WO2014126099A1 - ウイルス不活化剤 - Google Patents

ウイルス不活化剤 Download PDF

Info

Publication number
WO2014126099A1
WO2014126099A1 PCT/JP2014/053184 JP2014053184W WO2014126099A1 WO 2014126099 A1 WO2014126099 A1 WO 2014126099A1 JP 2014053184 W JP2014053184 W JP 2014053184W WO 2014126099 A1 WO2014126099 A1 WO 2014126099A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
inactivating agent
glutamic acid
pga
virus inactivating
Prior art date
Application number
PCT/JP2014/053184
Other languages
English (en)
French (fr)
Inventor
弘文 白馬
中森 雅彦
柴谷 滋郎
宝田 裕
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2015500254A priority Critical patent/JPWO2014126099A1/ja
Publication of WO2014126099A1 publication Critical patent/WO2014126099A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/04Polyamides derived from alpha-amino carboxylic acids

Definitions

  • the present invention relates to a virus inactivating agent applicable to various materials including plastic, film, fiber, wood, paper, concrete, metal, ceramic, glass and the like.
  • Viral infections are diseases that transmit serious symptoms such as hepatitis, AIDS, rabies, encephalitis, and cold symptoms, and are an everlasting threat to civilization.
  • influenza viruses have been rampant worldwide, and sometimes a new influenza with altered antigenicity has caused a pandemic, affecting not only life and health but also economic activities and social functions. And is becoming a new threat to civilization.
  • the development of effective treatments for viral infections is urgently desired, in order to control the transmission of viruses, it is necessary to inactivate viruses for daily necessities such as textiles, cosmetics and toiletries. Has been.
  • Non-metallic virus inactivating agents include quaternary ammonium salts and natural product-derived compositions.
  • a quaternary ammonium salt for example, as disclosed in Patent Document 2, an antiviral composition containing octadecyldimethyl (3-triethoxysilylpropyl) ammonium chloride is disclosed.
  • the natural product-derived composition include fiber products carrying a natural product-derived composition such as catechin and polyphenol as disclosed in Patent Documents 3 to 4.
  • Patent Document 1 a porous material such as zeolite or silica gel is required to disperse silver ions in a fiber product, so that the form of use is limited and molding processability is limited.
  • Patent Document 2 octadecyldimethyl (3-triethoxysilylpropyl) ammonium chloride has good adhesion to glass, fibers and the like, and has a high sustaining effect on virus inactivation.
  • this silicon compound has a drawback that it has low adhesion to the surface of a resin or the like that does not have oxygen or hydroxyl groups.
  • Patent Documents 3 to 4 there is a problem that a large amount of waste is generated and the environmental load is large because an effective composition needs to be extracted from the plant and purified.
  • Bio-based polymers have attracted attention as polymer materials derived from natural products.
  • Bio-based polymers are highly safe for the human body, and natural products can be used as raw materials as they are, so no waste is generated and the environmental load is small. Furthermore, it has an advantage of high biodegradability, and various uses are expected as a resource that does not depend on petrochemical materials.
  • PGA poly- ⁇ -glutamic acid
  • Poly- ⁇ -glutamic acid is a polyamino acid in which the ⁇ -amino group and ⁇ -carboxyl group of glutamic acid are connected by an amide bond.
  • PGA has come to be known as the main component of natto stringing, but it has biodegradability and adhesiveness as its attractive functionality.
  • Patent Document 6 describes an ion complex (hereinafter sometimes referred to as PGAIC) formed from poly- ⁇ -glutamic acid and a quaternary ammonium ion compound.
  • the ion complex is a polymer that is insoluble in water, and is expected to be used in new applications.
  • This document describes the usefulness of a film formed from the ion complex as a material having bacteriostatic properties. However, the inactivation effect on the virus was unknown.
  • the virus inactivating agent has high safety to the human body, high adhesion to the material, low environmental load, and can be applied to the material.
  • Film, plastic Materials that can be processed into various forms such as fibers, liquids, and gels are desired.
  • An object of the present invention is to provide a virus inactivating agent that exhibits an excellent inactivating effect against viruses and can be widely used in fields where antiviral properties are required in terms of health and hygiene.
  • the inventors of the present invention have made extensive studies in order to solve the above-mentioned problems, and have found that an ion complex of poly- ⁇ -glutamic acid has excellent characteristics as a virus inactivating agent, leading to the present invention. That is, the present inventors have found that an ion complex formed from poly- ⁇ -glutamic acid and a cationic fungicide, particularly a quaternary ammonium salt or a biguanide fungicide, exhibits a virus inactivating action, and has completed the present invention.
  • the present invention provides a virus inactivating agent containing an ion complex of poly- ⁇ -glutamic acid with high safety and low environmental impact.
  • a virus inactivating agent comprising a PGA ion complex formed from poly- ⁇ -glutamic acid and a cationic fungicide.
  • (Section 2) Item 2.
  • (Section 3) Item 2.
  • the virus inactivating agent according to Item 1 wherein the cationic fungicide is at least one selected from the group consisting of cetylpyridinium chloride, benzethonium chloride, chlorhexidine hydrochloride, and chlorhexidine gluconate.
  • (Section 5) Item 5.
  • (Claim 6) Item 6.
  • the virus inactivating agent according to Item 5 wherein the glutamic acid constituting the poly- ⁇ -glutamic acid comprises L-glutamic acid.
  • a polymer resin composition comprising the virus inactivating agent according to any one of Items 1 to 6.
  • (Section 8) Item 7.
  • (Claim 9) Item 7.
  • the present invention has excellent properties as a virus inactivating agent, and the ion complex formed from poly- ⁇ -glutamic acid and a cationic bactericidal agent is water-insoluble, so it has high persistence and low concentration. Even if it is used in, it shows antiviral effect and virus inactivating effect for a long time.
  • the present invention can be applied to various materials including plastic, film, fiber, wood, paper, concrete, metal, ceramic, glass, etc., and itself can be applied to film, plastic, fiber, liquid, gel, etc. It is also excellent in that it can be applied to various forms.
  • poly- ⁇ -glutamic acid itself is biodegradable, and quaternary ammonium salts or biguanide fungicides that are counter cations are also used as surfactants, fungicides, etc. high. Therefore, the present invention can provide a virus inactivating agent that exhibits an excellent inactivating effect against viruses and can be widely used in fields requiring antiviral properties for health and hygiene.
  • the present invention provides a virus inactivating agent containing an ion complex formed from poly- ⁇ -glutamic acid and a cation (hereinafter also referred to as PGA ion complex).
  • Poly- ⁇ -glutamic acid (hereinafter, also simply referred to as PGA) is a polyamino acid in which an ⁇ -amino group and a ⁇ -carboxyl group of glutamic acid are amide-bonded.
