501A - Curved laminated glass - Google Patents

Curved laminated glass Download PDF

Info

Publication number
JP2004075501A
JP2004075501A JP2002241874A JP2002241874A JP2004075501A JP 2004075501 A JP2004075501 A JP 2004075501A JP 2002241874 A JP2002241874 A JP 2002241874A JP 2002241874 A JP2002241874 A JP 2002241874A JP 2004075501 A JP2004075501 A JP 2004075501A
Authority
JP
Japan
Prior art keywords
layer
laminated glass
glass
curved
curved laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241874A
Other languages
Japanese (ja)
Inventor
Kuniko Nagai
永井 久仁子
Jiro Nishihama
西浜 二郎
Satoru Mori
哲 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002241874A priority Critical patent/JP2004075501A/en
Publication of JP2004075501A publication Critical patent/JP2004075501A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain curved laminated glass through which the transmission of running sound or engine sound of a car is reduced over a wide temperature range. <P>SOLUTION: The curved laminated glass 1 is obtained by laminating two curved glass sheets 11, 12 through an interlayer film 20 having a three layer constitution in which a first layer 21 is interposed between a second layer 22 and a third layer 23. The temperature at which the first layer 21 shows the maximum value of the loss factor is lower than the temperatures at which the second layer and the third layer show the maximum values of the loss factor, and the distance (b) from the concave face of the inside glass sheet 11 of the car to the concave face of the first layer 21 is shorter than the distance (a) from the convex face of the outside glass sheet 12 of the car to the convex face of the first layer 21. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、湾曲形状を有する合わせガラスに関し、特に自動車窓用の湾曲合わせガラスに関する。
【0002】
【従来の技術】
自動車や建築物の窓開口からの音を遮蔽するために、自動車窓や建築窓に合わせガラスを用いることが提案されている。これは、合わせガラスが単板ガラスに比べて遮音性能がよいからである。
【0003】
遮音性能は、周波数の変化に応じた音響透過損失(以下、単に透過損失という)の量で表される。一般に、音の周波数が高くなれば透過損失は大きくなる。一方で、コインシデンス効果と呼ばれる、ある周波数領域で透過損失が低下する現象がある。この現象は、音による加振に基づく板材の振動(以下、音加振振動という)と板材に入射した音波との共鳴により、透過損失が低下する現象である。透過損失が低下する周波数領域は、コインシデンス周波数fを中心とした周波数領域にある。そのため、遮音性能を向上させるためには次の2つの方法が有効である。1つはコインシデンス周波数fを高い周波数にすることであり、もう1つは板材の音加振振動を抑制することである。
【0004】
1つ目の方法が遮音性能の向上に有効であることは、原理的には次のように説明づけられる。コインシデンス効果が生じなければ音の周波数が高ければ透過損失は大きいので、コインシデンス周波数fが高周波数側にあれば、低周波数側でコニンシデンス効果が生じた場合に比べて絶対値としての透過損失は大きい。コインシデンス周波数fは、板材のヤング率の平方根に反比例する。したがって、同じ厚さの単板ガラスと合わせガラスとを比較した場合、ヤング率の小さい中間膜が複数枚のガラス板間に配されている合わせガラスの方が、遮音性能がよいことがわかる。
【0005】
2つ目の方法が遮音性能の向上に有効であることは、原理的には次のように説明づけられる。コインシデンス効果は板材の音加振振動と板材に入射した音波との共鳴によることから、音加振振動が音波と共鳴しないように抑制されていれば、コインシデンス効果を減少させることができる。2枚のガラス板が中間膜によって隔てられている場合、ガラス板に比べてせん断貯蔵弾性率の小さい中間膜は、一方のガラス板からもう一方のガラス板に伝達される振動を吸収できる。そして、仮にもう一方のガラス板が振動していたとしても、せん断貯蔵弾性率の小さい中間膜は、両ガラス板の振動の位相のずれを生じさせ、両振動の干渉現象を生じさせる。結果として板材の振動が抑制される。また、このような中間膜は入射した音波による振動エネルギーを熱エネルギーに変換し、振動エネルギーを吸収できるとされている。したがって、中間膜が複数枚のガラス板間に配されている合わせガラスの方が、単板ガラスよりも遮音性能がよいことがわかる。
【0006】
合わせガラス用の中間膜には、通常ポリビニルブチラール(以下PVBという)膜が使用される。一般的なPVB膜のヤング率は、30℃以上の温度では建築物の中や自動車内などの人間がすごす環境における、遮音すべき周波数の音を遮蔽するほど充分小さな値を示す。しかし、20℃程度以下の温度におけるPVB膜のヤング率は、建築物の中や自動車内などの人間がすごす環境における、遮音すべき周波数の音を遮断するほど充分小さな値にならない。さらに、20℃程度以下の温度におけるPVB膜のせん断貯蔵弾性率は、2枚のガラス板の各々の振動の位相にずれを生じさせ干渉現象を生じさせるほど充分に大きな値とならない。したがって、通常のPVB膜を用いた合わせガラスは、30℃以上の温度では建築物の中や自動車内などで人間が快適にすごす環境に寄与するが、20℃以下の温度では建築物の中や自動車内などで人間が快適にすごす環境に寄与しきれないと考えられる。
【0007】
このようなPVB膜の遮音性能の温度依存性を解消するため、特開2001−206741号公報や特開2000−272937号公報などには、PVB膜を複数膜から形成することが提案されている。具体的には、これらの公報に開示された中間膜は、可塑剤の含有量の異なる膜を複数積層した積層膜、または損失係数が最大となる温度が異なるような膜を複数積層した積層膜である。こうして、室温領域以下の温度であっても遮音性能を低下させない合わせガラスが得られるとされている。
【0008】
【発明が解決しようとする課題】
上記した各公報に記載された合わせガラスや、その他遮音性能を向上させることとされている合わせガラスは、合わせガラス単独での遮音性能に優れているというものである。すなわち、これらの合わせガラスは、建築物や自動車の窓に用いることができる。そしてこれらの合わせガラスは、建築物の中や自動車内にいる人間に対し快適な音響的環境実現のために、合わせガラスに入射する音波の透過を抑制できるように、コインシデンス効果による透過損失の低下を防止するとされている。
【0009】
しかし、合わせガラスが建築物や自動車の窓に用いられた場合、内部の人間にとって快適な音響的環境を実現するためには、単に合わせガラスに入射する音波を遮蔽するだけでは不充分である。すなわち、建築物や自動車の窓に合わせガラスを用いる場合、合わせガラスは建築物のサッシュや自動車の開口フランジといった、開口部を形成する部分に各種の手段によって組み付けられる。例えば、自動車フロントウインドウに合わせガラスを用いる場合、合わせガラスは自動車フロント開口のフランジに接着剤により接着され組み付けられる。このように、合わせガラスは自動車本体と直接または間接的に接触している。そのため、自動車の振動(走行に基づく振動やエンジン自身の駆動に基づく振動;以下、動的振動という)により、合わせガラスも振動する。
【0010】
合わせガラスを自動車フロントウインドウに用いる場合、合わせガラスの全周が開口フランジに固定される。すなわち、動的振動による合わせガラスの振動を考える場合、合わせガラスの全周が固定点ととらえることができる。そのため、自動車の大きさに応じて合わせガラスの寸法は異なるが、おおむね100Hz、150Hz、300Hzといった周波数に固有振動を有する。したがって、動的振動により、合わせガラスは100Hz、150Hz、300Hzといった周波数で振動する。なお、合わせガラスを自動車摺動窓ガラスに用いる場合も、摺動窓ガラスがサッシュにより固定されている点や寸法の違いの点により多少の違いはあるが、おおむね100〜300Hzの周波数に固有振動を有する。
【0011】
一方、自動車の走行音やエンジン音は、100〜400Hz程度の周波数を有する。動的振動により、合わせガラスは100Hz、150Hz、300Hzといった周波数で振動するため、車外側から合わせガラスに入射する自動車の走行音やエンジン音の音波と合わせガラスの振動とが、100〜400Hzのある周波数で共鳴する。このため、自動車の走行音やエンジン音の100〜400Hzのある周波数で増幅され、大きな音が合わせガラスを介して車内に透過する。
【0012】
上記した各公報に記載された合わせガラスや、その他遮音性能を向上させることとされている合わせガラスは、合わせガラスが自動車の開口フランジに固定される場合やサッシュに固定されることについて考慮されていない。したがって、遮音性能のよい合わせガラスといわれている従来の合わせガラスであっても、低い周波数領域における充分な遮音性能が得られているとはいえない。
【0013】
本発明の目的は、従来技術が有していた前述の課題を解決することにあり、従来知られていなかった、湾曲合わせガラスを提供することにある。
【0014】
【課題を解決するための手段】
本発明は、湾曲した複数枚のガラス板が中間膜を介して積層された湾曲合わせガラスにおいて、前記中間膜は複数の層構成を呈しており、該複数の層構成のうちの第1層と他の層とが、第1層の損失係数の最大値を示す温度が他の層の損失係数の最大値を示す温度よりも低い関係にあり、湾曲合わせガラスの凹面から第1層の凹面までの距離が湾曲合わせガラスの凸面から第1層の凸面までの距離よりも短いことを特徴とする、湾曲合わせガラスを提供する。
【0015】
なお、本明細書における第1層、第2層・・・は積層順序を表すものではなく、層の種類を示すために便宜上第1、2・・・と呼ぶものである。また、一般に損失係数の温度依存性は、材料に応じて例えば「音響工学講座3・建築音響」(日本音響学会編、コロナ社)102〜109ページなどの文献に説明されているように、ある所定の温度でピーク値を持つ。第1層の損失係数の最大値を示す温度が他の層の損失係数の最大値を示す温度よりも低い関係にあるということは、損失係数の温度依存性をグラフ化した場合に、損失係数のピーク値をとる所定温度が第1層に比べて他の層が低いことをいう。
【0016】
例えば、自動車窓に2枚のガラス板が中間膜を介して積層された合わせガラスを用いる場合について、図2(本発明の湾曲合わせガラスが車体に組み付けられた状態の一例を示す要部概略断面図)を参照しながら考える。自動車窓用の合わせガラスは通常湾曲しており、湾曲合わせガラス1は合わせガラスの凸面を形成する車外側ガラス板12と合わせガラスの凹面を形成する車内側ガラス板11とが中間膜20(図示の例では車内側から第2層22/第1層21/第3層23の順に積層された3層構成を有する)を介して積層されている。自動車の開口フランジ3は、車体表面31と車体表面31から屈曲した縦フランジ32と縦フランジから屈曲した横フランジ33とからなる。湾曲合わせガラス1が横フランジ33に接着剤4を介して組み付けられる場合、湾曲合わせガラス1の車内側面(車内側ガラス板11の車内側面)が接着面となる。したがって、動的振動は横フランジ33を介して車内側ガラス板11に伝達される。このように組み付けられた湾曲合わせガラス1では、車内側ガラス板11の車内側面から第1層21の凹面までの距離は、車外側ガラス板12の車外側面から第1層21の凸面までの距離よりも短い。
【0017】
また、第1層の損失係数の最大値を示す温度は、他の層の損失係数の最大値を示す温度に比べて低い。ここで、第1層の損失係数の最大値を示す温度が5℃であり、他の層の損失係数の最大値を示す温度が30℃である場合を仮定する。そして、例えば5℃程度の低温環境下で第1層の損失係数が1程度の値であり、他の層の損失係数が0.1程度であるとする。この低温環境下では、他の層の損失係数が0.1程度であり、後に述べるようにせん断貯蔵弾性率が40MPa程度であるため、他の層は実質的にガラス板と類似の剛性板材とみなすことができる。したがって、低温環境下において、開口フランジに組み付けられた合わせガラスは、車内側の剛性板材の厚さよりも大きい厚さを有する車外側の剛性板材と車内側の剛性板材とが第1層を介して積層された積層体モデルにおきかえることができる。
【0018】
車内側の剛性板材は、動的振動により振動する。この場合、車内側の剛性板材は周縁が固定されているので、自動車の正面視での合わせガラスの寸法にもよるが、車内側の剛性板材はおおむね100Hz、150Hz、300Hzといった周波数で振動する。この振動が車外側の剛性板材に伝達されると、車外側から合わせガラスに入射する自動車の走行音やエンジン音の音波と合わせガラスの振動とが、100〜400Hzのある周波数で共鳴する。この共鳴を抑制するため、本発明では合わせガラスの振動を制振作用により抑えている。この制振作用の程度を表すのが損失係数である。第1層の損失係数の最大値を示す温度が他の層の損失係数の最大値を示す温度に比べて低い関係にある中間膜を使用すること、および車内側ガラス板の車内側面から第1層の凹面までの距離を車外側ガラス板の車外側面から第1層の凸面までの距離よりも短くすることで、合わせガラス全体としての損失係数を大きい値にできる。
【0019】
具体的には、合わせガラス全体の損失係数(η)と、車外側の剛性板材の厚さtと車内側の剛性板材の厚さtとの比の値(R=t/t)とは式(1)の関係を有する。ただし、この関係式は第1層の厚さが各剛性板材の厚さに比べて小さいことなどのいくつかの仮定条件下で成り立つ。P、Qは各材料に依存する値であるが、剛性板材の厚さについて比較するにあたり定数とみることができる。詳しくは、前述の「音響工学講座3・建築音響」102〜109ページなどの文献で説明される。
【0020】
【数1】

