JP4371462B2 - Laminated glass interlayer film and laminated glass - Google Patents

Laminated glass interlayer film and laminated glass Download PDF

Info

Publication number
JP4371462B2
JP4371462B2 JP08185399A JP8185399A JP4371462B2 JP 4371462 B2 JP4371462 B2 JP 4371462B2 JP 08185399 A JP08185399 A JP 08185399A JP 8185399 A JP8185399 A JP 8185399A JP 4371462 B2 JP4371462 B2 JP 4371462B2
Authority
JP
Japan
Prior art keywords
resin film
laminated glass
film
sound insulation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08185399A
Other languages
Japanese (ja)
Other versions
JP2000272936A (en
Inventor
清文 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP08185399A priority Critical patent/JP4371462B2/en
Publication of JP2000272936A publication Critical patent/JP2000272936A/en
Application granted granted Critical
Publication of JP4371462B2 publication Critical patent/JP4371462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal

Description

【0001】
【発明の属する技術分野】
本発明は、合わせガラス用中間膜及びその中間膜を用いた合わせガラスに関する。
【0002】
【従来の技術】
可塑化ポリビニルアセタール樹脂のような透明で柔軟性に富む樹脂を製膜してなる合わせガラス用中間膜で少なくとも一対のガラス板を接着して得られる合わせガラスは、破損時に破片が飛散せず安全性に優れているため、例えば自動車のような車輌や建築物等の窓ガラスとして広く用いられている。
【0003】
このような中間膜のなかでも、可塑剤の添加により可塑化されたポリビニルブチラール樹脂が製膜されてなる中間膜は、ガラスに対する適正な接着力、強靱な引張り強度、優れた透明性等の諸性能を兼備しているので、特に車輌の窓ガラス用として好適に用いられているが、反面、建築物の窓ガラス用としては遮音性に劣るという問題点がある。
【0004】
一般に、遮音性能は、図1に示されるように、周波数の変化に対応した透過損失として示される。上記透過損失は、JIS A−4706「サッシ」では、図1中に実線で示されるように、周波数500Hz以上の領域において遮音等級に応じてそれぞれ一定値で規定されている。
【0005】
ところで、ガラスの遮音性能は、図1中に破線で示されるように、周波数2000Hz近辺の領域でコインシデンス効果により著しく低下する。即ち、図1中の破線の谷部がコインシデンス効果による遮音性能の低下に相当し、所定の遮音性能を保持しないことを示している。
【0006】
上記コインシデンス効果とは、ガラスに音波が入射した時、ガラスの剛性と慣性とによってガラス面上を横波が伝播し、この横波と入射音とが共鳴した結果、音の透過が起こる現象を言う。
【0007】
従来の合わせガラスは、破損時における破片の飛散防止に関しては極めて優れているものの、遮音性能に関しては、通常のガラス同様、周波数2000Hz近辺の領域でコインシデンス効果による遮音性能の低下が避けられず、この点の改善が求められている。
【0008】
又、等ラウドネス曲線より、人間の聴覚は、他の周波数領域に比較して、周波数1000〜6000Hzの領域における感度が非常に高いことが知られており、コインシデンス効果による遮音性能の低下を防止することが、窓ガラスや壁等の遮音性(防音性)の向上にとって極めて重要なこととなる。
【0009】
コインシデンス効果による遮音性能の低下に関して問題となるのは、コインシデンス効果によって生じる図1中の透過損失の極小部(以下、「極小部の透過損失(dB)」を「TL値」と記す)であり、遮音性能を向上させるためには、コインシデンス効果を緩和して、上記TL値の低下を防止することが必要である。
【0010】
従来、TL値の低下を防止する手段として、合わせガラスの質量の増大、ガラスの複層化、ガラス面積の細分化、ガラス支持手段の改善等の種々の方策が採られているが、これらの方策は、いずれも十分なTL値の低下防止効果をもたらさない上に、コスト面でも実用的な価格ではないという問題点がある。
【0011】
一方、遮音性能に対する要求は最近ますます高まっており、例えば建築物の窓ガラスの場合、常温付近で優れた遮音性能を発揮することが要求される。即ち、温度に対してTL値をプロットして求められる、遮音性能が最も優れている温度{遮音性能最大温度(TLmax温度)}が常温付近であり、且つ、遮音性能の最大値{遮音性能最大値(TLmax値)}そのものが大きいという、優れた遮音性能が要求されている。
【0012】
自動車の窓ガラスの場合も同様な状況にあり、高速走行時の風切り音やエンジン部からの振動音等、高い遮音性能が要求される部位は増加しつつある。
【0013】
又、実際に使用される場合には、これら合わせガラスは低温域から高温域までの幅広い環境温度の変化に曝される。即ち、常温付近のみならず低温から高温までの広い温度領域で優れた遮音性能を発揮することが要求される。しかし、従来の最も一般的な中間膜である可塑化ポリビニルブチラール樹脂膜を用いた合わせガラスの場合でも、遮音性能最大温度(TLmax温度)が常温より高く、常温付近での遮音性能は必ずしも良くないという問題点がある。
【0014】
これらの問題点に対応するため種々の試みがなされており、例えば、特開平2−229742号公報では、「高分子物質を主成分とするガラス転移温度が15℃以下の層Aと可塑化ポリビニルアセタール膜Bとがガラス板の間に積層されていることを特徴とする遮音性合わせガラス」が開示されている。
【0015】
しかし、上記開示にある遮音性合わせガラスは、JIS A−4706の規定による遮音等級でTs−35等級を超える遮音性能を発揮しない上に、良好な遮音性能を発揮する温度領域が狭く限定されているという問題点がある。
【0016】
又、特開平4−254444号公報では、「2種の樹脂膜(A)及び(B)からなる積層膜であって、樹脂膜(A)はポリビニルアルコールを炭素数6〜10のアルデヒドでアセタール化して得たポリビニルアセタール樹脂と可塑剤とからなり、樹脂膜(B)はポリビニルアルコールを炭素数1〜4のアルデヒドでアセタール化して得たポリビニルアセタール樹脂と可塑剤とからなることを特徴とする遮音性合わせガラス用中間膜」が開示されている。
【0017】
しかし、上記開示にある遮音性中間膜は、確かに遮音性能の改善効果は認められ且つ温度変化による遮音性能の変動も大きくないが、過酷な条件下での実用面を考慮すると、これらの改善効果は未だ十分なものとは言えない。
【0018】
上述の如く、合わせガラスとして必要な基本性能に優れ、且つ、広い温度領域において優れた遮音性能を長期安定的に発揮する合わせガラスを得るに適する合わせガラス用中間膜は未だ実用化されていないのが現時点での実態である。
【0019】
【発明が解決しようとする課題】
本発明は、上記従来の問題点を解決するため、低温から高温までの広い温度領域において優れた遮音性能を長期安定的に発揮し、且つ、透明性、接着性、耐貫通性、衝撃エネルギー吸収性、耐候性等の合わせガラスとして必要な基本性能にも優れる合わせガラスを得るに適する合わせガラス用中間膜、及び、その中間膜を用いた合わせガラスを提供することを課題とする。
【0020】
【課題を解決するための手段】
本発明者は、合わせガラスの遮音性能が中間膜の動的粘弾性特性により左右され、特に貯蔵弾性率と損失弾性率との比で表される損失正接が最も遮音性能に影響を与えることを見出した。このことから、中間膜の損失正接を制御することにより、それを用いた合わせガラスに低温から高温までの広い温度領域における優れた遮音性能を付与すべく鋭意検討を行った。
【0021】
その結果、特定の損失正接を有する2種類の樹脂膜を特定の層厚比で積層して中間膜を作製することにより、その中間膜を用いた合わせガラスは、広い温度領域、特に常温から低温側の領域において優れた遮音性能を発揮することを見出し、本発明を完成するに至った。
【0022】
即ち、請求項1に記載の発明(以下、「第1発明」と記す)による合わせガラス用中間膜は、損失正接の最大値が20〜40℃の温度範囲内にあり且つ該最大値を示す温度から±5℃の温度範囲内における損失正接が0.5以上である熱可塑性樹脂膜(A)からなる外層と、損失正接の最大値が0〜10℃の温度範囲内にあり且つ該最大値を示す温度から±5℃の温度範囲内における損失正接が0.5以上である熱可塑性樹脂膜(B)からなる内層とが積層されてなり、且つ、上記外層と内層との層厚比が1/〜1/4の範囲内にあり、上記熱可塑性樹脂膜(B)が、可塑化ポリビニルアセタール樹脂、エチレン−酢酸ビニル共重合体又はポリウレタン樹脂を含有し、上記熱可塑性樹脂膜(B)が可塑化ポリビニルアセタール樹脂を含有する場合には、該可塑化ポリビニルアセタール樹脂は、ポリビニルアセタール樹脂100重量部と、可塑剤60〜70重量部とを含むことを特徴とする。