  • the type of PGA is not particularly limited. For example, there are those consisting only of L-glutamic acid, those consisting only of D-glutamic acid, and those containing both, any of which can be used. However, the higher one ratio is, the better the stereoregularity, the higher the strength, etc., and the better the melting point (about 150 ° C.) when dried. This melting point becomes clearer by using an ion complex. Furthermore, since L-glutamic acid is superior in biodegradability, it is preferable to use PGA having a L-glutamic acid content of 90% or more.
  • the molecular size of the PGA used is not particularly limited, but those having an average molecular mass of 10 kD or more are suitable. In general, the larger the molecular size, the higher the performance such as strength. On the other hand, a PGA with an excessively large molecular size is expensive to manufacture and may be technically difficult to manufacture, so it is usually set to 1,000 kD or less.
  • PGA poly- ⁇ -glutamic acid is obtained when glutamic acid is polymerized under normal conditions, it is preferably biosynthesized using a microorganism.
  • microorganisms that produce PGA include Bacillus subtilis (Bacillus natto), Bacillus subtilis (Sengoku soy sauce), Bacillus megaterium, Bacillus anthracis, Bacillus halodurans, and Naturalbaeagae.
  • Bacillus subtilis which is a Bacillus subtilis
  • Naturalba aegyptica which is a hyperhalophilic archaea.
  • it is preferable to use PGA produced by Naturalba aegyiaca which is a microorganism that produces PGA consisting only of L-glutamic acid.
  • the cationic fungicide contained in the ion complex of the present invention is not particularly limited, but quaternary ammonium salts and biguanide fungicides are preferred.
  • the quaternary ammonium salt include cetylpyridinium chloride, benzethonium chloride, distearyldimethylammonium chloride, stearyldimethylbenzylammonium chloride, stearyltrimethylammonium chloride, cetyltrimethylammonium chloride, lauryltrimethylammonium chloride, and laurylpyridinium chloride. It is done.
  • biguanide fungicides examples include chlorhexidine hydrochloride, chlorhexidine acetate, chlorhexidine gluconate, alexidine hydrochloride, alexidine acetate, alexidine gluconate and the like. Of these, cetylpyridinium chloride, benzethonium chloride, chlorhexidine hydrochloride, and chlorhexidine gluconate are preferable. These cationic fungicides may form an ion complex only by one kind, or may be a PGA ion complex containing two or more kinds.
  • the PGA ion complex As the PGA ion complex according to the present invention, those containing glutamic acid constituting the PGA and the cationic fungicide in an equimolar amount or in an arbitrary molar ratio can be used. In order to overcome the disadvantages, those that are sufficiently modified with a cationic fungicide are preferred. More specifically, the proportion of the cationic fungicide in the PGA ion complex is preferably 0.5 mol times or more, more preferably 0.6 mol times or more with respect to glutamic acid constituting PGA. More preferably, it is 0.7 mole times or more. In particular, those containing equimolar or substantially equimolar amounts of glutamic acid and cationic fungicide constituting PGA are suitable.
  • the cationic bactericidal agent for glutamic acid constituting PGA is 0.8 mol times or more and 1.2 mol times or less. In particular, it means 0.9 mole times or more and 1.1 mole times or less.
  • the PGA ion complex of the present invention can be produced by mixing PGA and a cationic fungicide such as a quaternary ammonium salt or a biguanide fungicide in a solvent.
  • water is suitable. This is because the raw material PGA can be dissolved well and the target compound PGA ion complex is insoluble in water, which is convenient for isolation and purification of the target product after the reaction.
  • water-soluble organic substances such as alcohols such as methanol and ethanol; ethers such as THF; amides such as dimethylformamide and dimethylacetamide may be used to increase their solubility in the reaction solution.
  • a solvent may be added to the reaction solution. However, considering the separation of the PGA complex after completion of the reaction, it is preferable to use only water as the solvent.
  • the salt may be used as PGA as a raw material.
  • the salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt. Further, even when a salt is used, it is not necessary that all carboxy groups are salts, and only a part thereof may be a salt. However, since polyvalent metal salts such as alkaline earth metal salts may have low solubility in water, a PGA free body or a monovalent metal salt of PGA is preferably used.
  • Quaternary ammonium salts or biguanide fungicides are usually present as halide salts. Therefore, in the present invention, the quaternary ammonium salt or biguanide fungicide may be added directly to the reaction solution, or the salt may be added after dissolving in an aqueous solvent.
  • the quaternary ammonium salt or biguanide fungicide is preferably used in a sufficient amount relative to PGA in order to sufficiently modify PGA.
  • the concentration of each component in the reaction solution is not particularly limited.
  • the concentration of PGA in the reaction solution can be about 0.5 w / v% or more and about 10 w / v% or less
  • the concentration of the cationic bactericidal agent can be about 1.0 w / v% or more and about 10 w / v% or less.
  • the reaction solution is preferably heated moderately to promote complex formation.
  • the heating temperature can be, for example, about 40 ° C. or higher and 80 ° C. or lower.
  • the reaction time may be adjusted as appropriate, but can usually be about 1 hour or more and 20 hours or less.
  • the PGA ion complex of the present invention is insoluble in water, it can be easily separated from an aqueous solvent by filtration or centrifugation.
  • the separated PGA ion complex can be washed with water to remove excess PGA, cationic fungicide, and other salts.
  • the aqueous solvent can be easily removed by washing with acetone or the like.
  • the PGA ion complex of the present invention exhibits biodegradability and does not exhibit water solubility or excessive water absorption while having moisture retention. Moreover, since it has a clear melting point and the melting point and the thermal decomposition starting point are sufficiently separated, thermoforming is possible.
  • the PGA ion complex of the present invention can be used as a virus inactivating agent that can be widely used in fields where antiviral properties are required in terms of health and hygiene.
  • the quaternary ammonium or biguanide moiety contained in the PGA ion complex of the present invention can destroy and inactivate the lipid bilayer of the enveloped virus.
  • enveloped viruses include influenza A, influenza B, influenza A, parainfluenza virus, herpes virus, mumps virus, Newcastle disease virus, measles virus, RS virus, rabies virus, coronavirus, bunyavirus, human T lymph Examples thereof include viruses having an envelope such as benign virus and HIV virus. Among them, it is suitable for inactivating influenza A, influenza B, and new influenza.
  • Examples of forms in which the PGA ion complex of the present invention is used as a virus inactivating agent include blending into a polymer resin composition, paint, and spraying agent. Since the PGA ion complex is a biodegradable polymer, it can be used as a highly safe and low environmental load virus inactivating agent. Furthermore, since PGA ion complex has adhesiveness and is insoluble in water, it can be used as a virus inactivating agent having durability, particularly in use in paints and sprays.
