JP2004067427A - Interlayer film for laminated glasses, and laminated glass - Google Patents

Interlayer film for laminated glasses, and laminated glass Download PDF

Info

Publication number
JP2004067427A
JP2004067427A JP2002227604A JP2002227604A JP2004067427A JP 2004067427 A JP2004067427 A JP 2004067427A JP 2002227604 A JP2002227604 A JP 2002227604A JP 2002227604 A JP2002227604 A JP 2002227604A JP 2004067427 A JP2004067427 A JP 2004067427A
Authority
JP
Japan
Prior art keywords
laminated glass
interlayer film
mol
degree
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002227604A
Other languages
Japanese (ja)
Inventor
Yoshiro Shimizu
清水 慎郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002227604A priority Critical patent/JP2004067427A/en
Publication of JP2004067427A publication Critical patent/JP2004067427A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interlayer film which is suitable for obtaining laminated glass exhibiting excellent noise insulating performance for a long period in a wide temperature range of glass, and which is easily handled when it is fabricated into the laminated glass; and to provide the laminated glass using the interlayer film. <P>SOLUTION: The interlayer film for the laminated glass is composed of a poly(vinyl acetal) resin and a plasticizer. The poly(vinyl acetal) resin is characterized in that the degree of acetalization is 60-85 mol %, the amount of acetyl group is 1-30 mol %, the total of the degree of acetalization and the amount of acetyl group is ≥70 mol %, the polymer main chain is crosslinked by crosslinking reaction, the apparent average degree of polymerization after crosslinking is 1.2 to 8.0 times of that before crosslinking, and the cloud point of a specified solution obtained by dissolving the poly(vinyl acetal) resin in the plasticizer is ≤100°C. The laminated glass is obtained by interposing the interlayer film between at least a couple of glass sheets and unifying them. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、合わせガラス用中間膜およびこの合わせガラス用中間膜を用いた合わせガラスに関する。
【0002】
【従来の技術】
可塑剤の添加により可塑化されたポリビニルアセタール樹脂のような透明で柔軟性に富む樹脂を製膜してなる合わせガラス用中間膜で少なくとも一対のガラス板を接着して得られる合わせガラスは、破損時に破片が飛散せず安全性に優れているため、例えば自動車等の交通車輌の窓ガラス用や建築物の窓ガラス用等として広く用いられている。
【0003】
このような合わせガラス用中間膜のなかでも、可塑剤の添加により可塑化されたポリビニルブチラール樹脂が製膜されてなる合わせガラス用中間膜は、ガラスとの適正な接着力、強靱な引張り強度、優れた透明性等の諸性能を兼備しているので、この合わせガラス用中間膜を用いた合わせガラスは、特に交通車輌の窓ガラス用として好適に用いられているが、反面、通常のポリビニルブチラール樹脂系合わせガラス用中間膜を用いた合わせガラスは、建築物の窓ガラス用としては遮音性が十分でないという問題点がある。
【0004】
一般に、遮音性能は、図1に示されるように、周波数(Hz)の変化に対応した音響透過損失(dB)として示される。上記音響透過損失は、JIS A−4706「サッシ」では、図1中に実線で示されるように、周波数500Hz以上の領域における遮音等級に応じてそれぞれ一定値で規定されている。
【0005】
ところで、ガラス板の遮音性能は、図1中に破線で示されるように、2000Hzを中心とする周波数領域ではコインシデンス効果により著しく低下する。すなわち、図1中の破線の谷部がコインシデンス効果による遮音性能の低下に相当し、所定の遮音性能を保持していないことを示している。
【0006】
上記コインシデンス効果とは、ガラス板に音波が入射したとき、ガラス板の剛性と慣性とによってガラス板面上を横波が伝播し、この横波と入射音とが共鳴した結果、音の透過が起こる現象を言う。
【0007】
従来の合わせガラスは、破損時における破片の飛散防止に関しては極めて優れているものの、遮音性能に関しては、通常のガラス板同様、2000Hzを中心とする周波数領域で上記コインシデンス効果による遮音性能の低下が避けられず、この点の改善が求められている。
【0008】
一方、人間の聴覚は、等ラウドネス曲線より、他の周波数領域に比較して、周波数1000〜6000Hzの領域における感度が非常に高いことが知られており、コインシデンス効果による遮音性能の低下を防止することが、窓ガラスや壁等の遮音性能(防音性能)の向上にとって極めて重要なことと言える。
【0009】
コインシデンス効果による遮音性能の低下に関して問題となるのは、コインシデンス効果によって生じる図1中の音響透過損失の極小部(以下、「極小部の音響透過損失」を「TL値」と記す)であり、遮音性能を向上させるためには、コインシデンス効果を緩和して、上記TL値の低下を防止することが必要である。
【0010】
従来、TL値の低下を防止するための手段として、合わせガラスの質量の増大、ガラスの複層化、ガラス面積の細分化、ガラス板支持手段の改善等の種々の方法が採られているが、これらの方法は、いずれも十分なTL値の低下防止効果をもたらさない上に、コスト面でも実用的な価格ではないという問題点がある。
【0011】
一方、遮音性能に対する要求は最近ますます高まっており、例えば建築物用の窓ガラスの場合、常温付近で優れた遮音性能を発現することが要求されている。すなわち、温度に対して上記TL値をプロットして求められる、遮音性能が最も優れている温度(以下、「遮音性能最大温度(TLmax温度)」と記す)が常温付近にあり、かつ、遮音性能の最大値(以下、「遮音性能最大値(TLmax値)」と記す)そのものが大きいという、優れた遮音性能が要求されている。
【0012】
交通車両用の窓ガラスの場合も同様な状況にあり、例えば高速走行時の風切り音やエンジン部からの振動音等に対する優れた遮音性能が要求されている。
【0013】
また、実際に使用される場合には、これら合わせガラスは、低温域から高温域までの幅広い環境温度の変化に曝されるので、常温付近のみならず低温から高温までの広い温度範囲において優れた遮音性能を発現することが要求される。
【0014】
しかし、例えば従来の可塑化ポリビニルブチラール樹脂膜を用いた合わせガラスの場合、遮音性能最大温度(TLmax温度)が常温より高く、常温付近での遮音性能は必ずしも良くないという問題点がある。また、常温付近で優れた遮音性能を発揮させようとすると、膜物性が柔らかくなりすぎ、合わせガラスに加工する際に、ガラス板のずれが生じたり、発泡が生じるという問題点がある。
【0015】
これらの問題点に対応するため種々の試みがなされており、例えば、特開平2−229742号公報では、「高分子物質を主成分とするガラス転移温度が15℃以下の層Aと可塑化ポリビニルアセタール膜Bとがガラス板の間に積層されていることを特徴とする遮音性合わせガラス」が開示されている。
【0016】
しかし、上記公報に開示されている遮音性合わせガラスは、JIS A−4706の規定による遮音等級でTs−35等級を超える遮音性能を発現しないうえに、良好な遮音性能を発現する温度範囲が限定されており、広い温度範囲において良好な遮音性能を発現することができないという問題点がある。
【0017】
また、特開2001−48601号公報では、「ポリビニルアセタール樹脂と可塑剤とからなる樹脂層(A)と、ポリビニルアセタール樹脂と可塑剤とからなる樹脂層(B)との交互積層体であって、上記樹脂層(A)または樹脂層(B)のどちらか一方の樹脂層が、アセタール化度60〜85モル%、アセチル基量8〜30モル%およびアセタール化度とアセチル基量との合計が75モル%以上であるポリビニルアセタール樹脂と可塑剤とからなり、かつ、上記ポリビニルアセタール樹脂と可塑剤との混合溶液の曇り点が50℃以下であることを特徴とする合わせガラス用中間膜」が開示されている。
【0018】
しかし、上記公報に開示されている合わせガラス用中間膜は、確かに遮音性能および温度変化による遮音性能の変動(低下)は改善されているものの、膜物性が柔らかすぎるため、合わせガラスに加工する際に、ガラス板のずれが生じたり、発泡が生じるという問題点がある。
【0019】
このように、合わせガラスとして必要な基本性能に優れ、かつ、低温から高温までの広い温度範囲において優れた遮音性能を長期間にわたって安定的に発現する合わせガラスを得るに適する合わせガラス用中間膜は未だ実用化されていないのが現状である。
【0020】
【発明が解決しようとする課題】
本発明の目的は、上記問題点に鑑み、低温から高温までの広い温度範囲において優れた遮音性能を長期間にわたって安定的に発現し、かつ、透明性、耐候性、耐貫通性、衝撃エネルギー吸収性、適正な接着力等の合わせガラスとして必要な基本性能にも優れる合わせガラスを得るに適するとともに、合わせガラスに加工する際に、ガラス板のずれが生じたり、発泡が生じることが殆どなく、取扱性にも優れる合わせガラス用中間膜、および、この合わせガラス用中間膜を用いた合わせガラスを提供することにある。
【0021】
【課題を解決するための手段】
請求項1に記載の発明(本発明)による合わせガラス用中間膜は、ポリビニルアセタール樹脂と可塑剤とからなる合わせガラス用中間膜であって、上記ポリビニルアセタール樹脂は、アセタール化度が60〜85モル%、アセチル基量が1〜30モル%およびアセタール化度とアセチル基量との合計が70モル%以上であるとともに、架橋反応により高分子主鎖が架橋結合されており、架橋後の見掛け上の平均重合度が架橋前の平均重合度の1.2〜8.0倍であり、かつ、上記可塑剤100重量部に対し上記ポリビニルアセタール樹脂8重量部を溶解させた溶液の曇り点が100℃以下であることを特徴とする。
【0022】
また、請求項2に記載の発明による合わせガラス用中間膜は、上記請求項1に記載の合わせガラス用中間膜において、110℃における溶融粘度が10000Pa・s以上であり、かつ、140℃における溶融粘度が100000Pa・s以下であることを特徴とする。
【0023】
請求項3に記載の発明(本発明)による合わせガラスは、少なくとも一対のガラス板間に上記請求項1または請求項2に記載の合わせガラス用中間膜を介在させ、一体化させてなることを特徴とする。
【0024】
本発明の合わせガラス用中間膜(以下、単に「中間膜」と略記する)に用いられるポリビニルアセタール樹脂の製造方法としては、特に限定されるものではないが、例えば、ポリビニルアルコール(以下、「PVA」と記す)を温水もしくは熱水に溶解し、得られたPVA水溶液を所定の温度(例えば0〜95℃)に保持した状態で、アルデヒドおよび酸触媒を添加し、攪拌しながらアセタール化反応を進行させ、次いで、反応温度を上げて熟成することにより反応を完結させ、その後、中和、水洗および乾燥の諸工程を経て、粉末状のポリビニルアセタール樹脂を得る方法が挙げられる。
【0025】