【0023】
又、請求項2に記載の発明(以下、「第2発明」と記す)による合わせガラスは、少なくとも一対のガラス間に、上記第1発明による合わせガラス用中間膜を介在させ、一体化させてなることを特徴とする。
【0024】
第1発明による合わせガラス用中間膜(以下、単に「中間膜」と記す)の外層を構成する樹脂膜(A)は、損失正接の最大値が20〜40℃の温度範囲内にあり、且つ、該最大値を示す温度から±5℃の温度範囲内における損失正接が0.5以上であることが必要である。
【0025】
又、第1発明による中間膜の内層を構成する樹脂膜(B)は、損失正接の最大値が0〜10℃の温度範囲内にあり、且つ、該最大値を示す温度から±5℃の温度範囲内における損失正接が0.5以上であることが必要である。
【0026】
第1発明による中間膜において、外層を構成する樹脂膜(A)は、常温から高温側の領域における優れた遮音性能を確保する機能を有すると共に、中間膜として必要な優れた力学的特性と良好な成形性や取扱い作業性を付与する機能をも有する。
【0027】
従って、樹脂膜(A)の損失正接が最大値になる温度は20〜40℃の範囲内に限定される。上記温度が20℃未満であると、常温から高温側の領域における遮音性能が不十分となる。逆に上記温度が40℃を超えると、高温側の領域における遮音性能はより向上するものの、中温領域(常温付近)における遮音性能が低下し、又、膜が硬くなり過ぎるため、成形性や取扱い作業性も低下する。
【0028】
一方、第1発明による中間膜において、内層を構成する樹脂膜(B)は、常温から低温側の領域における優れた遮音性能を確保する機能を有すると共に、中間膜として必要な良好な成形性や取扱い作業性と合わせガラスとして必要な優れた耐貫通性や衝撃エネルギー吸収性を付与する機能をも有する。
【0029】
従って、樹脂膜(B)の損失正接が最大値になる温度は0〜10℃の範囲内に限定される。上記温度が0℃未満であると、膜が柔らかくなり過ぎるため、成形性や取扱い作業性が低下すると共に、得られる合わせガラスの耐貫通性も低下する。逆に上記温度が10℃を超えると、前記樹脂膜(A)と類似の特性となるため、常温から低温側の領域における遮音性能が不十分となる。
【0030】
又、第1発明による中間膜において、外層を構成する樹脂膜(A)及び内層を構成する樹脂膜(B)の損失正接は、それぞれの損失正接が最大値を示す温度から±5℃の温度範囲内において0.5以上であることが必要である。
【0031】
上記温度範囲が±5℃の範囲内を満たしていないと、樹脂膜(A)と樹脂膜(B)とを積層して中間膜を作製しても、低温から高温までの広い温度領域において優れた遮音性能を確保することが困難となる。
【0032】
又、上記温度範囲内における樹脂膜(A)及び/又は樹脂膜(B)の損失正接が0.5未満であっても、低温から高温までの広い温度領域において優れた遮音性能を確保することが困難となる。
【0033】
ここで言う損失正接(tanδ)とは、動的粘弾性特性の測定により求められる貯蔵弾性率(G’)と損失弾性率(G”)との比を意味する。これは制振性能の指標として用いられる値でもある。
【0034】
上記動的粘弾性特性の測定は、例えば固体粘弾性測定装置(型式「RSA−II」、レオメトリック社製)のような一般的に用いられる動的粘弾性測定装置を用いて行えば良く、その原理は、微小振動を有する歪みを試料に印加し、その応答である応力を検出して弾性率を算出するものである。第1発明においては、試料に印加する歪みの周波数は10Hzとする。この周波数は、測定の容易さと合わせガラスとしての遮音性能との相関性から設定した。
【0035】
第1発明による中間膜は、前記損失正接を有する樹脂膜(A)からなる外層と前記損失正接を有する樹脂膜(B)からなる内層とが積層されてなり、且つ、上記外層と内層との層厚比が1/1〜1/4の範囲内にあることが必要であり、好ましくは1/2〜1/3である。
【0036】
ここで言う外層とは、合わせガラスに加工する時にガラスと接触する側の層を意味する。従って、中間膜の両面の外層が樹脂膜(A)から構成されていることになる。
【0037】
樹脂膜(A)を外層とすることにより、中間膜の取扱い作業性や力学的特性が優れたものとなる。換言すれば、もし樹脂膜(B)を外層とすると、樹脂膜(B)は柔らかいため、中間膜の取扱い作業性が著しく悪くなる。
【0038】
又、樹脂膜(A)からなる外層と樹脂膜(B)からなる内層とを積層した時の層厚比が1/1を超えると、常温付近での遮音性能が十分に向上しない。逆に上記外層と内層との層厚比が1/4未満であると、中間膜の剛性が著しく低下し、取扱い作業性や力学的特性が悪くなる。
【0039】
樹脂膜(A)と樹脂膜(B)との積層形態は、外層が樹脂膜(A)から構成され且つ外層と内層との層厚比が1/1〜1/4の範囲内にあれば、特に限定されるものではなく、例えば、樹脂膜(A)/樹脂膜(B)/樹脂膜(A)の三層積層であっても良いし、樹脂膜(A)/樹脂膜(B)/樹脂膜(A)/樹脂膜(B)/樹脂膜(A)の五層積層であっても良く、より多層積層であっても良い。
【0040】
上記積層の方法としては、特に限定されるものではないが、例えば、各層をそれぞれ別々に成形した後、合わせガラス加工時に各層を上記条件を満たすようにガラス間に積層する方法、多層成形機を用いて、各層を上記条件を満たすように一体成形する方法等が挙げられ、いずれの方法も好適に採用される。
【0041】
こうして得られる中間膜の膜厚は、特に限定されるものではないが、従来の中間膜の場合と同様に、0.3〜1.6mmであることが好ましい。膜厚が大きいほど遮音性能はより向上するが、合わせガラスとして必要な耐貫通性やコストを考慮すると、実用的には上記膜厚であることが好ましい。
【0042】
第1発明による中間膜を構成する樹脂膜(A)及び/又は樹脂膜(B)を得るための熱可塑性樹脂組成物の主成分として用いられる熱可塑性樹脂としては、特に限定されるものではないが、例えば、可塑剤の添加により可塑化されたポリビニルブチラール樹脂のような可塑化ポリビニルアセタール樹脂、エチレン−酢酸ビニル共重合体、ポリウレタン樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ブチルゴム、ポリブタジエンゴム等の透明な粘弾性ポリマーが挙げられ、好適に用いられる。
【0043】
上記熱可塑性樹脂は、単独で用いられても良いし、2種類以上が併用されても良い。
【0044】
又、樹脂膜(A)用及び/又は樹脂膜(B)用として用いられる熱可塑性樹脂は同種の熱可塑性樹脂であっても良いし、例えば樹脂膜(A)用として可塑化ポリビニルブチラール樹脂を用い、樹脂膜(B)用としてエチレン−酢酸ビニル共重合体を用いるというように異種の熱可塑性樹脂であっても良い。
【0045】
上記熱可塑性樹脂のなかでも、合わせガラスとした時に優れた透明性、接着性、耐貫通性、耐候性等を発揮する可塑化ポリビニルアセタール樹脂がより好適に用いられるが、なかでも可塑化ポリビニルブチラール樹脂が特に好適に用いられる。
【0046】
又、可塑剤としては、特に限定されるものではないが、例えば、一塩基酸エステル系、多塩基酸エステル系等の有機系可塑剤や、有機リン酸系、有機亜リン酸系等のリン酸系可塑剤等が挙げられ、好適に用いられる。
【0047】
上記可塑剤は、単独で用いられても良いし、2種類以上が併用されても良い。
【0048】
上記一塩基酸エステル系可塑剤としては、特に限定されるものではないが、例えば、トリエチレングリコールと、酪酸、イソ酪酸、カプロン酸、2−エチル酪酸、ヘプタン酸、2−エチルヘキシル酸等の有機酸との反応によって得られるグリコール系エステルが挙げられ、これらの1種もしくは2種以上が好適に用いられる。
【0049】
又、上記リン酸系可塑剤としては、特に限定されるものではないが、例えば、トリブトキシエチルフォスフェート、イソデシルフェニルフォスフェート等が挙げられ、これらの1種もしくは2種以上が好適に用いられる。
【0050】
樹脂膜(A)及び/又は樹脂膜(B)を得るための熱可塑性樹脂組成物中には、前記熱可塑性樹脂、上記可塑剤以外に、本発明の課題達成を阻害しない範囲で必要に応じて、紫外線吸収剤、光安定剤、酸化防止剤、接着性調整剤、界面活性剤、着色剤等の各種添加剤の1種もしくは2種以上が含有されていても良い。
【0051】
次に、第2発明による合わせガラスは、少なくとも一対のガラス間に、上述した第1発明による中間膜を介在させ、一体化させることにより作製される。
【0052】
上記ガラスには、通常の無機透明ガラスのみならず、例えばポリカーボネート板やポリメチルメタクリレート板等のような有機透明ガラスも包含される。
【0053】
上記ガラスの種類としては、特に限定されるものではないが、例えば、フロート板ガラス、磨き板ガラス、平板ガラス、曲板ガラス、並板ガラス、型板ガラス、金網入り型板ガラス、着色されたガラス等の各種無機ガラスや有機ガラスが挙げられ、これらの1種もしくは2種以上が好適に用いられる。又、上記ガラスの厚みは、用途や目的によって適宜選択されれば良く、特に限定されるものではない。
【0054】
上記合わせガラスの製造方法は、特別なものではなく、通常の合わせガラスの場合と同様の製造方法が採用される。例えば、二枚の透明なガラス板の間に、第1発明による中間膜を挟み、これをゴムバックに入れて減圧下で吸引脱気しながら70〜110℃程度の温度で予備接着した後、オートクレーブもしくはプレスを用いて、120〜150℃程度の温度、及び、10〜15kg/cm2 程度の圧力で加熱加圧して本接着を行うことにより所望の合わせガラスを得ることが出来る。
