WO2014126024A1 - 副生炭の製造方法 - Google Patents

副生炭の製造方法 Download PDF

Info

Publication number
WO2014126024A1
WO2014126024A1 PCT/JP2014/052975 JP2014052975W WO2014126024A1 WO 2014126024 A1 WO2014126024 A1 WO 2014126024A1 JP 2014052975 W JP2014052975 W JP 2014052975W WO 2014126024 A1 WO2014126024 A1 WO 2014126024A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
coal
product
mixture
product coal
Prior art date
Application number
PCT/JP2014/052975
Other languages
English (en)
French (fr)
Inventor
康爾 堺
憲幸 奥山
吉田 拓也
繁 木下
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020157021519A priority Critical patent/KR101710292B1/ko
Priority to CN201480008478.7A priority patent/CN105073958B/zh
Priority to US14/764,861 priority patent/US20150376528A1/en
Priority to CA2898724A priority patent/CA2898724C/en
Priority to AU2014217196A priority patent/AU2014217196B2/en
Publication of WO2014126024A1 publication Critical patent/WO2014126024A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/544Extraction for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process

Definitions

  • the present invention relates to a method for producing by-product coal produced as a by-product when obtaining ashless coal from which ash is removed from coal.
  • Patent Document 1 discloses a method for producing ashless coal.
  • a coal raw material in which caking coal is mixed with general coal and a solvent are mixed to prepare a slurry, the obtained slurry is heated to extract a coal component soluble in the solvent, and the coal component is extracted.
  • a solution containing coal components soluble in the solvent and a solid concentrate containing coal components insoluble in the solvent are separated from each other by gravity precipitation, and the solvent is separated from the separated solution.
  • by-product coal is produced as a by-product in addition to the ashless coal that is the final product.
  • By-product coal is obtained by evaporating and separating the solvent from the solid concentrate.
  • a by-product coal mixture in which the solvent remains in the by-product coal is obtained.
  • the byproduct charcoal is obtained by carrying out the evaporative separation of the solvent which remains from this byproduct charcoal mixture.
  • An object of the present invention is to provide a method for producing by-product coal that can simplify the apparatus for drying the by-product coal mixture and reduce the cost for drying the by-product coal mixture.
  • the method for producing by-product coal in the present invention includes an extraction step of extracting a coal component soluble in a solvent by heating a slurry obtained by mixing coal and a solvent, and a slurry obtained in the extraction step, Separation process for separating a solution in which a coal component soluble in a solvent is dissolved and a solid content concentrate in which a coal component insoluble in a solvent is concentrated, and evaporating and separating the solvent from the solid content concentrate separated in the separation process
  • a by-product charcoal obtaining step for obtaining by-product coal, and the by-product coal obtaining step evaporates and separates the solvent from the solid concentrate separated in the separation step.
  • the by-product coal drying step using the heat of the by-product coal mixture Serial characterized by flashing off the solvent remaining from the residue coal mixture.
  • the apparatus for drying the by-product coal mixture can be simplified, and the cost for drying the by-product coal mixture can be reduced.
  • the method for producing by-product coal is implemented in the ashless coal production facility 100 used in the method for producing ashless coal.
  • the ashless coal production facility 100 includes a coal hopper 1, a solvent tank 2, a slurry preparation tank 3, a transfer pump 4, a preheater 5, in order from the upstream side of the ashless coal (HPC) production process.
  • An extraction tank 6, a gravity sedimentation tank 7, a filter unit 8, solvent separators 9 and 10, and a dryer 11 are provided.
  • the method for producing ashless coal has a slurry preparation step, an extraction step, a separation step, an ashless coal acquisition step, and a byproduct coal acquisition step.
  • the manufacturing method of byproduct charcoal of this embodiment has a slurry preparation process, an extraction process, a separation process, and a byproduct charcoal acquisition process among the above-mentioned processes.
  • each step will be described.
  • limiting in particular in the coal used as a raw material in this manufacturing method A bituminous coal with a high extraction rate may be used, and cheaper inferior quality coal (subbituminous coal, lignite) may be used.
  • the ashless coal means ash content of 5% by weight or less, preferably 3% by weight or less.
  • the slurry preparation step is a step of preparing a slurry by mixing coal and a solvent.
  • This slurry preparation process is implemented in the slurry preparation tank 3 in FIG.
  • Coal as a raw material is charged into the slurry preparation tank 3 from the coal hopper 1, and a solvent is charged into the slurry preparation tank 3 from the solvent tank 2.
  • the coal and solvent charged into the slurry preparation tank 3 are mixed by the stirrer 3a to become a slurry composed of coal and solvent.
  • the mixing ratio of coal to the solvent is, for example, 10 to 50% by weight based on dry coal, and more preferably 20 to 35% by weight.
  • the extraction step is a step of heating the slurry obtained in the slurry preparation step to extract a coal component soluble in the solvent (dissolve in the solvent). This extraction step is performed in the preheater 5 and the extraction tank 6 in FIG.
  • the slurry prepared in the slurry preparation tank 3 is supplied to the preheater 5 by the transfer pump 4 and heated to a predetermined temperature, then supplied to the extraction tank 6, and held at the predetermined temperature while being stirred by the stirrer 6a. Extraction is performed.
  • the non-hydrogen donating solvent is a coal derivative that is a solvent mainly composed of a bicyclic aromatic and purified mainly from a coal carbonization product.
  • This non-hydrogen-donating solvent is stable even in a heated state and has excellent affinity with coal. Therefore, the proportion of soluble components (herein, coal components) extracted into the solvent (hereinafter also referred to as extraction rate) In addition, it is a solvent that can be easily recovered by a method such as distillation.
  • Main components of the non-hydrogen donating solvent include bicyclic aromatic naphthalene, methyl naphthalene, dimethyl naphthalene, trimethyl naphthalene and the like, and other non-hydrogen donating solvent components have aliphatic side chains. Naphthalenes, anthracenes, fluorenes, and these include biphenyl and alkylbenzenes having long aliphatic side chains.
  • the boiling point of the solvent is not particularly limited. From the viewpoint of pressure reduction in the extraction step and separation step, extraction rate in the extraction step, solvent recovery rate in the ashless coal acquisition step, etc., for example, a solvent having a boiling point of 180 to 300 ° C., particularly 240 to 280 ° C. Preferably used. In this embodiment, the boiling point of the solvent is about 240 ° C.