Figure 2004075501
【0021】
したがって、Rの値が小さい方が制振性能が高いことがわかる。tに対してtが小さい方がRの値が小さくなるので、tに対してtが小さい方が制振性能が高い。先に仮定した5℃程度の低温環境では、第1層以外の層は第1層に比べて剛性のある板材とみなすことができる。すなわち、後述の図1におけるaの値がtに相当し、bの値がtに相当する。したがって、このような低温環境では車内側ガラス板の車内側面から第1層の凹面までの距離を車外側ガラス板の車外側面から第1層の凸面までの距離よりも短くすることで、合わせガラスの制振性能を高めることができる。なお、剛性のある板材とみなせるかどうかは、第1層以外の層の該当する温度でのせん断貯蔵弾性率の値で判断できる。具体的には、せん断貯蔵弾性率が35〜40MPaよりも大きい値で剛性のある板材とみなせる。
【0022】
逆に5℃程度の低温環境ではなく30℃程度の温度環境では、第1層の損失係数が5℃程度の低温環境に比べて小さな値になる。ところが、30℃程度の温度環境では、第1層以外の層も剛性のある板材とはみなせないので、実質的に2枚のガラス板間に低温環境に比べて厚さの厚い中間膜が介在された合わせガラスが得られることになる。この場合、中間膜の厚さが厚いことで、合わせガラスの損失係数を小さくできる。したがって、低温環境においても高温環境においても、遮音性能のよい合わせガラスが得られる。
【0023】
このように、高い温度環境においても遮音性能のよい合わせガラスにするためには、高い温度環境において第1層以外の層が剛性のある板材とみなせないものであることが求められる。そこで、第1層を形成する材料のガラス転移温度よりも他の層を形成する材料のガラス転移温度が高いことが好ましく、4℃以上高いことが好ましい。特に、先に仮定した5℃程度の温度環境においても30℃程度の温度環境においてもよい遮音性能を得るためには、第1層を形成する材料のガラス転移温度よりも他の層を形成する材料のガラス転移温度が10℃以上高いことが好ましい。このようにガラス転移温度を変えるためには、例えば特開2001−226152号公報に開示されているように、中間膜材料用の樹脂に対する可塑剤の割合を変えればよく、ガラス転移温度の低い材料の方を可塑剤の含有割合を多くすればよい。
【0024】
さらに、例えば日本(特に北日本)における冬場の気温は、0℃を下回ることがある。このような環境に対し、湾曲合わせガラスの凹面から第1層の凹面までの距離が湾曲合わせガラスの凸面から第1層の凸面までの距離よりも短いことは、次の点で有益である。すなわち、氷点下の環境における自動車窓ガラスの車外側面の温度は、0℃以下になることがある。自動車窓ガラスの車内側面の温度は、運転開始初期時を除けば10℃以上に保たれる。したがって、合わせガラスの断面方向にみると、合わせガラスは車内側に向かって温度が高くなる。
【0025】
一方、せん断貯蔵弾性率の異なる材料から形成した層の積層体からなる中間膜を用いた場合、一般に温度が低くなるとせん断貯蔵弾性率は大きくなるため、低温での遮音性能は低下する傾向にある。具体的には、低温において第1層でさえも剛性のある板材とみなさざるを得ないせん断貯蔵弾性率を有すると、先に述べた制振性能が得られない。そのために先に述べた公報などで、剛性のある板材とみなされないように樹脂材料の組成を考慮する手段が提案されているものの、0℃以下の極めて低い温度で充分な遮音性能を得られる樹脂材料を得るには限界がある。そこで、本発明のように湾曲合わせガラスの凹面から第1層の凹面までの距離を湾曲合わせガラスの凸面から第1層の凸面までの距離よりも短くすることで、第1層をできるだけ車内側に近づけ、車外が氷点下の環境であっても第1層の温度を高い温度に保つようにできる。こうして、樹脂材料の限界に依存することなく、冬場の使用においても充分な遮音性能が得られる湾曲合わせガラスにすることができる。
【0026】
【発明の実施の形態】
以下、図面に基づき本発明を詳細に説明する。図1は、本発明の湾曲合わせガラスの一例を示す要部概略断面図である。湾曲合わせガラス1は、2枚の湾曲したガラス板11、12が中間膜20を介して積層されたものである。中間膜20は3層構成の樹脂層積層体であり、第1層21が第2層22と第3層23との間に介在している。本例では、第2層22と第3層23とは同じ樹脂材料から形成されている。第1層21の損失係数の最大値を示す温度は第2層、第3層の損失係数の最大値を示す温度よりも低い。
【0027】
湾曲合わせガラス1の凹面(ガラス板11の凹面)から第1層21の凹面までの距離bは、湾曲合わせガラス1の凸面(ガラス板12の凸面)から第1層21の凸面までの距離aよりも小さい。例えば自動車窓に湾曲合わせガラス1を用いる場合、湾曲合わせガラス1の凹面は自動車の開口フランジへの接着面となる。第1層21が湾曲合わせガラス1の凹面に近い位置に配される(t(b)<t(a))ので、特に低温環境において、湾曲合わせガラス1の損失係数を大きくでき、開口フランジからガラス板11に動的振動が伝達されても湾曲合わせガラス1の振動を抑制できる。本例では、ガラス板11およびガラス板12の厚さを2mm、第1層の厚さを0.2mm、第2層の厚さを0.2mm、第3層の厚さを0.4mmとすることで、a=2.4mm、b=2.2mmに設定している。
【0028】
湾曲合わせガラス1は、例えば次のように製造できる。所定形状に切断された2枚の平板状のガラス板が重畳された状態で、リング状の成形型に載置され加熱炉内に搬送されると、2枚のガラス板は成形型に沿った形状に曲げ成形される。こうして得られた湾曲ガラス板11、12の間に中間膜20を介在させた積層体が袋に入れられ、袋内を真空引きすることで、予備接合された積層体が得られる。予備接合された積層体が、オートクレーブ内に入れられ加熱・圧着されることで、湾曲合わせガラス1が得られる。
【0029】
中間膜20は、例えば第2層22の形成材料および第3層の形成材料で第1層21の形成材料をサンドイッチする形で、第2、1、3層の形成材料を共押出成形して、3層構成の膜にできる。他に、第1、2、3層の形成材料を別個に押出成形して各層を膜状に形成した後に、各層を所望の積層順序で熱圧着することで、3層構成の膜にできる。
【0030】
第2層、第3層の損失係数の最大値を示す温度を第1層の損失係数の最大値を示す温度よりも高くするためには、例えば第1層を形成する材料に含有される可塑剤の割合を第2層、第3層を形成する材料に含有される可塑剤の割合に比べて多くすることがあげられる。具体的には、特開2000−272936号公報に開示された方法が好ましい。
【0031】
特開2000−272936号公報によれば、第1層は以下のように作製できる。熱可塑性樹脂としてPVB−c(ブチラール化度:60.2モル%、アセチル基量:11.9モル%)100部に対し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレート(3GH)60部を添加し、ミキシングロールで充分に混練した後、プレス成形機を用いて、150℃で30分間プレス成形し、厚さ0.2mmの第1層を作製できる。第2層、第3層は、熱可塑性樹脂としてポリビニルブチラール樹脂{PVB−a(ブチラール化度:65.9モル%、アセチル基量:0.9モル%)}100部に対し、可塑剤として3GH40部を添加し、ミキシングロールで充分に混練した後、プレス成形機を用いて、150℃で30分間プレス成形し、厚さ0.2mm、0.4mmの第2層、第3層を作製できる。
【0032】
損失係数は、例えば特開2000−272936号公報に開示されているように、次のように測定できる。各層を10mm×16mmの矩形に裁断し、試験片を準備する。次いで、固体粘弾性測定装置(型式「RSA−II」、レオメトリック社製)を用いて、試験片の動的粘弾性特性を測定し、それぞれの試験片が損失係数の最大値を示す温度を求める。なお、上記動的粘弾性特性の測定条件は以下のとおりにできる。印加した歪み:周波数10Hzの正弦歪みをせん断方向に歪み量0.1%で印加。測定温度範囲:−50℃〜+100℃。昇温速度:3℃/分。
【0033】
こうして作製された第1層の損失係数が最大値となる温度は5℃であり、第2、3層の損失係数が最大値となる温度は35℃である。第1層の損失係数が最大値となる温度と他の層の損失係数が最大値となる温度とは、10〜40℃の範囲で異なることが好ましい。また、第1層の損失係数は−10〜+25℃の範囲で損失係数の値が0.5以上、他の層の損失係数は15〜45℃の範囲で損失係数の値が0.5以上であることが好ましい。そして、第1層の損失係数が小さくなる(例えば0.5未満となる、上記好ましい温度範囲でいうところの25℃以上の)温度領域で、他の層のせん断貯蔵弾性率が40MPa以下、特に30MPa以下であることが好ましい。こうして、低温環境において合わせガラスの損失係数を大きくでき、高温環境において剛性のある板材として扱わなくてよい膜部分の厚さを大きくできるので、自動車の使用状態における広範囲の温度環境において、遮音性能のよい合わせガラスが得られる。
【0034】
本例では2枚のガラス板間に中間膜を介在させているが、本発明の湾曲合わせガラスは、3枚以上のガラス板を用いて構成することもできる。この場合、例えば湾曲合わせガラスの凸面側に配される中間膜を第2層と同様の種類の中間膜とし、湾曲合わせガラスの凹面側に配される中間膜を第1層と第2層との積層中間膜とすることで、a>bとすることができる。
【0035】
本発明の中間膜は、第1層と第2層との2層積層、第2層/第1層/第3層/第1層/第4層(第4層の厚さが第2層の厚さよりも大きい)等のように、各種の層構成が適用できる。3層以上の層構成とする場合、第1層以外の各層を形成する材料は、それぞれ同じ材料でも異なる材料でもよい。なお、例えば第1層/第2層/第2層などのように、膜製造上の制約により同じ種類の層が積層された部分を有する場合には、同じ種類の層の積層部分は1つの層とみなすことができる。
【0036】
本発明の中間膜は、図示の例のように3層以上の構成とし、第1層を第2層と第3層との間に配することが好ましい。その理由は、本発明のように第1層の損失係数の最大値を示す温度が他の層の損失係数の最大値を示す温度に比べて低くすると、第1層が常温においてべたついた状態になるとともに、粘性状態になりやすい。そのため、第1層が中間膜の表層に露出していると合わせガラス工程における中間膜のハンドリング作業に不具合が生じる。そこで、第1層が中間膜の表層に露出しないように、第1層を第2層と第3層との間に配することが好ましい。
【0037】
さらに、湾曲合わせガラスの凹面側に配されるガラス板の厚さを湾曲合わせガラスの凸面側に配されるガラス板の厚さよりも小さくすることもできる。この場合、第1〜3層の厚さはそれぞれ同じ厚さでよく、a>bとすることができる。
【0038】
本発明におけるガラス板としては、無機系の単板ガラス板、強化処理が施された強化ガラス(通常の強化ガラスに比べて強度の小さい強化ガラス、倍強度ガラスと呼ばれるものも含む)、熱線遮蔽性コーティングなどの各種の表面処理がなされたガラス板など、種々のガラス板が使用可能である。また、有機ガラスと呼ばれる、ポリカーボネート樹脂やアクリル樹脂から形成される透明樹脂板を使用することもできる。
【0039】
本発明の湾曲合わせガラスは、建築窓用の合わせガラスとして使用することもできる。上述のように動的振動に起因する遮音性能の低下を防止できる観点で、本発明の湾曲合わせガラスを自動車窓用の合わせガラスとして使用することはきわめて有益である。本発明の湾曲合わせガラスを自動車窓用の合わせガラスに使用する場合、湾曲合わせガラスの凸面が車外側、前記湾曲合わせガラスの凹面が車内側に配される。
【0040】
【発明の効果】
本発明によれば、第1層の損失係数の最大値を示す温度が他の層の損失係数の最大値を示す温度に比べて低い関係にある中間膜を使用すること、および車内側ガラス板の車内側面から第1層の凹面までの距離を車外側ガラス板の車外側面から第1層の凸面までの距離よりも短くすることで、遮音性能のよい合わせガラスを得ることができる。具体的には、上記構成により、動的振動により100Hz、150Hz、300Hzといった周波数での振動を抑制し、100〜400Hz程度の周波数を有する車外側から合わせガラスに入射する自動車の走行音やエンジン音の音波と合わせガラスの振動との共鳴を低下させることができる。こうして、自動車の走行音やエンジン音の透過を低減できる合わせガラスを得ることができる。
【図面の簡単な説明】
【図1】本発明の湾曲合わせガラスの一例を示す要部概略断面図である。
【図2】本発明の湾曲合わせガラスが車体に組み付けられた状態の一例を示す要部概略断面図である。
【符号の説明】
1:湾曲合わせガラス
11:車内側ガラス板
12:車外側ガラス板
20:中間膜
21:第1層
22:第2層
23:第3層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated glass having a curved shape, and more particularly to a curved laminated glass for automobile windows.
[0002]
[Prior art]
In order to shield sound from window openings of automobiles and buildings, it has been proposed to use laminated glass for automobile windows and architectural windows. This is because laminated glass has better sound insulation performance than single plate glass.
[0003]
The sound insulation performance is represented by the amount of sound transmission loss (hereinafter simply referred to as transmission loss) corresponding to a change in frequency. In general, the transmission loss increases as the sound frequency increases. On the other hand, there is a phenomenon called transmission coincidence effect in which transmission loss decreases in a certain frequency region. This phenomenon is a phenomenon in which transmission loss decreases due to resonance between vibration of a plate material (hereinafter referred to as sound excitation vibration) based on excitation by sound and a sound wave incident on the plate material. The frequency region where the transmission loss decreases is the coincidence frequency f. c It is in the frequency domain centered on. Therefore, the following two methods are effective for improving the sound insulation performance. One is the coincidence frequency f c Is set to a high frequency, and the other is to suppress the sound vibration of the plate material.
[0004]
The principle that the first method is effective in improving the sound insulation performance can be explained as follows. If the coincidence effect does not occur, the transmission loss is large if the sound frequency is high, so the coincidence frequency f c Is on the high frequency side, the transmission loss as an absolute value is large compared to the case where the confluence effect occurs on the low frequency side. Coincidence frequency f c Is inversely proportional to the square root of the Young's modulus of the plate. Therefore, when a single glass plate and a laminated glass having the same thickness are compared, it is understood that the laminated glass in which an interlayer film having a small Young's modulus is arranged between a plurality of glass plates has better sound insulation performance.