【0055】
【作用】
第1発明による中間膜は、特定の損失正接を有する樹脂膜(A)を外層としてなるので、常温から高温側の領域における優れた遮音性能と、優れた力学的特性及び良好な成形性や取扱い作業性を発揮する。又、特定の損失正接を有する樹脂膜(B)を内層としてなるので、常温から低温側の領域における優れた遮音性能と、優れた耐貫通性や衝撃エネルギー吸収性及び良好な成形性や取扱い作業性を発揮する。
【0056】
又、第1発明による中間膜は、上記樹脂膜(A)からなる外層と上記樹脂膜(B)からなる内層との層厚比が特定の範囲となるように積層されてなるので、低温から高温までの広い温度領域において優れた遮音性能を長期安定的に発揮し、且つ、透明性、接着性、耐貫通性、衝撃エネルギー吸収性、耐候性等の合わせガラスとして必要な基本性能にも優れる合わせガラスを得るに適する。
【0057】
第2発明による合わせガラスは、上記第1発明による中間膜を用いて製せられるので、低温から高温までの広い温度領域において優れた遮音性能を有し、且つ、透明性、接着性、耐貫通性、衝撃エネルギー吸収性、耐候性等の基本性能にも優れる。
【0058】
【発明の実施の形態】
本発明をさらに詳しく説明するため以下に実施例をあげるが、本発明はこれら実施例のみに限定されるものではない。尚、実施例中の「部」は「重量部」を意味する。
【0059】
(実施例1)
【0060】
(1)樹脂膜(A)の作製
熱可塑性樹脂としてポリビニルブチラール樹脂{PVB−a(ブチラール化度:65.9モル%、アセチル基量:0.9モル%)}100部に対し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレート(3GH)40部を添加し、ミキシングロールで十分に混練した後、プレス成形機を用いて、150℃で30分間プレス成形し、膜厚0.2mmの樹脂膜(A)を作製した。
【0061】
(2)樹脂膜(B)の作製
熱可塑性樹脂としてPVB−c(ブチラール化度:60.2モル%、アセチル基量:11.9モル%)100部に対し、可塑剤として3GH60部を添加し、ミキシングロールで十分に混練した後、プレス成形機を用いて、150℃で30分間プレス成形し、膜厚0.4mmの樹脂膜(B)を作製した。
【0062】
(3)損失正接の測定
上記で得られた樹脂膜(A)及び樹脂膜(B)の損失正接を以下の方法で測定した。その結果は表1に示すとおりであった。
〔損失正接の測定〕
樹脂膜(A)及び樹脂膜(B)を10mm×16mmの矩形に裁断し、試験片を準備した。次いで、固体粘弾性測定装置(型式「RSA−II」、レオメトリック社製)を用いて、試験片の動的粘弾性特性を測定し、それぞれの試験片が損失正接の最大値を示す温度(Tmax)及び損失正接の最大値を求めた。又、損失正接が0.5以上となるTmaxからの温度範囲を求めた。尚、上記動的粘弾性特性の測定条件は以下のとおりであった。
印加した歪み:周波数10Hzの正弦歪みを剪断方向に歪み量0.1%で印加した
測定温度範囲:−50℃〜+100℃
昇温速度:3℃/分
【0063】
(4)中間膜及び合わせガラスの作製
上記で得られた樹脂膜(A)及び樹脂膜(B)を用い、樹脂膜(A)/樹脂膜(B)/樹脂膜(A)となるように積層して、3層中間膜を得た。次いで、この中間膜を2枚の透明なフロートガラス(縦30cm×横30cm×厚み3mm)の間に挟み、これをゴムバックに入れて20torrの真空度で20分間脱気した後、脱気したままの状態で90℃のオーブンに移し、90℃で30分間保持しつつ真空プレスし、合わせガラスの予備接着を行った。
【0064】
次いで、上記予備接着された合わせガラスをオートクレーブに入れ、温度135℃、圧力12kg/cm2 の条件で20分間本接着を行って、合わせガラスを作製した。
【0065】
(5)評価
上記で得られた合わせガラスの性能(▲1▼遮音性、▲2▼耐貫通性)を以下の方法で評価した。その結果は表1に示すとおりであった。
【0066】
▲1▼遮音性:上記で得られた合わせガラスから供試体を切り出し、この供試体をダンピング試験用の振動発生機(商品名「G21−005D」、振研社製)により加振し、そこから得られる振動特性を、機械インピーダンスアンプ(商品名「XG−81」、リオン社製)にて増幅し、振動スペクトルをFFTアナライザー(商品名「FFTスペクトラムアナライザーHP−3582AA」、横河ヒューレットパッカー社製)により解析した。こうして得られた損失係数と、ガラスとの共振周波数の比とから、周波数(Hz)と透過損失(dB)との関係を示すグラフを作成し、周波数2000Hz近辺における極小の透過損失(TL値)を求めた。尚、測定は、0℃、10℃、20℃、30℃及び40℃の各温度でそれぞれ行い、遮音性の合格基準をTL値30以上とした。
【0067】
▲2▼耐貫通性:JIS R−3212「自動車用安全ガラス試験方法」に準拠し、300mm×300mmの合わせガラス(供試体)の端部を支持枠に固定して水平に保持した状態で、その4m真上から、重量が2260±20g、直径が約82mmの表面が滑らかな鋼球を自然落下させ、鋼球が供試体を貫通しない場合を合格、鋼球が供試体を貫通した場合を不合格とした。尚、供試体は、試験の直前まで、23±2℃の室内に少なくとも4時間以上放置したものを用いた。
【0068】
(実施例2)
熱可塑性樹脂としてPVB−b(ブチラール化度:68.9モル%、アセチル基量:0.9モル%)100部に対し、可塑剤としてトリエチレングリコール−ジ−2−エチルヘキサノエート(3GO)39部を添加したこと以外は実施例1の場合と同様にして、膜厚0.15mmの樹脂膜(A)を作製した。又、実施例1の樹脂膜(B)で用いたPVB−c100部に対し、可塑剤として3GO70部を添加したこと以外は実施例1の場合と同様にして、膜厚0.4mmの樹脂膜(B)を作製した。
【0069】
(実施例3)
実施例2で作製した樹脂膜(A)をそのまま樹脂膜(A)として用いた。又、実施例1の樹脂膜(B)で用いたPVB−c100部に対し、可塑剤としてトリエチレングリコール−ジ−n−ヘプタネート(3G7)65部を添加したこと以外は実施例1の場合と同様にして、膜厚0.6mmの樹脂膜(B)を作製した。
【0070】
(実施例4)
膜厚を0.2mmとしたこと以外は実施例2の場合と同様にして、樹脂膜(A)を作製した。又、熱可塑性樹脂としてエチレン−酢酸ビニル共重合体{EVA(商品名「ウルトラセン725」、酢酸ビニル含有量28%、東ソー社製)}をそのまま用いたこと以外は実施例1の場合と同様にして、膜厚0.4mmの樹脂膜(B)を作製した。
【0071】
(実施例5)
膜厚を0.1mmとしたこと以外は実施例1の場合と同様にして、樹脂膜(A)を作製した。又、膜厚を0.2mmとしたこと以外は実施例1の場合と同様にして、樹脂膜(B)を作製した。
【0072】
(実施例6)
実施例1で作製した樹脂膜(A)をそのまま樹脂膜(A)として用いた。又、熱可塑性樹脂として、ポリオール(商品名「N4002」、アジピン酸とエチレングリコールとの縮合生成物、日本ポリウレタン工業社製)とイソシアネート(水添MDI、住友バイエルウレタン社製)との反応生成物に、硬化剤として1,4−ブタンジオールを添加して得られたポリウレタン樹脂(PU)をそのまま用いたこと以外は実施例1の場合と同様にして、膜厚0.4mmの樹脂膜(B)を作製した。
【0073】
(比較例1)
実施例1で作製した樹脂膜(A)をそのまま樹脂膜(A)として用いた。又、実施例1の樹脂膜(B)で用いたPVB−c100部に対する3GH(可塑剤)の添加量を30部としたこと以外は実施例1の場合と同様にして、膜厚0.4mmの樹脂膜(B)を作製した。
【0074】
(比較例2)
膜厚を0.4mmとしたこと以外は実施例1の場合と同様にして、樹脂膜(A)を作製した。又、膜厚を0.2mmとしたこと以外は実施例1の場合と同様にして、樹脂膜(B)を作製した。
【0075】
(比較例3)
膜厚を0.3mmとしたこと以外は実施例1の場合と同様にして、樹脂膜(A)を作製した。又、膜厚を0.2mmとしたこと以外は実施例1の場合と同様にして、樹脂膜(B)を作製した。
【0076】
(比較例4)
実施例1で作製した樹脂膜(A)をそのまま樹脂膜(A)として用いた。又、熱可塑性樹脂としてPVB−d(ブチラール化度:30.0モル%、アセチル基量:11.9モル%)100部に対し、可塑剤として3GH70部を添加したこと以外は実施例1の場合と同様にして、膜厚0.4mmの樹脂膜(B)を作製した。
【0077】
実施例2〜6、及び、比較例1〜4で得られた各樹脂膜(A)及び各樹脂膜(B)の損失正接を実施例1の場合と同様にしてそれぞれ測定した。その結果は表1に示すとおりであった。
【0078】
次に、実施例2〜4及び6、及び、比較例1、3及び4で得られた各樹脂膜(A)及び各樹脂膜(B)を用い、実施例1の場合と同様にして、それぞれ樹脂膜(A)を外層とし、樹脂膜(B)を内層とする3層中間膜及び合わせガラスを得た。
【0079】
又、実施例5では、中間膜及び合わせガラスの作製において、樹脂膜(A)/樹脂膜(B)/樹脂膜(A)/樹脂膜(B)/樹脂膜(A)となるように積層したこと以外は実施例1の場合と同様にして、5層中間膜及び合わせガラスを得た。
【0080】
さらに、比較例2では、中間膜及び合わせガラスの作製において、樹脂膜(B)を外層とし、樹脂膜(A)を内層とするために、樹脂膜(B)/樹脂膜(A)/樹脂膜(B)となるように積層したこと以外は実施例1の場合と同様にして、3層中間膜及び合わせガラスを得た。
【0081】
次いで、実施例2〜6、及び、比較例1〜4で得られた合わせガラスの性能(▲1▼遮音性、▲2▼耐貫通性)を実施例1の場合と同様にして評価した。その結果は表1に示すとおりであった。
【0082】
【表1】