  • the heating temperature of the slurry in the extraction step is not particularly limited as long as the solvent-soluble component can be dissolved, and is, for example, 300 to 420 ° C. from the viewpoint of sufficient dissolution of the solvent-soluble component and improvement of the extraction rate. More preferably, it is 360 to 400 ° C.
  • the preheater 5 heats the slurry, so that the by-product coal mixture supplied to the dryer 11 can evaporate and separate the remaining solvent from the by-product coal mixture, as will be described later.
  • the temperature of the solid content concentrate supplied to the solvent separator 10 is adjusted so as to have a heat quantity.
  • the heating time is not particularly limited, but it is, for example, 10 to 60 minutes from the viewpoint of sufficient dissolution and improvement of the extraction rate.
  • the heating time is the total heating time in the preheater 5 and the extraction tank 6 in FIG.
  • the extraction process is performed in the presence of an inert gas such as nitrogen.
  • the pressure in the extraction tank 6 is preferably 1.0 to 2.0 MPa, although it depends on the temperature at the time of extraction and the vapor pressure of the solvent used.
  • the pressure in the extraction tank 6 is lower than the vapor pressure of the solvent, the solvent volatilizes and is not confined in the liquid phase, so that extraction cannot be performed.
  • a pressure higher than the vapor pressure of the solvent is required.
  • the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.
  • the separation step the slurry obtained in the extraction step is subjected to a gravity sedimentation method, a solution in which a coal component soluble in a solvent is dissolved, and a solid content in which a coal component insoluble in a solvent (a solvent insoluble component such as ash) is concentrated.
  • This is a step of separating into a concentrated liquid (solvent insoluble component concentrated liquid).
  • This separation step is performed in the gravity settling tank 7 in FIG.
  • the slurry obtained in the extraction step is separated into a supernatant liquid as a solution and a solid content concentrated liquid by gravity in the gravity settling tank 7.
  • the supernatant liquid in the upper part of the gravity settling tank 7 is discharged to the solvent separator 9 through the filter unit 8 as necessary, and the solid concentrate settled in the lower part of the gravity settling tank 7 is sent to the solvent separator 10. Discharged.
  • Gravity sedimentation method is a method in which a slurry is retained in a tank to settle and separate solvent-insoluble components using gravity.
  • a solvent-insoluble component for example, ash
  • a continuous separation process is possible by continuously discharging the supernatant from the top and the solid concentrate from the bottom while continuously supplying the slurry into the tank.
  • the gravity settling tank 7 is preferably kept warm (or heated) or pressurized in order to prevent reprecipitation of solvent-soluble components eluted from coal.
  • the heat retention (heating) temperature is, for example, 300 to 380 ° C.
  • the tank internal pressure is, for example, 1.0 to 3.0 MPa.
  • a method for separating the solution containing the coal component dissolved in the solvent from the slurry obtained in the extraction step there are a filtration method, a centrifugal separation method and the like in addition to the gravity sedimentation method.
  • the ashless coal acquisition step is a step of obtaining ashless coal (HPC) by evaporating and separating the solvent from the solution (supernatant liquid) separated in the separation step.
  • This ashless charcoal acquisition process is performed by the solvent separator 9 in FIG.
  • the solution separated in the gravity settling tank 7 is filtered by the filter unit 8 and then supplied to the solvent separator 9, and the solvent is evaporated and separated from the supernatant in the solvent separator 9.
  • it is preferable that the solvent is separated from the solution in the presence of an inert gas such as nitrogen.
  • the solvent is evaporated and separated from the solution in nitrogen gas introduced into the solvent separator 9.
  • a general distillation method, evaporation method or the like can be used as a method for separating the solvent from the solution (supernatant liquid).
  • the solvent separated by the solvent separator 9 is returned to the solvent tank 2 and circulated and used repeatedly.
  • it is not indispensable the same is true in the by-product charcoal acquisition step described later.
  • Ashless coal contains almost no ash, has no moisture, and shows a higher calorific value than raw coal. Furthermore, softening meltability (fluidity), which is a particularly important quality as a raw material for coke for iron making, has been greatly improved, and the obtained ashless coal (HPC) is good even if the raw coal does not have softening meltability Soft meltability. Therefore, ashless coal can be used, for example, as a blended coal for coke raw materials. In addition, ashless coal containing almost no ash content has high combustion efficiency and can reduce the generation of coal ash. Therefore, the use of ashless coal as a gas turbine direct injection fuel in a high-efficiency combined power generation system based on gas turbine combustion has attracted attention.
  • the byproduct charcoal acquisition step is a step of obtaining byproduct charcoal by evaporating and separating the solvent from the solid concentrate separated in the separation step.
  • This byproduct charcoal acquisition process has a byproduct charcoal mixture acquisition process and a byproduct charcoal drying process.
  • the byproduct charcoal mixture acquisition step is a step of obtaining a byproduct charcoal mixture in which the solvent remains in the byproduct charcoal by evaporating and separating the solvent from the solid content concentrate separated in the separation step.
  • This byproduct charcoal mixture acquisition step is performed by the solvent separator 10 in FIG.
  • the solid content concentrate separated in the gravity sedimentation tank 7 is supplied to the solvent separator 10, and the solvent is evaporated and separated from the solid content concentrate in the solvent separator 10.
  • the solvent separator 10 is a flash distillation tank used for flash distillation.
  • the flash distillation method is a method in which a solvent is evaporated and separated by spraying a solid concentration liquid in a tank in a nitrogen gas atmosphere.
  • the method for separating the solvent from the solid concentrate is not limited to the flash distillation method, and a general distillation method and an evaporation method can be used in the same manner as the ashless coal acquisition step described above.
  • the solvent separated by the solvent separator 10 is returned to the solvent tank 2 and circulated and used repeatedly.
  • the solid concentration liquid separated in the gravity settling tank 7 is in a high temperature and high pressure state in which the solvent is not evaporated and separated.