[0005]
The principle that the second method is effective in improving the sound insulation performance can be explained as follows. Since the coincidence effect is due to the resonance between the sound excitation vibration of the plate and the sound wave incident on the plate, the coincidence effect can be reduced if the sound vibration is suppressed so as not to resonate with the sound wave. When two glass plates are separated by an intermediate film, an intermediate film having a smaller shear storage modulus than that of the glass plate can absorb vibration transmitted from one glass plate to the other glass plate. Even if the other glass plate vibrates, the intermediate film having a small shear storage elastic modulus causes a phase shift of vibrations of both glass plates and causes an interference phenomenon of both vibrations. As a result, vibration of the plate material is suppressed. Further, such an intermediate film is supposed to convert vibration energy generated by incident sound waves into heat energy and absorb vibration energy. Therefore, it can be seen that the laminated glass in which the intermediate film is arranged between the plurality of glass plates has better sound insulation performance than the single plate glass.
[0006]
As an interlayer film for laminated glass, a polyvinyl butyral (hereinafter referred to as PVB) film is usually used. The Young's modulus of a general PVB film exhibits a sufficiently small value at a temperature of 30 ° C. or higher so as to shield a sound having a frequency to be sound-insulated in an environment where a human being such as a building or a car is used. However, the Young's modulus of the PVB film at a temperature of about 20 ° C. or less does not become a value small enough to cut off the sound of the frequency to be sound-insulated in an environment where a human being is in a building or in an automobile. Furthermore, the shear storage elastic modulus of the PVB film at a temperature of about 20 ° C. or less does not become a value large enough to cause a shift in the vibration phase of each of the two glass plates and cause an interference phenomenon. Therefore, a laminated glass using a normal PVB film contributes to a comfortable environment for human beings in buildings and automobiles at a temperature of 30 ° C. or higher, but in a building at temperatures of 20 ° C. or lower. It is thought that it is not possible to contribute to an environment in which humans can comfortably live in automobiles.
[0007]
In order to eliminate such temperature dependence of the sound insulation performance of the PVB film, JP 2001-206741 A, JP 2000-272937 A, etc. propose to form a PVB film from a plurality of films. . Specifically, the intermediate film disclosed in these publications is a laminated film in which a plurality of films having different plasticizer contents are laminated, or a laminated film in which a plurality of films having different temperatures at which the loss coefficient is maximized are laminated. It is. Thus, it is said that a laminated glass that does not deteriorate the sound insulation performance even at a temperature below the room temperature region is obtained.
[0008]
[Problems to be solved by the invention]
The laminated glass described in each of the above-mentioned publications and other laminated glass that is supposed to improve the sound insulation performance are excellent in the sound insulation performance of the laminated glass alone. That is, these laminated glasses can be used for windows of buildings and automobiles. These laminated glasses reduce transmission loss due to the coincidence effect so that transmission of sound waves incident on the laminated glass can be suppressed in order to realize a comfortable acoustic environment for people in buildings and in automobiles. It is supposed to prevent.
[0009]
However, when laminated glass is used for a window of a building or a car, it is not sufficient to simply shield the sound wave incident on the laminated glass in order to realize an acoustic environment comfortable for human beings inside. That is, when laminated glass is used for a window of a building or an automobile, the laminated glass is assembled by various means to a portion forming an opening, such as a sash of a building or an opening flange of an automobile. For example, when laminated glass is used for an automobile front window, the laminated glass is bonded and assembled to the flange of the automobile front opening with an adhesive. Thus, the laminated glass is in direct or indirect contact with the automobile body. Therefore, the laminated glass also vibrates due to the vibration of the automobile (vibration based on traveling or vibration based on driving of the engine itself; hereinafter referred to as dynamic vibration).
[0010]
When using a laminated glass for an automobile front window, the entire circumference of the laminated glass is fixed to the opening flange. That is, when considering the vibration of the laminated glass due to dynamic vibration, the entire circumference of the laminated glass can be regarded as a fixed point. Therefore, although the size of the laminated glass differs depending on the size of the automobile, it has natural vibrations at frequencies such as 100 Hz, 150 Hz, and 300 Hz. Therefore, the laminated glass vibrates at a frequency of 100 Hz, 150 Hz, 300 Hz due to dynamic vibration. Even when laminated glass is used for an automobile sliding window glass, there is a slight difference depending on the point that the sliding window glass is fixed by a sash and the difference in dimensions, but the natural vibration is approximately at a frequency of 100 to 300 Hz. Have
[0011]
On the other hand, the running sound and engine sound of an automobile have a frequency of about 100 to 400 Hz. Due to the dynamic vibration, the laminated glass vibrates at a frequency of 100 Hz, 150 Hz, 300 Hz, and therefore, the sound of the automobile traveling sound and engine sound incident on the laminated glass from the outside of the vehicle and the vibration of the laminated glass are 100 to 400 Hz. Resonates at frequency. For this reason, it is amplified by a certain frequency of 100 to 400 Hz of the driving sound and engine sound of the automobile, and a loud sound is transmitted into the vehicle through the laminated glass.
[0012]
The laminated glass described in each of the above publications and other laminated glass that is supposed to improve the sound insulation performance are considered when the laminated glass is fixed to the opening flange of an automobile or to the sash. Absent. Therefore, even a conventional laminated glass, which is said to be a laminated glass with good sound insulation performance, cannot be said to have sufficient sound insulation performance in a low frequency region.
[0013]
An object of the present invention is to solve the above-described problems that the prior art has, and to provide a curved laminated glass that has not been conventionally known.
[0014]
[Means for Solving the Problems]
The present invention provides a curved laminated glass in which a plurality of curved glass plates are laminated via an intermediate film, wherein the intermediate film has a plurality of layer configurations, and the first layer of the plurality of layer configurations and The temperature at which the maximum value of the loss coefficient of the first layer is lower than the temperature at which the maximum value of the loss coefficient of the other layer is lower than the other layer, and from the concave surface of the curved laminated glass to the concave surface of the first layer The curved laminated glass is characterized in that the distance is shorter than the distance from the convex surface of the curved laminated glass to the convex surface of the first layer.