Figure 0004371462
【0083】
表1から明らかなように、第1発明による実施例1〜6の中間膜を用いて作製された第2発明による実施例1〜6の合わせガラスは、いずれも、0℃〜40℃の広い温度領域において優れた遮音性能を発揮し、且つ、耐貫通性にも優れていた。
【0084】
これに対し、損失正接の最大値を示す温度が10℃を超えていた樹脂膜(B)を内層とする比較例1の中間膜を用いて作製された比較例1の合わせガラス、及び、損失正接が0.5以上である温度範囲が最大値を示す温度から±5℃の範囲内を満たしていなかった樹脂膜(B)を内層とする比較例4の中間膜を用いて作製された比較例4の合わせガラスは、いずれも、常温から低温側の温度領域における遮音性能が劣っていた。又、外層{樹脂膜(A)}と内層{樹脂膜(B)}との層厚比が1/1を超えていた比較例3の中間膜を用いて作製された比較例3の合わせガラスも、常温から低温側の温度領域における遮音性能がやや劣っていた。
【0085】
さらに、樹脂膜(B)を外層とし、樹脂膜(A)を内層とする比較例2の中間膜を用いて作製された比較例2の合わせガラスは、遮音性能は優れていたものの、耐貫通性が悪く、合わせガラスとしての実用性に欠けるものであった。
【0086】
【発明の効果】
以上述べたように、第1発明による合わせガラス用中間膜は、低温から高温までの広い温度領域において優れた遮音性能を長期安定的に発揮し、且つ、透明性、接着性、耐貫通性、衝撃エネルギー吸収性、耐候性等の合わせガラスとして必要な基本性能にも優れる合わせガラスを得るに適する。
【0087】
又、上記中間膜を用いた第2発明による合わせガラスは、低温から高温までの広い温度領域において優れた遮音性能を長期安定的に発揮すると共に、合わせガラスとして必要な上記基本性能にも優れるので、建築物や自動車、車輛等の遮音性合わせガラスとして好適に用いられる。
【0088】
【図面の簡単な説明】
【図1】合わせガラスの遮音性能を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an interlayer film for laminated glass and a laminated glass using the interlayer film.
[0002]
[Prior art]
Laminated glass obtained by bonding at least a pair of glass plates with an interlayer film for laminated glass formed by forming a transparent and flexible resin such as plasticized polyvinyl acetal resin is safe with no broken pieces scattered when broken. For example, it is widely used as a window glass for vehicles such as automobiles and buildings.
[0003]
Among such interlayer films, an interlayer film formed from a polyvinyl butyral resin plasticized by the addition of a plasticizer has various adhesive properties such as proper adhesion to glass, tough tensile strength, and excellent transparency. Since it combines performance, it is suitably used especially for vehicle window glass, but has a problem that it is inferior in sound insulation for building window glass.
[0004]
In general, the sound insulation performance is shown as a transmission loss corresponding to a change in frequency, as shown in FIG. According to JIS A-4706 “Sash”, the transmission loss is defined as a constant value in accordance with the sound insulation class in a region of a frequency of 500 Hz or more as shown by a solid line in FIG.
[0005]
By the way, the sound insulation performance of glass is remarkably deteriorated due to the coincidence effect in a region in the vicinity of a frequency of 2000 Hz, as indicated by a broken line in FIG. That is, the trough portion of the broken line in FIG. 1 corresponds to a decrease in the sound insulation performance due to the coincidence effect, and indicates that the predetermined sound insulation performance is not maintained.
[0006]
The coincidence effect is a phenomenon in which when a sound wave is incident on glass, a transverse wave propagates on the glass surface due to the rigidity and inertia of the glass, and as a result of the resonance between the transverse wave and the incident sound, sound is transmitted.
[0007]
Although the conventional laminated glass is extremely excellent in preventing shattering of broken pieces at the time of breakage, the sound insulation performance is unavoidably reduced by the coincidence effect in the region around the frequency of 2000 Hz, as in the case of ordinary glass. There is a need for improvement.
[0008]
In addition, it is known from the equal loudness curve that human hearing is very sensitive in the frequency range of 1000 to 6000 Hz compared to other frequency regions, and prevents a decrease in sound insulation performance due to the coincidence effect. This is extremely important for improving sound insulation (sound insulation) of window glass and walls.
[0009]
The problem with respect to the decrease in the sound insulation performance due to the coincidence effect is the minimum part of the transmission loss in FIG. 1 caused by the coincidence effect (hereinafter, “the transmission loss (dB) of the minimum part” is referred to as “TL value”). In order to improve the sound insulation performance, it is necessary to alleviate the coincidence effect and prevent the TL value from decreasing.
[0010]
Conventionally, as a means for preventing a decrease in the TL value, various measures such as an increase in the mass of laminated glass, a glass double layer, a glass area subdivision, and a glass support means improvement have been adopted. None of the measures provides a sufficient TL value reduction prevention effect and is not practical in terms of cost.
[0011]
On the other hand, the demand for sound insulation performance has been increasing recently. For example, in the case of a window glass of a building, it is required to exhibit excellent sound insulation performance near room temperature. That is, the temperature with the best sound insulation performance obtained by plotting the TL value against the temperature {maximum sound insulation performance temperature (TLmax temperature)} is near room temperature, and the maximum value of the sound insulation performance {maximum sound insulation performance}. Value (TLmax value)} itself is required to have excellent sound insulation performance.
[0012]
The situation is similar in the case of the window glass of automobiles, and the number of parts that require high sound insulation performance such as wind noise during high-speed driving and vibration noise from the engine section is increasing.
[0013]
In actual use, these laminated glasses are exposed to a wide range of environmental temperature changes from a low temperature range to a high temperature range. That is, it is required to exhibit excellent sound insulation performance not only in the vicinity of normal temperature but also in a wide temperature range from low temperature to high temperature. However, even in the case of a laminated glass using a plasticized polyvinyl butyral resin film, which is the most common intermediate film in the past, the sound insulation performance maximum temperature (TLmax temperature) is higher than room temperature, and the sound insulation performance near room temperature is not necessarily good. There is a problem.
[0014]
Various attempts have been made to deal with these problems. For example, in JP-A-2-229742, “a layer A mainly composed of a polymer substance having a glass transition temperature of 15 ° C. or less and plasticized polyvinyl There is disclosed a “sound insulating laminated glass” in which an acetal film B is laminated between glass plates.
[0015]
However, the sound insulating laminated glass disclosed in the above disclosure does not exhibit a sound insulating performance exceeding the Ts-35 rating as defined in JIS A-4706, and in addition, a temperature range that exhibits a good sound insulating performance is narrowly limited. There is a problem that.
[0016]
Further, in Japanese Patent Laid-Open No. 4-254444, “a laminated film composed of two kinds of resin films (A) and (B), wherein the resin film (A) is an acetal made of polyvinyl alcohol with an aldehyde having 6 to 10 carbon atoms. The resin film (B) is composed of a polyvinyl acetal resin obtained by acetalizing polyvinyl alcohol with an aldehyde having 1 to 4 carbon atoms and a plasticizer. An interlayer film for sound insulating laminated glass is disclosed.
[0017]
However, the sound insulating interlayer disclosed in the above disclosure certainly has an effect of improving the sound insulating performance, and the fluctuation of the sound insulating performance due to temperature change is not large, but these improvements are considered when considering practical aspects under severe conditions. The effect is still not enough.
[0018]
As described above, an interlayer film for laminated glass suitable for obtaining a laminated glass that has excellent basic performance required for laminated glass and that stably exhibits excellent sound insulation performance in a wide temperature range for a long time has not yet been put into practical use. Is the current situation.
[0019]
[Problems to be solved by the invention]
In order to solve the above-mentioned conventional problems, the present invention stably exhibits long-term excellent sound insulation performance in a wide temperature range from low temperature to high temperature, and also has transparency, adhesiveness, penetration resistance, and impact energy absorption. It is an object of the present invention to provide an interlayer film for laminated glass suitable for obtaining a laminated glass excellent in basic performance required as a laminated glass such as property and weather resistance, and a laminated glass using the interlayer film.
[0020]
[Means for Solving the Problems]
The present inventor has found that the sound insulation performance of laminated glass depends on the dynamic viscoelastic properties of the interlayer film, and in particular, the loss tangent expressed by the ratio of the storage elastic modulus and the loss elastic modulus has the most influence on the sound insulation performance. I found it. Based on this, the inventors have intensively studied to provide excellent sound insulation performance in a wide temperature range from low temperature to high temperature by controlling the loss tangent of the interlayer film.
[0021]
As a result, two types of resin films having a specific loss tangent are laminated at a specific layer thickness ratio to produce an intermediate film. Laminated glass using the intermediate film has a wide temperature range, particularly from room temperature to low temperature. The inventors have found that excellent sound insulation performance is exhibited in the side region, and have completed the present invention.
[0022]
That is, in the interlayer film for laminated glass according to the invention of claim 1 (hereinafter referred to as “first invention”), the maximum value of the loss tangent is in the temperature range of 20 to 40 ° C. and exhibits the maximum value. An outer layer made of the thermoplastic resin film (A) having a loss tangent of 0.5 or more within a temperature range of ± 5 ° C. from the temperature, the maximum value of the loss tangent being in the temperature range of 0 to 10 ° C. and the maximum A layer thickness ratio between the outer layer and the inner layer, in which the inner layer made of the thermoplastic resin film (B) having a loss tangent of 0.5 or more in a temperature range of ± 5 ° C. from the temperature showing the value is laminated. Is 1 / 2 Within the range of ¼ When the thermoplastic resin film (B) contains a plasticized polyvinyl acetal resin, ethylene-vinyl acetate copolymer or polyurethane resin, and the thermoplastic resin film (B) contains a plasticized polyvinyl acetal resin The plasticized polyvinyl acetal resin contains 100 parts by weight of a polyvinyl acetal resin and 60 to 70 parts by weight of a plasticizer. It is characterized by that.
[0023]
The laminated glass according to the invention described in claim 2 (hereinafter referred to as “second invention”) is formed by interposing the interlayer film for laminated glass according to the first invention between at least a pair of glasses. It is characterized by becoming.
[0024]
The resin film (A) constituting the outer layer of the interlayer film for laminated glass according to the first invention (hereinafter simply referred to as “intermediate film”) has a maximum loss tangent value in the temperature range of 20 to 40 ° C., and ± 5% from the temperature showing the maximum value The loss tangent within the temperature range needs to be 0.5 or more.
[0025]
Further, the resin film (B) constituting the inner layer of the intermediate film according to the first invention has a maximum loss tangent value in the temperature range of 0 to 10 ° C. and ± 5 from the temperature indicating the maximum value. The loss tangent within the temperature range needs to be 0.5 or more.
[0026]
In the intermediate film according to the first invention, the resin film (A) constituting the outer layer has a function of ensuring an excellent sound insulation performance in a region from room temperature to a high temperature side, and has excellent mechanical characteristics necessary for the intermediate film and good It also has a function of imparting excellent moldability and handling workability.
[0027]