  • the type of polymer resin is not particularly limited, and can be freely selected according to the use of the resin composition, etc. You can choose.
  • Specific examples of resins that can be used include, for example, vinyl chloride polymers, urethane polymers, acrylic polymers, olefin polymers, ethylene polymers, propylene polymers, amide polymers, ethylene-vinyl acetate copolymers, chlorides.
  • Examples include vinylidene polymers, styrene polymers, ester polymers, nylon polymers, cellulose derivatives, carbonate polymers, fluorine resins, silicone resins, vinyl alcohol polymers, vinyl ester polymers, synthetic rubbers, natural rubbers, etc. .
  • a plasticizer, a filler, a colorant (dye, pigment, etc.), an ultraviolet absorber and the like may be appropriately blended as necessary.
  • the blending ratio is preferably within a range in which the effect of virus inactivation can be expressed and the function as a polymer resin is not impaired, specifically 0.1% to 5.0% is preferable, and 0.1% to 2. 0% is more preferable.
  • the resin composition of the present invention is formed into a film shape, a sheet shape, a plate shape, a fiber shape, or a three-dimensional shape by a known resin processing method such as extrusion molding, injection molding, solution casting method, and spinning method. be able to. For example, it can be used for interior materials, floor materials, textile products, paper products, home appliances, and the like.
  • virus inactivation treatment When performing virus inactivation treatment on industrial products or substrates using the virus inactivation agent of the present invention, it is processed by methods such as brushing, spraying, dipping, dipping, coating, and printing. There is no particular limitation.
  • the virus inactivating agent of the present invention can be dissolved or dispersed in a coating solvent, and a pigment, a crosslinking agent, and other coating additives can be appropriately blended to form an antiviral coating.
  • examples of the base material that can be applied include ceramics, metals, metal oxides, plastics, rubbers, ores, and wood.
  • examples of ceramics include glass, ceramics, cement, refractory bricks, and firewood.
  • metals include simple metals such as iron, aluminum, zinc, magnesium, gold, silver, chromium, germanium, molybdenum, nickel, lead, platinum, silicon, titanium, thorium, tungsten, carbon steel, nickel steel,
  • the alloy include chromium steel, chromium molybdenum steel, stainless steel, aluminum alloy, brass and bronze.
  • metal oxides include alumina, silica, magnesia, tria, zirconia, iron sesquioxide, iron tetroxide, titanium oxide, calcium oxide, zinc oxide, lead oxide and the like.
  • plastics include general-purpose plastics such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyvinyl alcohol, engineering plastics such as polyamide, polycarbonate, polyacetal, polyvinylidene fluoride, polyethersulfone, and polyamideimide, and phenol resins. And thermosetting resins such as epoxy resins, silicone resins, and polyurethanes. Examples of ores include marble and granite.
  • the virus inactivating agent is preferably contained in the paint solvent in an amount of 0.1% or more, and preferably 0.5% or more. If it is less than 0.1%, the effect of virus inactivation may not be sufficiently exhibited. On the other hand, it is preferably 20% or less for use as a paint.
  • the virus inactivating agent of the present invention can be used as an antiviral spray.
  • the virus can be inactivated by spraying directly on bathrooms, sinks, sanitary equipment, etc. in a residence, hospital, public facility or the like.
  • the dispersion used for the propellant is preferably water, alcohols such as ethanol, methanol, isopropanol, and hydrocarbon solvents such as n-hexane, ketones, Various solvents such as esters, fatty acids and silicone oils can also be used. These solvents may be used alone or in combination of two or more.
  • the virus inactivating agent is preferably contained in the propellant in an amount of 0.1% or more, and preferably 0.5% or more. If it is less than 0.1%, the effect of virus inactivation may not be sufficiently exhibited. Although an upper limit is not specifically limited, When it melt
  • the antiviral property can be indirectly transferred to the surface of the molded plastic, and the virus on the wall surface or plastic surface can be inactivated for a long time. it can.
  • the PGA ion complex has a clear melting point and uses the property that thermoforming is possible because the melting point and the thermal decomposition starting point are sufficiently separated.
  • a plastic material it can also be processed into a film-like molded body or the like.
  • a PGA ion complex is spun by a solution spinning method such as a wet spinning method, a dry wet spinning method, a dry spinning method, a gel spinning method, a melt spinning method, a charged spinning method, or the like. It can be used as a fiber structure such as a woven or knitted fabric or a non-woven fabric.
  • Nanofibers can be produced by a method of obtaining a fine fibrous material to form a nonwoven fibrous structure.
  • Example 1 Production of PGAIC100 (PGA / CPC) Poly- ⁇ -L-glutamic acid sodium salt (40 g) having an average molecular weight of 1000 kD derived from the hyperhalophilic archaeon Natrialva Egyptiacia (40 g) was dissolved in purified water. A 2 w / v% solution was obtained. A 0.2M aqueous solution (1551 g) of cetylpyridinium chloride (CPC) kept at 60 ° C. was added to the solution.
  • CPC cetylpyridinium chloride
  • Example 2 Production of PGAIC (L-PGA / CPC) coating film
  • the ion complex (20 g) obtained in Example 1 was dissolved in 99.5% ethanol to obtain a 20 wt% solution.
  • the obtained ethanol solution was applied on a PET film having a thickness of 188 ⁇ m with an applicator, and the solvent was dried to prepare a PGAIC coating film having a thickness of 18 ⁇ m.
  • Example 3 Virus inactivation test of PGAIC (L-PGA / CPC) coating film 50 mm square of PGAIC (L-PGA / CPC) coating film prepared in Example 2 in accordance with JIS Z2801 of the antibacterial test method Then, it was placed in a heat-insulating petri dish, and 0.2 mL of the virus solution was added dropwise and contacted at 25 ° C. After 24 hours, 10 mL of phosphate buffered saline was added, and the liquid in the petri dish was recovered. Influenza A and influenza B were used as viruses. The virus infectivity titer was calculated by the Reed-Muench method (Reed, LJ, & Muench, H. (1938) Am. J.
  • Hygiene, 27, 493-497 Hygiene, 27, 493-497.
  • the antiviral effect of the PGAIC coated film was determined by a decrease value with respect to the untreated PET film after 24 hours of action: log 10 (infection value of untreated PET film / infection value of PGAIC coating film).
  • Table 1 shows the results.
  • the virus infection titer of the PAGIC coating film against influenza A virus was 1.7 ⁇ 10 TCID 50 / mL, and the antiviral effect was 5.4.
  • the virus infection titer of the PAGIC coating film against influenza B virus was 1.3 ⁇ 10 2 TCID 50 / mL or less, which is the detection limit value, and the antiviral effect was 3.2 or more.
  • An antiviral effect of 2.0 or higher is determined as “effective”. From the above results, it was confirmed that the PGAIC (L-PGA / CPC) coating film had an inactivating action against influenza A virus and influenza B virus.
  • the virus inactivating agent of the present invention can be widely used in fields requiring antibacterial and antifungal properties and virus inactivation in terms of health and hygiene in the form of resin compositions, paints, sprays, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