[0015]
In the present specification, the first layer, the second layer,... Do not represent the stacking order, but are referred to as the first, second,. In general, the temperature dependence of the loss factor is, for example, as described in documents such as “Acoustics Engineering Course 3, Architectural Acoustics” (Edited by the Acoustical Society of Japan, Corona), pages 102 to 109, depending on the material. Has a peak value at a given temperature. The fact that the temperature showing the maximum value of the loss coefficient of the first layer is lower than the temperature showing the maximum value of the loss coefficient of the other layers means that the loss coefficient is plotted when the temperature dependency of the loss coefficient is graphed. The predetermined temperature at which the peak value is taken is that the other layers are lower than the first layer.
[0016]
For example, in the case of using a laminated glass in which two glass plates are laminated on an automobile window through an intermediate film, FIG. 2 (a schematic cross-sectional view of an essential part showing an example of a state where the curved laminated glass of the present invention is assembled to a vehicle body. Think with reference to the figure. Laminated glass for automobile windows is usually curved, and the curved laminated glass 1 has an intermediate film 20 (illustrated) consisting of an inboard glass plate 12 forming a convex surface of the laminated glass and an inboard glass plate 11 forming a concave surface of the laminated glass. In this example, the two layers 22 / first layer 21 / third layer 23 are stacked in this order from the vehicle interior side). The opening flange 3 of the automobile includes a vehicle body surface 31, a vertical flange 32 bent from the vehicle body surface 31, and a horizontal flange 33 bent from the vertical flange. When the curved laminated glass 1 is assembled to the lateral flange 33 via the adhesive 4, the inner side surface of the curved laminated glass 1 (the inner side surface of the vehicle interior glass plate 11) serves as an adhesive surface. Accordingly, the dynamic vibration is transmitted to the vehicle interior glass plate 11 via the lateral flange 33. In the curved laminated glass 1 assembled in this manner, the distance from the vehicle inner side surface of the vehicle inner side glass plate 11 to the concave surface of the first layer 21 is the distance from the vehicle outer side surface of the vehicle outer side glass plate 12 to the convex surface of the first layer 21. Shorter than.
[0017]
Moreover, the temperature which shows the maximum value of the loss coefficient of a 1st layer is low compared with the temperature which shows the maximum value of the loss coefficient of another layer. Here, it is assumed that the temperature indicating the maximum value of the loss coefficient of the first layer is 5 ° C., and the temperature indicating the maximum value of the loss coefficient of the other layers is 30 ° C. For example, assume that the loss coefficient of the first layer is about 1 in a low temperature environment of about 5 ° C., and the loss coefficient of the other layers is about 0.1. Under this low temperature environment, the loss coefficient of the other layers is about 0.1, and the shear storage modulus is about 40 MPa as described later. Therefore, the other layers are made of a rigid plate material substantially similar to a glass plate. Can be considered. Therefore, in a low temperature environment, the laminated glass assembled to the opening flange has a vehicle-side rigid plate material and a vehicle-side rigid plate material having a thickness larger than the thickness of the vehicle-side rigid plate material via the first layer. It can be replaced with a laminated model.
[0018]
The rigid plate material inside the vehicle vibrates due to dynamic vibration. In this case, since the periphery of the rigid plate material inside the vehicle is fixed, the rigid plate material inside the vehicle vibrates at frequencies of about 100 Hz, 150 Hz, and 300 Hz, depending on the size of the laminated glass in a front view of the automobile. When this vibration is transmitted to the rigid plate material on the outside of the vehicle, the traveling sound of the automobile and the sound of the engine sound incident on the laminated glass from the outside of the vehicle and the vibration of the laminated glass resonate at a frequency of 100 to 400 Hz. In order to suppress this resonance, in the present invention, the vibration of the laminated glass is suppressed by the damping action. The loss factor represents the degree of this damping action. Use of an intermediate film in which the temperature indicating the maximum value of the loss coefficient of the first layer is lower than the temperature indicating the maximum value of the loss coefficient of the other layers, and the first from the inner surface of the vehicle interior glass plate By making the distance to the concave surface of the layer shorter than the distance from the vehicle outer surface of the vehicle-side glass plate to the convex surface of the first layer, the loss factor of the entire laminated glass can be increased.
[0019]
Specifically, the loss factor (η) of the entire laminated glass and the thickness t of the rigid plate material outside the vehicle O And the thickness t of the rigid plate inside the car I And the ratio value (R = t I / T 0 ) Has the relationship of Formula (1). However, this relational expression is established under some assumptions such as the thickness of the first layer being smaller than the thickness of each rigid plate. P and Q are values depending on each material, but can be regarded as constants when comparing the thicknesses of the rigid plate members. The details are described in the literature such as “acoustic engineering lecture 3 / architectural acoustics” pages 102 to 109 described above.
[0020]
[Expression 1]
Figure 2004075501
[0021]
Therefore, it can be seen that the damping performance is higher when the value of R is smaller. t 0 Against t I Since the value of R is smaller when T is smaller, t 0 Against t I The smaller the is, the higher the damping performance. In the previously assumed low temperature environment of about 5 ° C., the layers other than the first layer can be regarded as a plate material that is more rigid than the first layer. That is, the value of a in FIG. 0 And the value of b is t I It corresponds to. Therefore, in such a low temperature environment, the distance from the vehicle inner side surface of the vehicle inner side glass plate to the concave surface of the first layer is made shorter than the distance from the vehicle outer side surface of the vehicle outer side glass plate to the convex surface of the first layer. The vibration control performance can be improved. In addition, whether it can be regarded as a rigid board | plate material can be judged from the value of the shear storage elastic modulus in the temperature applicable to layers other than a 1st layer. Specifically, it can be regarded as a rigid plate material having a shear storage modulus greater than 35 to 40 MPa.
[0022]
Conversely, in a temperature environment of about 30 ° C. rather than a low temperature environment of about 5 ° C., the loss coefficient of the first layer is a smaller value than in a low temperature environment of about 5 ° C. However, in a temperature environment of about 30 ° C., layers other than the first layer cannot be regarded as a rigid plate material, and therefore, an intermediate film that is substantially thicker than the low temperature environment is interposed between the two glass plates. The laminated glass thus obtained is obtained. In this case, the loss factor of the laminated glass can be reduced by increasing the thickness of the intermediate film. Therefore, a laminated glass having good sound insulation performance can be obtained in both a low temperature environment and a high temperature environment.