  • a solid content concentrate is injected into the solvent separator 10 whose inside is at normal pressure, so that the pressure of the solid content concentrate is released.
  • the boiling point of the solvent is lowered, and the solvent is evaporated and separated from the hot solid concentrate at once.
  • the solid content concentrate supplied to the solvent separator 10 so that the byproduct coal mixture supplied later to the dryer 11 has a heat quantity capable of evaporating and separating the solvent remaining from the byproduct coal mixture.
  • the temperature is adjusted. As described above, this temperature adjustment is performed by the preheater 5 that heats the slurry prepared in the slurry preparation tank 3.
  • This temperature adjustment may be performed by heating the solid concentrate before being separated in the gravity settling tank 7 and supplied to the solvent separator 10.
  • the temperature adjustment may be performed by heating the slurry prepared in the slurry preparation tank 3 and the solid content concentrate separated in the gravity settling tank 7, respectively.
  • the byproduct coal drying step is a step of obtaining byproduct coal by evaporating and separating the remaining solvent from the byproduct coal mixture.
  • This byproduct char drying step is performed by a dryer 11 in FIG.
  • the by-product coal mixture obtained by the solvent separator 10 is supplied to the dryer 11, and the solvent remaining from the by-product coal mixture is evaporated and separated in the dryer 11.
  • the solvent is preferably separated from the by-product coal mixture in the presence of an inert gas such as nitrogen.
  • the dryer 11 is a rotary dryer that retains and stirs the by-product coal mixture while circulating nitrogen gas as a carrier gas.
  • By-product charcoal contains ash, but has no moisture and has a sufficient calorific value.
  • By-product coal does not exhibit softening and melting properties, but the oxygen-containing functional groups are eliminated, so that when used as a blended coal, it inhibits the softening and melting properties of other coals contained in this blended coal. It is not a thing. Therefore, this by-product coal can be used as a part of the blended coal of the coke raw material, as in the case of ordinary non-slightly caking coal, and is used for various fuels without using the coke raw coal. It is also possible.
  • the residual solvent is evaporated and separated from the by-product coal mixture using heat of the by-product coal mixture itself, which is a mixture containing the by-product coal and the solvent. . That is, the dryer 11 only stirs and stirs the byproduct coal mixture, and does not give any heat to the byproduct coal mixture.
  • the heat which byproduct coal mixture itself has means the heat which the byproduct coal mixture obtained by isolate
  • By-product charcoal mixture itself has heat, and by-product charcoal mixture has predetermined calorie
  • the amount of heat that the by-product coal mixture has is an amount capable of evaporating and separating the remaining solvent from the by-product coal mixture. If the main component of the solvent is methylnaphthalene, the amount of heat necessary for evaporating and separating the unit amount of solvent is 330 kilojoules / kilogram (kJ / kg) (the amount of heat necessary for evaporating 1 kg of the solvent). As described above, by adjusting the temperature of the solid concentrate supplied to the solvent separator 10, the by-product coal mixture supplied to the dryer 11 has such heat.
  • the by-product coal mixture supplied to the by-product coal drying step (dryer 11)
  • the amount of heat capable of evaporating and separating the remaining solvent from the raw charcoal mixture is set.
  • heat amount which can carry out the evaporative separation of the solvent which remains from a byproduct coal mixture can be given suitably to a byproduct coal mixture.
  • the by-product coal mixture acquisition step (solvent separator 10). Adjust the temperature of the solid concentrate. Since the slurry and the solid content concentrate are liquid, heat can be efficiently applied. Therefore, the temperature of the solid content concentrate supplied to a byproduct charcoal mixture acquisition process can be adjusted suitably by heating a slurry and solid content concentrate.
  • the time required for the solvent content of the sample to decrease to 2% by weight was about 30 minutes when the drying temperature was 210 ° C, about 15 minutes when the drying temperature was 250 ° C, and about 10 minutes when the drying temperature was 270 ° C. It was. It has been found that when the drying temperature is 250 ° C., the drying time can be shortened to about half compared with the case where the drying temperature is 210 ° C. corresponding to the steam temperature of the steam tube dryer. Further, it was found that when the drying temperature is 270 ° C., the drying time can be shortened to about 1/3 as compared with the case where the drying temperature is 210 ° C.
  • the byproduct coal mixture itself remains using the heat of the byproduct coal mixture.
  • the solvent is evaporated off.
  • an apparatus for applying heat to the powder is required.
  • the byproduct charcoal mixture obtained in the byproduct charcoal mixture acquisition step (solvent separator 10) itself has a considerable heat. Therefore, it is not necessary to heat the by-product coal mixture by evaporating and separating the remaining solvent from the by-product coal mixture using the heat of the by-product coal mixture itself. Thereby, the apparatus which dries a by-product charcoal mixture can be simplified, and the cost concerning drying of a by-product charcoal mixture can be reduced.
  • the by-product coal mixture supplied to the by-product coal drying step (dryer 11)
  • the amount of heat capable of evaporating and separating the remaining solvent from the raw charcoal mixture is set.
  • heat amount which can carry out the evaporative separation of the solvent which remains from a byproduct coal mixture can be given suitably to a byproduct coal mixture.
  • the temperature of the solid content concentrate supplied to the byproduct coal mixture acquisition step is adjusted. Since the slurry and the solid content concentrate are liquid, heat can be efficiently applied. Therefore, the temperature of the solid content concentrate supplied to a byproduct charcoal mixture acquisition process can be adjusted suitably by heating a slurry and solid content concentrate.
  • the solid content concentrate in a high-temperature and high-pressure state in which the solvent is not evaporated and separated is injected into a normal pressure container, whereby the pressure of the solid content concentrate is increased. Opened. As a result, the boiling point of the solvent is lowered and the solvent is evaporated and separated from the hot solid concentrate at once, so that the solvent can be suitably evaporated and separated from the solid concentrate.
  • the cost for drying can be reduced by simplifying an apparatus for drying the by-product coal mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 本発明の副生炭の製造方法では、溶剤分離器10において、重力沈降槽7で分離された固形分濃縮液から溶剤を蒸発分離することで、副生炭に溶剤が残存してなる副生炭混合物を得る。次に、ドライヤ11において、副生炭混合物から残存する溶剤を蒸発分離して副生炭を得る。その際に、ドライヤ11内において、副生炭混合物自体が有する熱を用いて副生炭混合物から残存する溶剤を蒸発分離する。これにより、副生炭混合物を乾燥させる装置を簡略化して乾燥に係るコストを低減する。