【課題】健康・衛生面で抗菌防カビ性、ウイルス不活化性が要求される分野で広範囲に利用することができる、安全性の高い、低環境負荷のウイルス不活化剤を提供する。 【解決手段】ポリ-γ-グルタミン酸とカチオン性殺菌剤から形成されるPGAイオンコンプレックスを含有するウイルス不活化剤。

Description

ウイルス不活化剤
 本発明は、プラスチック、フィルム、繊維、木材、紙、コンクリート、金属、セラミック、ガラスなどを含む各種材料に適用できるウイルス不活化剤に関する。
ウイルス感染症は、肝炎、エイズ、狂犬病、脳炎、感冒症状といった重篤な症状を伝染する疾患であり、人類にとって永遠の脅威となっている。近年、インフルエンザウイルスが世界的に猛威を振るい、時には、抗原性が変化した新型インフルエンザの発現によって、パンデミック(汎発流行)を起こし、生命や健康のみならず、経済活動、社会機能にまで影響を及ぼし、人類にとって新たな脅威となりつつある。ウイルス感染症の有効な治療薬の開発が早急に望まれる一方、ウイルスの伝染を抑制する目的として、繊維、化粧品、トイレタリー製品といった、衣食住に関わる生活用品に対し、ウイルスの不活化の付与が要望されている。とりわけ、高齢化によって増えつつある介護、医療現場では、院内感染が懸念されており、抗菌、防カビのみならず、ウイルスを不活化するマスク、タオル、ガーゼ、衣料等の衛生用品が要求され、安全で有効なウイルス不活化剤の開発が強く要望される。
従来、エタノール、次亜塩素酸ソーダ、二酸化塩素、グルタルアルデヒド等は、ウイルスを不活化することを目的に使用されている。しかし、これら一般的な消毒剤は、揮発性が高いため、ウイルスの不活化の持続性が低く、一次的な効果しか得られない。また、粘膜や皮膚への刺激性が高いため、安全上の問題から使用用途が限られる。
上記以外のウイルス不活化剤としては、主に、金属系、非金属系に大別される。金属系としては、銀、胴、亜鉛等の金属イオンが抗菌剤として古くから知られており、特に、銀イオンは、安全性が高く、ウイルスに対しても不活化能を有する。例えば、特許文献1には、無機多孔質物質を含む繊維製品に、銀イオンを担持した生地が開示されている。
非金属系のウイルス不活化剤としては、第4級アンモニウム塩、天然物由来組成物が挙げられる。第4級アンモニウム塩としては、例えば、特許文献2のように、オクタデシルジメチル(3-トリエトキシシリルプロピル)アンモニウムクロライドを含む抗ウイルス剤組成物が開示されている。天然物由来組成物としては、特許文献3~4のように、カテキン、ポリフェノール等の天然物由来の組成物を担持した繊維製品が挙げられる。
上記特許文献1では、銀イオンを繊維製品に分散するためには、ゼオライト、シリカゲル等の多孔質が必要であり、利用形態が限られ、成形加工性に制限を受ける。一方、上記特許文献2では、オクタデシルジメチル(3-トリエトキシシリルプロピル)アンモニウムクロライドは、ガラス、繊維等への接着性が良く、ウイルス不活化効果の持続性が高い。しかし、このケイ素化合物は、酸素や水酸基を持たない樹脂等の表面には接着性が低いという欠点を有する。また、上記特許文献3~4では、有効な組成物を植物から抽出して精製する必要があるため、多量の廃棄物が生じ、環境負荷が大きいという問題がある。
かかる現状を鑑みると、ウイルス不活化剤としては、人体への安全性が高く、材料への接着性の高い、低環境負荷の素材が望まれる。
近年、天然物由来の高分子材料として、バイオベースポリマーが注目を集めている。バイオベースポリマーは、人体への安全性が高く、天然物をそのまま素材として利用できるため、廃棄物が生じず、環境負荷が少ない。さらには、生分解性が高い利点を有し、石油化学材料に依存しない資源として種々の用途が期待されている。バイオポリマーとしては、ポリ-γ-グルタミン酸(以下、PGAと記載することもある)の開発が進められている。ポリ-γ-グルタミン酸は、グルタミン酸のα-アミノ基とγ-カルボキシル基がアミド結合で結ばれたポリアミノ酸である。PGAは納豆の糸引きの主成分として知られるようになったが、その魅力的な機能性として、生分解性、接着性を兼ね備えている。
特許文献6においては、ポリ-γ-グルタミン酸と第四級アンモニウムイオン化合物から形成されるイオンコンプレックス(以下、PGAICと記載することもある)が記載されている。当該イオンコンプレックスは、水に不溶性のポリマーであり、新たな用途が期待される。本文献では、当該イオンコンプレックスから成形されたフィルムは、静菌性をも有する材料としての有用性が記載されている。しかし、ウイルスに対する不活化効果は不明であった。
特開2008-188791号公報 特開2011-98976号公報 特開2009-17323号公報 特開2006-21095号公報 特開2012-25698号公報 特開2010-222496号公報
上述のように、ウイルス不活化剤としては、人体への安全性が高く、材料への接着性の高い、低環境負荷を有し、さらには、材料への塗布が可能であり、フィルム、プラスチック、繊維、液体、ゲル等への種々の形態にも加工可能な素材が望まれる。
本発明の目的は、ウイルスに対して優れた不活化効果を示し、健康・衛生面で抗ウイルス性が要求される分野で広範囲に利用することができるウイルス不活化剤を提供することである。
 本発明者らは、上記課題を解決するために鋭意研究を重ね、ポリ-γ-グルタミン酸のイオンコンプレックスがウイルス不活化剤として優れた特性を有することを見出し、本発明に至った。すなわち、ポリ-γ-グルタミン酸とカチオン性殺菌剤、特に第四級アンモニウム塩もしくはビグアニド系殺菌剤から形成されたイオンコンプレックスがウイルス不活作用を示すことを見出し、本発明を完成するに至った。
 本発明は、安全性の高い、低環境負荷のポリ-γ-グルタミン酸のイオンコンプレックスを含有するウイルス不活化剤を提供する。
代表的な発明は以下の通りである。
(項1)
 ポリ-γ-グルタミン酸とカチオン性殺菌剤から形成されるPGAイオンコンプレックスを含有するウイルス不活化剤。
(項2)
 カチオン性殺菌剤が第四級アンモニウム塩である、項1に記載のウイルス不活化剤。
(項3)
 カチオン性殺菌剤がビグアニド系殺菌剤である、項1に記載のウイルス不活化剤。
(項4)
 カチオン性殺菌剤が塩化セチルピリジニウム、塩化ベンゼトニウム、塩酸クロルヘキシジン及びグルコン酸クロルヘキシジンからなる群より選択される1種以上である、項1に記載のウイルス不活化剤。
(項5)
 ポリ-γ-グルタミン酸を構成するグルタミン酸のうち、L-グルタミン酸の占める割合が90%以上である、項1~4のいずれかに記載のウイルス不活化剤。
(項6)
 ポリ-γ-グルタミン酸を構成するグルタミン酸がL-グルタミン酸からなる、項5に記載のウイルス不活化剤。
(項7)
 項1~6のいずれかに記載のウイルス不活化剤を配合した高分子樹脂組成物。
(項8)
 項1~6のいずれかに記載のウイルス不活化剤を含む塗料。
(項9)
 項1~6のいずれかに記載のウイルス不活化剤を含む噴霧剤。
 本発明は、ウイルス不活化剤として優れた特性を有しており、且つポリ-γ-グルタミン酸とカチオン性殺菌剤から形成されたイオンコンプレックスが水不溶性を示すことから、残留性が高く、低濃度での使用であっても長時間、抗ウイルス効果、ウイルス不活化効果を示す。また本発明は、プラスチック、フィルム、繊維、木材、紙、コンクリート、金属、セラミック、ガラスなどを含む各種材料への塗布が可能であり、それ自体をフィルム、プラスチック、繊維、液体、ゲル等への種々の形態にも加工可能適用できる点でも優れている。加えて、ポリ-γ-グルタミン酸自体が生分解性である上に、カウンターカチオンである第四級アンモニウム塩もしくはビグアニド系殺菌剤も界面活性剤、殺菌剤等として利用されているので、安全性も高い。従って、本発明により、ウイルスに対して優れた不活化効果を示し、健康・衛生面で抗ウイルス性が要求される分野で広範囲に利用することができるウイルス不活化剤を提供することができる。
 本発明はポリ-γ-グルタミン酸とカチオンから形成されたイオンコンプレックス(以下、PGAイオンコンプレックスとも言う。)を含有するウイルス不活化剤を提供する。