上記ポリビニルアセタール樹脂の製造に用いられるPVAは、特に限定されるものではないが、平均重合度が500〜5000のものが好ましく、より好ましくは1000〜3000のものである。PVAの平均重合度が500未満であると、得られる中間膜の強度が弱くなりすぎて、合わせガラスとしたときの耐貫通性や衝撃エネルギー吸収性が不十分となることがあり、逆にPVAの平均重合度が5000を超えると、中間膜の成形(製膜)が困難となることがあり、さらに得られる中間膜の強度が強くなりすぎて、合わせガラスとしたときの耐貫通性や衝撃エネルギー吸収性が不十分となることがある。これらのPVAは、単独で用いられても良いし、平均重合度が異なるものが2種類以上併用されても良い。
【0026】
ポリビニルアセタール樹脂の製造に用いられるアルデヒドとしては、特に限定されるものではないが、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、n−ヘキシルアルデヒド、2−エチルブチルアルデヒド、ベンズアルデヒド、シンナムアルデヒド等が挙げられる。これらのアルデヒドは、単独で用いられても良いし、2種類以上が併用されても良い。
【0027】
こうして得られる各種ポリビニルアセタール樹脂は、単独で用いられても良いし、2種類以上が併用されても良いが、なかでも、PVAとホルムアルデヒドとを反応させて得られるポリビニルホルマール樹脂、PVAとアセトアルデヒドとを反応させて得られる狭義のポリビニルアセタール樹脂、PVAとn−ブチルアルデヒドとを反応させて得られるポリビニルブチラール樹脂(以下「PVB」と記す)等が好適に用いられ、とりわけ、PVBが特に好適に用いられる。ポリビニルアセタール樹脂としてPVBを用いることにより、得られる中間膜の透明性、耐候性、ガラスに対する適正な接着力等がより優れたものとなる。
【0028】
本発明の中間膜に用いられるポリビニルアセタール樹脂は、アセタール化度が60〜85モル%であることが必要であり、好ましくは63〜70モル%である。
【0029】
ポリビニルアセタール樹脂のアセタール化度が60モル%未満であると、後述する可塑剤との相溶性が不十分となって、得られる中間膜のガラス転移温度が十分に低下せず、従って低温領域における遮音性能が十分に向上しない。逆に、アセタール化度が85モル%を超えるポリビニルアセタール樹脂を製造するのは反応機構上困難であるので不適当である。
【0030】
また、本発明の中間膜に用いられるポリビニルアセタール樹脂は、アセチル基量が1〜30モル%であることが必要であり、好ましくは8〜24モル%である。
【0031】
ポリビニルアセタール樹脂のアセチル基量が1モル%未満であると、可塑剤との相溶性が不十分となって、得られる中間膜のガラス転移温度が十分に低下せず、従って低温領域における遮音性能が十分に向上しない。逆に、アセチル基量が30モル%を超えるポリビニルアセタール樹脂を製造しようとすると、PVAとアルデヒドとの反応率が著しく低下するので不適当である。
【0032】
さらに、本発明の中間膜に用いられるポリビニルアセタール樹脂は、アセタール化度とアセチル基量との合計が70モル%以上であることが必要である。
【0033】
ポリビニルアセタール樹脂のアセタール化度とアセチル基量との合計が70モル%未満であると、可塑剤との相溶性が不十分となって、得られる中間膜のガラス転移温度が十分に低下せず、従って低温領域における遮音性能が十分に向上しない。
【0034】
ポリビニルアセタール樹脂がPVBである場合、上記アセタール化度(ブチラール化度)およびアセチル基量は、JIS K−6728「ポリビニルブチラール試験方法」や核磁気共鳴法(NMR)に準拠して測定することができる。
【0035】
また、ポリビニルアセタール樹脂がPVB以外のポリビニルアセタール樹脂である場合、そのアセタール化度は、JIS K−6728や核磁気共鳴法に準拠してアセチル基量とビニルアルコール量とを測定し、100から上記両成分量を差し引くことにより算出することができる。
【0036】
本発明の中間膜に用いられるポリビニルアセタール樹脂は、上記特定のアセタール化度、上記特定のアセチル基量および上記特定のアセタール化度とアセチル基量との合計を有していることに加え、架橋反応により高分子主鎖が架橋結合されており、架橋後の見掛け上の平均重合度が架橋前の平均重合度の1.2〜8.0倍であることが必要である。
【0037】
架橋反応によりポリビニルアセタール樹脂の高分子主鎖を架橋結合させる方法としては、特に限定されるものではないが、例えば、アルデヒドによるアセタール化反応の前もしくは途中で、隣接するPVA主鎖を架橋させるために、ジアルデヒドなどの架橋結合剤の添加を行う方法や、過剰のアルデヒド投入などにより、分子間アセタール化反応を進行させる方法等が挙げられ、いずれの架橋結合させる方法が採られても良い。また、これらの架橋結合させる方法は、単独で用いられても良いし、2種類以上が併用されても良い。
【0038】
上記架橋反応により高分子主鎖が架橋結合されたポリビニルアセタール樹脂の架橋後の見掛け上の平均重合度が架橋前の平均重合度の1.2倍未満であると、得られる中間膜の強度や硬さが十分に向上せず、合わせガラスに加工する際の取扱性が不十分となる。逆に、上記架橋反応により高分子主鎖が架橋結合されたポリビニルアセタール樹脂の架橋後の見掛け上の平均重合度が架橋前の平均重合度の8.0倍を超えると、可塑剤に十分に相溶せずゲル状になったり、ポリビニルアセタール樹脂および可塑剤からなる組成物の高温における溶融粘度が高くなりすぎて、成形(製膜)上の問題が発生するとともに、得られる中間膜の強度が強くなりすぎて、合わせガラスとしたときの耐貫通性や衝撃エネルギー吸収性が不十分となる。
【0039】
本発明の中間膜に用いられる可塑剤としては、特に限定されるものではないが、例えば、一塩基酸エステル系、多塩基酸エステル系などのエステル系可塑剤や、有機リン酸系、有機亜リン酸系などのリン酸系可塑剤等が挙げられる。
【0040】
一塩基酸エステル系可塑剤としては、特に限定されるものではないが、例えば、トリエチレングリコール、トリプロピレングリコール、テトラエチレングリコールなどのグリコールと酪酸、イソ酪酸、カプロン酸、2−エチル酪酸、ヘプタン酸、2−エチルヘキシル酸などの有機酸との反応によって得られるグリコール系エステル等が挙げられる。
【0041】
多塩基酸エステル系可塑剤としては、特に限定されるものではないが、例えば、炭素数4〜8の直鎖状もしくは分岐状アルコールとアジピン酸、セバチン酸、アゼライン酸などの有機酸との反応によって得られるエステル等が挙げられる。
【0042】
リン酸系可塑剤としては、特に限定されるものではないが、例えば、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート等が挙げられる。
【0043】
上記各種可塑剤のなかでも、例えば、トリエチレングリコールジ2−エチルブチレート(以下、「3GH」と記す)、トリエチレングリコールジ2−エチルヘキサノエート(以下、「3GO」と記す)、トリエチレングリコールジn−ヘプタノエート(以下、「3G7」と記す)、トリエチレングリコールジカプリレート、トリエチレングリコールジn−オクタノエート、テトラエチレングリコールジ2−エチルブチレート、テトラエチレングリコールジn−ヘプタノエート、ジヘキシルアジペート、ジベンジルフタレート等が好適に用いられ、なかでも、3GH、3GO、3G7等が特に好適に用いられる。これらの可塑剤は、単独で用いられても良いし、2種類以上が併用されても良い。
【0044】
前記ポリビニルアセタール樹脂に対する上記可塑剤の添加量は、特に限定されるものではないが、ポリビニルアセタール樹脂100重量部に対し、可塑剤30〜70重量部であることが好ましい。
【0045】
ポリビニルアセタール樹脂100重量部に対する可塑剤の添加量が30重量部未満であると、ポリビニルアセタール樹脂の可塑化が不十分となることがあり、逆にポリビニルアセタール樹脂100重量部に対する可塑剤の添加量が70重量部を超えると、得られる中間膜の物性やガラス板に対する接着力が不十分となることがある。
【0046】
本発明の中間膜においては、上記可塑剤100重量部に対し前記ポリビニルアセタール樹脂8重量部を溶解させた溶液の曇り点が100℃以下であることが必要である。つまり、本発明においては、上記溶液の曇り点が100℃以下となるようなポリビニルアセタール樹脂と可塑剤との組み合わせを選択することが必要ということになる。
【0047】
本発明で言う曇り点とは、JIS K−2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」に準拠して測定される曇り点を意味し、具体的には、可塑剤100重量部に対しポリビニルアセタール樹脂8重量部を溶解させた溶液を150℃以上に加熱した後、10〜30℃の雰囲気下に放置して温度を降下させたときに、上記溶液の一部に曇りが発生しはじめる温度を意味する。
【0048】
上記曇り点の具体的な測定方法としては、特に限定されるものではないが、例えば、上記溶液の外観を目視で観察する方法、上記溶液のヘーズ値をヘーズメーターで測定する方法、予め曇りの程度に関する複数段階の限度見本を作成しておき、この限度見本と対照して上記溶液の曇りを判定する方法等が挙げられ、いずれの方法が採られても良い。
【0049】
上記曇り点はポリビニルアセタール樹脂と可塑剤との相溶性を表し、上記曇り点が低いほどポリビニルアセタール樹脂と可塑剤との相溶性が優れていることになる。従って、上記曇り点が100℃以下となるようなポリビニルアセタール樹脂と可塑剤との組み合わせを選択することにより、ポリビニルアセタール樹脂と可塑剤との相溶性は極めて優れたものとなる。その結果、得られる中間膜の広い温度領域における遮音性能が著しく向上する。また、中間膜の表面への可塑剤のブリードアウトも効果的に抑制されるので、長期間にわたって安定的な性能を発現する合わせガラスを得るに適するものとなる。
【0050】
上記溶液の曇り点が100℃を超えると、ポリビニルアセタール樹脂と可塑剤との相溶性が不十分となって、得られる中間膜の広い温度領域における遮音性能が十分に向上しなかったり、長期間にわたって安定的な性能を発現する合わせガラスを得ることが困難となる。
【0051】
本発明の中間膜においては、前記ポリビニルアセタール樹脂と前記可塑剤との組み合わせのなかでも、上記溶液の曇り点を100℃以下とすることも含めて、ポリビニルアセタール樹脂としてPVBを用い、可塑剤として3GH、3GOおよび3G7からなる群より選択される少なくとも1種類の可塑剤を用いる組み合わせが特に好ましい。
【0052】
本発明の中間膜には、必須成分であるポリビニルアセタール樹脂および可塑剤以外に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、接着性付与剤、カップリング剤、界面活性剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、着色剤、脱水剤、消泡剤、帯電防止剤、難燃剤等の各種添加剤の1種類もしくは2種類以上が添加されていても良い。
【0053】
必須成分であるポリビニルアセタール樹脂および可塑剤と必要に応じて添加される各種添加剤とからなるポリビニルアセタール樹脂組成物を常法により成形(製膜)して得られる本発明の中間膜は、110℃における溶融粘度が10000Pa・s以上であり、かつ、140℃における溶融粘度が100000Pa・s以下であることが好ましい。
【0054】
110℃における溶融粘度が10000Pa・s以上であり、かつ、140℃における溶融粘度が100000Pa・s以下である中間膜は、より優れたバランスの性能を発現する。
【0055】
中間膜の110℃における溶融粘度が10000Pa・s未満であると、合わせガラスに加工する際に、ガラス板のずれや発泡が生じて取扱性が低下したり、中間膜の強度が弱くなりすぎて、合わせガラスとしたときの耐貫通性や衝撃エネルギー吸収性が不十分となることがある。また、中間膜の140℃における溶融粘度が100000Pa・sを超えると、安定した成形(製膜)を行うことが困難となったり、中間膜の強度が強くなりすぎて、合わせガラスとしたときの耐貫通性や衝撃エネルギー吸収性が不十分となることがある。
【0056】
本発明の中間膜の厚みは、特に限定されるものではないが、通常の中間膜同様、0.3〜1.6mmであることが好ましい。遮音性能そのものは中間膜の厚みが厚いほど優れたものとなるが、中間膜の厚みが厚くなりすぎると合わせガラスとしたときの耐貫通性や衝撃エネルギー吸収性が低下することがあるので、実用上は上記範囲の厚みであることが好ましい。
【0057】
次に、本発明の合わせガラスは、少なくとも一対のガラス板間に上述した本発明の中間膜を介在させ、一体化させることにより作製される。
【0058】
上記ガラス板には、通常の無機透明ガラス板のみならず、例えばポリカーボネート板やポリメチルメタクリレート板などのような有機透明ガラス板も包含される。
【0059】
上記ガラス板の種類としては、特に限定されるものではないが、例えば、フロート板ガラス、磨き板ガラス、平板ガラス、曲板ガラス、並板ガラス、型板ガラス、金網入り型板ガラス、着色されたガラス板などの各種無機ガラス板や有機ガラス板等が挙げられ、これらの1種類もしくは2種類以上が好適に用いられる。また、上記ガラス板の厚みは、用途や目的によって適宜選択されれば良く、特に限定されるものではない。
【0060】