Therefore, the temperature at which the loss tangent of the resin film (A) becomes the maximum value is limited to the range of 20 to 40 ° C. When the temperature is less than 20 ° C., the sound insulation performance in the region from the normal temperature to the high temperature side is insufficient. On the other hand, if the temperature exceeds 40 ° C, the sound insulation performance in the high temperature region is improved, but the sound insulation performance in the medium temperature region (near room temperature) is reduced, and the film becomes too hard. Workability also decreases.
[0028]
On the other hand, in the intermediate film according to the first invention, the resin film (B) constituting the inner layer has a function of ensuring excellent sound insulation performance in a region from the normal temperature to the low temperature side, and has good moldability required as an intermediate film. It also has the functions of imparting excellent work-through resistance and impact energy absorption required for handling glass and laminated glass.
[0029]
Therefore, the temperature at which the loss tangent of the resin film (B) becomes the maximum value is limited to the range of 0 to 10 ° C. When the temperature is less than 0 ° C., the film becomes too soft, so that the moldability and handling workability are lowered, and the penetration resistance of the obtained laminated glass is also lowered. Conversely, when the temperature exceeds 10 ° C., the characteristics similar to those of the resin film (A) are obtained, so that the sound insulation performance in the region from the normal temperature to the low temperature side becomes insufficient.
[0030]
In the intermediate film according to the first invention, the loss tangent of the resin film (A) constituting the outer layer and the resin film (B) constituting the inner layer is ± 5 from the temperature at which each loss tangent shows the maximum value. It must be 0.5 or more within the temperature range.
[0031]
Above temperature range is ± 5 ℃ Not within the range of Even if the intermediate film is produced by laminating the resin film (A) and the resin film (B), it is difficult to ensure excellent sound insulation performance in a wide temperature range from low temperature to high temperature.
[0032]
Moreover, even if the loss tangent of the resin film (A) and / or the resin film (B) within the above temperature range is less than 0.5, excellent sound insulation performance is ensured in a wide temperature range from low temperature to high temperature. It becomes difficult.
[0033]
The loss tangent (tan δ) here means the ratio between the storage elastic modulus (G ′) and the loss elastic modulus (G ″) obtained by measuring the dynamic viscoelastic characteristics. This is an index of vibration damping performance. It is also a value used as.
[0034]
The measurement of the dynamic viscoelastic property may be performed using a generally used dynamic viscoelasticity measuring device such as a solid viscoelasticity measuring device (model “RSA-II”, manufactured by Rheometric Co., Ltd.) The principle is that the elastic modulus is calculated by applying a strain having minute vibrations to the sample and detecting the stress as the response. In the first invention, the frequency of strain applied to the sample is 10 Hz. This frequency was set from the correlation between ease of measurement and sound insulation performance as a laminated glass.
[0035]
The intermediate film according to the first invention is formed by laminating an outer layer made of the resin film (A) having the loss tangent and an inner layer made of the resin film (B) having the loss tangent, and the outer layer and the inner layer. The layer thickness ratio needs to be within a range of 1/1 to 1/4, and preferably 1/2 to 1/3.
[0036]
The outer layer mentioned here means a layer on the side that comes into contact with the glass when it is processed into a laminated glass. Therefore, the outer layers on both sides of the intermediate film are composed of the resin film (A).
[0037]
By using the resin film (A) as an outer layer, the handling workability and mechanical characteristics of the intermediate film are excellent. In other words, if the resin film (B) is an outer layer, since the resin film (B) is soft, the handling workability of the intermediate film is remarkably deteriorated.
[0038]
Further, if the layer thickness ratio when the outer layer made of the resin film (A) and the inner layer made of the resin film (B) are laminated exceeds 1/1, the sound insulation performance near normal temperature is not sufficiently improved. On the other hand, if the layer thickness ratio of the outer layer to the inner layer is less than 1/4, the rigidity of the intermediate film is remarkably lowered, and handling workability and mechanical characteristics are deteriorated.
[0039]
The laminated form of the resin film (A) and the resin film (B) is such that the outer layer is composed of the resin film (A) and the layer thickness ratio between the outer layer and the inner layer is within a range of 1/1 to 1/4. However, it is not particularly limited, and for example, it may be a three-layer laminate of resin film (A) / resin film (B) / resin film (A), or resin film (A) / resin film (B). It may be a five-layer laminate of / resin film (A) / resin film (B) / resin film (A), or may be a multilayer laminate.
[0040]
The method for laminating is not particularly limited. For example, after each layer is molded separately, a method of laminating each layer between the glasses so as to satisfy the above conditions when processing laminated glass, a multilayer molding machine And a method of integrally forming each layer so as to satisfy the above conditions, and any method is preferably employed.
[0041]
The film thickness of the intermediate film thus obtained is not particularly limited, but is preferably 0.3 to 1.6 mm as in the case of the conventional intermediate film. Although the sound insulation performance is further improved as the film thickness is increased, the above film thickness is practically preferable in consideration of penetration resistance and cost required for laminated glass.
[0042]
The thermoplastic resin used as the main component of the thermoplastic resin composition for obtaining the resin film (A) and / or the resin film (B) constituting the intermediate film according to the first invention is not particularly limited. For example, plasticized polyvinyl acetal resin such as polyvinyl butyral resin plasticized by adding a plasticizer, ethylene-vinyl acetate copolymer, polyurethane resin, acrylic resin, polyvinyl chloride resin, butyl rubber, polybutadiene rubber, etc. A transparent viscoelastic polymer is mentioned and used suitably.
[0043]
The said thermoplastic resin may be used independently and 2 or more types may be used together.
[0044]
The thermoplastic resin used for the resin film (A) and / or the resin film (B) may be the same kind of thermoplastic resin. For example, a plasticized polyvinyl butyral resin may be used for the resin film (A). A different kind of thermoplastic resin may be used, such as using an ethylene-vinyl acetate copolymer for the resin film (B).
[0045]
Among the above thermoplastic resins, plasticized polyvinyl acetal resins that exhibit excellent transparency, adhesion, penetration resistance, weather resistance, etc. when used as laminated glass are more preferably used, and among them, plasticized polyvinyl butyral Resins are particularly preferably used.
[0046]
Further, the plasticizer is not particularly limited, but examples thereof include organic plasticizers such as monobasic acid esters and polybasic acid esters, and phosphorous such as organic phosphoric acid and organic phosphorous acid. An acid plasticizer etc. are mentioned and used suitably.
[0047]
The said plasticizer may be used independently and 2 or more types may be used together.
[0048]
The monobasic acid ester plasticizer is not particularly limited. For example, triethylene glycol and organic materials such as butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptanoic acid, and 2-ethylhexylic acid Examples thereof include glycol esters obtained by reaction with an acid, and one or more of these are preferably used.
[0049]
The phosphate plasticizer is not particularly limited, and examples thereof include tributoxyethyl phosphate, isodecyl phenyl phosphate, and one or more of these are preferably used. It is done.
[0050]
In the thermoplastic resin composition for obtaining the resin film (A) and / or the resin film (B), in addition to the thermoplastic resin and the plasticizer, as long as the object of the present invention is not hindered. In addition, one or more of various additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, an adhesiveness adjusting agent, a surfactant, and a colorant may be contained.
[0051]
Next, the laminated glass according to the second invention is manufactured by interposing and integrating the above-described intermediate film according to the first invention between at least a pair of glasses.
[0052]
The glass includes not only normal inorganic transparent glass but also organic transparent glass such as polycarbonate plate and polymethyl methacrylate plate.
[0053]
The type of the glass is not particularly limited, but various inorganic glasses such as, for example, float plate glass, polished plate glass, flat glass, curved plate glass, parallel plate glass, type plate glass, wire mesh type plate glass, and colored glass And one or more of these are preferably used. The thickness of the glass is not particularly limited as long as it is appropriately selected depending on the application and purpose.
[0054]
The manufacturing method of the said laminated glass is not a special thing, The manufacturing method similar to the case of a normal laminated glass is employ | adopted. For example, an intermediate film according to the first invention is sandwiched between two transparent glass plates, put in a rubber bag and pre-adhered at a temperature of about 70 to 110 ° C. while sucking and deaerating under reduced pressure, and then an autoclave or Using a press, a temperature of about 120 to 150 ° C. and 10 to 15 kg / cm 2 A desired laminated glass can be obtained by carrying out the main adhesion by heating and pressurizing at a moderate pressure.
[0055]
[Action]
Since the intermediate film according to the first invention has a resin film (A) having a specific loss tangent as an outer layer, it has excellent sound insulation performance in the region from room temperature to high temperature, excellent mechanical properties and good moldability and handling. Demonstrate workability. In addition, since the resin film (B) having a specific loss tangent is used as the inner layer, it has excellent sound insulation performance in the region from room temperature to low temperature, excellent penetration resistance, impact energy absorption, good moldability and handling work. Demonstrate sex.
[0056]
The intermediate film according to the first invention is laminated so that the layer thickness ratio of the outer layer made of the resin film (A) and the inner layer made of the resin film (B) is in a specific range. Excellent sound insulation performance in a wide temperature range up to high temperature is demonstrated stably for a long time, and excellent basic performance required for laminated glass such as transparency, adhesion, penetration resistance, impact energy absorption, weather resistance, etc. Suitable for obtaining laminated glass.
[0057]
Since the laminated glass according to the second invention is manufactured using the interlayer film according to the first invention, it has excellent sound insulation performance in a wide temperature range from low temperature to high temperature, and has transparency, adhesion, and penetration resistance. Excellent basic properties such as heat resistance, impact energy absorption, and weather resistance.
[0058]
DETAILED DESCRIPTION OF THE INVENTION
In order to explain the present invention in more detail, examples are given below, but the present invention is not limited to these examples. In the examples, “part” means “part by weight”.
