WO2014125892A1 - 無線基地局、ユーザ端末、無線通信システム、及び無線通信方法 - Google Patents

無線基地局、ユーザ端末、無線通信システム、及び無線通信方法 Download PDF

Info

Publication number
WO2014125892A1
WO2014125892A1 PCT/JP2014/051447 JP2014051447W WO2014125892A1 WO 2014125892 A1 WO2014125892 A1 WO 2014125892A1 JP 2014051447 W JP2014051447 W JP 2014051447W WO 2014125892 A1 WO2014125892 A1 WO 2014125892A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
power ratio
base station
candidate user
user terminal
Prior art date
Application number
PCT/JP2014/051447
Other languages
English (en)
French (fr)
Inventor
アナス ベンジャブール
祥久 岸山
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP14751801.3A priority Critical patent/EP2958389A4/en
Priority to US14/766,851 priority patent/US10334603B2/en
Priority to EP18168174.3A priority patent/EP3370463A1/en
Publication of WO2014125892A1 publication Critical patent/WO2014125892A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a radio base station, a user terminal, a radio communication system, and a radio communication method.
  • LTE Long term evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • NOMA Non-Orthogonal Multiple Access
  • SIC Successessive Interference Cancellation
  • NOMA superimposes a plurality of information data series on the same radio resource. Therefore, it is considered that the use efficiency of radio resources can be further enhanced by combining NOMA with OFDMA.
  • the conventional NOMA is optimized for a communication environment having a relatively low processing capacity, it is not always effective in a future wireless communication system in which a high processing capacity is assumed.
  • the present invention has been made in view of the above points, and provides a radio base station, a user terminal, a radio communication system, and a radio communication method having a new configuration capable of sufficiently increasing the utilization efficiency of radio resources. Objective.
  • the radio base station of the present invention includes a receiving unit that receives channel state information fed back from a plurality of user terminals, a plurality of candidate user sets that indicate user terminal candidates that are non-orthogonally multiplexed on an arbitrary radio resource, and From the plurality of power ratio sets indicating the transmission power ratio of the downlink signal addressed to the user terminal indicated by the candidate user set, the candidate user set and the power ratio set used for the transmission of the downlink signal based on the fed back channel state information, respectively
  • a radio base station a user terminal, a radio communication system, and a radio communication method having a new configuration that can sufficiently increase the use efficiency of radio resources.
  • FIG. 1 is a schematic diagram showing a basic configuration example of a wireless communication system to which NOMA (Non-Orthogonal Multiple Access) is applied.
  • FIG. 1 illustrates a cell formed by the radio base station BS.
  • a plurality of user terminals UE here, user terminals UE_1, UE_2, UE_3 are present.
  • downlink signals addressed to a plurality of user terminals UE can be non-orthogonally multiplexed on the same radio resource (frequency band, time slot) and transmitted with different transmission power (transmission power).
  • the transmission power is controlled. For example, the transmission power of the user terminal UE_1 having a high channel gain (large reception SINR and small path loss) is allocated small, and the transmission power of the user terminal UE_3 having a low channel gain (low reception SINR and large path loss) is allocated. Control is performed.
  • reception SINR reception SINR
  • path loss path loss
  • the user terminal UE_3 For example, at the location where the user terminal UE_3 is located, signals addressed to the user terminals UE_1 and UE_2 are sufficiently weakened. Accordingly, the user terminal UE_3 can receive a signal addressed to the user terminal ignoring interference caused by signals addressed to the user terminals UE_1 and UE_2. On the other hand, the signal addressed to the user terminals UE_2 and UE_3 is strong at the location where the user terminal UE_1 is located. Therefore, the user terminal UE_1 receives a signal addressed to the user terminals UE_2 and UE_3 in addition to a signal addressed to the own terminal.
  • signals addressed to each user terminal UE are multiplexed in an identifiable manner.
  • the user terminal UE_1 can decode and cancel signals addressed to the user terminals UE_2 and UE_3.
  • SIC Successessive Interference Cancellation
  • each user terminal UE appropriately separates and acquires a non-orthogonal-multiplexed signal addressed to itself.
  • FIG. 2 is a flowchart for explaining the communication sequence of NOMA.
  • the radio base station BS transmits a downlink reference signal to each user terminal UE.