ポリ-γ-グルタミン酸(以下、単にPGAとも言う。)とは、グルタミン酸のα-アミノ基とγ-カルボキシル基とがアミド結合したポリアミノ酸である。PGAの種類は、特に制限されない。例えば、L-グルタミン酸のみからなるもの、D-グルタミン酸のみからなるもの、両方を含むものがあるが、何れも用いることができる。但し、一方の割合がより多い方が立体規則性に優れ、強度なども高くなり、また、よく乾燥すれば融点(約150℃)をも示す様になる。この融点は、イオンコンプレックスとすることで、より明確となる。さらに、L-グルタミン酸からなるものの方が生分解性に優れるので、L-グルタミン酸の含有割合が90%以上であるPGAを用いることが好ましい。
 使用するPGAの分子サイズも特に制限されないが、平均分子質量で10kD以上のものが好適である。一般的に、分子サイズが大きいほど強度などの性能が高くなる。一方、分子サイズが過剰に大きなPGAは製造コストが大きく、また、製造が技術的に難しい場合もあるので、通常は1,000kD以下とする。
 PGAは、市販されているものがあればそれを用いてもよいし、別途製造してもよい。但し、通常の条件でグルタミン酸を重合するとポリ-α-グルタミン酸が得られるので、微生物を使って生合成させることが好ましい。PGAを生産する微生物としては、Bacillus subtilis(納豆菌)、Bacillus subtilis(戦国醤菌)、Bacillus megaterium、Bacillus anthracis、Bacillus halodurans、Natrialba aegyptiaca、Hydraなどがある。分子サイズの大きいPGAを製造できる微生物としては、枯草菌であるBacillus subtilisや超好塩古細菌であるNatrialba aegyptiacaがある。この中でも、L-グルタミン酸のみからなるPGAを生産する微生物であるNatrialba aegytiacaによって生産されたPGAを用いるのが好ましい。
 本発明のイオンコンプレックスに含まれるカチオン性殺菌剤は、特に制限されないが、第四級アンモニウム塩およびビグアニド系殺菌剤が好ましい。第四級アンモニウム塩としては、例えば、塩化セチルピリジニウム、塩化ベンゼトニウム、塩化ジステアリルジメチルアンモニウム、塩化ステアリルジメチルベンジルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ラウリルトリメチルアンモニウム、塩化ラウリルピリジニウム等が挙げられる。ビグアニド系殺菌剤としては、塩酸クロルヘキシジン、酢酸クロルヘキシジン、グルコン酸クロルヘキシジン、塩酸アレキシジン、酢酸アレキシジン、グルコン酸アレキシジン等が挙げられる。この中でも、好ましくは塩化セチルピリジニウム、塩化ベンゼトニウム、塩酸クロルヘキシジン、グルコン酸クロルヘキシジンが挙げられる。これらのカチオン性殺菌剤は1種のみでイオンコンプレックスを形成してもよいし、2種以上を含むPGAイオンコンプレックスにしてもよい。
 本発明に係るPGAイオンコンプレックスとしては、PGAを構成するグルタミン酸とカチオン性殺菌剤とを等モルあるいは任意のモル比で含むものを用いることができるが、過剰な親水性などPGAの有する材料としての欠点を克服するために、カチオン性殺菌剤により十分に改質されているものが好適である。より具体的には、PGAイオンコンプレックスにおけるカチオン性殺菌剤の割合が、PGAを構成するグルタミン酸に対して0.5モル倍以上であることが好ましく、0.6モル倍以上であることがより好ましく、0.7モル倍以上であることがさらに好ましい。特に、PGAを構成するグルタミン酸とカチオン性殺菌剤とを等モルまたは略等モル含むものが好適である。ここで、略等モルとは、両者のモル数がほぼ等しいことを意味するが、具体的にはPGAを構成するグルタミン酸に対するカチオン性殺菌剤が0.8モル倍以上、1.2モル倍以下、特に0.9モル倍以上、1.1モル倍以下であることをいうものとする。
 本発明のPGAイオンコンプレックスは、溶媒中、PGAと第四級アンモニウム塩もしくはビグアニド系殺菌剤等のカチオン性殺菌剤を混合することにより製造できる。
 ここで使用する溶媒としては、水が好適である。原料であるPGAを良好に溶解できるからであり、また、目的化合物であるPGAイオンコンプレックスは水に対して不溶性であることから、反応後における目的物の単離精製に好都合なためである。但し、カチオン性殺菌剤の水溶性などによっては、反応液に対するそれらの溶解性を高めるために、メタノールやエタノールなどのアルコール;THFなどのエーテル;ジメチルホルムアミドやジメチルアセトアミドなどのアミドなどの水溶性有機溶媒を反応液に添加してもよい。しかし、反応終了後におけるPGAコンプレックスの分離を考慮すれば、溶媒としては水のみを用いることが好ましい。
 原料であるPGAとしては、その塩を用いてもよい。当該塩としては、ナトリウム塩やカリウム塩などのアルカリ金属塩;カルシウム塩やマグネシウム塩などのアルカリ土類金属塩などを挙げることができる。また、塩を用いる場合であっても全てのカルボキシ基が塩となっている必要はなく、その一部のみが塩となっていてもよい。但し、アルカリ土類金属塩などの多価金属塩は、水に対する溶解性が低い場合があり得るので、好適にはPGAのフリー体またはPGAの一価金属塩を用いる。
 第四級アンモニウム塩もしくはビグアニド系殺菌剤は、通常、ハロゲン化物塩として存在する。よって、本発明においては、反応液へ第四級アンモニウム塩もしくはビグアニド系殺菌剤を直接添加、或いは当該塩を水溶媒に溶解した上で添加すればよい。第四級アンモニウム塩もしくはビグアニド系殺菌剤は、PGAを十分に改質するため、PGAに対して十分量用いることが好ましい。
 本発明のPGAイオンコンプレックスは水不溶性であることから、水溶媒から容易に分
離できるため、反応液における各成分の濃度は特に制限されない。例えば、反応液におけ
るPGAの濃度を0.5w/v%以上、10w/v%以下程度、カチオン性殺菌剤の濃度を1.0w/v%以上、10w/v%以下程度とすることができる。
 反応液は、コンプレックスの形成を促進するために適度に加熱することが好ましい。加熱温度は、例えば40℃以上、80℃以下程度とすることができる。反応時間は適宜調整すればよいが、通常、1時間以上、20時間以下程度とすることができる。
 本発明のPGAイオンコンプレックスは水不溶性であることから、濾過や遠心分離などにより水溶媒から容易に分離することができる。また、分離したPGAイオンコンプレックスは、水で洗浄することにより、過剰に用いたPGAまたはカチオン性殺菌剤、その他の塩を除去することも可能である。また、水溶媒は、アセトンなどで洗浄することにより簡便に除去できる。
 本発明のPGAイオンコンプレックスは、生分解性を示す上に、保湿性を有しながらも
水溶性や過剰な吸水性を示さない。また、明確な融点を有し、且つ融点と熱分解開始点が十分に離れていることから加熱成形が可能である。
 本発明のPGAイオンコンプレックスは、健康・衛生面で抗ウイルス性が要求される分野で広範囲に利用することができるウイルス不活化剤として利用できる。
本発明のPGAイオンコンプレックスに含有する、第四級アンモニウムもしくはビグアニド部位は、エンベロープ型ウイルスの脂質2重膜を破壊し、不活化することができる。
エンベロープ型ウイルスの例としては、A型インフルエンザ、B型インフルエンザ、新型インフルエンザ、パラインフルエンザウイルス、ヘルペスウイルス、おたふくかぜウイルス、ニューカッスル病ウイルス、麻疹ウイルス、RSウイルス、狂犬病ウイルス、コロナウイルス、ブニヤウイルス、ヒトTリンパ好性ウイルス、HIVウイルス等のエンベロープを保有するウイルスを挙げることができる。その中でも、A型インフルエンザ、B型インフルエンザ、新型インフルエンザを不活性化するのに好適である。
 本発明のPGAイオンコンプレックスをウイルス不活化剤として利用する形態としては、高分子樹脂組成物への配合、塗料、噴霧剤等が挙げられる。PGAイオンコンプレックスは生分解性を有するポリマーであることから、安全性の高い、低環境負荷のウイルス不活化剤として利用できる。さらに、PGAイオンコンプレックスは接着性を有し、水に不溶性のため、特に、塗料、噴霧剤への使用において、持続性を有するウイルス不活化剤として利用できる。