Description

副生炭の製造方法
 本発明は、石炭から灰分を除去した無灰炭を得る際に、副生物として生成される副生炭の製造方法に関する。
 特許文献1には、無灰炭の製造方法が開示されている。この製造方法では、一般炭に粘結炭を混合した石炭原料と溶剤とを混合してスラリーを調製し、得られたスラリーを加熱して溶剤に可溶な石炭成分を抽出し、石炭成分を抽出したスラリーから、重力沈降法により、溶剤に可溶な石炭成分を含む溶液と、溶剤に不溶な石炭成分を含む固形分濃縮液とを分離し、分離された溶液から溶剤を分離して無灰炭を得ている。
日本国特開2009-227718号公報
 ところで、無灰炭の製造プロセスでは、最終製品である無灰炭の他に、副生物として副生炭が製造される。
 副生炭は、固形分濃縮液から溶剤を蒸発分離することで得られる。そのプロセスとして、まず、固形分濃縮液から溶剤を蒸発分離することで、副生炭に溶剤が残存してなる副生炭混合物を得る。そして、この副生炭混合物から残存する溶剤を蒸発分離することで、副生炭を得ている。
 しかしながら、大量の副生炭混合物を乾燥させて副生炭を得る場合、副生炭混合物の温度を溶剤の沸点(240℃程度)以上にすることができる乾燥手段がないという問題がある。乾燥手段の一つとしてスチームチューブドライヤがあるが、スチーム温度はせいぜい220℃であるため、滞留時間を長くする必要があり、コストの増加を招く。
 本発明の目的は、副生炭混合物を乾燥させる装置を簡略化し、副生炭混合物の乾燥に係るコストを低減させることが可能な副生炭の製造方法を提供することである。
 本発明における副生炭の製造方法は、石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出する抽出工程と、前記抽出工程で得られたスラリーを、溶剤に可溶な石炭成分が溶解した溶液と、溶剤に不溶な石炭成分が濃縮した固形分濃縮液とに分離する分離工程と、前記分離工程で分離された固形分濃縮液から溶剤を蒸発分離して副生炭を得る副生炭取得工程と、を備え、前記副生炭取得工程は、前記分離工程で分離された固形分濃縮液から溶剤を蒸発分離することで、副生炭に溶剤が残存してなる副生炭混合物を得る副生炭混合物取得工程と、前記副生炭混合物から残存する溶剤を蒸発分離して副生炭を得る副生炭乾燥工程と、を有し、前記副生炭乾燥工程において、前記副生炭混合物自体が有する熱を用いて前記副生炭混合物から残存する溶剤を蒸発分離することを特徴とする。
 本発明の副生炭の製造方法によると、副生炭混合物を乾燥させる装置を簡略化し、副生炭混合物の乾燥に係るコストを低減させることができる。
無灰炭製造設備の模式図である。 乾燥時間の評価結果を示すグラフである。
 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。
(無灰炭の製造方法)
 本実施形態による副生炭の製造方法は、無灰炭の製造方法に用いられる無灰炭製造設備100において実施される。無灰炭製造設備100は、図1に示すように、無灰炭(HPC)製造工程の上流側から順に、石炭ホッパ1・溶剤タンク2、スラリー調製槽3、移送ポンプ4、予熱器5、抽出槽6、重力沈降槽7、フィルターユニット8、溶剤分離器9・10、および、ドライヤ11を備えている。
 無灰炭の製造方法は、スラリー調製工程、抽出工程、分離工程、無灰炭取得工程、および、副生炭取得工程を有する。本実施形態の副生炭の製造方法は、上述の工程のうち、スラリー調製工程、抽出工程、分離工程、および、副生炭取得工程を有する。以下、各工程について説明する。なお、本製造方法において原料とする石炭に、特に制限はなく、抽出率の高い瀝青炭を用いてもよいし、より安価な劣質炭(亜瀝青炭、褐炭)を用いてもよい。また、無灰炭とは、灰分が5重量%以下、好ましくは3重量%以下のもののことをいう。
(スラリー調製工程)
 スラリー調製工程は、石炭と溶剤とを混合してスラリーを調製する工程である。このスラリー調製工程は、図1中、スラリー調製槽3で実施される。原料である石炭が石炭ホッパ1からスラリー調製槽3に投入されるとともに、溶剤タンク2からスラリー調製槽3に溶剤が投入される。スラリー調製槽3に投入された石炭および溶剤は、攪拌機3aで混合されて石炭と溶剤とからなるスラリーとなる。
 溶剤に対する石炭の混合比率は、例えば、乾燥炭基準で10~50重量%であり、より好ましくは、20~35重量%である。
(抽出工程)
 抽出工程は、スラリー調製工程で得られたスラリーを加熱して溶剤に可溶な石炭成分を抽出する(溶剤に溶解させる)工程である。この抽出工程は、図1中、予熱器5および抽出槽6で実施される。スラリー調製槽3にて調製されたスラリーは、移送ポンプ4によって、予熱器5に供給されて所定温度まで加熱された後、抽出槽6に供給され、攪拌機6aで攪拌されながら所定温度で保持されて抽出が行われる。
 石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出するにあたっては、石炭に対して大きな溶解力を持つ溶媒、多くの場合、芳香族溶剤(水素供与性あるいは非水素供与性の溶剤)と石炭とを混合して、それを加熱し、石炭中の有機成分を抽出することになる。