  • this reference signal for example, CSI-RS (Channel State Information Reference Signal), DM-RS (DeModulation Reference Signal), or the like can be used.
  • Each user terminal UE calculates a channel gain (for example, received SINR) based on the received reference signal, and feeds it back to the radio base station BS as channel state information (CSI: Channel State Information) (step ST11).
  • CSI Channel State Information
  • the radio base station BS performs a series of processes to be described later based on CSI fed back from each user terminal UE in order to determine a combination of user terminals UE to be subjected to non-orthogonal multiplexing (steps ST12 to ST16). Specifically, a set of candidate user sets is selected from a plurality of candidate user sets (candidate user sets) indicating candidates for user terminals UE multiplexed in an arbitrary frequency band (subband).
  • the total number of candidate user sets for each subband corresponding to each transmission beam is N max as the maximum number of user terminals UE capable of non-orthogonal multiplexing, and M as the total number of user terminals UE existing in the coverage area of the transmission beam. Is represented by the following formula (1).
  • the radio base station BS selects one candidate user set from all candidate user sets represented by the equation (1) (Exhaustive search).
  • the radio base station BS calculates the transmission power allocated to the user terminal UE of each candidate user set based on the fed back CSI (step ST12).
  • the transmission power P k, b allocated to the k-th user terminal UE in the b-th subband is calculated by the following equation (2) based on fractional transmission power control (FTPC).
  • Equation (2) K represents the number of user terminals UE in each candidate user set, P b represents the transmission power of the b-th subband, and h k, b represents the target user terminal UE ( The square value of the channel coefficient of the k-th user terminal UE in the b-th subband is shown, and N k, b shows the noise observed in the target user terminal UE. That is, h k, b / N k, b corresponds to the channel gain of the target user terminal UE.
  • ⁇ in Expression (2) is a parameter for adjusting the allocation of transmission power to each user terminal UE, and is a fixed value.
  • the radio base station BS based on the following formula (3) including the calculated transmission power P k, b , SINR k, b (SINR for scheduling) of each user terminal UE assumed under the application of NOMA ) Is calculated (step ST13).
  • the radio base station BS compares the calculated SINR k, b of each user terminal UE with a table indicating a block error rate (BLER) of each MCS (Modulation and Coding Scheme) set. Ask for. Then, the instantaneous throughput R k, b of each user terminal UE for scheduling is calculated based on the following equation (4) (step ST14).
  • BLER block error rate
  • the radio base station BS applies the instantaneous throughput R k, b of each user terminal UE and the average throughput T k of each user terminal described later to the following formulas (5) and (6), and the candidate user set S j A scheduling metric MSj is calculated (step ST15).
  • the reason why the two types of scheduling metrics M Sj are calculated using the equations (5) and (6) is to make it easy to compare the characteristics of the candidate user sets S j .
  • t c represents a window size
  • W represents a weighting coefficient.
  • the radio base station BS selects a candidate user set S j that maximizes the scheduling metric M Sj in each subband (step ST16). Also, the radio base station BS non-orthogonally multiplexes the downlink signal addressed to each user terminal UE in each subband and transmits it with the transmission power of Equation (2) (step ST17). Further, based on these scheduling results, the average throughput T k of each user terminal UE is updated as shown in the following equation (8).
  • Each user terminal UE included in the candidate user set S j selected in the above process receives a signal addressed to the own terminal that is non-orthogonal-multiplexed to the same radio resource together with a signal addressed to another terminal (step ST17). Then, the signal addressed to the user terminal UE having a channel gain lower than that of the own terminal (reception SINR is small and path loss is large) is removed by SIC, and the signal addressed to the own terminal is separated. A signal addressed to the user terminal UE having a channel gain higher than that of the own terminal (the reception SINR is large and the path loss is small) is not greatly disturbed, and is ignored.
  • the transmission power of the downlink signal addressed to each user terminal UE is calculated based on Equation (2).
  • the allocation of transmission power to each user terminal UE is adjusted by a fixed value ⁇ . That is, in NOMA, transmission power is determined so as to be a power ratio determined in advance according to the channel gain of each user terminal UE.
  • the method of adjusting the transmission power of the downlink signal addressed to each user terminal UE with a fixed power ratio is suitable for a communication system with a relatively low processing capability.