[0023]
Thus, in order to obtain a laminated glass with good sound insulation performance even in a high temperature environment, it is required that layers other than the first layer cannot be regarded as a rigid plate material in a high temperature environment. Therefore, the glass transition temperature of the material forming the other layer is preferably higher than the glass transition temperature of the material forming the first layer, and is preferably higher by 4 ° C. or more. In particular, in order to obtain sound insulation performance that is good even in a temperature environment of about 5 ° C. or a temperature environment of about 30 ° C., a layer other than the glass transition temperature of the material forming the first layer is formed. The glass transition temperature of the material is preferably 10 ° C. or higher. In order to change the glass transition temperature in this way, for example, as disclosed in JP-A-2001-226152, the ratio of the plasticizer to the resin for the interlayer film material may be changed, and the material having a low glass transition temperature. It is only necessary to increase the content of the plasticizer.
[0024]
In addition, for example, winter temperatures in Japan (particularly northern Japan) may be below 0 ° C. In such an environment, it is advantageous in the following point that the distance from the concave surface of the curved laminated glass to the concave surface of the first layer is shorter than the distance from the convex surface of the curved laminated glass to the convex surface of the first layer. That is, the temperature of the vehicle outer surface of the automobile window glass in an environment below freezing may be 0 ° C. or less. The temperature of the inner surface of the automobile window glass is kept at 10 ° C. or higher except at the initial stage of operation. Therefore, when viewed in the cross-sectional direction of the laminated glass, the temperature of the laminated glass increases toward the vehicle inner side.
[0025]
On the other hand, when an intermediate film made of a laminate of layers formed of materials having different shear storage moduli is used, generally, the shear storage moduli increase as the temperature decreases, so the sound insulation performance at low temperatures tends to decrease. . Specifically, even if the first layer has a shear storage elastic modulus that must be regarded as a rigid plate material at a low temperature, the above-described vibration damping performance cannot be obtained. Therefore, in the above-mentioned publications and the like, although means for considering the composition of the resin material is proposed so that it is not regarded as a rigid plate material, a resin that can obtain sufficient sound insulation performance at an extremely low temperature of 0 ° C. or less There are limits to getting the material. Therefore, as in the present invention, the distance from the concave surface of the curved laminated glass to the concave surface of the first layer is made shorter than the distance from the convex surface of the curved laminated glass to the convex surface of the first layer, so The temperature of the first layer can be kept at a high temperature even when the outside of the vehicle is below freezing. Thus, it is possible to obtain a curved laminated glass capable of obtaining sufficient sound insulation performance even in winter use without depending on the limit of the resin material.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an essential part showing an example of a curved laminated glass of the present invention. The curved laminated glass 1 is obtained by laminating two curved glass plates 11 and 12 with an intermediate film 20 interposed therebetween. The intermediate film 20 is a three-layered resin layer laminate, and the first layer 21 is interposed between the second layer 22 and the third layer 23. In this example, the second layer 22 and the third layer 23 are formed of the same resin material. The temperature indicating the maximum value of the loss coefficient of the first layer 21 is lower than the temperature indicating the maximum value of the loss coefficient of the second layer and the third layer.
[0027]
The distance b from the concave surface of the curved laminated glass 1 (concave surface of the glass plate 11) to the concave surface of the first layer 21 is the distance a from the convex surface of the curved laminated glass 1 (convex surface of the glass plate 12) to the convex surface of the first layer 21. Smaller than. For example, when the curved laminated glass 1 is used for an automobile window, the concave surface of the curved laminated glass 1 becomes an adhesive surface to the opening flange of the automobile. The first layer 21 is disposed at a position close to the concave surface of the curved laminated glass 1 (t I (B) <t O Since (a)), especially in a low temperature environment, the loss factor of the curved laminated glass 1 can be increased, and even if dynamic vibration is transmitted from the opening flange to the glass plate 11, the vibration of the curved laminated glass 1 can be suppressed. In this example, the thickness of the glass plate 11 and the glass plate 12 is 2 mm, the thickness of the first layer is 0.2 mm, the thickness of the second layer is 0.2 mm, and the thickness of the third layer is 0.4 mm. By doing so, a = 2.4 mm and b = 2.2 mm are set.
[0028]
The curved laminated glass 1 can be manufactured, for example, as follows. When two flat glass plates cut into a predetermined shape are superposed on each other and placed on a ring-shaped mold and conveyed into a heating furnace, the two glass sheets follow the mold. It is bent into a shape. A laminated body in which the intermediate film 20 is interposed between the curved glass plates 11 and 12 thus obtained is put in a bag, and the bag is evacuated to obtain a pre-bonded laminated body. The laminated body preliminarily bonded is placed in an autoclave and heated and pressure-bonded, whereby the curved laminated glass 1 is obtained.
[0029]
The intermediate film 20 is formed by, for example, co-extrusion of the second, first, and third layer forming materials in the form of sandwiching the first layer 21 forming material with the second layer 22 forming material and the third layer forming material. A three-layer film can be formed. In addition, after forming the first, second, and third layer forming materials separately to form each layer into a film shape, each layer can be thermocompression-bonded in a desired stacking order to form a three-layer film.
[0030]
In order to make the temperature showing the maximum value of the loss coefficient of the second layer and the third layer higher than the temperature showing the maximum value of the loss coefficient of the first layer, for example, the plastic contained in the material forming the first layer Increasing the proportion of the agent is greater than the proportion of the plasticizer contained in the material forming the second layer and the third layer. Specifically, the method disclosed in JP 2000-272936 A is preferable.
[0031]