[0059]
(Example 1)
[0060]
(1) Production of resin film (A)
Polyethylene butyral resin {PVB-a (degree of butyralization: 65.9 mol%, acetyl group content: 0.9 mol%)} as a thermoplastic resin 100 parts, triethylene glycol di-2-ethyl as a plasticizer After adding 40 parts of butyrate (3GH) and kneading sufficiently with a mixing roll, press molding was performed at 150 ° C. for 30 minutes using a press molding machine to produce a resin film (A) having a thickness of 0.2 mm. .
[0061]
(2) Production of resin film (B)
After adding 100 parts of 3GH as a plasticizer to 100 parts of PVB-c (degree of butyralization: 60.2 mol%, acetyl group amount: 11.9 mol%) as a thermoplastic resin, and kneading sufficiently with a mixing roll Using a press molding machine, press molding was performed at 150 ° C. for 30 minutes to prepare a resin film (B) having a thickness of 0.4 mm.
[0062]
(3) Loss tangent measurement
The loss tangent of the resin film (A) and the resin film (B) obtained above was measured by the following method. The results are shown in Table 1.
(Measurement of loss tangent)
The resin film (A) and the resin film (B) were cut into a 10 mm × 16 mm rectangle to prepare a test piece. Next, using a solid viscoelasticity measuring apparatus (model “RSA-II”, manufactured by Rheometric Co., Ltd.), the dynamic viscoelastic characteristics of the test pieces are measured, and the temperature at which each test piece shows the maximum value of the loss tangent ( Tmax) and the maximum loss tangent were determined. Further, a temperature range from Tmax where the loss tangent is 0.5 or more was obtained. In addition, the measurement conditions of the said dynamic viscoelastic property were as follows.
Applied strain: Sine strain with a frequency of 10 Hz was applied in the shear direction with a strain amount of 0.1%.
Measurement temperature range: -50 ° C to + 100 ° C
Temperature increase rate: 3 ° C / min
[0063]
(4) Production of interlayer film and laminated glass
Using the resin film (A) and resin film (B) obtained above, the resin film (A) / resin film (B) / resin film (A) are laminated to obtain a three-layer intermediate film. It was. Next, the interlayer film was sandwiched between two transparent float glasses (length 30 cm × width 30 cm × thickness 3 mm), placed in a rubber bag, deaerated at a vacuum of 20 torr for 20 minutes, and then deaerated. In the state as it was, it moved to 90 degreeC oven, and it vacuum-pressed, hold | maintaining for 30 minutes at 90 degreeC, and pre-bonded the laminated glass.
[0064]
Next, the pre-bonded laminated glass is put in an autoclave, and the temperature is 135 ° C. and the pressure is 12 kg / cm. 2 This bonding was performed for 20 minutes under the above conditions to produce a laminated glass.
[0065]
(5) Evaluation
The performances of the laminated glass obtained above ((1) sound insulation, (2) penetration resistance) were evaluated by the following methods. The results are shown in Table 1.
[0066]
(1) Sound insulation: A specimen is cut out from the laminated glass obtained above, and this specimen is vibrated with a vibration generator for vibration test (trade name “G21-005D”, manufactured by Shinken Co., Ltd.). The vibration characteristics obtained from the above are amplified by a mechanical impedance amplifier (trade name “XG-81”, manufactured by Rion), and the vibration spectrum is FFT analyzer (trade name “FFT spectrum analyzer HP-3582AA”, Yokogawa Hewlett-Packard Company). Manufactured). A graph showing the relationship between the frequency (Hz) and the transmission loss (dB) is created from the loss coefficient thus obtained and the ratio of the resonance frequency with the glass, and the minimum transmission loss (TL value) around the frequency of 2000 Hz. Asked. In addition, the measurement was performed at each temperature of 0 ° C., 10 ° C., 20 ° C., 30 ° C., and 40 ° C., and the acceptance standard of sound insulation was set to a TL value of 30 or more.
[0067]
(2) Penetration resistance: In accordance with JIS R-3212 “Safety glass test method for automobiles”, with the end of a 300 mm × 300 mm laminated glass (specimen) fixed to a support frame and held horizontally, From 4m above, when a steel ball with a smooth surface with a weight of 2260 ± 20g and a diameter of about 82mm is dropped naturally, the case where the steel ball does not penetrate the specimen passes, and the case where the steel ball penetrates the specimen It was rejected. The specimen used was left in a room at 23 ± 2 ° C. for at least 4 hours until immediately before the test.
[0068]
(Example 2)
Triethylene glycol di-2-ethylhexanoate (3GO as a plasticizer) with respect to 100 parts of PVB-b (degree of butyralization: 68.9 mol%, acetyl group content: 0.9 mol%) as a thermoplastic resin. ) A resin film (A) having a thickness of 0.15 mm was prepared in the same manner as in Example 1 except that 39 parts were added. Further, a resin film having a thickness of 0.4 mm was obtained in the same manner as in Example 1 except that 70 parts of 3GO was added as a plasticizer to 100 parts of PVB-c used in the resin film (B) of Example 1. (B) was produced.
[0069]
(Example 3)
The resin film (A) produced in Example 2 was used as the resin film (A) as it was. In addition, in the case of Example 1 except that 65 parts of triethylene glycol di-n-heptanate (3G7) was added as a plasticizer to 100 parts of PVB-c used in the resin film (B) of Example 1. Similarly, a resin film (B) having a thickness of 0.6 mm was produced.
[0070]
(Example 4)
A resin film (A) was produced in the same manner as in Example 2 except that the film thickness was 0.2 mm. Moreover, it is the same as that of Example 1 except having used ethylene-vinyl acetate copolymer {EVA (trade name “Ultrasen 725”, vinyl acetate content 28%, manufactured by Tosoh Corporation)}} as a thermoplastic resin. Thus, a resin film (B) having a thickness of 0.4 mm was produced.
[0071]
(Example 5)
A resin film (A) was produced in the same manner as in Example 1 except that the film thickness was 0.1 mm. A resin film (B) was prepared in the same manner as in Example 1 except that the film thickness was 0.2 mm.
[0072]
(Example 6)
The resin film (A) produced in Example 1 was used as the resin film (A) as it was. In addition, as a thermoplastic resin, a reaction product of polyol (trade name “N4002”, a condensation product of adipic acid and ethylene glycol, manufactured by Nippon Polyurethane Industry Co., Ltd.) and isocyanate (hydrogenated MDI, manufactured by Sumitomo Bayer Urethane Co., Ltd.). In the same manner as in Example 1, except that the polyurethane resin (PU) obtained by adding 1,4-butanediol as a curing agent was used as it was, a resin film (B ) Was produced.
[0073]
(Comparative Example 1)
The resin film (A) produced in Example 1 was used as the resin film (A) as it was. Further, the film thickness of 0.4 mm was the same as in Example 1 except that the amount of 3GH (plasticizer) added to 100 parts of PVB-c used in the resin film (B) of Example 1 was 30 parts. A resin film (B) was prepared.
[0074]
(Comparative Example 2)
A resin film (A) was produced in the same manner as in Example 1 except that the film thickness was 0.4 mm. A resin film (B) was prepared in the same manner as in Example 1 except that the film thickness was 0.2 mm.
[0075]
(Comparative Example 3)
A resin film (A) was produced in the same manner as in Example 1 except that the film thickness was 0.3 mm. A resin film (B) was prepared in the same manner as in Example 1 except that the film thickness was 0.2 mm.
[0076]
(Comparative Example 4)
The resin film (A) produced in Example 1 was used as the resin film (A) as it was. In addition, with respect to 100 parts of PVB-d (degree of butyralization: 30.0 mol%, acetyl group amount: 11.9 mol%) as a thermoplastic resin, the same as in Example 1 except that 70 parts of 3GH were added as a plasticizer. Similarly to the case, a resin film (B) having a thickness of 0.4 mm was produced.
[0077]
The loss tangent of each resin film (A) and each resin film (B) obtained in Examples 2 to 6 and Comparative Examples 1 to 4 was measured in the same manner as in Example 1. The results are shown in Table 1.
[0078]
Next, using each resin film (A) and each resin film (B) obtained in Examples 2 to 4 and 6, and Comparative Examples 1, 3, and 4, in the same manner as in Example 1, A three-layer interlayer film and a laminated glass, each having the resin film (A) as an outer layer and the resin film (B) as an inner layer, were obtained.
[0079]
Further, in Example 5, in the production of the intermediate film and the laminated glass, lamination is performed so as to be resin film (A) / resin film (B) / resin film (A) / resin film (B) / resin film (A). Except that, a five-layer interlayer film and a laminated glass were obtained in the same manner as in Example 1.
[0080]
Further, in Comparative Example 2, the resin film (B) / resin film (A) / resin is used in order to make the resin film (B) as the outer layer and the resin film (A) as the inner layer in the production of the intermediate film and laminated glass. A three-layer interlayer film and a laminated glass were obtained in the same manner as in Example 1 except that the layers were laminated so as to form the film (B).
[0081]
Subsequently, the performance ((1) sound insulation, (2) penetration resistance) of the laminated glass obtained in Examples 2 to 6 and Comparative Examples 1 to 4 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0082]
[Table 1]
Figure 0004371462
[0083]
As is clear from Table 1, the laminated glasses of Examples 1 to 6 according to the second invention produced using the intermediate films of Examples 1 to 6 according to the first invention are all wide from 0 ° C to 40 ° C. Excellent sound insulation performance in the temperature range and excellent penetration resistance.
[0084]
On the other hand, the laminated glass of Comparative Example 1 produced using the intermediate film of Comparative Example 1 having the resin film (B) having a maximum loss tangent value exceeding 10 ° C. as the inner layer, and the loss ± 5 ° C from the temperature at which the tangent is greater than 0.5 Is not within the range of The laminated glass of Comparative Example 4 produced using the intermediate film of Comparative Example 4 having the resin film (B) as an inner layer was inferior in sound insulation performance in the temperature range from room temperature to low temperature. Moreover, the laminated glass of the comparative example 3 produced using the intermediate film of the comparative example 3 whose layer thickness ratio of outer layer {resin film (A)} and inner layer {resin film (B)} exceeded 1/1. However, the sound insulation performance in the temperature range from room temperature to low temperature was slightly inferior.
[0085]
Furthermore, although the laminated glass of Comparative Example 2 produced using the intermediate film of Comparative Example 2 with the resin film (B) as the outer layer and the resin film (A) as the inner layer had excellent sound insulation performance, The properties were poor and the practicality as a laminated glass was lacking.
[0086]
【The invention's effect】
As described above, the interlayer film for laminated glass according to the first invention stably exhibits excellent sound insulation performance in a wide temperature range from low temperature to high temperature for a long period of time, and has transparency, adhesiveness, penetration resistance, It is suitable for obtaining laminated glass excellent in basic performance required as laminated glass such as impact energy absorption and weather resistance.
[0087]
In addition, the laminated glass according to the second invention using the above interlayer film stably exhibits excellent sound insulation performance in a wide temperature range from low temperature to high temperature, and is excellent in the basic performance required as a laminated glass. It is suitably used as a sound insulating laminated glass for buildings, automobiles, vehicles and the like.
[0088]
[Brief description of the drawings]
FIG. 1 is a graph showing the sound insulation performance of laminated glass.