 非水素供与性溶剤は、主に石炭の乾留生成物から精製した、2環芳香族を主とする溶剤である石炭誘導体である。この非水素供与性溶剤は、加熱状態でも安定であり、石炭との親和性に優れているため、溶剤に抽出される可溶成分(ここでは石炭成分)の割合(以下、抽出率ともいう)が高く、また、蒸留等の方法で容易に回収可能な溶剤である。非水素供与性溶剤の主な成分としては、2環芳香族であるナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン等が挙げられ、その他の非水素供与性溶剤の成分として、脂肪族側鎖を有するナフタレン類、アントラセン類、フルオレン類、また、これらにビフェニルや長鎖脂肪族側鎖を有するアルキルベンゼンが含まれる。
 なお、上記の説明では非水素供与性化合物を溶剤として用いる場合について述べたが、テトラリンを代表とする水素供与性の化合物(石炭液化油を含む)を溶剤として用いてもよいことは勿論である。水素供与性溶剤を用いた場合、無灰炭の収率が向上する。
 また、溶剤の沸点は特に制限されるものではない。抽出工程および分離工程での圧力低減、抽出工程での抽出率、無灰炭取得工程などでの溶剤回収率などの観点から、例えば、180~300℃、特に240~280℃の沸点の溶剤が好ましく使用される。本実施形態において、溶剤の沸点は240℃程度である。
 抽出工程でのスラリーの加熱温度は、溶剤可溶成分が溶解され得る限り特に制限されず、溶剤可溶成分の十分な溶解と抽出率の向上の観点から、例えば、300~420℃であり、より好ましくは、360~400℃である。本実施形態においては、予熱器5がスラリーを加熱することで、後述するように、ドライヤ11に供給される副生炭混合物が、副生炭混合物から残存する溶剤を蒸発分離することが可能な熱量を有するように、溶剤分離器10に供給される固形分濃縮液の温度が調整される。
 また、加熱時間(抽出時間)もまた特に制限されるものではないが、十分な溶解と抽出率の向上の観点から、例えば、10~60分間である。加熱時間は、図1中、予熱器5および抽出槽6での加熱時間を合計したものである。
 なお、抽出工程は、窒素などの不活性ガスの存在下で行う。抽出槽6内の圧力は、抽出の際の温度や用いる溶剤の蒸気圧にもよるが、1.0~2.0MPaが好ましい。抽出槽6内の圧力が溶剤の蒸気圧より低い場合には、溶剤が揮発して液相に閉じ込められず、抽出できない。溶剤を液相に閉じ込めるには、溶剤の蒸気圧より高い圧力が必要となる。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。
(分離工程)
 分離工程は、抽出工程で得られたスラリーを、重力沈降法により、溶剤に可溶な石炭成分が溶解した溶液と、溶剤に不溶な石炭成分(溶剤不溶成分、例えば灰分)が濃縮した固形分濃縮液(溶剤不溶成分濃縮液)とに分離する工程である。この分離工程は、図1中、重力沈降槽7で実施される。抽出工程で得られたスラリーは、重力沈降槽7内で、重力にて、溶液としての上澄み液と、固形分濃縮液とに分離される。重力沈降槽7の上部の上澄み液は、必要に応じてフィルターユニット8を経て、溶剤分離器9へ排出されるとともに、重力沈降槽7の下部に沈降した固形分濃縮液は溶剤分離器10へ排出される。
 重力沈降法は、スラリーを槽内に保持することにより、重力を利用して溶剤不溶成分を沈降・分離させる方法である。溶剤に可溶な石炭成分が溶解した溶液よりも比重が大きい、溶剤不溶成分(例えば灰分)は重力沈降槽7の下部に重力により沈降する。スラリーを槽内に連続的に供給しながら、上澄み液を上部から、固形分濃縮液を下部から連続的に排出することにより、連続的な分離処理が可能である。
 重力沈降槽7内は、石炭から溶出した溶剤可溶成分の再析出を防止するため、保温(または加熱)したり、加圧したりしておくことが好ましい。保温(加熱)温度は、例えば、300~380℃であり、槽内圧力は、例えば、1.0~3.0MPaとされる。
 なお、抽出工程で得られたスラリーから、溶剤に溶解している石炭成分を含む溶液を分離する方法として、重力沈降法以外に、濾過法、遠心分離法などがある。
(無灰炭取得工程)
 無灰炭取得工程は、分離工程で分離された溶液(上澄み液)から溶剤を蒸発分離して無灰炭(HPC)を得る工程である。この無灰炭取得工程は、図1中、溶剤分離器9で実施される。重力沈降槽7で分離された溶液は、フィルターユニット8で濾過された後、溶剤分離器9に供給され、溶剤分離器9内で上澄み液から溶剤が蒸発分離される。ここで、溶液からの溶剤の蒸発分離は、窒素などの不活性ガスの存在下で行うことが好ましい。本実施形態においては、溶剤分離器9内に導入した窒素ガス中で溶液から溶剤を蒸発分離している。
 溶液(上澄み液)から溶剤を分離する方法は、一般的な蒸留法、蒸発法などを用いることができる。溶剤分離器9にて分離された溶剤は、溶剤タンク2に戻されて、循環して繰り返し使用される。なお、溶剤を循環使用することは好ましいが必須ではない(後述する副生炭取得工程においても同様)。上澄み液から溶剤を分離することで、実質的に灰分を含まない無灰炭(HPC)を得ることができる。
 無灰炭は、灰分をほとんど含まず、水分は皆無であり、原料石炭よりも高い発熱量を示す。さらに、製鉄用コークスの原料として特に重要な品質である軟化溶融性(流動性)が大幅に改善され、原料石炭が軟化溶融性を有しなくとも、得られた無灰炭(HPC)は良好な軟化溶融性を有する。したがって、無灰炭は、例えばコークス原料の配合炭として使用することができる。また、灰分をほとんど含まない無灰炭は、燃焼効率が高く且つ石炭灰の発生を低減できるので、ガスタービン燃焼による高効率複合発電システムのガスタービン直噴燃料としての用途も注目されている。