According to JP 2000-272936 A, the first layer can be produced as follows. Triethylene glycol di-2-ethylbutyrate (3GH) as a plasticizer with respect to 100 parts of PVB-c (degree of butyralization: 60.2 mol%, acetyl group amount: 11.9 mol%) as a thermoplastic resin After adding 60 parts and sufficiently kneading with a mixing roll, the first layer having a thickness of 0.2 mm can be produced by press molding at 150 ° C. for 30 minutes using a press molding machine. The second layer and the third layer are used as a plasticizer for 100 parts of polyvinyl butyral resin {PVB-a (degree of butyralization: 65.9 mol%, acetyl group content: 0.9 mol%)} as a thermoplastic resin. Add 40 parts of 3GH, knead thoroughly with a mixing roll, and press mold at 30 ° C for 30 minutes using a press molding machine to produce second and third layers with thicknesses of 0.2mm and 0.4mm. it can.
[0032]
The loss factor can be measured as follows, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-272936. Each layer is cut into a 10 mm × 16 mm rectangle to prepare a test piece. Next, using a solid viscoelasticity measuring device (model “RSA-II”, manufactured by Rheometric Co., Ltd.), the dynamic viscoelastic properties of the test pieces are measured, and the temperature at which each test piece shows the maximum value of the loss coefficient is measured. Ask. In addition, the measurement conditions of the said dynamic viscoelastic property can be performed as follows. Applied strain: A sine strain having a frequency of 10 Hz was applied in the shear direction with a strain amount of 0.1%. Measurement temperature range: −50 ° C. to + 100 ° C. Temperature increase rate: 3 ° C./min.
[0033]
The temperature at which the loss coefficient of the first layer thus produced is a maximum value is 5 ° C., and the temperature at which the loss coefficient of the second and third layers is a maximum value is 35 ° C. It is preferable that the temperature at which the loss coefficient of the first layer becomes the maximum value and the temperature at which the loss coefficient of the other layers become the maximum value are different in the range of 10 to 40 ° C. The loss factor of the first layer is 0.5 or more in the range of −10 to + 25 ° C., and the loss factor of the other layer is 0.5 or more in the range of 15 to 45 ° C. It is preferable that In the temperature region where the loss coefficient of the first layer is small (for example, less than 0.5, 25 ° C. or more in the preferable temperature range), the shear storage modulus of the other layer is 40 MPa or less, particularly It is preferable that it is 30 MPa or less. In this way, the loss factor of laminated glass can be increased in a low temperature environment, and the thickness of the film portion that does not have to be handled as a rigid plate material in a high temperature environment can be increased. A good laminated glass is obtained.
[0034]
In this example, an intermediate film is interposed between two glass plates, but the curved laminated glass of the present invention can also be configured using three or more glass plates. In this case, for example, the intermediate film disposed on the convex side of the curved laminated glass is an intermediate film of the same type as the second layer, and the intermediate film disposed on the concave side of the curved laminated glass is the first layer and the second layer. By using the laminated intermediate film, a> b can be obtained.
[0035]
The intermediate film of the present invention comprises a two-layer laminate of a first layer and a second layer, a second layer / first layer / third layer / first layer / fourth layer (the thickness of the fourth layer is the second layer). It is possible to apply various layer configurations such as In the case of three or more layers, the material forming each layer other than the first layer may be the same or different. Note that, for example, in the case of having a portion in which the same type of layer is laminated due to restrictions in film manufacturing, such as the first layer / second layer / second layer, etc., there is only one laminated portion of the same type of layer. Can be considered a layer.
[0036]
The intermediate film of the present invention is preferably composed of three or more layers as in the illustrated example, and the first layer is preferably disposed between the second layer and the third layer. The reason is that if the temperature at which the maximum loss coefficient of the first layer is lower than the temperature at which the maximum loss coefficient of the other layers is lower as in the present invention, the first layer becomes sticky at room temperature. And tends to become viscous. Therefore, if the first layer is exposed on the surface layer of the interlayer film, a problem occurs in the handling operation of the interlayer film in the laminated glass process. Therefore, it is preferable to arrange the first layer between the second layer and the third layer so that the first layer is not exposed on the surface layer of the intermediate film.
[0037]
Furthermore, the thickness of the glass plate arranged on the concave surface side of the curved laminated glass can be made smaller than the thickness of the glass plate arranged on the convex surface side of the curved laminated glass. In this case, the thicknesses of the first to third layers may be the same, and a> b.
[0038]
As a glass plate in the present invention, an inorganic single plate glass plate, a tempered glass subjected to a tempering treatment (including tempered glass having a lower strength than ordinary tempered glass, double strength glass), heat ray shielding Various glass plates such as a glass plate subjected to various surface treatments such as coating can be used. In addition, a transparent resin plate made of polycarbonate resin or acrylic resin, which is called organic glass, can be used.
[0039]
The curved laminated glass of the present invention can also be used as a laminated glass for architectural windows. As described above, it is extremely useful to use the curved laminated glass of the present invention as a laminated glass for an automobile window from the viewpoint of preventing the sound insulation performance from being lowered due to dynamic vibration. When the curved laminated glass of the present invention is used for laminated glass for automobile windows, the convex surface of the curved laminated glass is arranged on the vehicle outer side, and the concave surface of the curved laminated glass is arranged on the vehicle inner side.
[0040]
【The invention's effect】
According to the present invention, the use of the interlayer film in which the temperature showing the maximum value of the loss coefficient of the first layer is lower than the temperature showing the maximum value of the loss coefficient of the other layer, and the vehicle interior glass plate By making the distance from the vehicle inner side surface to the concave surface of the first layer shorter than the distance from the vehicle outer surface of the vehicle outer side glass plate to the convex surface of the first layer, a laminated glass with good sound insulation performance can be obtained. Specifically, with the above-described configuration, vibrations and engine sounds of automobiles that suppress vibrations at frequencies of 100 Hz, 150 Hz, and 300 Hz by dynamic vibrations and enter the laminated glass from the outside of the vehicle having a frequency of about 100 to 400 Hz. The resonance between the sound wave and the vibration of the laminated glass can be reduced. Thus, it is possible to obtain a laminated glass that can reduce the transmission of the traveling sound of the automobile and the engine sound.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an essential part showing an example of a curved laminated glass of the present invention.
FIG. 2 is a schematic cross-sectional view of an essential part showing an example of a state in which a curved laminated glass of the present invention is assembled to a vehicle body.
[Explanation of symbols]
1: Curved laminated glass
11: Car interior glass plate
12: Car outside glass plate
20: Intermediate film
21: First layer
22: Second layer
23: Third layer