本発明の合わせガラスの製造方法は、特別なものではなく、通常の合わせガラスの場合と同様の製造方法が採用される。例えば、二枚の透明なガラス板の間に、本発明の中間膜を挟み、これをゴムバッグに入れて減圧下で吸引脱気しながら温度70〜110℃程度で予備接着した後、オートクレーブもしくはプレスを用いて、温度120〜150℃程度、圧力0.98〜1.47MPa程度の条件で加熱加圧して本接着を行うことにより所望の合わせガラスを得ることができる。
【0061】
【作用】
本発明の中間膜は、特定のアセタール化度、特定のアセチル基量および特定のアセタール化度とアセチル基量との合計を有するとともに、架橋反応により高分子主鎖の架橋結合が形成されており、架橋後は特定の見掛け上の平均重合度を有するポリビニルアセタール樹脂と可塑剤とからなり、かつ、上記ポリビニルアセタール樹脂と可塑剤とからなる特定の溶液の曇り点が特定の温度以下となるように設定されているので、低温から高温までの広い温度範囲において優れた遮音性能を長期間にわたって安定的に発現し、かつ、透明性、耐候性、耐貫通性、衝撃エネルギー吸収性、適正な接着力等の合わせガラスとして必要な基本性能にも優れる合わせガラスを得るに適するとともに、合わせガラスに加工する際に、ガラス板のずれが生じたり、発泡が生じることが殆どなく、取扱性にも優れる。
【0062】
また、本発明の中間膜は、110℃における溶融粘度を特定の粘度以上とし、かつ、140℃における溶融粘度を特定の粘度以下とすることにより、より優れたバランスの上記性能を発現するものとなる。
【0063】
本発明の合わせガラスは、上記本発明の中間膜を用いて作製されるので、低温から高温までの広い温度範囲において優れた遮音性能を長期間にわたって安定的に発現し、かつ、透明性、耐候性、耐貫通性、衝撃エネルギー吸収性、適正な接着力等の合わせガラスとして必要な基本性能にも優れる。
【0064】
【発明の実施の形態】
本発明をさらに詳しく説明するため以下に実施例を挙げるが、本発明はこれらの実施例のみに限定されるものではない。なお、実施例中の「部」は「重量部」を意味する。
【0065】
(実施例1)
1.ポリビニルアセタール樹脂の合成
攪拌装置を備えた反応器に、イオン交換水2700ml、平均重合度2400、鹸化度87モル%のPVA250gを投入し、攪拌しながら加熱溶解した。次に、この溶液に触媒として35重量%塩酸を全系対比0.2重量%添加し、反応系の温度を20℃に温度調節した後、攪拌しながらアルデヒドとしてn−ブチルアルデヒド10gを添加した。その後、50重量%グルタルアルデヒド0.11gを溶解させたn−ブチルアルデヒド115gを添加したところ、白色微粒子状のPVBが析出した。析出10分後に35重量%塩酸を全系対比1.8重量%添加し、20℃/時間の昇温速度で60℃まで加熱した後、冷却を行った。その後、常法により中和、水洗、乾燥を行って、ブチラール化度(アセタール化度)が65.1モル%であり、アセチル基量が12.3モル%であり、かつ、架橋していて、架橋後の見掛け上の平均重合度が3200であるPVBを合成した。
【0066】
2.中間膜の作製
上記で得られたPVB100部に対して、可塑剤として3GO60部を添加し、ミキシングロールで均一に溶融混練した後、プレス成形機を用いて、150℃で30分間プレス成形を行って、厚み0.7mmの中間膜を作製した。
【0067】
3.合わせガラスの作製
上記で得られた中間膜を300mm×300mmに裁断して、二枚のフロート板ガラス(縦300mm×横300mm×厚み3mm)間に挟着し、この挟着物を真空バッグ(ゴムバッグ)中に入れ、真空度20torrで20分間保持して脱気した後、真空にしたままの状態(脱気状態)で90℃のオーブン中へ移し、30分間保持して予備接着を行った。次いで、予備接着された挟着物を真空バッグから取り出してオートクレーブ中に移し、温度135℃、圧力1.18MPaの条件で本接着を行って、透明な合わせガラスを作製した。
【0068】
(実施例2)
攪拌装置を備えた反応器に、イオン交換水2700ml、平均重合度2000、鹸化度87モル%のPVA250gを投入し、攪拌しながら加熱溶解した。次に、この溶液に触媒として35重量%塩酸を全系対比0.2重量%添加し、反応系の温度を20℃に温度調節した後、攪拌しながらアルデヒドとしてn−ブチルアルデヒド10gを添加した。その後、50重量%グルタルアルデヒド0.24gを溶解させたn−ブチルアルデヒド115gを添加したところ、白色微粒子状のPVBが析出した。析出10分後に35重量%塩酸を全系対比1.8重量%添加し、20℃/時間の昇温速度で60℃まで加熱した後、冷却を行った。その後、常法により中和、水洗、乾燥を行って、ブチラール化度(アセタール化度)が64.9モル%であり、アセチル基量が12.7モル%であり、かつ、架橋していて、架橋後の見掛け上の平均重合度が4000であるPVBを合成した。
【0069】
上記で得られたPVBを用いたこと以外は実施例1の場合と同様にして、中間膜および合わせガラスを作製した。
【0070】
(実施例3)
攪拌装置を備えた反応器に、イオン交換水2700ml、平均重合度1700、鹸化度87モル%のPVA250gを投入し、攪拌しながら加熱溶解した。次に、この溶液に触媒として35重量%塩酸を全系対比0.2重量%添加し、反応系の温度を20℃に温度調節した後、攪拌しながらアルデヒドとしてn−ブチルアルデヒド10gを添加した。その後、50重量%グルタルアルデヒド0.28gを溶解させたn−ブチルアルデヒド115gを添加したところ、白色微粒子状のPVBが析出した。析出10分後に35重量%塩酸を全系対比1.8重量%添加し、20℃/時間の昇温速度で60℃まで加熱した後、冷却を行った。その後、常法により中和、水洗、乾燥を行って、ブチラール化度(アセタール化度)が65.3モル%であり、アセチル基量が12.5モル%であり、かつ、架橋していて、架橋後の見掛け上の平均重合度が3400であるPVBを合成した。
【0071】
上記で得られたPVBを用いたこと以外は実施例1の場合と同様にして、中間膜および合わせガラスを作製した。
【0072】
(実施例4)
攪拌装置を備えた反応器に、イオン交換水2700ml、平均重合度2400、鹸化度87モル%のPVA250gを投入し、攪拌しながら加熱溶解した。次に、この溶液に触媒として35重量%塩酸を全系対比0.4重量%添加し、反応系の温度を20℃に温度調節した後、攪拌しながらアルデヒドとしてn−ブチルアルデヒド10gを添加した。その後、n−ブチルアルデヒド140gを添加したところ、白色微粒子状のPVBが析出した。析出10分後に35重量%塩酸を全系対比3.6重量%添加し、20℃/時間の昇温速度で45℃まで加熱した後、冷却を行った。その後、常法により中和、水洗、乾燥を行って、ブチラール化度(アセタール化度)が65.0モル%であり、アセチル基量が12.3モル%であり、かつ、架橋していて、架橋後の見掛け上の平均重合度が3200であるPVBを合成した。
【0073】
上記で得られたPVBを用いたこと以外は実施例1の場合と同様にして、中間膜および合わせガラスを作製した。
【0074】
(実施例5)
攪拌装置を備えた反応器に、イオン交換水2700ml、平均重合度850、鹸化度87モル%のPVA250gを投入し、攪拌しながら加熱溶解した。次に、この溶液に触媒として35重量%塩酸を全系対比0.2重量%添加し、反応系の温度を20℃に温度調節した後、攪拌しながらアルデヒドとしてn−ブチルアルデヒド10gを添加した。その後、50重量%グルタルアルデヒド0.57gを溶解させたn−ブチルアルデヒド115gを添加したところ、白色微粒子状のPVBが析出した。析出10分後に35重量%塩酸を全系対比1.8重量%添加し、20℃/時間の昇温速度で60℃まで加熱した後、冷却を行った。その後、常法により中和、水洗、乾燥を行って、ブチラール化度(アセタール化度)が65.5モル%であり、アセチル基量が12.6モル%であり、かつ、架橋していて、架橋後の見掛け上の平均重合度が1700であるPVBを合成した。
【0075】
上記で得られたPVBを用いたこと以外は実施例1の場合と同様にして、中間膜および合わせガラスを作製した。
【0076】
(実施例6)
攪拌装置を備えた反応器に、イオン交換水2700ml、平均重合度2800、鹸化度87モル%のPVA250gを投入し、攪拌しながら加熱溶解した。次に、この溶液に触媒として35重量%塩酸を全系対比0.2重量%添加し、反応系の温度を20℃に温度調節した後、攪拌しながらアルデヒドとしてn−ブチルアルデヒド10gを添加した。その後、50重量%グルタルアルデヒド0.17gを溶解させたn−ブチルアルデヒド115gを添加したところ、白色微粒子状のPVBが析出した。析出10分後に35重量%塩酸を全系対比1.8重量%添加し、20℃/時間の昇温速度で60℃まで加熱した後、冷却を行った。その後、常法により中和、水洗、乾燥を行って、ブチラール化度(アセタール化度)が65.2モル%であり、アセチル基量が12.5モル%であり、かつ、架橋していて、架橋後の見掛け上の平均重合度が5600であるPVBを合成した。
【0077】
上記で得られたPVBを用いたこと以外は実施例1の場合と同様にして、中間膜および合わせガラスを作製した。
【0078】
(比較例1)
攪拌装置を備えた反応器に、イオン交換水2700ml、平均重合度1700、鹸化度99モル%のPVA250gを投入し、攪拌しながら加熱溶解した。次に、この溶液に触媒として35重量%塩酸を全系対比0.2重量%添加し、反応系の温度を20℃に温度調節した後、攪拌しながらアルデヒドとしてn−ブチルアルデヒド30gを添加した。その後、n−ブチルアルデヒド110gを添加したところ、白色微粒子状のPVBが析出した。析出10分後に35重量%塩酸を全系対比1.8重量%添加し、20℃/時間の昇温速度で60℃まで加熱した後、冷却を行った。その後、常法により中和、水洗、乾燥を行って、ブチラール化度(アセタール化度)が68.5モル%であり、アセチル基量が1.0モル%である架橋していないPVBを合成した。
【0079】
上記で得られたPVBを用いたこと以外は実施例1の場合と同様にして、中間膜および合わせガラスを作製した。
【0080】
実施例1〜実施例6および比較例1のそれぞれで用いた可塑剤(3GO)とPVBとの組み合わせにおける曇り点を以下の方法で測定した。その結果は表1に示すとおりであった。
〔曇り点の測定方法〕
JIS K−2269に準拠して、ガラス製試験管に可塑剤(3GO)100部およびPVB8部を入れ、170℃に加熱してPVBを可塑剤に溶解させ、PVBの可塑剤溶液を調製した。次いで、この溶液の温度を熱電対で測定しながら攪拌冷却して、溶液の一部が曇りはじめた温度を読み取り、この温度を曇り点とした。
【0081】
また、実施例1〜実施例6および比較例1で得られた中間膜の溶融粘度を以下の方法で測定した。その結果は表1に示すとおりであった。
〔溶融粘度の測定方法〕
フローテスター(商品名「島津式フローテスターCFT500」、島津製作所社製)を用いて、中間膜の110℃および140℃における溶融粘度を測定した。
【0082】
さらに、実施例1〜実施例6および比較例1で得られた合わせガラスの遮音性能を以下の方法で評価した。その結果は表1に示すとおりであった。
〔遮音性能の評価方法〕
合わせガラスから供試体を切り出し、この供試体をダンピング試験用の振動発生機(商品名「G21−005D」、振研社製)により加振し、そこから得られる振動特性を機械インピーダンスアンプ(商品名「XG−81」、リオン社製)にて増幅し、振動スペクトルをFFTアナライザー(商品名「FFTスペクトラムアナライザーHP−3582AA」、横河ヒューレットパッカー社製)により解析した。こうして得られた損失係数とガラス板との共振周波数の比とから、周波数(Hz)と音響透過損失(dB)との関係を示すグラフを作成し、周波数2000Hz付近における極小の音響透過損失{TL値(db)}を求めた。なお、測定は、0℃〜30℃の温度範囲において10℃間隔で行い、遮音性能の合格基準は、TL値(dB)30以上とした。
【0083】
【表1】

Figure 2004067427
【0084】
表1から明らかなように、本発明による実施例1〜実施例6の中間膜を用いて作製した合わせガラスは、いずれも0℃〜30℃の温度範囲において優れた遮音性能を発現した。
【0085】
これに対し、ブチラール化度(アセタール化度)とアセチル基量との合計が70モル%未満であり、かつ、架橋していないPVBを用い、可塑剤(3GO)100重量部に対し上記PVB8重量部を溶解させた溶液の曇り点が100℃を超えていた比較例1の中間膜を用いて作製した合わせガラスは、0℃〜20℃の温度範囲、特に低温領域における遮音性能が悪かった。
【0086】
【発明の効果】
以上述べたように、本発明の中間膜は、低温から高温までの広い温度範囲において優れた遮音性能を長期間にわたって安定的に発現し、かつ、透明性、耐候性、耐貫通性、衝撃エネルギー吸収性、適正な接着力等の合わせガラスとして必要な基本性能にも優れる合わせガラスを得るに適するとともに、合わせガラスに加工する際に、ガラス板のずれが生じたり、発泡を生じることが殆どなく、取扱性にも優れるので、特に遮音性合わせガラス用中間膜として好適に用いられる。
【0087】
また、本発明の合わせガラスは、上記本発明の中間膜を用いて作製されるので、低温から高温までの広い温度範囲において優れた遮音性能を長期間にわたって安定的に発現するとともに、合わせガラスとして必要な上記基本性能にも優れるものであり、特に高い遮音性能が要求される建築物や交通車両等の窓ガラス用遮音性合わせガラスとして好適に用いられる。
【0088】
【図面の簡単な説明】