(副生炭取得工程)
 副生炭取得工程は、分離工程で分離された固形分濃縮液から溶剤を蒸発分離して副生炭を得る工程である。この副生炭取得工程は、副生炭混合物取得工程と、副生炭乾燥工程とを有している。
<副生炭混合物取得工程>
 副生炭混合物取得工程は、分離工程で分離された固形分濃縮液から溶剤を蒸発分離することで、副生炭に溶剤が残存してなる副生炭混合物を得る工程である。この副生炭混合物取得工程は、図1中、溶剤分離器10で実施される。重力沈降槽7で分離された固形分濃縮液は溶剤分離器10に供給され、溶剤分離器10内で固形分濃縮液から溶剤が蒸発分離される。ここで、固形分濃縮液からの溶剤の蒸発分離は、窒素などの不活性ガスの存在下で行うことが好ましい。本実施形態において、溶剤分離器10は、フラッシュ蒸留法に用いられるフラッシュ蒸留槽である。フラッシュ蒸留法は、窒素ガス雰囲気にされた槽内に固形分濃縮液を噴霧して溶剤を蒸発分離するものである。
 固形分濃縮液から溶剤を分離する方法は、フラッシュ蒸留法に限定されず、前記した無灰炭取得工程と同様に、一般的な蒸留法、蒸発法を用いることができる。溶剤分離器10にて分離された溶剤は、溶剤タンク2に戻されて、循環して繰り返し使用される。固形分濃縮液から溶剤を分離することで、副生炭に溶剤が5~10重量%の割合で残存してなる副生炭混合物を得ることができる。
 ここで、重力沈降槽7で分離された固形分濃縮液は、溶剤が蒸発分離しない高温高圧状態にされている。このような固形分濃縮液が、内部が常圧にされた溶剤分離器10内に噴射されることで、固形分濃縮液の圧力が開放される。これにより、溶剤の沸点が下がり、高温の固形分濃縮液から溶剤が一気に蒸発分離する。このとき、後にドライヤ11に供給される副生炭混合物が、副生炭混合物から残存する溶剤を蒸発分離することが可能な熱量を有するように、溶剤分離器10に供給される固形分濃縮液の温度が調整されている。この温度調整は、上述したように、スラリー調製槽3にて調製されたスラリーを加熱する予熱器5により行われる。なお、この温度調整は、重力沈降槽7で分離されて溶剤分離器10に供給される前の固形分濃縮液を加熱することで行ってもよい。また、この温度調整は、スラリー調製槽3にて調製されたスラリー、および、重力沈降槽7で分離された固形分濃縮液をそれぞれ加熱することで行ってもよい。
<副生炭乾燥工程>
 副生炭乾燥工程は、副生炭混合物から残存する溶剤を蒸発分離して副生炭を得る工程である。この副生炭乾燥工程は、図1中、ドライヤ11で実施される。溶剤分離器10で得られた副生炭混合物は、ドライヤ11に供給され、ドライヤ11内で副生炭混合物から残存する溶剤が蒸発分離される。副生炭混合物からの溶剤の蒸発分離は、窒素などの不活性ガスの存在下で行うことが好ましい。本実施形態において、ドライヤ11は、キャリアガスとしての窒素ガスを内部に流通させながら副生炭混合物を滞留・攪拌するロータリドライヤである。副生炭混合物から残存する溶剤を分離することで、灰分などを含む溶剤不溶成分が濃縮された副生炭(RC、残渣炭ともいう)を得ることができる。
 副生炭は、灰分が含まれるものの水分が皆無であり、発熱量も十分に有している。副生炭は軟化溶融性を示さないが、含酸素官能基が脱離されているため、配合炭として用いた場合に、この配合炭に含まれる他の石炭の軟化溶融性を阻害するようなものではない。したがって、この副生炭は、通常の非微粘結炭と同様に、コークス原料の配合炭の一部として使用することができ、また、コークス原料炭とせずに、各種の燃料用として使用することも可能である。
 ここで、本実施形態においては、ドライヤ11内において、副生炭と溶剤とを含む混合物である副生炭混合物自体が有する熱を用いて副生炭混合物から残存する溶剤を蒸発分離している。即ち、ドライヤ11は、副生炭混合物を滞留させて攪拌しているだけであって、副生炭混合物に熱を一切与えていない。なお、副生炭混合物自体が有する熱とは、固形分濃縮液から溶剤を分離して得られた副生炭混合物が帯びている(持っている)熱を意味し、化学反応により副生炭混合物から発生する熱のことではない。副生炭混合物自体が熱を有することで、副生炭混合物は所定の熱量を有している。副生炭混合物が有する熱量は、副生炭混合物から残存する溶剤を蒸発分離することが可能な量である。溶剤の主成分がメチルナフタレンであれば、単位量の溶剤を蒸発分離するのに必要な熱量は330キロジュール/キログラム(kJ/kg)(溶剤1kgを蒸発させるために必要な熱量)である。上述したように、溶剤分離器10に供給される固形分濃縮液の温度を調整することで、ドライヤ11に供給される副生炭混合物がこのような熱量を有するようにされている。
 通常、粉体を乾燥させるためには、粉体に熱を与える装置が必要となる。しかし、副生炭混合物取得工程(溶剤分離器10)で得られる副生炭混合物は、それ自体がかなりの熱を有している。そこで、副生炭混合物自体が有する熱を利用して副生炭混合物から残存する溶剤を蒸発分離することで、副生炭混合物に熱を与える必要がなくなる。これにより、副生炭混合物を乾燥させる装置を簡略化し、副生炭混合物の乾燥に係るコストを低減させることができる。