Claims (6)

湾曲した複数枚のガラス板が中間膜を介して積層された湾曲合わせガラスにおいて、前記中間膜は複数の層構成を呈しており、該複数の層構成のうちの第1層と他の層とが、第1層の損失係数の最大値を示す温度が他の層の損失係数の最大値を示す温度よりも低い関係にあり、湾曲合わせガラスの凹面から第1層の凹面までの距離が湾曲合わせガラスの凸面から第1層の凸面までの距離よりも短いことを特徴とする、湾曲合わせガラス。In the curved laminated glass in which a plurality of curved glass plates are laminated via an intermediate film, the intermediate film has a plurality of layer configurations, and the first layer and the other layers of the plurality of layer configurations However, the temperature indicating the maximum value of the loss coefficient of the first layer is lower than the temperature indicating the maximum value of the loss coefficient of the other layers, and the distance from the concave surface of the curved laminated glass to the concave surface of the first layer is curved. Curved laminated glass characterized by being shorter than the distance from the convex surface of the laminated glass to the convex surface of the first layer. 前記複数の層構成が3層以上の層構成であり、第1層が第2層と第3層との間に配されている、請求項1に記載の湾曲合わせガラス。The curved laminated glass according to claim 1, wherein the plurality of layer configurations is a layer configuration of three or more layers, and the first layer is disposed between the second layer and the third layer. 湾曲合わせガラスの凹面を形成するガラス板の厚さが湾曲合わせガラスの凸面を形成するガラス板の厚さよりも小さい、請求項1または2に記載の湾曲合わせガラス。The curved laminated glass according to claim 1 or 2, wherein the thickness of the glass plate forming the concave surface of the curved laminated glass is smaller than the thickness of the glass plate forming the convex surface of the curved laminated glass. 第1層が他の層に比べてガラス転移温度の低い材料からなる層である、請求項1、2または3に記載の湾曲合わせガラス。The curved laminated glass according to claim 1, wherein the first layer is a layer made of a material having a glass transition temperature lower than that of the other layers. 第1層が他の層に比べて4℃以上ガラス転移温度の低い材料からなる層である、請求項4に記載の湾曲合わせガラス。The curved laminated glass according to claim 4, wherein the first layer is a layer made of a material having a glass transition temperature lower by 4 ° C. or more than other layers. 自動車窓用であり、前記湾曲合わせガラスの凸面が車外側、前記湾曲合わせガラスの凹面が車内側に配される、請求項1、2、3、4または5に記載の湾曲合わせガラス。The curved laminated glass according to claim 1, wherein the curved laminated glass is for an automobile window, and the convex surface of the curved laminated glass is arranged on the vehicle outer side, and the concave surface of the curved laminated glass is arranged on the vehicle inner side.
JP2002241874A 2002-08-22 2002-08-22 Curved laminated glass Pending JP2004075501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241874A JP2004075501A (en) 2002-08-22 2002-08-22 Curved laminated glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241874A JP2004075501A (en) 2002-08-22 2002-08-22 Curved laminated glass