【図1】合わせガラスの遮音性能を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an interlayer film for laminated glass and a laminated glass using the interlayer film for laminated glass.
[0002]
[Prior art]
Laminated glass obtained by bonding at least one pair of glass plates with an interlayer for laminated glass formed of a transparent and flexible resin such as a polyvinyl acetal resin plasticized by the addition of a plasticizer is damaged. Since the fragments are not scattered and are excellent in safety, they are widely used, for example, for window glasses of traffic vehicles such as automobiles and window glasses of buildings.
[0003]
Among such interlayer films for laminated glass, an interlayer film for laminated glass in which a polyvinyl butyral resin plasticized by the addition of a plasticizer is formed, has an appropriate adhesive strength with glass, strong tensile strength, Laminated glass using this interlayer film for laminated glass is particularly suitable for use in window glasses of traffic vehicles, because it has various properties such as excellent transparency, but on the other hand, ordinary polyvinyl butyral is used. Laminated glass using an interlayer film for resin-based laminated glass has a problem that sound insulation is not sufficient for window glass of buildings.
[0004]
Generally, sound insulation performance is shown as sound transmission loss (dB) corresponding to a change in frequency (Hz), as shown in FIG. According to JIS A-4706 "sash", the above-mentioned sound transmission loss is defined as a constant value according to the sound insulation grade in a frequency range of 500 Hz or more, as shown by a solid line in FIG.
[0005]
By the way, the sound insulation performance of the glass plate is remarkably reduced due to the coincidence effect in a frequency region centered at 2000 Hz, as shown by a broken line in FIG. That is, the trough of the broken line in FIG. 1 corresponds to a decrease in the sound insulation performance due to the coincidence effect, and indicates that the predetermined sound insulation performance is not maintained.
[0006]
The coincidence effect is a phenomenon in which when a sound wave enters a glass plate, a transverse wave propagates on the surface of the glass plate due to the rigidity and inertia of the glass plate, and the transverse wave and the incident sound resonate, resulting in transmission of sound. Say
[0007]
Although the conventional laminated glass is extremely excellent in preventing fragments from being scattered in the event of breakage, the sound insulation performance is prevented from lowering due to the above-mentioned coincidence effect in the frequency region centered at 2000 Hz, as with ordinary glass plates. Therefore, improvement of this point is required.
[0008]
On the other hand, it is known that human hearing has a very high sensitivity in a frequency range of 1000 to 6000 Hz as compared with other frequency ranges from an equal loudness curve, and prevents a decrease in sound insulation performance due to a coincidence effect. This can be said to be extremely important for improving the sound insulation performance (sound insulation performance) of windows and walls.
[0009]
The problem with the decrease in the sound insulation performance due to the coincidence effect is a minimum portion of the sound transmission loss in FIG. 1 caused by the coincidence effect (hereinafter, “the sound transmission loss of the minimum portion” is referred to as “TL value”). In order to improve the sound insulation performance, it is necessary to alleviate the coincidence effect and prevent the TL value from decreasing.
[0010]
Conventionally, various methods have been adopted as means for preventing a decrease in the TL value, such as increasing the mass of laminated glass, multiplying the glass, subdividing the glass area, and improving the glass plate supporting means. However, all of these methods have a problem that they do not provide a sufficient effect of preventing a decrease in TL value, and are not practical in terms of cost.
[0011]
On the other hand, the demand for sound insulation performance has been increasing more and more recently. For example, in the case of window glass for buildings, it is required to exhibit excellent sound insulation performance at around room temperature. That is, the temperature at which the sound insulation performance is the best (hereinafter referred to as “the maximum temperature of the sound insulation performance (TLmax temperature)”), which is obtained by plotting the TL value with respect to the temperature, is near room temperature and the sound insulation performance (Hereinafter, referred to as “sound insulation performance maximum value (TLmax value)”) itself, that is, excellent sound insulation performance is required.
[0012]
The situation is the same in the case of a window glass for a traffic vehicle. For example, excellent sound insulation performance against wind noise during high-speed running, vibration noise from an engine unit, and the like is required.
[0013]
In addition, when actually used, these laminated glasses are exposed to a wide range of environmental temperature changes from a low temperature range to a high temperature range, so that they are excellent not only near normal temperature but also in a wide temperature range from low temperature to high temperature. It is required to exhibit sound insulation performance.
[0014]
However, for example, in the case of a laminated glass using a conventional plasticized polyvinyl butyral resin film, there is a problem that the maximum sound insulation performance temperature (TLmax temperature) is higher than room temperature, and the sound insulation performance near room temperature is not always good. Further, when an excellent sound insulation performance is to be exerted near room temperature, the physical properties of the film become too soft, and there is a problem that the glass plate is displaced or foamed when processed into a laminated glass.