本発明のウイルス不活化剤を高分子樹脂に配合した抗ウイルス性高分子樹脂組成物として使用する場合、高分子樹脂の種類には特に制約はなく、樹脂組成物の用途等に応じて自由に選ぶことができる。使用し得る樹脂の具体例としては、例えば、塩化ビニル系ポリマー、ウレタン系ポリマー、アクリル系ポリマー、オレフィン系ポリマー、エチレン系ポリマー、プロピレン系ポリマー、アミド系ポリマー、エチレン-酢酸ビニル共重合体、塩化ビニリデン系ポリマー、スチレン系ポリマー、エステル系ポリマー、ナイロン系ポリマー、セルロース誘導体、カーボネート系ポリマー、フッ素系樹脂、シリコーン系樹脂、ビニルアルコール系ポリマー、ビニルエステル系ポリマー、合成ゴム、天然ゴムなどが挙げられる。樹脂組成物には、必要に応じて、可塑剤、充填剤、着色剤(染料、顔料など)、紫外線吸収剤等を適宜配合してもよい。配合割合としては、ウイルス不活化の効果を発現でき且つ高分子樹脂としての機能を損なわない範囲が好ましく、具体的には0.1%~5.0%が好ましく、0.1%~2.0%がより好ましい。
上記の樹脂組成物は、その用途等に応じて種々の形態に加工することができる。例えば、本発明の樹脂組成物は、押出成形、射出成形、溶液流延法、紡糸法等それ自体既知の樹脂加工法によって、フィルム状、シート状、板状、繊維状、立体状に成形することができる。例えば、内装材、床材、繊維製品、紙製品、家電製品等に利用することができる。
本発明のウイルス不活化剤を用いて、工業製品あるいは基材にウイルス不活化処理を施す際には、刷け塗り、スプレイ法、ディッピング法、浸漬法、コーティング法、プリント法等の方法で処理を行ってもよく、特に限定されない。
また、本発明のウイルス不活化剤は、塗料用溶剤に溶解あるいは分散させ、適宜、顔料、架橋剤、その他の塗料用添加物を配合することにより、抗ウイルス塗料の形態にすることもできる。この場合、塗布しうる基材として、セラミックス、金属、金属酸化物、プラスチック、ゴム類、鉱石類、木材等を挙げることができる。具体的には、セラミックスの例として、ガラス、陶磁器、セメント、耐火煉瓦、琺瑯等を挙げることができる。金属の例としては、鉄、アルミニウム、亜鉛、マグネシウム、金、銀、クロム、ゲルマニウム、モリブデン、ニッケル、鉛、白金、ケイ素、チタン、トリウム、タングステンのような単体金属や、炭素鋼、ニッケル鋼、クロム鋼、クロムモリブデン鋼、ステンレス鋼、アルミニウム合金、黄銅、青銅等の合金を挙げることができる。金属酸化物の例としては、アルミナ、シリカ、マグネシア、トリア、ジルコニア、三二酸化鉄、四三酸化鉄、酸化チタン、酸化カルシウム、酸化亜鉛、酸化鉛等を挙げることができる。プラスチックの例としては、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、ポリビニルアルコール等の汎用プラスチック、ポリアミド、ポリカーボネート、ポリアセタール、ポリフッ化ビニリデン、ポリエーテルサルフォン、ポリアミドイミド等のエンジニアプラスチック、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリウレタン等の熱硬化性樹脂等を挙げることができる。鉱石類としては、大理石、花崗岩等を挙げることができる。ウイルス不活化剤は塗料用溶剤に0.1%以上含まれていることが好ましく、0.5%以上含まれていることが好ましい。0.1%より少ないとウイルス不活化の効果が十分に発揮されない恐れがある。一方、塗料としての用途で使用するため、20%以下であることが好ましい。
さらに、本発明のウイルス不活化剤は、抗ウイルス用噴霧剤として使用することができる。具体的には、住居、病院、公共施設等における浴室、流し、衛生機器類等に直接噴霧塗布することにより、ウイルスを不活性化することができる。この場合、噴霧剤に使用される分散液としては、安全性の観点から、水、エタノール、メタノール、イソプロパノール等のアルコール類、及び、n-ヘキサン等の炭化水素類の溶媒が好ましく、ケトン類、エステル類、脂肪酸類、シリコーン油等の各種の溶媒も使用することができる。これらの溶媒は、1種だけ単独で用いてもよく、2種以上混合して用いてもよい。ウイルス不活化剤は噴霧剤中に0.1%以上含まれていることが好ましく、0.5%以上含まれていることが好ましい。0.1%より少ないとウイルス不活化の効果が十分に発揮されない恐れがある。上限は特に限定されないが、溶媒等に溶解する場合は、ウイルス不活化剤は20%以下であることが好ましい。
あるいは、プラスチック射出成型機の金型内面に噴霧塗布することにより、成型されたプラスチックの表面に間接的に抗ウイルス性を転写させ、長期間、壁面やプラスチック表面のウイルスを不活性化することができる。
 本発明のウイルス不活化剤の一態様として、PGAイオンコンプレックスは明確な融点を有し、且つ融点と熱分解開始点が十分に離れていることから加熱成形が可能である性質を利用し、バイオプラスチック材料として、フィルム状成形体等に加工して使用することもできる。
 本発明のウイルス不活化剤の別の態様として、PGAイオンコンプレックスを湿式紡糸法、乾湿式紡糸法、乾式紡糸法、ゲル紡糸法などの溶液紡糸法、溶融紡糸法、荷電紡糸法等によって紡糸し、織編物または不織布等の繊維構造体として使用することができる。一例として、メタノールやエタノールなどのアルコール溶媒もしくはジエチルエーテルやTHFなどのエーテル溶媒に溶解し、荷電紡糸法(荷電中で帯電した高分子溶液をノズル先端より吐出しながら、その溶液の電荷反発力により微細の繊維状物を得る方法)によりナノファイバーを作製して、不織布状の繊維構造体とすることができる。
 以下の実施例により、本発明を更に詳細に説明するが、本発明は、これらに何ら限定されるものではない。
(実施例1)PGAIC100(PGA/CPC)の製造
超好塩古細菌ナトリアルバ・エジプチアキア(N.aegyptiaca)由来の平均分子量1000kDのポリ-γ-L-グルタミン酸ナトリウム塩(40g)を精製水に溶解し、2w/v%の溶液とした。当該溶液へ60℃に保温した塩化セチルピリジニウム(CPC)の0.2M水溶液(1551g)を加えた。原料であるポリ-γ-L-グルタミン酸ナトリウム塩(含量90%以上)の水溶液から、CPC添加直後に水不溶性材料が形成されることを確認した後、さらに60℃で4時間保温した。得られた水不溶性材料を濾別回収した後、1000mLの精製水で計3回洗浄した。さらにアセトンで洗浄することにより脱水した後、真空乾燥し、粉末としてイオンコンプレックス(93g)を回収した。得られたイオンコンプレックスのH-NMRの結果から、L-PGAとCPCが100:100のモル比で結合していることが確認された。
(実施例2)PGAIC(L-PGA/CPC)コーティングフィルムの製造
実施例1で得られたイオンコンプレックス(20g)を99.5%エタノールに溶解し、20wt%の溶液とした。得られたエタノール溶液をアプリケータにて厚さ188μmのPETフィルム上に塗布し、溶剤乾燥させることで、塗膜の厚さ18μmのPGAICコーティングフィルムを作製した。
(実施例3)PGAIC(L-PGA/CPC)コーティングフィルムのウイルス不活化試験
 抗菌試験法のJIS Z2801に準拠し、実施例2で作製したPGAIC(L-PGA/CPC)コーティングフィルムを50 mm角に切り取り、保温シャーレに入れ、ウイルス液0.2 mLを滴下し、25℃にて接触させた。24時間後にリン酸緩衝生理食塩水10 mLを加え、シャーレ内の液を回収した。ウイルスは、A型インフルエンザ、B型インフルエンザを用いた。Reed-Muench法(Reed, L.J., & Muench, H. (1938) Am. J. Hygiene, 27, 493-497)により、ウイルス感染価を算出した。尚、対照として、未処理のPETフィルムを用い、同様の操作を行った。PGAICコーティングフィルムの抗ウイルス効果は、24時間作用後の未処理PETフィルムに対する減少値:log10(未処理PETフィルムの感染価/PGAICコーティングフィルムの感染価)によって求めた。
 表1にその結果を示す。その結果、A型インフルエンザウイルスに対するPAGICコーティングフィルムのウイルス感染価は1.7×10TCID50/mLとなり、抗ウイルス効果は5.4となった。またB型インフルエンザウイルスに対するPAGICコーティングフィルムのウイルス感染価は検出限界値である1.3×10TCID50/mL以下となり、抗ウイルス効果は3.2以上となった。抗ウイルス効果は2.0以上を「効果あり」と判定される。以上の結果より、PGAIC(L-PGA/CPC)コーティングフィルムがA型インフルエンザウイルスおよびB型インフルエンザウイルスに対し、不活化作用を有することが認められた。
Figure JPOXMLDOC01-appb-T000001
 本発明のウイルス不活化剤は、樹脂組成物、塗料、噴霧剤等の形態で、健康・衛生面で抗菌防カビ性、ウイルス不活性が要求される分野で広範囲に利用することができる。