Publications (1)

Publication Number Publication Date
JP2004075501A true JP2004075501A (en) 2004-03-11

Family

ID=32024229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241874A Pending JP2004075501A (en) 2002-08-22 2002-08-22 Curved laminated glass

Country Status (1)

Country Link
JP (1) JP2004075501A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123497A (en) * 2004-10-01 2006-05-18 Sekisui Chem Co Ltd Transparent sheet laminate
WO2006051852A1 (en) * 2004-11-10 2006-05-18 Nippon Sheet Glass Company, Limited Curved laminated glass and vehicle fixed with the curved laminated glass
JP2006248826A (en) * 2005-03-09 2006-09-21 Sekisui Chem Co Ltd Thermoplastic resin sheet and laminate
JP2006327381A (en) * 2005-05-25 2006-12-07 Asahi Glass Co Ltd Laminated glass and its manufacturing method
EP1866156A1 (en) 2005-03-17 2007-12-19 Solutia Inc. Sound reducing wedge shaped polymer interlayers
EP1958764A1 (en) 2007-01-24 2008-08-20 Asahi Glass Company, Limited Laminated glass for vehicle
JP2009537436A (en) * 2006-05-19 2009-10-29 サン−ゴバン グラス フランス Soundproof laminated glass, soundproof insert, and method of selecting the insert for optimum soundproof attenuation
WO2010095749A1 (en) 2009-02-23 2010-08-26 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass
US20130202863A1 (en) * 2010-09-30 2013-08-08 Michio Shimamoto Interlayer for laminated glass and laminated glass
JP2013541484A (en) * 2010-08-24 2013-11-14 サン−ゴバン グラス フランス Method for selecting an intermediate layer for vibroacoustic attenuation, intermediate layer, and glazing unit comprising such an intermediate layer
JP2014037347A (en) * 2006-05-12 2014-02-27 Sekisui Chem Co Ltd Intermediate film for laminated glass and laminated glass
JP2015051919A (en) * 2013-02-18 2015-03-19 日本板硝子株式会社 Laminated glass and mounting structure mounted with the same
JP2015071532A (en) * 2008-09-30 2015-04-16 積水化学工業株式会社 Interlayer for glass laminate and glass laminate
CN108290787A (en) * 2015-12-04 2018-07-17 旭硝子株式会社 Sandwich glass for automobiles
WO2018135495A1 (en) * 2017-01-17 2018-07-26 積水化学工業株式会社 Filling-bonding material, protective sheet-equipped filling-bonding material, laminated body, optical device, and protective panel for optical device
JP2020077112A (en) * 2018-11-06 2020-05-21 日本信号株式会社 Parking lot management system
CN113924404A (en) * 2019-05-29 2022-01-11 宁波吉利汽车研究开发有限公司 System and method for managing opening and closing of vehicle windows

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633495B2 (en) * 2004-10-01 2011-02-16 積水化学工業株式会社 Transparent plate laminate and method for closing an opening of a building or vehicle using the transparent plate laminate
JP2006123497A (en) * 2004-10-01 2006-05-18 Sekisui Chem Co Ltd Transparent sheet laminate
WO2006051852A1 (en) * 2004-11-10 2006-05-18 Nippon Sheet Glass Company, Limited Curved laminated glass and vehicle fixed with the curved laminated glass
JP2006248826A (en) * 2005-03-09 2006-09-21 Sekisui Chem Co Ltd Thermoplastic resin sheet and laminate
JP4636904B2 (en) * 2005-03-09 2011-02-23 積水化学工業株式会社 Thermoplastic resin sheet and laminate
EP1866156A1 (en) 2005-03-17 2007-12-19 Solutia Inc. Sound reducing wedge shaped polymer interlayers
US8574706B2 (en) 2005-03-17 2013-11-05 Solutia Inc. Sound reducing wedge shaped polymer interlayers
JP2006327381A (en) * 2005-05-25 2006-12-07 Asahi Glass Co Ltd Laminated glass and its manufacturing method
JP2014037347A (en) * 2006-05-12 2014-02-27 Sekisui Chem Co Ltd Intermediate film for laminated glass and laminated glass
JP2009537436A (en) * 2006-05-19 2009-10-29 サン−ゴバン グラス フランス Soundproof laminated glass, soundproof insert, and method of selecting the insert for optimum soundproof attenuation
EP1958764A1 (en) 2007-01-24 2008-08-20 Asahi Glass Company, Limited Laminated glass for vehicle
US9789668B2 (en) 2008-09-30 2017-10-17 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass
JP2016128379A (en) * 2008-09-30 2016-07-14 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass
JP2015071532A (en) * 2008-09-30 2015-04-16 積水化学工業株式会社 Interlayer for glass laminate and glass laminate
CN102317229B (en) * 2009-02-23 2013-12-25 积水化学工业株式会社 Intermediate film for laminated glass, and laminated glass
US8404351B2 (en) 2009-02-23 2013-03-26 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
CN102317229A (en) * 2009-02-23 2012-01-11 积水化学工业株式会社 Intermediate film for laminated glass, and laminated glass
WO2010095749A1 (en) 2009-02-23 2010-08-26 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass
JP2013541484A (en) * 2010-08-24 2013-11-14 サン−ゴバン グラス フランス Method for selecting an intermediate layer for vibroacoustic attenuation, intermediate layer, and glazing unit comprising such an intermediate layer
US20130202863A1 (en) * 2010-09-30 2013-08-08 Michio Shimamoto Interlayer for laminated glass and laminated glass
US9649828B2 (en) * 2010-09-30 2017-05-16 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass
JP2015051919A (en) * 2013-02-18 2015-03-19 日本板硝子株式会社 Laminated glass and mounting structure mounted with the same
JPWO2017094884A1 (en) * 2015-12-04 2018-10-11 Agc株式会社 Laminated glass for automobiles
CN108290787A (en) * 2015-12-04 2018-07-17 旭硝子株式会社 Sandwich glass for automobiles
WO2018135495A1 (en) * 2017-01-17 2018-07-26 積水化学工業株式会社 Filling-bonding material, protective sheet-equipped filling-bonding material, laminated body, optical device, and protective panel for optical device
JPWO2018135495A1 (en) * 2017-01-17 2019-11-07 積水化学工業株式会社 Filling bonding material, filling bonding material with protective sheet, laminate, optical device and protective panel for optical device
US11203182B2 (en) 2017-01-17 2021-12-21 Sekisui Chemical Co., Ltd. Filling-bonding material, protective sheet-equipped filling-bonding material, laminated body, optical device, and protective panel for optical device
JP6991137B2 (en) 2017-01-17 2022-01-12 積水化学工業株式会社 Filled joints, filled joints with protective sheets, laminates, optical devices and protective panels for optical devices
JP2020077112A (en) * 2018-11-06 2020-05-21 日本信号株式会社 Parking lot management system
JP7197331B2 (en) 2018-11-06 2022-12-27 日本信号株式会社 parking lot management system
CN113924404A (en) * 2019-05-29 2022-01-11 宁波吉利汽车研究开发有限公司 System and method for managing opening and closing of vehicle windows
CN113924404B (en) * 2019-05-29 2023-07-28 宁波吉利汽车研究开发有限公司 System and method for managing opening and closing of vehicle windows
US11781368B2 (en) 2019-05-29 2023-10-10 Ningbo Geely Automobile Research & Development Co System and method for managing opening and closing of a vehicle window

Similar Documents

Publication Publication Date Title
JP2004075501A (en) Curved laminated glass
JP6235570B2 (en) Viscoelastic plastic interlayer for vibroacoustic damping and glazing unit including the interlayer
KR100269831B1 (en) Sound absorbing article and method of making same
US11122370B2 (en) Glass sheet composite
JP2017504549A (en) Viscoelastic insert for vibroacoustic damping and glass panel including the insert
JP7170209B2 (en) Symmetrical glass for improved sound attenuation
US6270605B1 (en) Method of manufacturing lightweight glazing by multilayer glass/plastic sheets
JP5960387B2 (en) Grazing with excellent vibro-acoustic damping behavior, method for producing such glazing, and method for acoustic protection of vehicle cabin
CN107864642A (en) For vibroacoustics damping viscoelasticity plastic interlayer and include the glass pane of such interlayer
JP6546171B2 (en) Laminated glass panel for use as a screen in a head-up display system
JP2001206742A (en) Intermediate film for sandwich glass and sandwich glass
JPWO2006051852A1 (en) Bending laminated glass for vehicle and vehicle equipped with the bending laminated glass
RU2009148034A (en) ACOUSTIC GLAZING
JP2000272936A (en) Interlayer for laminated glass, and laminated glass
WO2017204121A1 (en) Laminated glass
KR20100015386A (en) Glazing with improved vibro-acoustic damping properties, method for making such glazing and method for acoustic protection in a vehicle passenger compartment
US20170087964A1 (en) Laminated glass
US20230191745A1 (en) Glass plate structure, diaphragm, and opening member
JP2017505273A (en) Laminated glass panels for use as screens in head-up display systems
JP4986312B2 (en) Laminated glass interlayer film and laminated glass
JP2017218331A (en) Glass laminate and automobile door
CN205380945U (en) Novel thermal -insulated damping material board of sound insulation of making an uproar falls
JP2001048600A (en) Interliner for laminated glass and laminated glass
JPH0797241A (en) Sound insulating laminated glass
JPH0425864B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050801

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080521

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Effective date: 20080725

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924