Claims (2)

損失正接の最大値が20〜40℃の温度範囲内にあり且つ該最大値を示す温度から±5℃の温度範囲内における損失正接が0.5以上である熱可塑性樹脂膜(A)からなる外層と、損失正接の最大値が0〜10℃の温度範囲内にあり且つ該最大値を示す温度から±5℃の温度範囲内における損失正接が0.5以上である熱可塑性樹脂膜(B)からなる内層とが積層されてなり、且つ、上記外層と内層との層厚比が1/〜1/4の範囲内にあり、
上記熱可塑性樹脂膜(B)が、可塑化ポリビニルアセタール樹脂、エチレン−酢酸ビニル共重合体又はポリウレタン樹脂を含有し、
上記熱可塑性樹脂膜(B)が可塑化ポリビニルアセタール樹脂を含有する場合には、該可塑化ポリビニルアセタール樹脂は、ポリビニルアセタール樹脂100重量部と、可塑剤60〜70重量部とを含む
ことを特徴とする合わせガラス用中間膜。
The thermoplastic resin film (A) has a maximum loss tangent within a temperature range of 20 to 40 ° C., and a loss tangent within a temperature range of ± 5 ° C. within a temperature range of ± 5 ° C. Thermoplastic resin film having a maximum loss tangent within a temperature range of 0 to 10 ° C. and a loss tangent within a temperature range of ± 5 ° C. within a temperature range of ± 5 ° C. (B ) inner layer and is being laminated made of, and, the layer thickness ratio between the outer layer and the inner layer is Ri near the range of 1 / 2-1 / 4,
The thermoplastic resin film (B) contains a plasticized polyvinyl acetal resin, an ethylene-vinyl acetate copolymer or a polyurethane resin,
When the thermoplastic resin film (B) contains a plasticized polyvinyl acetal resin, the plasticized polyvinyl acetal resin contains 100 parts by weight of a polyvinyl acetal resin and 60 to 70 parts by weight of a plasticizer. An interlayer film for laminated glass.
少なくとも一対のガラス間に、請求項1に記載の合わせガラス用中間膜を介在させ、一体化させてなることを特徴とする合わせガラス。  A laminated glass comprising: an interlayer film for laminated glass according to claim 1 interposed and integrated between at least a pair of glasses.
JP08185399A 1999-03-25 1999-03-25 Laminated glass interlayer film and laminated glass Expired - Fee Related JP4371462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08185399A JP4371462B2 (en) 1999-03-25 1999-03-25 Laminated glass interlayer film and laminated glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08185399A JP4371462B2 (en) 1999-03-25 1999-03-25 Laminated glass interlayer film and laminated glass