Claims (9)

  1.  ポリ-γ-グルタミン酸とカチオン性殺菌剤から形成されるPGAイオンコンプレックスを含有するウイルス不活化剤。
  2.  カチオン性殺菌剤が第四級アンモニウム塩である、請求項1に記載のウイルス不活化剤。
  3.  カチオン性殺菌剤がビグアニド系殺菌剤である、請求項1に記載のウイルス不活化剤。
  4.  カチオン性殺菌剤が塩化セチルピリジニウム、塩化ベンゼトニウム、塩酸クロルヘキシジン及びグルコン酸クロルヘキシジンからなる群より選択される1種以上である、請求項1に記載のウイルス不活化剤。
  5.  ポリ-γ-グルタミン酸を構成するグルタミン酸のうち、L-グルタミン酸の占める割合が90%以上である、請求項1~4のいずれかに記載のウイルス不活化剤。
  6.  ポリ-γ-グルタミン酸を構成するグルタミン酸がL-グルタミン酸からなる、請求項5に記載のウイルス不活化剤。
  7.  請求項1~6のいずれかに記載のウイルス不活化剤を配合した高分子樹脂組成物。
  8.  請求項1~6のいずれかに記載のウイルス不活化剤を含む塗料。
  9.  請求項1~6のいずれかに記載のウイルス不活化剤を含む噴霧剤。
PCT/JP2014/053184 2013-02-12 2014-02-12 ウイルス不活化剤 WO2014126099A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015500254A JPWO2014126099A1 (ja) 2013-02-12 2014-02-12 ウイルス不活化剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013024212 2013-02-12
JP2013-024212 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014126099A1 true WO2014126099A1 (ja) 2014-08-21

Family

ID=51354098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053184 WO2014126099A1 (ja) 2013-02-12 2014-02-12 ウイルス不活化剤

Country Status (3)