[0015]
Various attempts have been made to address these problems. For example, Japanese Patent Application Laid-Open No. Hei 2-229742 discloses that “a layer A mainly composed of a polymer substance and having a glass transition temperature of 15 ° C. or lower and a plasticized polyvinyl A sound-insulating laminated glass characterized in that an acetal film B is laminated between glass plates "is disclosed.
[0016]
However, the sound-insulating laminated glass disclosed in the above publication does not exhibit sound insulation performance exceeding Ts-35 grade in sound insulation grade specified in JIS A-4706, and has a limited temperature range in which good sound insulation performance is exhibited. Therefore, there is a problem that good sound insulation performance cannot be exhibited in a wide temperature range.
[0017]
Japanese Patent Application Laid-Open No. 2001-48601 discloses that “an alternate laminate of a resin layer (A) composed of a polyvinyl acetal resin and a plasticizer and a resin layer (B) composed of a polyvinyl acetal resin and a plasticizer” The resin layer of either the resin layer (A) or the resin layer (B) has an acetalization degree of 60 to 85 mol%, an acetyl group amount of 8 to 30 mol%, and a total of the acetalization degree and the acetyl group amount; Is an intermediate film for laminated glass, comprising a polyvinyl acetal resin having a ratio of 75 mol% or more and a plasticizer, and a cloud point of a mixed solution of the polyvinyl acetal resin and the plasticizer is 50 ° C. or less. ” Is disclosed.
[0018]
However, although the interlayer film for laminated glass disclosed in the above publication is certainly improved in sound insulation performance and fluctuation (decrease) in sound insulation performance due to temperature change, the physical properties of the film are too soft. In this case, there is a problem that the glass plate is displaced or foamed.
[0019]
Thus, an interlayer film for laminated glass that is excellent in basic performance required as a laminated glass, and suitable for obtaining a laminated glass that stably exhibits excellent sound insulation performance over a long temperature range from low to high temperatures over a long period of time. At present, it has not been put to practical use yet.
[0020]
[Problems to be solved by the invention]
In view of the above problems, an object of the present invention is to stably exhibit excellent sound insulation performance in a wide temperature range from low to high temperatures over a long period of time, and to provide transparency, weather resistance, penetration resistance, and impact energy absorption. Properties, suitable for obtaining laminated glass with excellent basic performance required as a laminated glass such as proper adhesive strength, and when processing into laminated glass, there is almost no displacement of the glass plate, almost no foaming occurs, An object of the present invention is to provide an interlayer film for laminated glass which is excellent in handleability, and a laminated glass using the interlayer film for laminated glass.
[0021]
[Means for Solving the Problems]
The interlayer for laminated glass according to the invention (invention) according to claim 1 is an interlayer for laminated glass comprising a polyvinyl acetal resin and a plasticizer, wherein the polyvinyl acetal resin has an acetalization degree of 60 to 85. Mole%, the amount of acetyl group is 1 to 30 mole%, the sum of the degree of acetalization and the amount of acetyl group is 70 mole% or more, and the polymer main chain is cross-linked by a cross-linking reaction. The above average degree of polymerization is 1.2 to 8.0 times the average degree of polymerization before crosslinking, and the cloud point of a solution in which 8 parts by weight of the polyvinyl acetal resin is dissolved with respect to 100 parts by weight of the plasticizer is It is characterized by a temperature of 100 ° C. or lower.
[0022]
The interlayer film for laminated glass according to the second aspect of the present invention is the interlayer film for a laminated glass according to the first aspect, wherein the melt viscosity at 110 ° C. is 10,000 Pa · s or more and the melt viscosity at 140 ° C. It is characterized in that the viscosity is 100000 Pa · s or less.
[0023]
According to a third aspect of the present invention, there is provided a laminated glass in which the interlayer film for a laminated glass according to the first or second aspect is interposed between at least a pair of glass plates and integrated. Features.
[0024]
The method for producing a polyvinyl acetal resin used for the interlayer film for laminated glass of the present invention (hereinafter simply referred to as “intermediate film”) is not particularly limited. For example, polyvinyl alcohol (hereinafter, referred to as “PVA”) is used. ) Is dissolved in warm water or hot water, and an aldehyde and an acid catalyst are added while maintaining the obtained PVA aqueous solution at a predetermined temperature (for example, 0 to 95 ° C.), and the acetalization reaction is performed with stirring. A method in which the reaction is completed by raising the reaction temperature and then aging to complete the reaction, followed by various steps of neutralization, washing and drying to obtain a powdery polyvinyl acetal resin.
[0025]
The PVA used for producing the polyvinyl acetal resin is not particularly limited, but preferably has an average degree of polymerization of 500 to 5,000, more preferably 1,000 to 3,000. If the average degree of polymerization of PVA is less than 500, the strength of the obtained interlayer film becomes too weak, and the penetration resistance and impact energy absorption when a laminated glass is formed may be insufficient. When the average degree of polymerization exceeds 5000, it may be difficult to form an intermediate film (formation of a film), and the strength of the obtained intermediate film may be too strong, and the penetration resistance and impact when laminated glass may be obtained. Energy absorption may be insufficient. These PVAs may be used alone, or two or more PVAs having different average degrees of polymerization may be used in combination.
[0026]
The aldehyde used for producing the polyvinyl acetal resin is not particularly limited, but includes, for example, formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, valeraldehyde, n-hexylaldehyde, 2-ethylbutyl Aldehyde, benzaldehyde, cinnamaldehyde and the like can be mentioned. These aldehydes may be used alone or in combination of two or more.
[0027]
The various polyvinyl acetal resins thus obtained may be used alone or in combination of two or more. Among them, polyvinyl formal resins obtained by reacting PVA with formaldehyde, PVA and acetaldehyde , A polyvinyl acetal resin in a narrow sense, a polyvinyl butyral resin (hereinafter, referred to as “PVB”) obtained by reacting PVA with n-butyraldehyde, and the like, and PVB is particularly preferable. Used. By using PVB as the polyvinyl acetal resin, the resulting intermediate film becomes more excellent in transparency, weather resistance, appropriate adhesive strength to glass, and the like.
[0028]
The polyvinyl acetal resin used in the intermediate film of the present invention needs to have a degree of acetalization of 60 to 85 mol%, and preferably 63 to 70 mol%.
[0029]
If the degree of acetalization of the polyvinyl acetal resin is less than 60 mol%, the compatibility with the plasticizer described below will be insufficient, and the glass transition temperature of the resulting intermediate film will not be sufficiently reduced, and therefore, in the low temperature region. Sound insulation performance is not sufficiently improved. Conversely, it is unsuitable to produce a polyvinyl acetal resin having a degree of acetalization of more than 85 mol% because of its difficult reaction mechanism.
[0030]
The polyvinyl acetal resin used for the intermediate film of the present invention needs to have an acetyl group content of 1 to 30 mol%, preferably 8 to 24 mol%.
[0031]
If the amount of the acetyl group in the polyvinyl acetal resin is less than 1 mol%, the compatibility with the plasticizer becomes insufficient, and the glass transition temperature of the obtained interlayer film does not decrease sufficiently. Does not improve enough. Conversely, if an attempt is made to produce a polyvinyl acetal resin having an acetyl group content of more than 30 mol%, the reaction rate between PVA and an aldehyde is remarkably reduced, which is not suitable.
[0032]
Furthermore, the polyvinyl acetal resin used for the intermediate film of the present invention needs to have a total of the degree of acetalization and the amount of acetyl groups of 70 mol% or more.
[0033]
If the total of the degree of acetalization and the amount of acetyl groups of the polyvinyl acetal resin is less than 70 mol%, the compatibility with the plasticizer becomes insufficient, and the glass transition temperature of the obtained interlayer film does not sufficiently decrease. Therefore, the sound insulation performance in the low temperature range is not sufficiently improved.
[0034]
When the polyvinyl acetal resin is PVB, the degree of acetalization (degree of butyralization) and the amount of acetyl groups can be measured according to JIS K-6728 “Testing method for polyvinyl butyral” or nuclear magnetic resonance (NMR). it can.
[0035]
When the polyvinyl acetal resin is a polyvinyl acetal resin other than PVB, the degree of acetalization is determined by measuring the amount of acetyl group and the amount of vinyl alcohol according to JIS K-6728 or nuclear magnetic resonance method, and from 100 It can be calculated by subtracting the amounts of both components.
[0036]
The polyvinyl acetal resin used in the intermediate film of the present invention has the specific acetalization degree, the specific acetyl group amount, and the total of the specific acetalization degree and the acetyl group amount, and further has a cross-linked structure. The polymer main chain is crosslinked by the reaction, and the apparent average degree of polymerization after crosslinking must be 1.2 to 8.0 times the average degree of polymerization before crosslinking.
[0037]
The method for cross-linking the polymer main chain of the polyvinyl acetal resin by a cross-linking reaction is not particularly limited. For example, before or during the acetalization reaction with an aldehyde, the adjacent PVA main chain is cross-linked. Examples thereof include a method of adding a cross-linking agent such as dialdehyde, and a method of causing an intermolecular acetalization reaction to proceed by adding an excess of aldehyde, and any method of cross-linking may be employed. These cross-linking methods may be used alone or in combination of two or more.
[0038]
When the apparent average degree of polymerization after crosslinking of the polyvinyl acetal resin in which the polymer main chain is cross-linked by the crosslinking reaction is less than 1.2 times the average degree of polymerization before crosslinking, the strength of the obtained intermediate film and Hardness is not sufficiently improved, and handleability when processing into laminated glass is insufficient. Conversely, if the apparent average degree of polymerization after crosslinking of the polyvinyl acetal resin having a polymer main chain crosslinked by the above crosslinking reaction exceeds 8.0 times the average degree of polymerization before crosslinking, the plasticizer will be sufficient. The composition comprising the polyvinyl acetal resin and the plasticizer becomes gel-like without being compatible with each other, and the melt viscosity at a high temperature of the composition becomes too high, which causes problems in molding (film formation) and the strength of the obtained intermediate film. Becomes too strong, and the penetration resistance and impact energy absorption of a laminated glass become insufficient.
[0039]
The plasticizer used in the intermediate film of the present invention is not particularly limited. For example, ester plasticizers such as monobasic acid ester and polybasic acid ester, and organic phosphoric acid and Phosphoric acid-based plasticizers such as phosphoric acid-based plasticizers, and the like.
[0040]
The monobasic acid ester-based plasticizer is not particularly limited. For example, glycols such as triethylene glycol, tripropylene glycol, and tetraethylene glycol and butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptane And glycol-based esters obtained by reaction with an acid or an organic acid such as 2-ethylhexylic acid.
[0041]
Although it does not specifically limit as a polybasic-acid-ester type plasticizer, For example, reaction of a linear or branched C4-C8 alcohol with organic acids, such as adipic acid, sebacic acid, and azelaic acid. And the like obtained by the above method.
[0042]
Examples of the phosphate plasticizer include, but are not particularly limited to, tributoxyethyl phosphate, isodecylphenyl phosphate, and the like.
[0043]
Among the above various plasticizers, for example, triethylene glycol di-2-ethyl butyrate (hereinafter, referred to as “3GH”), triethylene glycol di-2-ethylhexanoate (hereinafter, referred to as “3GO”), tri Ethylene glycol di-n-heptanoate (hereinafter referred to as "3G7"), triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, tetraethylene glycol di-2-ethyl butyrate, tetraethylene glycol di-n-heptanoate, dihexyl Adipate, dibenzyl phthalate and the like are preferably used, and among them, 3GH, 3GO, 3G7 and the like are particularly preferably used. These plasticizers may be used alone or in combination of two or more.
[0044]
The amount of the plasticizer added to the polyvinyl acetal resin is not particularly limited, but is preferably 30 to 70 parts by weight of the plasticizer based on 100 parts by weight of the polyvinyl acetal resin.
[0045]
If the amount of the plasticizer added is less than 30 parts by weight based on 100 parts by weight of the polyvinyl acetal resin, the plasticization of the polyvinyl acetal resin may be insufficient, and conversely, the amount of the plasticizer added to 100 parts by weight of the polyvinyl acetal resin may be insufficient. Exceeds 70 parts by weight, the physical properties of the obtained interlayer film and the adhesive strength to the glass plate may be insufficient.
[0046]
In the intermediate film of the present invention, it is necessary that the cloud point of a solution obtained by dissolving 8 parts by weight of the polyvinyl acetal resin with respect to 100 parts by weight of the plasticizer is 100 ° C. or less. That is, in the present invention, it is necessary to select a combination of a polyvinyl acetal resin and a plasticizer such that the cloud point of the solution is 100 ° C. or lower.
[0047]
The cloud point referred to in the present invention means a cloud point measured in accordance with JIS K-2269 "Pour point of crude oil and petroleum products and cloud point test method for petroleum products". After heating a solution obtained by dissolving 8 parts by weight of polyvinyl acetal resin to 150 parts by weight with respect to parts by weight, when the temperature is lowered by leaving it in an atmosphere of 10 to 30 ° C., a part of the above solution becomes cloudy. Means the temperature at which begins to occur.
[0048]
Specific methods for measuring the cloud point are not particularly limited, for example, a method of visually observing the appearance of the solution, a method of measuring the haze value of the solution with a haze meter, A limit sample of a plurality of levels for the degree is prepared, and a method of judging cloudiness of the solution by comparing with the limit sample may be used, and any method may be adopted.
[0049]
The cloud point indicates the compatibility between the polyvinyl acetal resin and the plasticizer. The lower the cloud point, the better the compatibility between the polyvinyl acetal resin and the plasticizer. Therefore, by selecting a combination of a polyvinyl acetal resin and a plasticizer such that the cloud point is 100 ° C. or lower, the compatibility between the polyvinyl acetal resin and the plasticizer becomes extremely excellent. As a result, the sound insulation performance of the obtained intermediate film in a wide temperature range is significantly improved. Further, bleed out of the plasticizer to the surface of the intermediate film is also effectively suppressed, so that it is suitable for obtaining a laminated glass exhibiting stable performance for a long period of time.
[0050]
When the cloud point of the solution exceeds 100 ° C., the compatibility between the polyvinyl acetal resin and the plasticizer becomes insufficient, and the sound insulation performance of the obtained interlayer film in a wide temperature range is not sufficiently improved, It is difficult to obtain a laminated glass exhibiting stable performance over a wide range.
[0051]
In the intermediate film of the present invention, among the combinations of the polyvinyl acetal resin and the plasticizer, including using a cloud point of the solution of 100 ° C. or less, using PVB as the polyvinyl acetal resin, as the plasticizer A combination using at least one plasticizer selected from the group consisting of 3GH, 3GO and 3G7 is particularly preferred.
[0052]
In the intermediate film of the present invention, in addition to the polyvinyl acetal resin and the plasticizer, which are essential components, if necessary within a range that does not hinder achievement of the object of the present invention, for example, an adhesiveness imparting agent, a coupling agent, a surfactant One or more of various additives such as antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, coloring agents, dehydrating agents, defoamers, antistatic agents, flame retardants, etc. Is also good.
[0053]
The intermediate film of the present invention obtained by molding (forming) a polyvinyl acetal resin composition comprising a polyvinyl acetal resin and a plasticizer, which are essential components, and various additives to be added as required, by a conventional method, is 110 It is preferable that the melt viscosity at 100 ° C. is 10,000 Pa · s or more, and the melt viscosity at 140 ° C. is 100,000 Pa · s or less.
[0054]
An intermediate film having a melt viscosity at 110 ° C. of 10,000 Pa · s or more and a melt viscosity at 140 ° C. of 100,000 Pa · s or less exhibits more excellent balance performance.
[0055]
When the melt viscosity at 110 ° C. of the intermediate film is less than 10,000 Pa · s, when processing into a laminated glass, misalignment or foaming of the glass plate occurs and the handleability is reduced, or the strength of the intermediate film becomes too weak. In some cases, the penetration resistance and impact energy absorption of the laminated glass may be insufficient. Further, when the melt viscosity of the intermediate film at 140 ° C. exceeds 100,000 Pa · s, it is difficult to perform stable molding (film formation), or the strength of the intermediate film becomes too strong, and when the laminated glass is formed. The penetration resistance and impact energy absorption may be insufficient.
[0056]
Although the thickness of the intermediate film of the present invention is not particularly limited, it is preferably 0.3 to 1.6 mm as in a normal intermediate film. The sound insulation performance itself becomes better as the thickness of the interlayer increases, but if the thickness of the interlayer is too thick, the penetration resistance and impact energy absorption of laminated glass may decrease, so practical use The upper part preferably has a thickness in the above range.
[0057]
Next, the laminated glass of the present invention is produced by interposing the above-described interlayer film of the present invention between at least a pair of glass plates and integrating them.
[0058]
The glass plate includes not only a normal inorganic transparent glass plate but also an organic transparent glass plate such as a polycarbonate plate and a polymethyl methacrylate plate.
[0059]
The type of the glass plate is not particularly limited, and includes, for example, various types such as a float plate glass, a polished plate glass, a flat plate glass, a curved plate glass, a side-by-side glass, a template plate glass, a glass plate with a wire mesh, and a colored glass plate. Examples thereof include an inorganic glass plate and an organic glass plate, and one or more of these are suitably used. Further, the thickness of the glass plate may be appropriately selected depending on the application and purpose, and is not particularly limited.
[0060]
The manufacturing method of the laminated glass of the present invention is not particularly limited, and the same manufacturing method as that of the ordinary laminated glass is employed. For example, the intermediate film of the present invention is sandwiched between two transparent glass plates, put in a rubber bag, and preliminarily bonded at a temperature of about 70 to 110 ° C. while suctioning and degassing under reduced pressure. A desired laminated glass can be obtained by performing the actual bonding under the conditions of a temperature of about 120 to 150 ° C. and a pressure of about 0.98 to 1.47 MPa.
[0061]
[Action]
The intermediate film of the present invention has a specific degree of acetalization, a specific amount of acetyl group and a total of the specific degree of acetalization and the amount of acetyl group, and a cross-linking reaction of a polymer main chain is formed. After the cross-linking, it is composed of a polyvinyl acetal resin having a specific apparent average degree of polymerization and a plasticizer, and the cloud point of the specific solution composed of the polyvinyl acetal resin and the plasticizer is equal to or lower than a specific temperature. As a result, excellent sound insulation performance is stably exhibited over a long temperature range from low to high temperatures, and transparency, weather resistance, penetration resistance, impact energy absorption, and proper adhesion are set. Suitable for obtaining laminated glass that is also excellent in basic performance required as laminated glass such as force, etc. It is almost no foaming occurs, it is also excellent in handling properties.
[0062]
In addition, the interlayer film of the present invention has a melt viscosity at 110 ° C. of a specific viscosity or more, and a melt viscosity at 140 ° C. of a specific viscosity or less, thereby exhibiting the above performance of a more excellent balance. Become.
[0063]
Since the laminated glass of the present invention is produced using the above-mentioned interlayer film of the present invention, it exhibits stable sound insulation performance over a long temperature range from a low temperature to a high temperature over a long period of time, and has transparency and weather resistance. It also excels in basic properties required for laminated glass, such as heat resistance, penetration resistance, impact energy absorption, and appropriate adhesive strength.
[0064]
BEST MODE FOR CARRYING OUT THE INVENTION
EXAMPLES The present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. In the examples, “parts” means “parts by weight”.
[0065]
(Example 1)
1. Synthesis of polyvinyl acetal resin
In a reactor equipped with a stirrer, 2700 ml of ion-exchanged water, 250 g of PVA having an average degree of polymerization of 2400 and a saponification degree of 87 mol% were charged and heated and dissolved while stirring. Next, 35% by weight of hydrochloric acid as a catalyst was added to this solution at 0.2% by weight relative to the whole system, the temperature of the reaction system was adjusted to 20 ° C., and 10 g of n-butyraldehyde was added as aldehyde with stirring. . Thereafter, when 115 g of n-butyraldehyde in which 0.11 g of 50% by weight glutaraldehyde was dissolved was added, PVB in the form of white fine particles was precipitated. After 10 minutes from the precipitation, 1.8% by weight of 35% by weight hydrochloric acid relative to the whole system was added, and the mixture was heated to 60 ° C at a rate of 20 ° C / hour, and then cooled. After that, neutralization, washing and drying are carried out in a conventional manner to give a butyralization degree (acetalization degree) of 65.1 mol%, an acetyl group content of 12.3 mol%, and crosslinking. A PVB having an apparent average polymerization degree of 3200 after crosslinking was synthesized.
[0066]
2. Preparation of interlayer film
To 100 parts of the PVB obtained above, 60 parts of 3GO was added as a plasticizer, and the mixture was uniformly melt-kneaded with a mixing roll, and then subjected to press molding at 150 ° C. for 30 minutes using a press molding machine to obtain a thickness of 0%. A 0.7 mm intermediate film was produced.
[0067]
3. Production of laminated glass
The intermediate film obtained above is cut into 300 mm x 300 mm, and sandwiched between two float glass sheets (300 mm in length x 300 mm in width x 3 mm in thickness), and the sandwich is put in a vacuum bag (rubber bag). After deaeration by holding at a degree of vacuum of 20 torr for 20 minutes, the substrate was transferred to an oven at 90 ° C. while maintaining the vacuum (deaeration state), and held for 30 minutes to perform preliminary bonding. Next, the preliminarily bonded sandwich was taken out of the vacuum bag, transferred into an autoclave, and fully bonded at a temperature of 135 ° C. and a pressure of 1.18 MPa to produce a transparent laminated glass.
[0068]
(Example 2)
In a reactor equipped with a stirrer, 2700 ml of ion-exchanged water, 250 g of PVA having an average degree of polymerization of 2,000 and a saponification degree of 87 mol% were charged, and heated and dissolved while stirring. Next, 35% by weight of hydrochloric acid as a catalyst was added to this solution at 0.2% by weight relative to the whole system, the temperature of the reaction system was adjusted to 20 ° C., and 10 g of n-butyraldehyde was added as aldehyde with stirring. . Thereafter, when 115 g of n-butyraldehyde in which 0.24 g of 50% by weight glutaraldehyde was dissolved was added, PVB in the form of white fine particles was precipitated. After 10 minutes from the precipitation, 1.8% by weight of 35% by weight hydrochloric acid relative to the whole system was added, and the mixture was heated to 60 ° C at a rate of 20 ° C / hour, and then cooled. After that, neutralization, washing and drying were carried out in a conventional manner to give a butyralization degree (acetalization degree) of 64.9 mol%, an acetyl group content of 12.7 mol%, and crosslinking. A PVB having an apparent average degree of polymerization of 4000 after crosslinking was synthesized.
[0069]
An interlayer film and a laminated glass were produced in the same manner as in Example 1 except that the PVB obtained above was used.
[0070]
(Example 3)
Into a reactor equipped with a stirrer, 2700 ml of ion-exchanged water, 250 g of PVA having an average degree of polymerization of 1700 and a saponification degree of 87 mol% were charged, and heated and dissolved while stirring. Next, 35% by weight of hydrochloric acid as a catalyst was added to this solution at 0.2% by weight relative to the whole system, the temperature of the reaction system was adjusted to 20 ° C., and 10 g of n-butyraldehyde was added as aldehyde with stirring. . Thereafter, 115 g of n-butyraldehyde in which 0.28 g of 50% by weight glutaraldehyde was dissolved was added, whereby PVB in the form of white fine particles was precipitated. After 10 minutes from the precipitation, 1.8% by weight of 35% by weight hydrochloric acid relative to the whole system was added, and the mixture was heated to 60 ° C at a rate of 20 ° C / hour, and then cooled. Thereafter, neutralization, washing and drying are carried out in a conventional manner to give a butyralization degree (acetalization degree) of 65.3 mol%, an acetyl group content of 12.5 mol%, and crosslinking. A PVB having an apparent average degree of polymerization of 3400 after crosslinking was synthesized.
[0071]
An interlayer film and a laminated glass were produced in the same manner as in Example 1 except that the PVB obtained above was used.
[0072]
(Example 4)
In a reactor equipped with a stirrer, 2700 ml of ion-exchanged water, 250 g of PVA having an average degree of polymerization of 2400 and a saponification degree of 87 mol% were charged and heated and dissolved while stirring. Next, to this solution was added 35% by weight of hydrochloric acid as a catalyst and 0.4% by weight of the total system, and the temperature of the reaction system was adjusted to 20 ° C., and then 10 g of n-butyraldehyde was added as an aldehyde while stirring. . Thereafter, when 140 g of n-butyraldehyde was added, PVB in the form of white fine particles was precipitated. Ten minutes after the precipitation, 3.6% by weight of 35% by weight hydrochloric acid relative to the whole system was added, and the mixture was heated to 45 ° C. at a rate of 20 ° C./hour and then cooled. After that, neutralization, washing and drying were carried out in a conventional manner to give a degree of butyralization (degree of acetalization) of 65.0 mol%, an amount of acetyl group of 12.3 mol%, and crosslinking. A PVB having an apparent average polymerization degree of 3200 after crosslinking was synthesized.
[0073]
An interlayer film and a laminated glass were produced in the same manner as in Example 1 except that the PVB obtained above was used.
[0074]
(Example 5)
Into a reactor equipped with a stirrer, 2700 ml of ion-exchanged water, 250 g of PVA having an average degree of polymerization of 850 and a saponification degree of 87 mol% were charged and heated and dissolved while stirring. Next, 35% by weight of hydrochloric acid as a catalyst was added to this solution at 0.2% by weight relative to the whole system, the temperature of the reaction system was adjusted to 20 ° C., and 10 g of n-butyraldehyde was added as aldehyde with stirring. . Thereafter, when 115 g of n-butyraldehyde in which 0.57 g of 50% by weight glutaraldehyde was dissolved was added, PVB in the form of white fine particles was precipitated. After 10 minutes from the precipitation, 1.8% by weight of 35% by weight hydrochloric acid relative to the whole system was added, and the mixture was heated to 60 ° C at a rate of 20 ° C / hour, and then cooled. After that, neutralization, washing and drying are carried out by a conventional method to give a butyralization degree (acetalization degree) of 65.5 mol%, an acetyl group content of 12.6 mol%, and cross-linking. A PVB having an apparent average degree of polymerization of 1700 after crosslinking was synthesized.
[0075]
An interlayer film and a laminated glass were produced in the same manner as in Example 1 except that the PVB obtained above was used.
[0076]
(Example 6)
Into a reactor equipped with a stirrer, 2700 ml of ion-exchanged water, 250 g of PVA having an average degree of polymerization of 2800 and a saponification degree of 87 mol% were charged, and heated and dissolved while stirring. Next, 35% by weight of hydrochloric acid as a catalyst was added to this solution at 0.2% by weight relative to the whole system, the temperature of the reaction system was adjusted to 20 ° C., and 10 g of n-butyraldehyde was added as aldehyde with stirring. . Thereafter, when 115 g of n-butyraldehyde in which 0.17 g of 50% by weight glutaraldehyde was dissolved was added, PVB in the form of white fine particles was precipitated. After 10 minutes from the precipitation, 1.8% by weight of 35% by weight hydrochloric acid relative to the whole system was added, and the mixture was heated to 60 ° C at a rate of 20 ° C / hour, and then cooled. Thereafter, neutralization, washing and drying are carried out in a conventional manner to give a butyralization degree (acetalization degree) of 65.2 mol%, an acetyl group content of 12.5 mol%, and crosslinking. A PVB having an apparent average polymerization degree of 5600 after crosslinking was synthesized.
[0077]
An interlayer film and a laminated glass were produced in the same manner as in Example 1 except that the PVB obtained above was used.
[0078]
(Comparative Example 1)
In a reactor equipped with a stirrer, 2700 ml of ion-exchanged water, 250 g of PVA having an average degree of polymerization of 1700 and a saponification degree of 99 mol% were charged, and heated and dissolved while stirring. Next, 35% by weight of hydrochloric acid as a catalyst was added to this solution at 0.2% by weight relative to the whole system, and the temperature of the reaction system was adjusted to 20 ° C., and then 30 g of n-butyraldehyde was added as an aldehyde while stirring. . Thereafter, when 110 g of n-butyraldehyde was added, PVB in the form of white fine particles was precipitated. After 10 minutes from the precipitation, 1.8% by weight of 35% by weight hydrochloric acid relative to the whole system was added, and the mixture was heated to 60 ° C at a rate of 20 ° C / hour, and then cooled. Thereafter, neutralization, washing and drying are carried out by a conventional method to synthesize uncrosslinked PVB having a butyralization degree (acetalization degree) of 68.5 mol% and an acetyl group content of 1.0 mol%. did.
[0079]
An interlayer film and a laminated glass were produced in the same manner as in Example 1 except that the PVB obtained above was used.
[0080]
The cloud point of the combination of the plasticizer (3GO) and PVB used in each of Examples 1 to 6 and Comparative Example 1 was measured by the following method. The results were as shown in Table 1.
[Method of measuring cloud point]
In accordance with JIS K-2269, 100 parts of a plasticizer (3GO) and 8 parts of PVB were put into a glass test tube, heated at 170 ° C. to dissolve the PVB in the plasticizer, and a PVB plasticizer solution was prepared. Then, the solution was stirred and cooled while measuring the temperature of the solution with a thermocouple, and the temperature at which part of the solution began to become cloudy was read, and this temperature was taken as the cloud point.
[0081]
Further, the melt viscosities of the interlayer films obtained in Examples 1 to 6 and Comparative Example 1 were measured by the following method. The results were as shown in Table 1.
(Measurement method of melt viscosity)
The melt viscosity at 110 ° C. and 140 ° C. of the intermediate film was measured using a flow tester (trade name “Shimadzu type flow tester CFT500”, manufactured by Shimadzu Corporation).
[0082]
Furthermore, the sound insulation performance of the laminated glasses obtained in Examples 1 to 6 and Comparative Example 1 was evaluated by the following method. The results were as shown in Table 1.
(Evaluation method of sound insulation performance)
A specimen is cut out from the laminated glass, and the specimen is vibrated by a vibration generator (trade name "G21-005D" manufactured by Shinken Co., Ltd.) for a dumping test, and the vibration characteristics obtained therefrom are measured by a mechanical impedance amplifier (product Amplification was carried out under the name “XG-81”, manufactured by Rion Co., Ltd., and the vibration spectrum was analyzed with an FFT analyzer (trade name “FFT Spectrum Analyzer HP-3582AA”, manufactured by Yokogawa Hewlett Packer). From the thus obtained loss coefficient and the ratio of the resonance frequency of the glass plate, a graph showing the relationship between the frequency (Hz) and the sound transmission loss (dB) was created, and the minimum sound transmission loss ΔTL near the frequency of 2000 Hz was generated. The value (db)} was determined. Note that the measurement was performed at 10 ° C. intervals in a temperature range of 0 ° C. to 30 ° C., and the acceptance criterion of the sound insulation performance was a TL value (dB) of 30 or more.
[0083]
[Table 1]
Figure 2004067427
[0084]
As is clear from Table 1, the laminated glasses produced using the interlayer films of Examples 1 to 6 according to the present invention exhibited excellent sound insulation performance in a temperature range of 0 ° C to 30 ° C.
[0085]
On the other hand, the total of the degree of butyralization (degree of acetalization) and the amount of acetyl groups is less than 70 mol%, and non-crosslinked PVB is used, and 8 parts by weight of the above PVB with respect to 100 parts by weight of the plasticizer (3GO). The laminated glass manufactured using the interlayer film of Comparative Example 1 in which the cloud point of the solution in which the part was dissolved exceeded 100 ° C. was poor in sound insulation performance in a temperature range of 0 ° C. to 20 ° C., particularly in a low temperature region.
[0086]
【The invention's effect】
As described above, the interlayer film of the present invention stably exhibits excellent sound insulation performance over a long temperature range from low to high temperatures, and exhibits transparency, weather resistance, penetration resistance, and impact energy. It is suitable for obtaining laminated glass with excellent basic performance required as laminated glass such as absorbency and proper adhesive strength, and when processing into laminated glass, there is almost no displacement of the glass plate or almost no foaming Since it is excellent in handleability, it is particularly suitably used as an interlayer film for sound insulating laminated glass.
[0087]
In addition, since the laminated glass of the present invention is produced using the interlayer film of the present invention, the laminated glass exhibits excellent sound insulation performance in a wide temperature range from low to high temperatures over a long period of time, and as a laminated glass. It also has the required basic performance described above, and is suitably used as a sound insulating laminated glass for window glass of buildings and traffic vehicles that require particularly high sound insulating performance.
[0088]
[Brief description of the drawings]
FIG. 1 is a graph showing the sound insulation performance of a laminated glass.

Claims (3)

ポリビニルアセタール樹脂と可塑剤とからなる合わせガラス用中間膜であって、上記ポリビニルアセタール樹脂は、アセタール化度が60〜85モル%、アセチル基量が1〜30モル%およびアセタール化度とアセチル基量との合計が70モル%以上であるとともに、架橋反応により高分子主鎖が架橋結合されており、架橋後の見掛け上の平均重合度が架橋前の平均重合度の1.2〜8.0倍であり、かつ、上記可塑剤100重量部に対し上記ポリビニルアセタール樹脂8重量部を溶解させた溶液の曇り点が100℃以下であることを特徴とする合わせガラス用中間膜。An interlayer for laminated glass comprising a polyvinyl acetal resin and a plasticizer, wherein the polyvinyl acetal resin has an acetalization degree of 60 to 85 mol%, an acetyl group content of 1 to 30 mol%, and an acetalization degree and an acetyl group. And the total amount is 70 mol% or more, and the polymer main chain is cross-linked by a cross-linking reaction, and the apparent average degree of polymerization after cross-linking is 1.2 to 8 of the average degree of polymerization before cross-linking. An interlayer film for laminated glass, wherein the cloud point of the solution obtained by dissolving 8 parts by weight of the polyvinyl acetal resin per 100 parts by weight of the plasticizer is 100 times or less. 110℃における溶融粘度が10000Pa・s以上であり、かつ、140℃における溶融粘度が100000Pa・s以下であることを特徴とする請求項1に記載の合わせガラス用中間膜。2. The interlayer film for laminated glass according to claim 1, wherein the melt viscosity at 110 ° C. is 10,000 Pa · s or more, and the melt viscosity at 140 ° C. is 100,000 Pa · s or less. 3. 少なくとも一対のガラス板間に請求項1または請求項2に記載の合わせガラス用中間膜を介在させ、一体化させてなることを特徴とする合わせガラス。3. A laminated glass comprising the interlayer film for laminated glass according to claim 1 interposed between at least a pair of glass plates and integrated therewith.
JP2002227604A 2002-08-05 2002-08-05 Interlayer film for laminated glasses, and laminated glass Pending JP2004067427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227604A JP2004067427A (en) 2002-08-05 2002-08-05 Interlayer film for laminated glasses, and laminated glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227604A JP2004067427A (en) 2002-08-05 2002-08-05 Interlayer film for laminated glasses, and laminated glass

Publications (1)

Publication Number Publication Date
JP2004067427A true JP2004067427A (en) 2004-03-04

Family

ID=32014582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227604A Pending JP2004067427A (en) 2002-08-05 2002-08-05 Interlayer film for laminated glasses, and laminated glass

Country Status (1)

Country Link
JP (1) JP2004067427A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057070A (en) * 2004-07-21 2006-03-02 Sekisui Chem Co Ltd Plasticizer for polyvinyl acetal-based resin and paste by using the same
JP2006282490A (en) * 2005-04-05 2006-10-19 Sekisui Chem Co Ltd Ceramic paste for ceramic green sheet
JP4751966B1 (en) * 2009-12-28 2011-08-17 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
WO2012043818A1 (en) * 2010-09-30 2012-04-05 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
WO2012043819A1 (en) * 2010-09-30 2012-04-05 積水化学工業株式会社 Laminated glass interlayer and laminated glass
WO2012141002A1 (en) * 2011-04-14 2012-10-18 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
JPWO2011081190A1 (en) * 2009-12-28 2013-05-13 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
WO2016159207A1 (en) * 2015-03-31 2016-10-06 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
WO2017043574A1 (en) * 2015-09-11 2017-03-16 積水化学工業株式会社 Interlayer for laminated glass, and laminated glass
KR20170063433A (en) * 2014-09-30 2017-06-08 세키스이가가쿠 고교가부시키가이샤 Resin film for bonding to glass plate, glass plate-containing laminate, and method for producing resin film for bonding to glass plate
WO2020130271A1 (en) * 2018-12-20 2020-06-25 에스케이씨 주식회사 Glass lamination film and laminated glass comprising same
JP2021084853A (en) * 2019-11-29 2021-06-03 チャン チュン ペトロケミカル カンパニー リミテッド Polymer film and uses of the same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057070A (en) * 2004-07-21 2006-03-02 Sekisui Chem Co Ltd Plasticizer for polyvinyl acetal-based resin and paste by using the same
JP2006282490A (en) * 2005-04-05 2006-10-19 Sekisui Chem Co Ltd Ceramic paste for ceramic green sheet
JP4751966B1 (en) * 2009-12-28 2011-08-17 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
JP4751965B1 (en) * 2009-12-28 2011-08-17 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
JP5806467B2 (en) * 2009-12-28 2015-11-10 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
JPWO2011081190A1 (en) * 2009-12-28 2013-05-13 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
JP4975892B2 (en) * 2010-09-30 2012-07-11 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
JP4961060B1 (en) * 2010-09-30 2012-06-27 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
EP2623474A4 (en) * 2010-09-30 2015-01-21 Sekisui Chemical Co Ltd Laminated glass interlayer and laminated glass
JP4961059B1 (en) * 2010-09-30 2012-06-27 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
US9764534B2 (en) 2010-09-30 2017-09-19 Sekisui Chemical Co., Ltd. Laminated glass interlayer and laminated glass
US9649828B2 (en) 2010-09-30 2017-05-16 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass
JP2013032264A (en) * 2010-09-30 2013-02-14 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
WO2012043819A1 (en) * 2010-09-30 2012-04-05 積水化学工業株式会社 Laminated glass interlayer and laminated glass
EP2623474A1 (en) * 2010-09-30 2013-08-07 Sekisui Chemical Co., Ltd. Laminated glass interlayer and laminated glass
WO2012043818A1 (en) * 2010-09-30 2012-04-05 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
US8741439B2 (en) 2010-09-30 2014-06-03 Sekisui Chemical Co., Ltd. Laminated glass interlayer and laminated glass
CN104987638A (en) * 2010-09-30 2015-10-21 积水化学工业株式会社 Laminated glass interlayer and laminated glass
WO2012141002A1 (en) * 2011-04-14 2012-10-18 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
JP5101755B2 (en) * 2011-04-14 2012-12-19 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
CN103492339A (en) * 2011-04-14 2014-01-01 积水化学工业株式会社 Interlayer for laminated glass and laminated glass
US8795821B2 (en) 2011-04-14 2014-08-05 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass
JP2013006768A (en) * 2011-04-14 2013-01-10 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
KR102409765B1 (en) * 2014-09-30 2022-06-17 세키스이가가쿠 고교가부시키가이샤 Resin film for bonding to glass plate, glass plate-containing laminate, and method for producing resin film for bonding to glass plate
KR20170063433A (en) * 2014-09-30 2017-06-08 세키스이가가쿠 고교가부시키가이샤 Resin film for bonding to glass plate, glass plate-containing laminate, and method for producing resin film for bonding to glass plate
JPWO2016159207A1 (en) * 2015-03-31 2018-01-18 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
CN107428604A (en) * 2015-03-31 2017-12-01 积水化学工业株式会社 Intermediate film for laminated glasses and laminated glass
JP2020055744A (en) * 2015-03-31 2020-04-09 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
US10814592B2 (en) 2015-03-31 2020-10-27 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass
WO2016159207A1 (en) * 2015-03-31 2016-10-06 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
WO2017043574A1 (en) * 2015-09-11 2017-03-16 積水化学工業株式会社 Interlayer for laminated glass, and laminated glass
JPWO2017043574A1 (en) * 2015-09-11 2018-06-21 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
US10683694B2 (en) 2015-09-11 2020-06-16 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
WO2020130271A1 (en) * 2018-12-20 2020-06-25 에스케이씨 주식회사 Glass lamination film and laminated glass comprising same
US11292232B2 (en) 2018-12-20 2022-04-05 Skc Co., Ltd. Glass with glass lamination film
JP2021084853A (en) * 2019-11-29 2021-06-03 チャン チュン ペトロケミカル カンパニー リミテッド Polymer film and uses of the same
JP7094316B2 (en) 2019-11-29 2022-07-01 チャン チュン ペトロケミカル カンパニー リミテッド Poly (vinyl butyral) film and laminated glass

Similar Documents

Publication Publication Date Title
US10525676B2 (en) Intermediate film for laminated glass, multilayer intermediate film for laminated glass, and laminated glass
JP6170582B2 (en) Laminated glass interlayer film and laminated glass
KR100458923B1 (en) Interlayer film for laminated glass and laminated glass
EP2520552B1 (en) Interlayer for laminated glass, and laminated glass
JP4975892B2 (en) Laminated glass interlayer film and laminated glass
JP4331846B2 (en) Laminated glass interlayer film and laminated glass
JP3050967B2 (en) Sound insulating interlayer
JP4076730B2 (en) Interlayer film for laminated glass and laminated glass
JP4555855B2 (en) Laminated glass interlayer film and laminated glass
CN109130391B (en) Resin film for laminated glass, and process for producing the same
JP4371462B2 (en) Laminated glass interlayer film and laminated glass
JP4429428B2 (en) Laminated glass interlayer film and laminated glass
JP2004067427A (en) Interlayer film for laminated glasses, and laminated glass
JP2003252655A (en) Interlayer for laminated glass and laminated glass
JP3377848B2 (en) Interlayer for laminated glass and laminated glass using the same
JP2001220183A (en) Interlayer for laminated glass and laminated glass
JP2001226152A (en) Intermediate film for sandwich glass and sandwich glass
JP4339457B2 (en) Interlayer film for laminated glass
JP2003252656A (en) Interlayer film for laminated glass and laminated glass
JP2003252657A (en) Interlayer film for laminated glass and laminated glass
JPH1036146A (en) Sound-insulating laminated glass
JP2001048601A (en) Intermediate film for sandwich glass and sandwich glass
JP2002326844A (en) Intermediate membrane for laminated glass and laminated glass
JP2001192243A (en) Intermediate film for laminated glass, and laminated glass
JP2001220184A (en) Interlayer for laminated glass and laminated glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080611