Publications (2)

Publication Number Publication Date
JP2000272936A JP2000272936A (en) 2000-10-03
JP4371462B2 true JP4371462B2 (en) 2009-11-25

Family

ID=13758058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08185399A Expired - Fee Related JP4371462B2 (en) 1999-03-25 1999-03-25 Laminated glass interlayer film and laminated glass

Country Status (1)

Country Link
JP (1) JP4371462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618243B2 (en) 2018-08-16 2023-04-04 Skc Co., Ltd. Film for glass lamination, composition for film for glass lamination, and laminated glass comprising same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2663858C (en) * 2000-03-02 2011-11-22 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass and laminated glass
FR2843227B1 (en) 2002-07-31 2006-07-28 Saint Gobain PROFILE WITH ACOUSTIC DAMPING PROPERTY.
JP4636904B2 (en) * 2005-03-09 2011-02-23 積水化学工業株式会社 Thermoplastic resin sheet and laminate
US7846532B2 (en) 2005-03-17 2010-12-07 Solutia Incorporated Sound reducing wedge shaped polymer interlayers
JP2006327381A (en) * 2005-05-25 2006-12-07 Asahi Glass Co Ltd Laminated glass and its manufacturing method
JP2007091491A (en) * 2005-09-27 2007-04-12 Central Glass Co Ltd Intermediate film and laminated glass
FR2901174B1 (en) * 2006-05-19 2013-01-11 Saint Gobain ACOUSTIC SHEET GLAZING, ACOUSTIC INTERCALING AND METHOD OF SELECTING THE INTERCALAR FOR OPTIMAL ACOUSTIC DAMPING
JP2008201667A (en) 2007-01-24 2008-09-04 Asahi Glass Co Ltd Laminated glass for vehicle
DE102007021103A1 (en) * 2007-05-03 2008-11-06 Kuraray Europe Gmbh Production of films for composite glazing by injection molding or injection compression molding
EP2287125B1 (en) * 2008-04-23 2016-11-16 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass
JP5258542B2 (en) * 2008-12-24 2013-08-07 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
JP2010180068A (en) * 2009-02-03 2010-08-19 Asahi Glass Co Ltd Method for manufacturing interlayer for laminated glass for vehicle, interlayer for laminated glass for vehicle and laminated glass for vehicle
IN2012DN01228A (en) 2009-08-12 2015-04-10 Asahi Glass Co Ltd
WO2014126251A1 (en) * 2013-02-18 2014-08-21 日本板硝子株式会社 Laminated glass, and structure having same mounted thereto
CN105324345B (en) * 2013-09-30 2017-11-21 积水化学工业株式会社 Intermediate film for laminated glasses and laminated glass
EP3476597A1 (en) 2013-12-13 2019-05-01 AGC Inc. Manufacturing method of composite film
JP2016204222A (en) 2015-04-24 2016-12-08 旭硝子株式会社 Laminated glass
JP6859956B2 (en) 2015-11-30 2021-04-14 Agc株式会社 Laminated glass
US10532636B2 (en) 2016-04-01 2020-01-14 AGC Inc. Laminated glass for vehicle
WO2019194292A1 (en) 2018-04-05 2019-10-10 Agc株式会社 Laminated glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618243B2 (en) 2018-08-16 2023-04-04 Skc Co., Ltd. Film for glass lamination, composition for film for glass lamination, and laminated glass comprising same

Also Published As

Publication number Publication date
JP2000272936A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP4371462B2 (en) Laminated glass interlayer film and laminated glass
JP4331846B2 (en) Laminated glass interlayer film and laminated glass
EP1281690B1 (en) Interlayer film for laminated glass and laminated glass
JP5244243B2 (en) Laminated glass interlayer film and laminated glass
JP4686636B2 (en) Interlayer film for laminated glass
JP3050967B2 (en) Sound insulating interlayer
JP4076730B2 (en) Interlayer film for laminated glass and laminated glass
WO2011081190A1 (en) Interlayer for laminated glass, and laminated glass
WO2011081191A1 (en) Interlayer for laminated glass, and laminated glass
WO2012091116A1 (en) Interlayer for laminated glass and laminated glass
CA2162243A1 (en) Interlayer film and laminated glass using the same
JPH05138840A (en) Sound insulation intermediate film
JP4555855B2 (en) Laminated glass interlayer film and laminated glass
JP4429428B2 (en) Laminated glass interlayer film and laminated glass
JPH0940444A (en) Intermediate film for laminated glass and laminated glass
CN111497383A (en) Resin film for laminated glass, and process for producing the same
JP3377848B2 (en) Interlayer for laminated glass and laminated glass using the same
JP2562237B2 (en) Sound insulating interlayer film for laminated glass
JP4986312B2 (en) Laminated glass interlayer film and laminated glass
JP2001220183A (en) Interlayer for laminated glass and laminated glass
JP2001226152A (en) Intermediate film for sandwich glass and sandwich glass
JP4339457B2 (en) Interlayer film for laminated glass
JP2004067427A (en) Interlayer film for laminated glasses, and laminated glass
JP2001048601A (en) Intermediate film for sandwich glass and sandwich glass
JP2000191348A (en) Intermediate film for sandwich glass and sandwich glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees