WO2014126119A1 - 自動変速機の変速制御装置 - Google Patents

自動変速機の変速制御装置 Download PDF

Info

Publication number
WO2014126119A1
WO2014126119A1 PCT/JP2014/053240 JP2014053240W WO2014126119A1 WO 2014126119 A1 WO2014126119 A1 WO 2014126119A1 JP 2014053240 W JP2014053240 W JP 2014053240W WO 2014126119 A1 WO2014126119 A1 WO 2014126119A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
transmission element
efficiency
shift control
fluid transmission
Prior art date
Application number
PCT/JP2014/053240
Other languages
English (en)
French (fr)
Inventor
徹 浦沢
裕 川本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/768,655 priority Critical patent/US9371906B2/en
Priority to JP2015500269A priority patent/JP5880775B2/ja
Priority to CN201480006720.7A priority patent/CN104981634B/zh
Publication of WO2014126119A1 publication Critical patent/WO2014126119A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/48Control of exclusively fluid gearing hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66227Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed and torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/70Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements
    • F16H61/702Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements using electric or electrohydraulic control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/147Transmission input torque, e.g. measured or estimated engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/465Detecting slip, e.g. clutch slip ratio
    • F16H2059/467Detecting slip, e.g. clutch slip ratio of torque converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • F16H59/78Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing

Definitions

  • the present invention relates to a shift control device for an automatic transmission that is not limited to a continuously variable transmission such as a belt type continuously variable transmission or a toroidal type continuously variable transmission, but also includes a stepped automatic transmission.
  • a power train including an automatic transmission is usually configured by drivingly coupling a power source such as an engine, a fluid transmission element such as a torque converter, and an automatic transmission in this order.
  • a power source such as an engine
  • a fluid transmission element such as a torque converter
  • an automatic transmission in this power train, the target input rotation speed of the transmission is determined from the accelerator opening and the vehicle speed based on a preset shift line in consideration of power performance, fuel consumption, vehicle type, etc. So that the actual transmission ratio matches the target transmission ratio obtained by dividing the transmission target input rotational speed by the transmission output rotational speed (vehicle speed). Shift control is performed.
  • the planned shift line is not universal in order to set general driving in mind, and in some cases, the planned shift line is changed, and shift control based on the changed shift line is necessary.
  • Patent Document 1 As a shift control technique based on the shift line thus changed, for example, the one described in Patent Document 1 has been proposed.
  • the torque converter cannot be locked up (directly connected between input and output elements) due to engine cooling operation, etc.
  • the driver's engine is changed by forcibly downshifting the automatic transmission toward the low gear ratio by changing the shift line instead of shifting control based on the planned shift line. It is to realize the brake demand.
  • the automatic transmission shift control is performed only with the aim of achieving the shift line change purpose, whether or not the change purpose of the shift line is engine brake compensation as in Patent Document 1, so that the planned shift Compared with the shift control based on the line, there is a problem that the fuel consumption is greatly deteriorated and the purpose cannot be achieved unless the fuel consumption is sacrificed.
  • the present invention provides a shift control device for an automatic transmission that can perform the shift control without deteriorating the fuel consumption, and thus without sacrificing the fuel consumption, even if the shift control does not use a planned shift line. Therefore, an object of the present invention is to solve the problems of the conventional transmission control device.
  • the shift control device for an automatic transmission is configured as follows. First, to explain a shift control device for an automatic transmission that is a premise of the present invention, Shift control of the automatic transmission in the power train, in which the power source, the fluid transmission element, and the automatic transmission are drive-coupled in this order, is performed.
  • the present invention has a configuration in which a fluid transmission element required output calculation means, a fluid transmission element total efficiency calculation means, a power source efficiency calculation means, and a power train efficiency calculation means are provided for the speed change control device as described below. It is characterized by.
  • the fluid transmission element required output calculating means is configured to calculate the automatic transmission from the fluid transmission element based on the output of the power source obtained based on the slip state between the input and output elements of the fluid transmission element and the total efficiency of the fluid transmission element. The necessary output to be output to is calculated.
  • the fluid transmission element total efficiency calculating means obtains a speed ratio and a torque ratio between the input and output elements of the fluid transmission element, which is the calculated output of the fluid transmission element, for each output rotation of the fluid transmission element. The total efficiency of the fluid transmission element is calculated for each output rotation of the fluid transmission element from the torque ratio.
  • the power source efficiency calculating means obtains the power source rotation of the power source necessary for realizing the required output of the fluid transmission element for each output rotation of the fluid transmission element, and the power source rotation and the fluid transmission element From the output torque of the power source obtained based on the slip state between the input and output elements, the efficiency of the power source required to realize the required output of the fluid transmission element is calculated for each output rotation of the fluid transmission element Is.
  • the power train efficiency calculating means obtains the power tray efficiency for each output rotation of the fluid transmission element by multiplying the fluid transmission element total efficiency and the power source efficiency.
  • the speed change control device of the present invention controls the speed change of the automatic transmission with the output rotation of the fluid transmission element having the highest power train efficiency obtained by the power train efficiency calculating means as the target input rotation of the automatic transmission. Constitute.
  • the total efficiency of the fluid transmission element and the efficiency of the power source required to realize the required output of the fluid transmission element in accordance with the current operation state are determined by fluid transmission.
  • the required output of the fluid transmission element can be realized under the shift control that maximizes the efficiency of the entire power train considering both the efficiency of the fluid transmission element and the efficiency of the power source. Even when the automatic transmission shifts, the shift can be performed without deteriorating the fuel consumption and without sacrificing the fuel consumption.
  • FIG. 1 is a system diagram schematically showing a power train of a vehicle equipped with a belt-type continuously variable transmission including a speed change control device according to an embodiment of the present invention, together with its control system.
  • 2 is a flowchart showing a shift control program executed by a transmission controller in FIG.
  • FIG. 3 is an explanatory diagram showing, as a functional block diagram, a program portion for obtaining a target turbine speed in the shift control program shown in FIG. It is a performance diagram of a torque converter.
  • FIG. 3 is a characteristic diagram showing change characteristics of torque converter total efficiency and engine efficiency obtained in FIGS.
  • FIG. 3 is a characteristic diagram showing a change characteristic of power train efficiency obtained in FIGS.
  • FIG. 4 is an operation time chart showing shift control according to the embodiment shown in FIGS. 1 to 3 in comparison with conventional shift control.
  • V-belt type continuously variable transmission (automatic transmission) 2 Primary pulley 3 Secondary pulley 4 V-belt 5 Engine (power source) 6 Lock-up torque converter (fluid transmission element) 7 Forward / reverse switching mechanism 8 Output shaft 9 Final reduction gear set 10 Differential gear unit 21 Shift control hydraulic circuit 22 Transmission controller 23 Vehicle speed sensor 24 Turbine rotation sensor 25 Engine rotation sensor 26 Acceleration sensor 27 Inhibitor switch 29 Engine rotation sensor 31 Engine torque Calculation section 32 Engine output calculation section 33 Torque converter total efficiency calculation section 34 Torque converter required output calculation section 35 Speed ratio calculation section 36 Torque ratio calculation section 37 Torque converter total efficiency calculation section 38 Engine speed calculation section 39 Engine efficiency calculation section 41 Powertrain efficiency calculator 42 Target turbine speed selector
  • FIG. 1 schematically shows a power train of a vehicle equipped with a belt-type continuously variable transmission equipped with a transmission control device according to an embodiment of the present invention together with its control system.
  • This belt-type continuously variable transmission 1 has a primary pulley 2 and a secondary pulley 3 arranged so that both pulley V grooves are aligned in a plane perpendicular to the axis, and the endless belt 4 is placed in the V groove of these pulleys 2 and 3. It is generally composed by spanning.
  • An engine 5 as a power source is disposed coaxially with the primary pulley 2, and a torque converter 6 and a forward / reverse switching mechanism 7 are interposed between the engine 5 and the primary pulley 2 in this order from the engine 5 side.
  • the torque converter 6 corresponds to a fluid transmission element in the present invention, and couples an input element pump impeller 6p to the engine 5.
  • the working fluid in the torque converter collides with the turbine runner 6t, which is the output element, due to centrifugal force, and then returns to the pump impeller 6p via the stator 6s. Fluid drive under torque fluctuation absorption.
  • the stator 6s mounted on the fixed shaft via the one-way clutch 6o functions as a reaction force element, and the turbine runner 6t can be fluid-driven while increasing the torque.
  • the torque converter 6 is a lock-up torque converter that can be brought into a lock-up state in which the turbine runner 6t and the pump impeller 6p are directly connected by fastening the lock-up clutch 6c. Needless to say, the torque converter 6 does not have the above-described torque increasing function in the lock-up state by the engagement of the lock-up clutch 6c.
  • the forward / reverse switching mechanism 7 includes a double pinion planetary gear set 7a as a main component, and a turbine runner 6t is coupled to the sun gear so that output rotation from the torque converter 6 is input.
  • the forward / reverse switching mechanism 7 further couples the carrier of the double pinion planetary gear set 7a to the primary pulley 2, the forward clutch 7b directly connecting between the sun gear and the carrier of the double pinion planetary gear set 7a, and the double pinion planetary gear set 7a.
  • Each has a reverse brake 7c for fixing the ring gear.
  • the forward / reverse switching mechanism 7 is in a neutral state in which the engine rotation from the engine 5 via the torque converter 6 is not transmitted to the primary pulley 2. From this state, when the forward clutch 7b is engaged, the engine rotation from the engine 5 via the torque converter 6 can be transmitted as it is to the primary pulley 2 as forward rotation. When the reverse brake 7c is engaged, the engine rotation from the engine 5 via the torque converter 6 can be transmitted to the primary pulley 2 as reverse rotation under reverse deceleration.
  • the rotation to the primary pulley 2 is transmitted to the secondary pulley 3 via the belt 4, and the rotation of the secondary pulley 3 is then illustrated via the output shaft 8, the final reduction gear set 9 and the differential gear device 10 coupled to the secondary pulley 3. It reaches left and right drive wheels (not shown) and is used for running the vehicle.
  • one of the opposing sheaves forming the V-grooves of the primary pulley 2 and the secondary pulley 3 is fixed.
  • Sheaves 2a and 3a are used, and the other sheaves 2b and 3b are movable sheaves that can be displaced in the axial direction.
  • Each of these movable sheaves 2b and 3b supplies a primary pulley pressure Ppri and a secondary pulley pressure Psec, each having a line pressure controlled in detail as described later in detail, to the primary pulley chamber 2c and the secondary pulley chamber 3c, respectively.
  • the fixed sheaves 2a and 3a are energized.
  • the belt 4 is clamped between the opposed sheaves 2a, 2b and 3a, 3b to enable the power transmission between the primary pulley 2 and the secondary pulley 3.
  • the endless V-belt 4 has an increased winding diameter with respect to the primary pulley 2 and a reduced winding diameter with respect to the secondary pulley 3, and the continuously variable transmission 1 is changed from the lowest speed ratio selection state shown in FIG. It is possible to upshift under a continuously variable transmission toward the highest gear ratio selection state not shown.
  • the movable sheave 2b of the primary pulley 2 is moved away from the fixed sheave 2a to increase the pulley V groove width
  • the movable sheave 3b of the secondary pulley 3 is brought closer to the fixed sheave 3a to narrow the pulley V groove width.
  • the endless belt 4 has a smaller winding diameter with respect to the primary pulley 2 and an increased winding diameter with respect to the secondary pulley 3, and the continuously variable transmission 1 is shown in FIG. 1 from the highest gear ratio selection state (not shown). It is possible to downshift under a continuously variable transmission toward the lowest gear ratio selection state.
  • the outputs of the primary pulley pressure Ppri and the secondary pulley pressure Psec are the output of the engagement hydraulic pressure of the forward clutch 7b to be engaged when the forward travel range is selected and the reverse brake 7c to be engaged when the reverse travel range is selected, and when the torque converter 6 is locked up These are controlled by the shift control hydraulic circuit 21 together with the output of the engagement hydraulic pressure of the lockup clutch 6c to be engaged.
  • the transmission control hydraulic circuit 21 performs the control in response to a signal from the transmission controller 22.
  • the transmission controller 22 receives a signal from the vehicle speed sensor 23 that detects the vehicle speed VSP, and a turbine rotation sensor 24 that detects the rotation speed of the turbine runner 6t (the turbine rotation speed that is the output rotation of the torque converter 6) Nt.
  • a signal from the engine rotation sensor 25 that detects the engine speed Ne that is the input rotation of the torque converter 6, and a signal from the accelerator opening sensor 26 that detects the accelerator pedal depression amount (accelerator opening) APO Then, a signal from the inhibitor switch 27 for detecting the selected range position of the continuously variable transmission 1 is input.
  • the transmission controller 22 in the present embodiment executes the control program of FIG. 2 based on the various input information described above, and controls the transmission of the continuously variable transmission 1 as follows. Although not shown in FIG. 2, the transmission controller 22 sets the continuously variable transmission 1 in a state corresponding to the selected range according to the selected range signal from the inhibitor switch 28 as follows.
  • the transmission controller 22 While the non-traveling range such as the P (parking) range and the N (stopping) range is selected, the transmission controller 22 does not supply the engagement hydraulic pressure from the transmission control hydraulic circuit 21 to the forward clutch 7b and the reverse brake 7c. Release of the forward clutch 7b and the reverse brake 7c brings the continuously variable transmission 1 into a neutral state where no power is transmitted.
  • the transmission controller 22 supplies the engagement hydraulic pressure only to the forward clutch 7b from the transmission control hydraulic circuit 21, and the continuously variable transmission 1 is rotated forward by the engagement ( Forward rotation). While the reverse travel range such as the R range is selected, the transmission controller 22 supplies the engagement hydraulic pressure only to the reverse brake 7c from the transmission control hydraulic circuit 21, and the continuously variable transmission 1 is rotated backward by the engagement. Reverse rotation)
  • the speed change control program of FIG. 2 is for the case where the forward travel range is being selected and the transmission controller 22 is making the continuously variable transmission 1 in the forward rotational transmission state by engaging the forward clutch 7b.
  • step S11 of FIG. 2 it is checked whether or not the torque converter 6 is allowed to be locked up.
  • the lock-up permission condition is, for example, a high rotation / low torque range after the warm-up operation and where the torque fluctuation absorbing function of the torque converter 6 is unnecessary.
  • step S11 When it is determined in step S11 that the lock-up permission state is set, the transmission controller 22 supplies hydraulic pressure to the lock-up clutch 6c from the shift control hydraulic circuit 21 so as to match the determination result, and the lock-up clutch 6c is engaged.
  • the torque converter 6 is brought into a lock-up state in which the input / output elements 6t and 6p are directly connected, and the control proceeds to step S12.
  • step S12 normal shift control based on a planned shift line is mainly performed. That is, the target input rotational speed of the continuously variable transmission 1 is obtained from the vehicle speed VSP and the accelerator opening APO based on the planned shift line, and the target transmission input rotational speed is determined based on the rotational speed of the secondary pulley 3 (current vehicle speed VSP To obtain the primary gear ratio Ppri and secondary pulley pressure Psec corresponding to the target gear ratio from the gear shift control hydraulic circuit 21 to the primary pulley chamber 2c and the secondary pulley chamber 3c, respectively. Thus, the continuously variable transmission 1 is shifted toward the target gear ratio.
  • step S11 for example, when it is determined that the lockup permission state is not reached because of cold operation, the transmission controller 22 supplies hydraulic pressure from the shift control hydraulic circuit 21 to the lockup clutch 6c so as to match the determination result.
  • the release of the lockup clutch 6c brings the torque converter 6 into a converter state in which the direct connection between the input / output elements 6t and 6p is released, and the control proceeds to step S13 to step S18, and the block diagram of FIG.
  • the target turbine speed tNt is obtained by the processing shown, and the continuously variable transmission 1 is shift-controlled so that the target turbine speed tNt is achieved under the current vehicle speed VSP.
  • step S13 engine torque calculation unit 31
  • the engine torque Te 100 Nm obtained by the calculation in step S13 (engine torque calculation unit 31) is used to control the line pressure used as the shift control source pressure in the shift control of the continuously variable transmission 1, as shown in FIG.
  • the line pressure can be made the minimum necessary pressure value that does not cause the continuously variable transmission 1 to slip, and energy The transmission efficiency of the continuously variable transmission 1 can be increased while minimizing the loss.
  • This torque converter required output Pt is the power necessary to realize the travel desired by the driver in the current driving state, and is unchanged even if the engine speed Ne or the engine torque Te changes. Therefore, step S14 corresponds to the fluid transmission element required output calculating means in the present invention.
  • step S15 the turbine speed of the torque converter 6 required to realize the torque converter required output Pt (17 KW) by the calculation in the speed ratio calculation unit 35 in FIG.
  • the speed ratio e (Nt) for each Nt is obtained.
  • the speed ratio e (Nt) is calculated and mapped in advance for each turbine speed Nt, and obtained by map search. Is preferable in terms of reducing the calculation load.
  • step S15 as shown in (b), for each turbine revolution speed Nt of the torque converter 6 necessary for realizing the torque converter required output Pt (17 KW) by the calculation in the torque ratio calculation unit 36 in FIG.
  • the torque ratio t (Nt) is obtained.
  • the torque ratio t (Nt) is calculated and mapped in advance for each turbine rotational speed Nt. Finding is preferable in the sense of reducing the calculation load.
  • step S15 as shown in (c), and as shown in the torque converter total efficiency calculation section 37 in FIG. 3, the turbine rotation of the torque converter 6 necessary to realize the torque converter required output Pt (17 KW).
  • the total efficiency Et (Nt) for realizing the required torque converter output for each turbine speed Nt is as shown by the solid line in FIG. 5 and is preferably calculated and mapped in advance by the above calculation and obtained by map search. .
  • step S16 first, as shown as (a), for each turbine speed Nt necessary for realizing the torque converter required output Pt (17 KW) by the calculation in the engine speed calculation unit 38 in FIG. Obtain the engine speed Ne (Nt).
  • this engine speed Ne (Nt) is calculated and mapped in advance for each turbine speed Nt, It is preferable to obtain by searching.
  • step S16 as shown in (b) and (c), for each turbine rotation speed Nt required to realize the torque converter required output Pt (17 KW) by the calculation in the engine efficiency calculation unit 39 in FIG.
  • the engine efficiency Ee (Nt) is calculated as follows.
  • the engine torque required to realize the torque converter required output Pt (17KW) is calculated by ⁇ ⁇ Ne (Nt) for each engine speed Ne (Nt) described above. Then, the map is searched for the fuel consumption rate from the engine characteristic map based on the engine torque ⁇ ⁇ Ne (Nt) ⁇ and the engine speed Ne (Nt). Next, the fuel (gasoline) specific gravity is 0.75, the fuel (gasoline) calorie is 44KJ / g, and the unit conversion factor of the fuel (gasoline) is multiplied by the fuel (gasoline) work rate. The fuel (gasoline) output is obtained, and the engine output ⁇ Pt (17 KW) / Et (Nt) ⁇ is obtained by calculating the torque converter required output Pt (17 KW) by the torque converter total efficiency Et (Nt).
  • step S16 corresponds to the power source efficiency calculating means in the present invention.
  • the engine efficiency Ee (Nt) is obtained by dividing the engine output by the consumed gasoline output for each turbine speed Nt ⁇ engine speed Ne (Nt) ⁇ . be able to.
  • the engine efficiency Ee (Nt) is as shown by a broken line in FIG. 5, and is preferably calculated in advance by the above calculation and mapped, and is obtained by map search.
  • step S16 Since the engine 1 varies in operating performance and fuel consumption depending on the cooling water temperature TEMP, the above-described calculation in step S16 is naturally performed for each engine cooling water temperature (TEMP). In addition, it goes without saying that the calculation in step S16 is advantageously performed by mapping the values obtained by calculation in advance for each cooling water temperature (TEMP) and obtaining the map based on this. At this time, if there is no map corresponding to the engine coolant temperature TEMP and the engine coolant temperature TEMP is an intermediate temperature between the front and rear maps, linear interpolation based on the two map search values respectively obtained from the front and rear maps To obtain the engine efficiency Ee (Nt).
  • Ee engine efficiency
  • step S17 the power train efficiency Ea (Nt) for each turbine speed Nt necessary to realize the torque converter required output Pt (17KW) is obtained.
  • Multiplication of the torque converter total efficiency Et (Nt) obtained in step S15 (calculation units 34 to 36) and the engine efficiency Ee (Nt) obtained in step S16 (calculation units 38 and 39) ⁇ Ea (Nt) Calculated by Et (Nt) ⁇ Ee (Nt) ⁇ . Therefore, step S17 corresponds to the power train efficiency calculating means in the present invention.
  • the power train efficiency Ea (Nt) for each turbine rotation speed Nt is as shown in FIG. 6 and can be calculated and mapped in advance by the above calculation and obtained by map search. Since the operation performance and fuel consumption change, the calculation for the power train efficiency Ea (Nt) is more effective to do this online.
  • step S18 the power train efficiency Ea (Nt) for each turbine speed Nt necessary to realize the torque converter required output Pt (17 KW).
  • the transmission controller 22 in FIG. 1 calculates the target speed ratio by dividing the target turbine speed tNt by the speed of the secondary pulley 3 (obtained from the current vehicle speed VSP).
  • the continuously variable transmission 1 is changed from the current actual gear ratio to the target gear ratio. Shift toward
  • the torque converter total efficiency Et (Nt) and the engine efficiency Ee (Nt) required to realize the required output Pt of the torque converter 6 corresponding to the current operating state are converted to the torque converter.
  • the torque converter required output Pt can be realized under shift control so that the efficiency of the entire power train considering the efficiency of the torque converter 6 and the efficiency of the engine 5 is the highest as shown by the arrows in FIG.
  • the shift can be performed without deteriorating the fuel consumption and without sacrificing the fuel consumption.
  • the engine efficiency Ee (Nt) is determined for each engine cooling water temperature TEMP and contributes to the calculation of the power train efficiency Ea (Nt). Even if the engine 1 has different operating performance and fuel consumption depending on the cooling water temperature TEMP, the above effects can be reliably achieved without being affected by the engine cooling water temperature TEMP.
  • FIG. 1 is a speed change operation time chart at the time of start acceleration in which the vehicle speed VSP increases as shown in the figure.
  • the torque converter 6 is locked up, the engine speed Ne changes as indicated by the solid line b with respect to the turbine speed Nt indicated by the broken line a, and the torque is the differential rotation between the turbine speed Nt and the engine speed Ne. Since the slip rotation of the converter 6 is small, the efficiency is good, and the gear ratio exhibits a change with time indicated by a solid line c.
  • the engine speed Ne is indicated by a solid line e with respect to the turbine speed Nt indicated by the broken line d (same as indicated by the broken line a) under the traveling condition in which the torque converter 6 cannot be locked up.
  • the engine speed Ne changes significantly and becomes higher than the engine speed Ne indicated by the solid line b, and the slip rotation of the torque converter 6, which is the differential rotation between the turbine speed Nt and the engine speed Ne, is large, resulting in poor efficiency.
  • the target shift ratio corresponding to the target turbine speed tNt at which the power train efficiency Ea (Nt) is maximum. Will be changed.
  • the engine speed Ne changes as shown by the solid line h to be lower than the engine speed Ne shown by the solid line e with respect to the turbine speed Nt shown by the broken line g (same as shown by the broken lines a and d).
  • the slip rotation of the torque converter 6, which is the differential rotation between the turbine rotation speed Nt and the engine rotation speed Ne, can be reduced, and the efficiency can be increased.
  • the fuel consumption rate is 9.6 L / h.
  • the idea of the present invention can be similarly applied even when the automatic transmission is a stepped automatic transmission. It is.
  • the target gear ratio obtained from the target turbine speed tNt may not match that of the selectable gear stage.
  • the shift control is performed with the gear position closest to the gear ratio as the target gear position.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 31でトルコン速度比e(タービン回転数Nt/エンジン回転数Ne)からトルク容量係数τおよびトルク比tを求め、エンジントルクTe=τ×Ne2を演算する。32でエンジン出力Pe=Te×Neを演算し、33でトルコン全効率Et=e×tを演算し、34でトルコン必要出力Pt=Pe×Etを演算する。35でPt実現用のNtごとの速度比e(Nt)を求め、36でPt実現用のNtごとのトルク比t(Nt)を求め、37でPt実現用のNtごとのトルコン全効率Et(Nt)=e(Nt)×t(Nt)を演算する。38でPt実現用のNtごとのエンジン回転数Ne(Nt)を求める。39でPt実現用のNtごとのエンジン効率Ee(Nt)を求める。41でPt実現用のNtごとのパワートレーン効率Ea(Nt)=Et(Nt)×Ee(Nt)を演算する。42でPt実現用のパワートレーン効率Ea(Nt)が最高となるタービン回転数Ntを目標タービン回転数tNtとして変速制御に資する。

Description

自動変速機の変速制御装置
 本発明は、ベルト式無段変速機やトロイダル型無段変速機のような無段変速機に限られず、有段式自動変速機をも含む自動変速機の変速制御装置に関するものである。
 自動変速機を含んだパワートレーンは、エンジン等の動力源と、トルクコンバータ等の流体伝動要素と、自動変速機とを、これらの順に駆動結合して構成するのが普通である。
 このパワートレーンにおける自動変速機を変速制御するに当たっては、動力性能や燃費、そして車種などを考慮しつつ予め設定しておいた変速線に基づき、アクセル開度および車速から変速機の目標入力回転数を求め、この変速機目標入力回転数が達成されるよう、つまり変速機目標入力回転数を変速機出力回転数(車速)で除算して得られる目標変速比に実変速比が一致するよう当該変速制御を行う。
 ところで上記予定の変速線は、一般的な走行を念頭において設定するために万能ではなく、場合によっては予定の変速線を変更し、変更した変速線に基づく変速制御が必要である。
 かように変更した変速線に基づく変速制御技術としては従来、例えば特許文献1に記載のようなものが提案されている。
 この提案技術は、エンジン、トルクコンバータ、および無段変速機の順次配列になるパワートレーンにおいて、エンジン冷機運転などのためトルクコンバータをロックアップする(入出力要素間を直結する)ことができない走行中に大きなエンジンブレーキ要求が発生した場合、自動変速機を予定の変速線に基づく変速制御に代えて、変速線の変更により強制的にロー側変速比に向けてダウンシフトさせることにより運転者のエンジンブレーキ要求を実現するというものである。
特開平10-103493号公報
 しかし従来は、変速線の変更目的が特許文献1のようなエンジンブレーキ補償かどうかは別として、変速線の変更目的達成のみを念頭において自動変速機を変速制御するものであるため、予定の変速線に基づく変速制御に比べて大幅な燃費の悪化を招き、燃費を犠牲にしないと目的を達成することができないという問題があった。
 本発明は、予定の変速線を用いない変速制御であっても、燃費の悪化を招くことなく、従って燃費を犠牲にすることなく当該変速制御を行い得るようにした自動変速機の変速制御装置を提案し、もって上記従来の変速制御装置が抱えていた問題を解消することを目的とする。
 この目的のため、本発明による自動変速機の変速制御装置は、これを以下のごとくに構成する。
 先ず、本発明の前提となる自動変速機の変速制御装置を説明するに、これは、
 動力源、流体伝動要素および自動変速機を、これらの順に駆動結合してなるパワートレーン中の自動変速機を変速制御するものである。
 本発明は、かかる変速制御装置に対し、以下のような流体伝動要素必要出力演算手段と、流体伝動要素全効率演算手段と、動力源効率演算手段と、パワートレーン効率演算手段とを設けた構成に特徴づけられる。
 流体伝動要素必要出力演算手段は、前記流体伝動要素の入出力要素間におけるスリップ状態に基づいて求めた前記動力源の出力および前記流体伝動要素の全効率から、該流体伝動要素より前記自動変速機へ出力すべき必要出力を演算するものである。
 また流体伝動要素全効率演算手段は、上記演算した流体伝動要素必要出力となる前記流体伝動要素の入出力要素間における速度比およびトルク比を流体伝動要素の出力回転ごとに求め、これら速度比およびトルク比から該流体伝動要素の全効率を流体伝動要素の出力回転ごとに演算するものである。
 そして動力源効率演算手段は、前記流体伝動要素必要出力を実現するのに必要な前記動力源の動力源回転を流体伝動要素の出力回転ごとに求めると共に、該動力源回転、および前記流体伝動要素の入出力要素間におけるスリップ状態に基づいて求めた前記動力源の出力トルクから、前記流体伝動要素必要出力を実現するのに必要な前記動力源の効率を流体伝動要素の出力回転ごとに演算するものである。
 そしてパワートレーン効率演算手段は、前記流体伝動要素全効率および動力源効率の乗算により、流体伝動要素の出力回転ごとのパワートレー効率を求めるものである。
 本発明の変速制御装置は、上記のパワートレーン効率演算手段で求めたパワートレーン効率が最も高くなる流体伝動要素の出力回転を前記自動変速機の目標入力回転として該自動変速機を変速制御するよう構成する。
 上記した本発明による自動変速機の変速制御装置にあっては、現在の運転状態に応じた流体伝動要素必要出力を実現するのに必要な流体伝動要素の全効率および動力源の効率を流体伝動要素の出力回転ごとに求め、これら流体伝動要素全効率および動力源効率の乗算により得られたパワートレーン効率が最も高くなる流体伝動要素の出力回転を自動変速機の目標入力回転として変速制御するため、
 流体伝動要素の効率および動力源の効率の双方を考慮したパワートレーン全体としての効率が最も高くなるような変速制御下に流体伝動要素必要出力を実現し得ることとなり、予定の変速線から外れた自動変速機の変速に当たっても、燃費の悪化を招くことなく、従って燃費を犠牲にすることなく当該変速を行うことができる。
本発明の一実施例になる変速制御装置を具えたベルト式無段変速機搭載車のパワートレーンを、その制御系と共に略示するシステム図である。 図1における変速機コントローラが実行する変速制御プログラムを示すフローチャートである。 図2に示した変速制御プログラムのうち、目標タービン回転数を求めるプログラム部分を機能別ブロック線図として示した説明図である。 トルクコンバータの性能線図である。 図1,2において求めるトルコン全効率およびエンジ効率の変化特性を示す特性線図である。 図1,2において求めるパワートレーン効率の変化特性を示す特性線図である。 図1~3に示す実施例による変速制御を、従来の変速制御と比較して示す動作タイムチャートである。
 1 Vベルト式無段変速機(自動変速機)
 2 プライマリプーリ
 3 セカンダリプーリ
 4 Vベルト
 5 エンジン(動力源)
 6 ロックアップトルクコンバータ(流体伝動要素)
 7 前後進切り換え機構
 8 出力軸
 9 終減速歯車組
 10 ディファレンシャルギヤ装置
 21 変速制御油圧回路
 22 変速機コントローラ
 23 車速センサ
 24 タービン回転センサ
 25 エンジン回転センサ
 26 アクセルセンサ
 27 インヒビタスイッチ
 29 エンジン回転センサ
 31 エンジントルク演算部
 32 エンジン出力演算部
 33 トルクコンバータ全効率演算部
 34 トルクコンバータ必要出力演算部
 35 速度比演算部
 36 トルク比演算部
 37 トルクコンバータ全効率演算部
 38 エンジン回転数演算部
 39 エンジン効率演算部
 41 パワートレーン効率演算部
 42 目標タービン回転数選択部
 以下、この発明の実施例を添付の図面に基づいて説明する。
<構成>
 図1は、本発明の一実施例になる変速制御装置を具えたベルト式無段変速機搭載車のパワートレーンを、その制御系と共に略示するもので、1は、ベルト式無段変速機を示す。
 このベルト式無段変速機1はプライマリプーリ2およびセカンダリプーリ3を、両者のプーリV溝が軸直角面内に整列するよう配して具え、これらプーリ2,3のV溝に無終端ベルト4を掛け渡して概ね構成する。
 プライマリプーリ2に同軸に動力源としてのエンジン5を配置し、このエンジン5およびプライマリプーリ2間に、エンジン5の側から順にトルクコンバータ6および前後進切り換え機構7を介在させる。
 トルクコンバータ6は本発明における流体伝動要素に相当し、入力要素であるポンプインペラ6pをエンジン5に結合する。
 ポンプインペラ6pをエンジン駆動により回転させると、トルクコンバータ内の作動流体が遠心力により、出力要素であるタービンランナ6tに衝突した後、ステータ6sを経てポンプインペラ6pに戻ることで、タービンランナ6tをトルク変動吸収下に流体駆動する。
 この間、ワンウェイクラッチ6oを介して固定軸上に載置されているステータ6sが反力要素として機能し、タービンランナ6tをトルク増大下に流体駆動させることができる。
 なおトルクコンバータ6は、ロックアップクラッチ6cの締結により、タービンランナ6tおよびポンプインペラ6p間を直結したロックアップ状態にされ得るロックアップ式トルクコンバータとする。
 トルクコンバータ6は、ロックアップクラッチ6cの締結によるロックアップ状態で、上記のトルク増大機能を持たなくなるのは言うまでもない。
 前後進切り換え機構7は、ダブルピニオン遊星歯車組7aを主たる構成要素とし、そのサンギヤにタービンランナ6tを結合して、トルクコンバータ6からの出力回転が入力されるようになす。
 前後進切り換え機構7は更に、ダブルピニオン遊星歯車組7aのキャリアをプライマリプーリ2に結合し、ダブルピニオン遊星歯車組7aのサンギヤおよびキャリア間を直結する前進クラッチ7b、およびダブルピニオン遊星歯車組7aのリングギヤを固定する後進ブレーキ7cをそれぞれ具える。
 かくて前後進切り換え機構7は、前進クラッチ7bおよび後進ブレーキ7cを共に解放するとき、エンジン5からトルクコンバータ6を経由したエンジン回転をプライマリプーリ2に伝達しない中立状態となる。
 この状態から、前進クラッチ7bを締結する時、エンジン5からトルクコンバータ6を経由したエンジン回転をそのまま前進回転としてプライマリプーリ2に伝達することができ、
 後進ブレーキ7cを締結する時、エンジン5からトルクコンバータ6を経由したエンジン回転を逆転減速下に後進回転としてプライマリプーリ2へ伝達することができる。
 プライマリプーリ2への回転はベルト4を介してセカンダリプーリ3に伝達され、セカンダリプーリ3の回転はその後、セカンダリプーリ3に結合した出力軸8、終減速歯車組9およびディファレンシャルギヤ装置10を経て図示せざる左右駆動車輪に至り、車両の走行に供される。
 上記の動力伝達中にプライマリプーリ2およびセカンダリプーリ3間におけるプーリ回転比(変速比)を変更可能にするために、プライマリプーリ2およびセカンダリプーリ3のV溝を形成する対向シーブのうち一方を固定シーブ2a,3aとし、他方のシーブ2b,3bを軸線方向へ変位可能な可動シーブとする。
 これら可動シーブ2b,3bはそれぞれ、詳しくは後述のごとくに制御されるライン圧を元圧とするプライマリプーリ圧Ppriおよびセカンダリプーリ圧Psecをそれぞれ、プライマリプーリ室2cおよびセカンダリプーリ室3cへ供給することにより、固定シーブ2a,3aに向け附勢する。
 これによりベルト4を対向シーブ2a,2b間および3a,3b間に挟圧して、プライマリプーリ2およびセカンダリプーリ3間での前記動力伝達を可能にする。
 プライマリプーリ2の可動シーブ2bを固定シーブ2aに対し接近させてプーリV溝幅を狭くすると同時に、セカンダリプーリ3の可動シーブ3bを固定シーブ3aから遠ざけてプーリV溝幅を広くするにつれ、
 無終端Vベルト4は、プライマリプーリ2に対する巻き掛け径を増大されると共に、セカンダリプーリ3に対する巻き掛け径を小さくされ、無段変速機1は図1に示す最ロー変速比選択状態から、図示せざる最ハイ変速比選択状態に向け無段変速下にアップシフト可能である。
 逆に、プライマリプーリ2の可動シーブ2bを固定シーブ2aから遠ざけてプーリV溝幅を広くすると同時に、セカンダリプーリ3の可動シーブ3bを固定シーブ3aに対し接近させてプーリV溝幅を狭くするにつれ、
 無終端ベルト4は、プライマリプーリ2に対する巻き掛け径を小さくされると共に、セカンダリプーリ3に対する巻き掛け径を増大され、無段変速機1は図示せざる最ハイ変速比選択状態から図1に示す最ロー変速比選択状態に向け無段変速下にダウンシフト可能である。
<変速制御システム>
 上記ベルト式無段変速機1の変速制御に際しては、後述のごとくに制御するライン圧を元圧とし、目標変速比に対応して発生させたセカンダリプーリ圧Psecと、ライン圧をそのまま使用するプライマリプーリ圧Ppriとの間における差圧により両プーリ2,3のV溝幅を変更して、これらプーリ2,3に対するベルト4の巻き付き半径を連続的に変化させることで目標変速比を実現することができる。
 プライマリプーリ圧Ppriおよびセカンダリプーリ圧Psecの出力は、前進走行レンジ選択時に締結すべき前進クラッチ7bおよび後進走行レンジ選択時に締結すべき後進ブレーキ7cの締結油圧の出力、並びにトルクコンバータ6のロックアップ時に締結すべきロックアップクラッチ6cの締結油圧の出力と共に、変速制御油圧回路21によりこれらを制御する。
 この変速制御油圧回路21は変速機コントローラ22からの信号に応答して当該制御を行うものとする。
 このため変速機コントローラ22には、車速VSPを検出する車速センサ23からの信号と、タービンランナ6tの回転数(トルクコンバータ6の出力回転であるタービン回転数)Ntを検出するタービン回転センサ24からの信号と、トルクコンバータ6の入力回転であるエンジン回転数Neを検出するエンジン回転センサ25からの信号と、アクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ26からの信号と、無段変速機1の選択レンジ位置を検出するインヒビタスイッチ27からの信号とを入力する。
<変速制御>
 本実施例における変速機コントローラ22は、上記した各種入力情報をもとに図2の制御プログラムを実行して、以下のように無段変速機1を変速制御するものとする。
 なお、図2では示さなかったが変速機コントローラ22は、インヒビタスイッチ28からの選択レンジ信号に応じ、以下のごとくに無段変速機1を選択レンジ対応の状態にする。
 P(駐車)レンジやN(停車)レンジのような非走行レンジが選択されている間、変速機コントローラ22は変速制御油圧回路21から前進クラッチ7bおよび後進ブレーキ7cへ締結油圧を供給せず、これら前進クラッチ7bおよび後進ブレーキ7cの解放により無段変速機1を動力伝達が行われない中立状態にする。
 Dレンジのような前進走行レンジが選択されている間、変速機コントローラ22は変速制御油圧回路21から前進クラッチ7bのみに締結油圧を供給して、その締結により無段変速機1を前進回転(正回転)伝動状態となす。
 Rレンジのような後進走行レンジが選択されている間、変速機コントローラ22は変速制御油圧回路21から後進ブレーキ7cのみに締結油圧を供給して、その締結により無段変速機1を後進回転(逆回転)伝動状態となす。
 図2の変速制御プログラムは、前進走行レンジ選択中で変速機コントローラ22が前進クラッチ7bの締結により無段変速機1を前進回転伝動状態にしている場合のものである。
 図2のステップS11においては、トルクコンバータ6のロックアップが許可される運転状態か否かをチェックする。ロックアップ許可条件としては例えば、暖機運転後であって、且つトルクコンバータ6の前記トルク変動吸収機能が不要な高回転・低トルク域などである。
 ステップS11でロックアップ許可状態と判定する場合は、当該判定結果に符合するよう変速機コントローラ22は、変速制御油圧回路21からロックアップクラッチ6cに油圧を供給して当該ロックアップクラッチ6cの締結によりトルクコンバータ6を入出力要素6t,6p間が直結されたロックアップ状態となし、制御をステップS12に進める。
 このステップS12においては予定の変速線に基づく通常の変速制御を主に遂行する。
 つまり当該予定の変速線を基に車速VSPおよびアクセル開度APOから、無段変速機1の目標入力回転数を求め、この目標変速機入力回転数をセカンダリプーリ3の回転数(現在の車速VSPから求まる)で除算して目標変速比を演算し、この目標変速比に対応したプライマリプーリ圧Ppriおよびセカンダリプーリ圧Psecをそれぞれ、変速制御油圧回路21からプライマリプーリ室2cおよびセカンダリプーリ室3cへ供給することで、無段変速機1を目標変速比に向け変速させる。
 ステップS11で、例えば冷機運転中のためにロックアップ許可状態でないと判定する場合は、当該判定結果に符合するよう変速機コントローラ22は、変速制御油圧回路21からロックアップクラッチ6cに油圧を供給せず、当該ロックアップクラッチ6cの解放によりトルクコンバータ6を入出力要素6t,6p間の直結が解かれたコンバータ状態となし、制御をステップS13~ステップS18に進めて、図3のブロック線図で示す処理により目標タービン回転数tNtを求め、現在の車速VSPのもとでこの目標タービン回転数tNtが達成されるよう無段変速機1を変速制御する。
 ステップS13~S18による目標タービン回転数tNtの求め方を、図3のブロック線図をも参照しつつ以下に説明する。
 ステップS13においては、先ずエンジン回転数Ne(2184rpm)およびタービン回転数Nt(1200rpm)を読み込み、図3のエンジントルク演算部31にも示すごとく、これらエンジン回転数Neおよびタービン回転数Ntからトルクコンバータ6の実速度比eをe=Nt/Neの演算により算出し(e=0.55)、この実速度比e(0.55)を基に図4に例示するトルクコンバータ6の性能線図からトルクコンバータ6の現在のトルク容量係数τおよびトルク比tを求める。
 ステップS13(エンジントルク演算部31)では更に、エンジン5の出力トルク(エンジントルク)TeをTe=τ×Ne2の演算により算出する(Te=100Nm)。
 図2のステップS13~ステップS17における数値例は、アクセル開度APO=10度および車速VSP=20km/hで、エンジン冷機運転中のためトルクコンバータ6が非ロックアップ状態である場合の数値例である。
 この時エンジントルクTeのセンサ検出値は116Nmであったが、エンジン冷機運転中のため信頼性に欠けることから、本実施例では当該エンジントルクTeのセンサ検出値(116Nm)を用いず、ステップS13(エンジントルク演算部31)で演算により求めたエンジントルクTe=100Nm)を用いて、以下のごとくに変速制御を遂行することとする。
 なお当該ステップS13(エンジントルク演算部31)で演算により求めたエンジントルクTe=100Nm)は図3に示すごとく、無段変速機1の変速制御に際し変速制御元圧として用いる前記ライン圧の制御にも供し、このライン圧をエンジントルク演算値Te(100Nm)に対応した圧力とすることで、ライン圧を、無段変速機1のスリップが生じない必要最低限の圧力値となし得て、エネルギー損失を最少にしつつ無段変速機1の伝動効率を高めることができる。
 ステップS13においては更に、図3のエンジン出力演算部32にも示すごとく、エンジン5の出力(パワー)PeをPe=Te×Neの演算により算出する(Pe=22.87kw)。
 ステップS13においては更に、図3のトルクコンバータ全効率演算部33にも示すごとく、トルクコンバータ全効率Etを前記の速度比eおよびトルク比tに基づくEt=e×tの演算により求める(Et=0.75)。
 次のステップS14においては、図3のトルクコンバータ必要出力演算部34におけるように、トルクコンバータ6の必要出力Ptを、エンジン出力Peとトルクコンバータ全効率Etとの乗算Pt=Pe×Etにより求める(Pt=17KW)。
 このトルクコンバータ必要出力Ptは、現在の運転状態で運転者が希望している走行を実現するのに必要なパワーであり、エンジン回転数NeまたはエンジントルクTeが変化しても不変である。
 従ってステップS14は、本発明における流体伝動要素必要出力演算手段に相当する。
 次のステップS15においては、先ず(a)として示すごとく、図3における速度比演算部35での演算により、トルクコンバータ必要出力Pt(17KW)を実現するのに必要なトルクコンバータ6のタービン回転数Ntごとの速度比e(Nt)を求める。
 かかるタービン回転数Ntごとのトルクコンバータ出力実現用速度比e(Nt)を求めるに際しては、この速度比e(Nt)をタービン回転数Ntごとに予め算出してマップ化しておき、マップ検索により求めるのが、演算負荷を軽減する意味合いにおいて好ましい。
 ステップS15においては更に、(b)として示すごとく、図3におけるトルク比演算部36での演算により、トルクコンバータ必要出力Pt(17KW)を実現するのに必要なトルクコンバータ6のタービン回転数Ntごとのトルク比t(Nt)を求める。
 かかるタービン回転数Ntごとのトルクコンバータ必要出力実現用トルク比t(Nt)を求めるに際しても、このトルク比t(Nt)をタービン回転数Ntごとに予め算出してマップ化しておき、マップ検索により求めるのが、演算負荷を軽減する意味合いにおいて好ましい。
 ステップS15においては更に、(c)として示すごとく、また図3におけるトルクコンバータ全効率演算部37にも示す通り、トルクコンバータ必要出力Pt(17KW)を実現するのに必要なトルクコンバータ6のタービン回転数Ntごとの全効率Et(Nt)をEt(Nt)=e(Nt)×t(Nt)の演算により求める。
 従ってステップS15は、本発明における流体伝動要素全効率演算手段に相当する。
 かかるタービン回転数Ntごとのトルクコンバータ必要出力実現用全効率Et(Nt)は図5に実線で示すごときもので、上記の演算により予め算出してマップ化しておき、マップ検索により求めるのがよい。
 次のステップS16においては、先ず(a)として示すごとく、図3におけるエンジン回転数演算部38での演算により、トルクコンバータ必要出力Pt(17KW)を実現するのに必要なタービン回転数Ntごとのエンジン回転数Ne(Nt)を求める。
 かかるタービン回転数Ntごとのトルクコンバータ必要出力実現用エンジン回転数Ne(Nt)を求めるに際しては、このエンジン回転数Ne(Nt)をタービン回転数Ntごとに予め算出してマップ化しておき、マップ検索により求めるのが好ましい。
 ステップS16においては更に、(b)、(c)として示すごとく、図3におけるエンジン効率演算部39での演算により、トルクコンバータ必要出力Pt(17KW)を実現するのに必要なタービン回転数Ntごとのエンジン効率Ee(Nt)を以下のごとくに求める。
 先ずステップS16の(b)に示すごとく、上記したエンジン回転数Ne(Nt)ごとに、トルクコンバータ必要出力Pt(17KW)を実現するのに必要なエンジントルクをτ×Ne(Nt)により算出し、次いでこのエンジントルク{τ×Ne(Nt)}およびエンジン回転数Ne(Nt)を基にエンジン特性マップから燃料消費率をマップ検索する。
 次にこの燃料消費率と、燃料(ガソリン)比重0.75と、燃料(ガソリン)熱量44KJ/gと、燃料(ガソリン)の単位換算係数との乗算により、消費する燃料(ガソリン)の仕事率である燃料(ガソリン)出力を求め、更にトルクコンバータ必要出力Pt(17KW)をトルコン全効率Et(Nt)で除算する演算によりエンジン出力{Pt(17KW)/Et(Nt)}を求める。
 次いでステップS16の(c)に示すごとく、トルクコンバータ必要出力Pt(17KW)を実現するのに必要な、タービン回転数Nt{エンジン回転数Ne(Nt)}ごとのエンジン効率Ee(Nt)を算出する。
 従ってステップS16は、本発明における動力源効率演算手段に相当する。
 かかるエンジン効率Ee(Nt)の算出に当たっては、タービン回転数Nt{エンジン回転数Ne(Nt)}ごとに、上記したエンジン出力を消費ガソリン出力で除算することで当該エンジン効率Ee(Nt)を求めることができる。
 このエンジン効率Ee(Nt)は図5に破線で示すごときものとなり、上記の演算により予め算出してマップ化しておき、マップ検索により求めるのがよい。
 なおエンジン1は、その冷却水温TEMPによって運転性能や燃料消費が変化することから、ステップS16における上記した演算は、エンジン冷却水温(TEMP)別に行うこと勿論である。
 またステップS16における演算は、予め計算により求めておいた値を冷却水温(TEMP)別にマップ化しておき、これを基にマップ検索により求めるのが有利であるのは言うまでもない。
 この際、エンジン冷却水温TEMPに対応するマップが存在せず、エンジン冷却水温TEMPが前後マップ間の中間的な温度である場合、前後マップからそれぞれ得られた2個のマップ検索値に基づく直線補間によりエンジン効率Ee(Nt)を求める。
 次のステップS17においては、図3のパワートレーン効率演算部41にも示す通り、トルクコンバータ必要出力Pt(17KW)を実現するのに必要なタービン回転数Ntごとのパワートレーン効率Ea(Nt)を、ステップS15(演算部34~36)で求めたトルクコンバータ全効率Et(Nt)と、ステップS16(演算部38,39)で求めたエンジン効率Ee(Nt)との乗算{Ea(Nt)=Et(Nt)×Ee(Nt)}により算出する。
 従ってステップS17は、本発明におけるパワートレーン効率演算手段に相当する。
 このタービン回転数Ntごとのパワートレーン効率Ea(Nt)は図6に示すごときものとなり、上記の演算により予め算出してマップ化しておき、マップ検索により求めることもできるが、エンジン冷却水温TEMPにより運転性能や燃料消費が変化するため、パワートレーン効率Ea(Nt)のための演算は、オンラインでこれを行うのが一層効果的である。
 次のステップS18においては、図3の目標タービン回転数選択部42にも示す通り、トルクコンバータ必要出力Pt(17KW)を実現するのに必要なタービン回転数Ntごとのパワートレーン効率Ea(Nt)が最高となるタービン回転数Nt{ステップS17ではEa(Nt)が最高の24.8%となるタービン回転数Nt=1600rpm}を目標タービン回転数tNtとして変速制御に資する。
 この変速制御に際し図1の変速機コントローラ22は、上記の目標タービン回転数tNtをセカンダリプーリ3の回転数(現在の車速VSPから求まる)で除算して目標変速比を求め、この目標変速比に対応したプライマリプーリ圧Ppriおよびセカンダリプーリ圧Psecをそれぞれ、変速制御油圧回路21からプライマリプーリ室2cおよびセカンダリプーリ室3cへ供給することにより、無段変速機1を現在の実変速比から目標変速比へ向けて変速させる。
<効果>
 上記した本実施例の変速制御によれば、現在の運転状態に応じたトルクコンバータ6の必要出力Ptを実現するのに必要なトルコン全効率Et(Nt)およびエンジン効率Ee(Nt)をトルクコンバータ6の出力回転であるタービン回転数Ntごとに求め、これらトルコン全効率Et(Nt)およびエンジン効率Ee(Nt)の乗算により得られたパワートレーン効率Ea(Nt)が最も高くなるタービン回転数Ntを無段変速機1の目標入力回転tNtとして変速制御するため、
 トルクコンバータ6の効率およびエンジン5の効率を共に考慮したパワートレーン全体としての効率が、図6に矢印で示すように最も高い効率となるような変速制御下にトルコン必要出力Ptを実現し得ることとなり、予定の変速線から外れた無段変速機1の変速に当たっても、燃費の悪化を招くことなく、従って燃費を犠牲にすることなく当該変速を行わせることができる。
 しかも本実施例においては、上記のエンジン効率Ee(Nt)をエンジン冷却水温TEMP別に求めて上記パワートレーン効率Ea(Nt)の演算に資するため、
 エンジン1が、その冷却水温TEMPによって運転性能や燃料消費を異にするといえども、上記の効果をエンジン冷却水温TEMPに影響されることなく、確実に達成することができる。
 上記の効果を図7により付言する。
 この図は、車速VSPが図示のごとくに上昇する発進加速時における変速動作タイムチャートである。
 トルクコンバータ6をロックアップする場合は、破線aで示すタービン回転数Ntに対しエンジン回転数Neは実線bで示すごとくに変化し、タービン回転数Ntおよびエンジン回転数Ne間の差回転であるトルクコンバータ6のスリップ回転は小さいため効率が良く、変速比は実線cで示す経時変化を呈する。
 ところで、本発明が制御対象とする、トルクコンバータ6をロックアップできない走行条件下では従来、破線dで示すタービン回転数Nt(破線aで示すと同じ)に対しエンジン回転数Neは実線eで示すごとくに変化して、実線bで示すエンジン回転数Neよりも高くなり、タービン回転数Ntおよびエンジン回転数Ne間の差回転であるトルクコンバータ6のスリップ回転が大きいために効率が悪くなる。
 これに対し本実施例の前記した変速制御によれば、変速比を変速過渡期において実線fで示すごとく、パワートレーン効率Ea(Nt)が最高となる目標タービン回転数tNtに対応した目標変速比へと変更することとなる。
 このため、破線gで示すタービン回転数Nt(破線a,dで示すと同じ)に対しエンジン回転数Neは実線hで示すごとくに変化して、実線eで示すエンジン回転数Neよりも低くなり、タービン回転数Ntおよびエンジン回転数Ne間の差回転であるトルクコンバータ6のスリップ回転を小さくし得て効率を高めることができる。
 ちなみに、図2につき説明したと同じ条件、つまりアクセル開度APO=10度、車速VSP=20km/h(タービン回転数Nt=1200rpm)、エンジン回転数Ne=2184rpm、エンジントルクTe=100Nmのもと、従来の予定変速線に基づく変速制御だと、燃料消費率が9.6L/hになるところながら、
 本実施例の変速制御によれば目標タービン回転数tNt=1600rpmによって燃料消費率が、Nt=1600rpmに対応するエンジン回転数Ne(Nt)=2200rpmの時の燃料消費率7.5L/hへと向上し、22%の燃費改善を実現し得ることを確かめた。
その他の実施例
 なお図示の実施例では、自動変速機が無段変速機1である場合について説明を展開したが、自動変速機が有段式の自動変速機であっても本発明の着想は同様に適用可能である。
 ただし、有段式自動変速機の場合は得られる変速比が連続的でないため、目標タービン回転数tNtから求めた目標変速比が選択可能な変速段のそれと一致しないことがあり、この場合は目標変速比に最も近い変速段を目標変速段として変速制御を行うことになるのは言うまでもない。

Claims (5)

  1.  動力源、流体伝動要素および自動変速機を、これらの順に駆動結合してなるパワートレーンに用いられ、前記自動変速機を変速制御するための変速制御装置において、
     前記流体伝動要素の入出力要素間におけるスリップ状態に基づいて求めた前記動力源の出力および前記流体伝動要素の全効率から、該流体伝動要素より前記自動変速機へ出力すべき必要出力を演算する流体伝動要素必要出力演算手段と、
     該手段により演算した流体伝動要素必要出力を実現するのに必要な前記流体伝動要素の入出力要素間における速度比およびトルク比を流体伝動要素の出力回転ごとに求めると共に、これら速度比およびトルク比から該流体伝動要素の全効率を流体伝動要素の出力回転ごとに演算する流体伝動要素全効率演算手段と、
     前記流体伝動要素必要出力を実現するのに必要な前記動力源の動力源回転を流体伝動要素の出力回転ごとに求めると共に、該動力源回転、および前記流体伝動要素の入出力要素間におけるスリップ状態に基づいて求めた前記動力源の出力トルクから、前記流体伝動要素必要出力を実現するのに必要な前記動力源の効率を流体伝動要素の出力回転ごとに演算する動力源効率演算手段と、
     前記流体伝動要素全効率および動力源効率の乗算により、流体伝動要素の出力回転ごとのパワートレーン効率を求めるパワートレーン効率演算手段とを設け、
     該手段で求めたパワートレーン効率が最も高くなる流体伝動要素の出力回転を前記自動変速機の目標入力回転として該自動変速機を変速制御するよう構成したことを特徴とする自動変速機の変速制御装置。
  2.  請求項1に記載された、自動変速機の変速制御装置において、
     前記動力源効率演算手段は、前記流体伝動要素出力を実現するのに必要な前記動力源の効率を、動力源温度ごとに演算するものであることを特徴とする自動変速機の変速制御装置。
  3.  請求項1または2に記載された、自動変速機の変速制御装置において、
     前記自動変速機の変速制御を行うときに用いる変速制御元圧を、前記流体伝動要素の入出力要素間におけるスリップ状態に基づいて求めた前記動力源の出力トルクに対応する値に調圧するよう構成したことを特徴とする自動変速機の変速制御装置。
  4.  請求項1~3のいずれか1項に記載された、自動変速機の変速制御装置において、
     前記パワートレーン効率演算手段は、前記パワートレーン効率の演算をオンラインで行うものであることを特徴とする自動変速機の変速制御装置。
  5.  請求項1~4のいずれか1項に記載された、自動変速機の変速制御装置において、
     前記流体伝動要素の入出力要素間における直結を許可すべきでない運転状態である間に、前記パワートレーン効率が最も高くなる流体伝動要素の出力回転を自動変速機の目標入力回転とする前記自動変速機の変速制御を遂行するものであることを特徴とする自動変速機の変速制御装置。
PCT/JP2014/053240 2013-02-18 2014-02-13 自動変速機の変速制御装置 WO2014126119A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/768,655 US9371906B2 (en) 2013-02-18 2014-02-13 Shift control system for automatic transmission
JP2015500269A JP5880775B2 (ja) 2013-02-18 2014-02-13 自動変速機の変速制御装置
CN201480006720.7A CN104981634B (zh) 2013-02-18 2014-02-13 自动变速器的变速控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-028626 2013-02-18
JP2013028626 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014126119A1 true WO2014126119A1 (ja) 2014-08-21

Family

ID=51354118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053240 WO2014126119A1 (ja) 2013-02-18 2014-02-13 自動変速機の変速制御装置

Country Status (4)

Country Link
US (1) US9371906B2 (ja)
JP (1) JP5880775B2 (ja)
CN (1) CN104981634B (ja)
WO (1) WO2014126119A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107676186B (zh) * 2017-09-27 2020-07-07 广州汽车集团股份有限公司 一种发动机扭矩控制方法
CN107894790B (zh) * 2017-11-23 2020-03-17 重庆长安汽车股份有限公司 一种mt车型发动机油门扭矩特性匹配方法
CN113357357B (zh) * 2020-03-06 2022-11-29 上海汽车集团股份有限公司 汽车速比控制方法、装置、变速箱控制器、系统及汽车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187317A (ja) * 1997-12-22 1999-07-09 Sony Corp 映像処理装置
JP2005147238A (ja) * 2003-11-13 2005-06-09 Aisin Aw Co Ltd 自動変速機の油圧制御装置
JP2008275000A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 自動変速機の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178054A (ja) * 1994-12-26 1996-07-12 Honda Motor Co Ltd 自動車の制御装置
JP3484897B2 (ja) 1996-09-25 2004-01-06 トヨタ自動車株式会社 自動変速機の制御装置
JPH11287317A (ja) 1998-03-31 1999-10-19 Toyota Motor Corp 車両用自動変速機のコーストダウンシフト制御装置
JP3394462B2 (ja) * 1998-11-26 2003-04-07 株式会社日立製作所 自動変速機の制御装置及び制御方法
JP2001322456A (ja) * 2000-05-12 2001-11-20 Mitsubishi Electric Corp 自動変速機付きエンジンの制御装置
US7261672B2 (en) * 2003-03-19 2007-08-28 The Regents Of The University Of California Method and system for controlling rate of change of ratio in a continuously variable transmission
JP5012924B2 (ja) * 2010-02-05 2012-08-29 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
CN103619681B (zh) * 2011-06-28 2016-02-17 丰田自动车株式会社 车辆用驱动装置的控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187317A (ja) * 1997-12-22 1999-07-09 Sony Corp 映像処理装置
JP2005147238A (ja) * 2003-11-13 2005-06-09 Aisin Aw Co Ltd 自動変速機の油圧制御装置
JP2008275000A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 自動変速機の制御装置

Also Published As

Publication number Publication date
US9371906B2 (en) 2016-06-21
CN104981634A (zh) 2015-10-14
JPWO2014126119A1 (ja) 2017-02-02
CN104981634B (zh) 2016-11-23
US20150377351A1 (en) 2015-12-31
JP5880775B2 (ja) 2016-03-09

Similar Documents

Publication Publication Date Title
JP4293275B2 (ja) 車両の駆動力制御装置
EP2233794B1 (en) Continuously variable transmission and control method thereof
KR101967570B1 (ko) 차량용 무단 변속기의 제어 장치
JP5903487B2 (ja) 無段変速機及びその油圧制御方法
KR20090019724A (ko) 차량의 가속 쇼크 경감 장치
US8718883B2 (en) Continuously variable transmission and power on/off determination method
JP2008196641A (ja) 車両用無段変速機の変速制御装置
US9435434B2 (en) Continuously variable transmission and control method therefor
JP5880775B2 (ja) 自動変速機の変速制御装置
JP2009063161A (ja) 無段変速機の制御装置
JP2010196881A (ja) 車両の制御装置
JP6313807B2 (ja) 無段変速機の制御装置
US11407398B2 (en) Control device for vehicle and control method for vehicle
JP6036491B2 (ja) 車両の制御装置
CN107949729B (zh) 车辆用无级变速机构的控制装置及控制方法
JP2013181654A (ja) 自動変速機の伝達トルク制御装置
JP4211712B2 (ja) パワートレインの制御装置
JP5333667B2 (ja) 車両、無段変速機の制御装置および制御方法
US11524670B2 (en) Control device for vehicle and control method for vehicle
JP2005133625A (ja) 無段変速機を搭載した車両の制御装置
JP2009014105A (ja) 車両用無段変速機の制御装置
JP2010249183A (ja) 車両の制御装置
JP2019190567A (ja) 自動変速機のロックアップ制御装置
JP2020029865A (ja) 車両のクラッチ制御装置及び車両のクラッチ制御方法
JP2006062416A (ja) 無段変速機を搭載した車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14768655

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14751553

Country of ref document: EP

Kind code of ref document: A1