 また、副生炭混合物取得工程(溶剤分離器10)に供給される固形分濃縮液の温度を調整することで、副生炭乾燥工程(ドライヤ11)に供給される副生炭混合物が、副生炭混合物から残存する溶剤を蒸発分離することが可能な熱量を有するようにする。一般に、固体に熱を与えるよりも、液体に熱を与える方が、効率が良い。よって、ある程度固化した副生炭混合物よりも、液体である固形分濃縮液の方が、温度を調整し易い。そこで、副生炭乾燥工程(ドライヤ11)に供給される副生炭混合物の温度を調整するのではなく、副生炭混合物取得工程(溶剤分離器10)に供給される固形分濃縮液の温度を調整する。これにより、副生炭混合物から残存する溶剤を蒸発分離することが可能な熱量を副生炭混合物に好適に与えることができる。
 また、スラリー調製槽3にて調製されたスラリー、および、重力沈降槽7で分離された固形分濃縮液の少なくとも一方を加熱することで、副生炭混合物取得工程(溶剤分離器10)に供給される固形分濃縮液の温度を調整する。スラリーや固形分濃縮液は液体であるので、熱を効率良く与えることができる。よって、スラリーや固形分濃縮液を加熱することで、副生炭混合物取得工程に供給される固形分濃縮液の温度を好適に調整することができる。 
(乾燥時間評価)
 次に、乾燥温度を異ならせて副生炭の乾燥に要する時間を評価した。評価には管状の炉を使用した。評価の手順として、まず、炉内に窒素ガスを流通させながら、炉内温度が所定の乾燥温度となるように昇温を行った。次に、熱電対を付けた磁製皿に、溶剤を28重量%含んだ副生炭混合物からなる試料を乗せて炉内に入れた。その後、試料の温度が所定の乾燥温度に達したところで乾燥時間の計測を開始した。そして、所定時間経過後に試料を取り出して溶剤含有率を調べた。この手順による評価を、乾燥温度を210℃、250℃、270℃と異ならせて行った。評価結果を図2に示す。
 試料の溶剤含有率が2重量%まで低下するのに要した時間は、乾燥温度が210℃の場合で約30分、250℃の場合で約15分、270℃の場合で約10分であった。乾燥温度が、スチームチューブドライヤのスチーム温度に相当する210℃の場合に比べて、乾燥温度が250℃の場合には、乾燥時間を約半分に短縮することができることがわかった。また、乾燥温度が210℃の場合に比べて、乾燥温度が270℃の場合には、乾燥時間を約1/3に短縮することができることがわかった。
(効果)
 以上に述べたように、本実施形態に係る副生炭の製造方法によると、副生炭乾燥工程(ドライヤ11)において、副生炭混合物自体が有する熱を用いて副生炭混合物から残存する溶剤を蒸発分離する。通常、粉体を乾燥させるためには、粉体に熱を与える装置が必要となる。しかし、副生炭混合物取得工程(溶剤分離器10)で得られる副生炭混合物は、それ自体がかなりの熱を有している。そこで、副生炭混合物自体が有する熱を利用して副生炭混合物から残存する溶剤を蒸発分離することで、副生炭混合物に熱を与える必要がなくなる。これにより、副生炭混合物を乾燥させる装置を簡略化し、副生炭混合物の乾燥に係るコストを低減させることができる。
 また、副生炭混合物取得工程(溶剤分離器10)に供給される固形分濃縮液の温度を調整することで、副生炭乾燥工程(ドライヤ11)に供給される副生炭混合物が、副生炭混合物から残存する溶剤を蒸発分離することが可能な熱量を有するようにする。一般に、固体に熱を与えるよりも、液体に熱を与える方が、効率が良い。よって、ある程度固化した副生炭混合物よりも、液体である固形分濃縮液の方が、温度を調整し易い。そこで、副生炭乾燥工程に供給される副生炭混合物の温度を調整するのではなく、副生炭混合物取得工程に供給される固形分濃縮液の温度を調整する。これにより、副生炭混合物から残存する溶剤を蒸発分離することが可能な熱量を副生炭混合物に好適に与えることができる。
 また、スラリーおよび固形分濃縮液の少なくとも一方を加熱することで、副生炭混合物取得工程(溶剤分離器10)に供給される固形分濃縮液の温度を調整する。スラリーや固形分濃縮液は液体であるので、熱を効率良く与えることができる。よって、スラリーや固形分濃縮液を加熱することで、副生炭混合物取得工程に供給される固形分濃縮液の温度を好適に調整することができる。
 また、副生炭混合物取得工程(溶剤分離器10)において、溶剤が蒸発分離しない高温高圧状態にされた固形分濃縮液を常圧の容器内に噴射することで、固形分濃縮液の圧力が開放される。これにより、溶剤の沸点が下がり、高温の固形分濃縮液から溶剤が一気に蒸発分離するので、固形分濃縮液から溶剤を好適に蒸発分離することができる。
(本実施形態の変形例)
 以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
 本出願は、2013年2月13日出願の日本特許出願(特願2013-025509)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の副生炭の製造方法では、副生炭混合物を乾燥させる装置を簡略化して乾燥に係るコストを低減することができる。
1 石炭ホッパ
2 溶剤タンク
3 スラリー調製槽
3a 攪拌機
4 移送ポンプ
5 予熱器
6 抽出槽
6a 攪拌機
7 重力沈降槽
8 フィルターユニット
9,10 溶剤分離器
11 ドライヤ
100 無灰炭製造設備

Claims (4)

  1.  石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出する抽出工程と、 
     前記抽出工程で得られたスラリーを、溶剤に可溶な石炭成分が溶解した溶液と、溶剤に不溶な石炭成分が濃縮した固形分濃縮液とに分離する分離工程と、
     前記分離工程で分離された固形分濃縮液から溶剤を蒸発分離して副生炭を得る副生炭取得工程と、
    を備え、
     前記副生炭取得工程は、 
     前記分離工程で分離された固形分濃縮液から溶剤を蒸発分離することで、副生炭に溶剤が残存してなる副生炭混合物を得る副生炭混合物取得工程と、 
     前記副生炭混合物から残存する溶剤を蒸発分離して副生炭を得る副生炭乾燥工程と、
    を有し、
     前記副生炭乾燥工程において、前記副生炭混合物自体が有する熱を用いて前記副生炭混合物から残存する溶剤を蒸発分離することを特徴とする副生炭の製造方法。
  2.  前記副生炭乾燥工程に供給される前記副生炭混合物が、前記副生炭混合物から残存する溶剤を蒸発分離することが可能な熱量を有するように、前記副生炭混合物取得工程に供給される固形分濃縮液の温度を調整することを特徴とする請求項1に記載の副生炭の製造方法。
  3.  前記分離工程に供給されるスラリー、および、前記副生炭混合物取得工程に供給される固形分濃縮液の少なくとも一方を加熱することで、前記副生炭混合物取得工程に供給される固形分濃縮液の温度を調整することを特徴とする請求項2に記載の副生炭の製造方法。
  4.  前記分離工程は加圧状況下で行われ、
     前記副生炭混合物取得工程において、溶剤が蒸発分離しない高温高圧状態にされた固形分濃縮液を常圧の容器内に噴射することで、固形分濃縮液から溶剤を蒸発分離することを特徴とする請求項1~3のいずれか1項に記載の副生炭の製造方法。
     
PCT/JP2014/052975 2013-02-13 2014-02-07 副生炭の製造方法 WO2014126024A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157021519A KR101710292B1 (ko) 2013-02-13 2014-02-07 부생탄의 제조 방법
CN201480008478.7A CN105073958B (zh) 2013-02-13 2014-02-07 萃余煤的制造方法
US14/764,861 US20150376528A1 (en) 2013-02-13 2014-02-07 Method for producing residue coal
CA2898724A CA2898724C (en) 2013-02-13 2014-02-07 Method for producing residue coal
AU2014217196A AU2014217196B2 (en) 2013-02-13 2014-02-07 Method for producing residue coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-025509 2013-02-13
JP2013025509A JP5998373B2 (ja) 2013-02-13 2013-02-13 副生炭の製造方法

Publications (1)

Publication Number Publication Date
WO2014126024A1 true WO2014126024A1 (ja) 2014-08-21

Family

ID=51354027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052975 WO2014126024A1 (ja) 2013-02-13 2014-02-07 副生炭の製造方法

Country Status (7)

Country Link
US (1) US20150376528A1 (ja)
JP (1) JP5998373B2 (ja)
KR (1) KR101710292B1 (ja)
CN (1) CN105073958B (ja)
AU (1) AU2014217196B2 (ja)
CA (1) CA2898724C (ja)
WO (1) WO2014126024A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6203698B2 (ja) * 2014-09-30 2017-09-27 株式会社神戸製鋼所 無灰炭の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120185A (ja) * 2003-10-15 2005-05-12 Kobe Steel Ltd 無灰炭の製造方法
JP2009215401A (ja) * 2008-03-10 2009-09-24 Kobe Steel Ltd 無灰炭の製造方法
WO2013099650A1 (ja) * 2011-12-28 2013-07-04 株式会社神戸製鋼所 無灰炭の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718277A (ja) * 1993-07-05 1995-01-20 Nippon Steel Corp 石炭液化残渣含有組成物
JP4061351B1 (ja) * 2006-10-12 2008-03-19 株式会社神戸製鋼所 無灰炭の製造方法
CN101070495B (zh) * 2007-04-30 2011-03-30 中国矿业大学 基于萃取与反萃取的温和化煤族组分分离方法
CN101235328B (zh) * 2008-01-01 2011-03-09 中国矿业大学 一种煤全组分族分离的温和化工艺
JP5328180B2 (ja) * 2008-03-10 2013-10-30 株式会社神戸製鋼所 無灰炭の製造方法
JP5314299B2 (ja) * 2008-03-12 2013-10-16 株式会社神戸製鋼所 無灰炭の製造方法
JP5334433B2 (ja) 2008-03-19 2013-11-06 株式会社神戸製鋼所 無灰炭の製造方法
JP2012184125A (ja) * 2011-03-03 2012-09-27 Kobe Steel Ltd 炭素材料の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120185A (ja) * 2003-10-15 2005-05-12 Kobe Steel Ltd 無灰炭の製造方法
JP2009215401A (ja) * 2008-03-10 2009-09-24 Kobe Steel Ltd 無灰炭の製造方法
WO2013099650A1 (ja) * 2011-12-28 2013-07-04 株式会社神戸製鋼所 無灰炭の製造方法

Also Published As

Publication number Publication date
KR20150105977A (ko) 2015-09-18
JP5998373B2 (ja) 2016-09-28
CA2898724A1 (en) 2014-08-21
JP2014152308A (ja) 2014-08-25
AU2014217196A1 (en) 2015-08-13
CN105073958A (zh) 2015-11-18
CA2898724C (en) 2017-02-21
US20150376528A1 (en) 2015-12-31
CN105073958B (zh) 2018-08-24
AU2014217196B2 (en) 2016-02-04
KR101710292B1 (ko) 2017-02-24

Similar Documents

Publication Publication Date Title
JP2013249360A (ja) 無灰炭の製造方法
US9714394B2 (en) Method for producing ashless coal
JP6017371B2 (ja) 無灰炭の製造方法および炭素材料の製造方法
JP5839567B2 (ja) 溶剤分離方法
JP5998373B2 (ja) 副生炭の製造方法
AU2014254795B2 (en) Method for producing ash-free coal
KR101825861B1 (ko) 무회탄의 제조 방법
JP6017356B2 (ja) 無灰炭の製造方法
JP6062320B2 (ja) 無灰炭の製造方法
JP6017337B2 (ja) 無灰炭の製造方法
JP6003003B2 (ja) 溶剤分離方法
JP2013136692A (ja) 無灰炭の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480008478.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2898724

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14764861

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201504809

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157021519

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014217196

Country of ref document: AU

Date of ref document: 20140207

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751853

Country of ref document: EP

Kind code of ref document: A1