Country Link
JP (1) JPWO2014126099A1 (ja)
TW (1) TWI568809B (ja)
WO (1) WO2014126099A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156164A1 (ja) * 2014-04-08 2015-10-15 東洋紡株式会社 イオンコンプレックスを含有する藻類抑制剤
JP2016128395A (ja) * 2015-01-09 2016-07-14 ロンシール工業株式会社 抗ウイルス性合成樹脂組成物及びその製造方法
CN108235996A (zh) * 2018-01-29 2018-07-03 复纳新材料科技(上海)有限公司 一种抑菌消臭凝固剂、其制备方法及其应用
JP2018197205A (ja) * 2017-05-23 2018-12-13 株式会社ニイタカ ウイルス不活性化剤、ノロウイルス不活性化剤及び衛生資材
WO2023063247A1 (ja) * 2021-10-13 2023-04-20 株式会社エナジーフロント 抗ウイルス剤、抗ウイルス性を付与する方法、抗ウイルス性を有する物品、抗菌剤、抗菌性を有する物品、抗真菌剤、及び抗真菌性を有する物品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016686A1 (de) * 1993-01-27 1994-08-04 Naturwissenschaftliches Und Medizinisches Institut An Der Universität Tübingen In Reutlingen Antivirales chemotherapeutikum mit breitbandwirkung und dessen verwendung
JP2007515204A (ja) * 2003-11-07 2007-06-14 ヴァイラトックス, エルエルシー 塩化セチルピリジニウムの殺ウイルス活性
JP2010222496A (ja) * 2009-03-24 2010-10-07 Kochi Univ Pgaイオンコンプレックス
JP2010539158A (ja) * 2007-09-13 2010-12-16 バイオリーダーズ コーポレーション ポリガンマグルタミン酸を含むウイルス感染を予防する組成物
JP2012082534A (ja) * 2010-10-06 2012-04-26 Toyobo Co Ltd 繊維とその製造方法
US20120288488A1 (en) * 2011-01-09 2012-11-15 Noble Ion, Llc Compositions and Methods of Use for Livestock Pen Spray

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03778A (ja) * 1990-01-03 1991-01-07 Kenji Ichikawa 抗菌性塗料
JP2008031156A (ja) * 2006-07-07 2008-02-14 National Univ Corp Shizuoka Univ 抗ウイルス剤
JP2011042603A (ja) * 2009-08-20 2011-03-03 Chisso Corp 微生物の不活化剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016686A1 (de) * 1993-01-27 1994-08-04 Naturwissenschaftliches Und Medizinisches Institut An Der Universität Tübingen In Reutlingen Antivirales chemotherapeutikum mit breitbandwirkung und dessen verwendung
JP2007515204A (ja) * 2003-11-07 2007-06-14 ヴァイラトックス, エルエルシー 塩化セチルピリジニウムの殺ウイルス活性
JP2010539158A (ja) * 2007-09-13 2010-12-16 バイオリーダーズ コーポレーション ポリガンマグルタミン酸を含むウイルス感染を予防する組成物
JP2010222496A (ja) * 2009-03-24 2010-10-07 Kochi Univ Pgaイオンコンプレックス
JP2012082534A (ja) * 2010-10-06 2012-04-26 Toyobo Co Ltd 繊維とその製造方法
US20120288488A1 (en) * 2011-01-09 2012-11-15 Noble Ion, Llc Compositions and Methods of Use for Livestock Pen Spray

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE ET AL.: "Polymer-attached zanamivir inhibits synergistically both early and late stages of influenza virus infection", PNAS, vol. V109, no. N50, 11 December 2012 (2012-12-11), pages 20385 - 20390 *
LEE ET AL.: "The antiviral activity of poly- gamma-glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD 14- dependent type I interferon responses", BIOMATERIALS, vol. V34, pages 9700 - 9708 *
MOON ET AL.: "Induction of type I interferon by high-molecular poly-gamma-glutamate protects B6.A2G-Mx1 mice against influenza A virus", ANTIVIRAL RESEARCH, vol. V94, 27 February 2012 (2012-02-27), pages 98 - 102 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156164A1 (ja) * 2014-04-08 2015-10-15 東洋紡株式会社 イオンコンプレックスを含有する藻類抑制剤
JP2016128395A (ja) * 2015-01-09 2016-07-14 ロンシール工業株式会社 抗ウイルス性合成樹脂組成物及びその製造方法
JP2018197205A (ja) * 2017-05-23 2018-12-13 株式会社ニイタカ ウイルス不活性化剤、ノロウイルス不活性化剤及び衛生資材
JP7080461B2 (ja) 2017-05-23 2022-06-06 株式会社ニイタカ ウイルス不活性化剤、ノロウイルス不活性化剤及び衛生資材
CN108235996A (zh) * 2018-01-29 2018-07-03 复纳新材料科技(上海)有限公司 一种抑菌消臭凝固剂、其制备方法及其应用
WO2023063247A1 (ja) * 2021-10-13 2023-04-20 株式会社エナジーフロント 抗ウイルス剤、抗ウイルス性を付与する方法、抗ウイルス性を有する物品、抗菌剤、抗菌性を有する物品、抗真菌剤、及び抗真菌性を有する物品

Also Published As

Publication number Publication date
TWI568809B (zh) 2017-02-01
TW201437298A (zh) 2014-10-01
JPWO2014126099A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2014126099A1 (ja) ウイルス不活化剤
US8486428B2 (en) Compositions and methods for making and using acyclic N-halamine-based biocidal polymeric materials and articles
JP6488473B2 (ja) 抗真菌剤およびコーティング剤
Sheridan et al. Biomaterials: Antimicrobial surfaces in biomedical engineering and healthcare
KR20070027730A (ko) 다중사차 유기규소 화합물을 포함하는 조성물
JP2014520199A (ja) 広範囲抗菌剤としてのアルキルアミノアルキルオリゴマー
EP2731429A2 (en) Compounds, methods of making, and methods of use
JPWO2010147165A1 (ja) Rnaウイルス感染阻止剤及びrnaウイルス感染阻止製品
WO2015001997A1 (ja) 衛生用品
Choudhury et al. Antimicrobial polymeric composites in consumer goods and healthcare sector: A healthier way to prevent infection
CN111333862A (zh) 一种抗病毒乳液组合物及涂料及其制备方法
JP2019072974A (ja) 積層体およびそれを用いたフィルター濾材
Goldade et al. Antimicrobial fibers for textile clothing and medicine: current state
WO2011148950A1 (ja) 抗菌抗かび剤及び抗菌抗かび性製品
JP6638955B2 (ja) 耐水耐有機溶媒性組成物
CN109381371A (zh) 一种具有清凉功能的抗菌湿纸巾
Tremiliosi et al. Engineering polycotton fiber surfaces, with an timicrobial activity against S. aureus, E. Coli, C. albicans and SARS-CoV-2
CN109566644A (zh) 一种高效杀菌剂及其制备方法
JP6497613B2 (ja) ポリ(メタ)アクリル酸イオンコンプレックス
MX2023006993A (es) Polimeros biodegradables.
JP2012211428A (ja) 抗ウイルス性繊維製品の製造方法
JP5132163B2 (ja) 湿潤ワイパー
US20230337670A1 (en) Photo-polymerizable, universal antimicrobial coating to produce high-performing, multi-functional face masks
AU2010101184A4 (en) An improved antimicrobial agent
US20240180160A1 (en) Antiviral polymer material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751245

Country of ref document: EP

Kind code of ref document: A1