  • the optimum power ratio of each user terminal UE varies according to the SNR difference between the user terminals UE. Since the SNR difference between each user terminal UE depends on the location (path loss, fading, etc.) of each user terminal UE, it is fixed as described above in a future wireless communication system in which high processing capability is expected. A method using a power ratio is not always effective in order to increase the utilization efficiency of radio resources.
  • the present inventors can sufficiently improve the use efficiency of radio resources in a future radio communication system if the radio communication system is configured so that the power ratio can be selected according to the communication environment of each user terminal UE. I thought it could be improved.
  • the present invention has been completed. That is, the essence of the present invention is that a plurality of power ratio sets indicating the transmission power ratio of the downlink signal addressed to each user terminal UE is prepared in advance, depending on the communication environment of each user terminal UE. It is to select a suitable power ratio set and adjust the transmission power ratio of the downlink signal.
  • the radio communication method according to the present embodiment will be described in detail.
  • FIG. 3 is a flowchart for explaining a communication sequence of the wireless communication method according to the present embodiment.
  • the radio base station BS transmits a downlink reference signal (CSI-RS, DM-RS, etc.) to each user terminal UE.
  • CSI-RS downlink reference signal
  • Each user terminal UE calculates a channel gain (for example, received SINR) based on the received reference signal, and feeds it back to the radio base station BS as channel state information (CSI) (step ST21).
  • CSI channel state information
  • the radio base station BS performs a series of processes to be described later on the basis of CSI fed back from each user terminal UE in order to determine a combination of user terminals UE to be subjected to non-orthogonal multiplexing (steps ST22 to ST26).
  • a plurality of candidate user sets (candidate user set) indicating candidates for user terminals UE multiplexed in an arbitrary frequency band (subband), and a downlink addressed to the user terminal UE indicated by each candidate user set
  • a plurality of power ratio sets indicating the transmission power ratio of the signal are prepared (step ST22), and a candidate user set and a power ratio set are selected from a plurality of candidate user sets and a plurality of power ratio sets, respectively ( Steps ST23 to ST26).
  • the total number of candidate user sets and power ratio sets for each subband corresponding to each transmission beam is the maximum number of user terminals UE capable of non-orthogonal multiplexing, N max , and user terminals UE located within the coverage area of the transmission beam
  • N is the number of power ratio sets that can be taken when the number of non-orthogonally multiplexed user terminals UE is 2 to N max
  • N 2 to N Nmax is expressed by the following equation (9).
  • the radio base station BS selects one candidate user set and power ratio set combination from a plurality of candidate user set and power ratio set combinations represented by Equation (9) (Exhaustive search). .
  • a situation is assumed in which user terminals UE_1, UE_2, and UE_3 are within the coverage area of a transmission beam.
  • the maximum number of user terminals UE capable of non-orthogonal multiplexing is assumed to be 3.
  • the user terminal UE includes only a candidate user set (hereinafter referred to as [UE_1]) and the user terminal UE_2.
  • a candidate user set hereinafter referred to as [UE_2]
  • UE_3] a candidate user set consisting of only the user terminal UE_3
  • a candidate user set consisting of user terminals UE_1 and UE_2 (hereinafter referred to as [UE_1, UE_2]) and a candidate user set consisting of user terminals UE_2 and UE_3 (hereinafter referred to as [UE_2, UE_2). ])
  • a candidate user set (hereinafter referred to as [UE_3, UE_1]) including user terminals UE_3 and UE_1.
  • a candidate user set (hereinafter referred to as [UE_1, UE_2, UE_3]) including the user terminals UE_1, UE_2, and UE_3 is considered. That is, the total number of candidate user sets is seven.
  • the non-orthogonal multiplexing number of the user terminal UE is 1, it is not necessary to consider transmission power allocation among a plurality of user terminals UE. That is, one power ratio set is assumed for each of the three candidate user sets [UE_1], [UE_2], and [UE_3].
  • a power ratio set indicating transmission power allocation between two user terminals UE is represented by [P1, P2].
  • P1 + P2 P (total value of transmission power).
  • a power ratio set indicating a transmission power ratio of 1: 9 (hereinafter referred to as [0.1P, 0.9P])
  • a power ratio set indicating a transmission power ratio of 2: 8 (hereinafter referred to as [0.2P, 0. 8P])
  • a power ratio set hereinafter, [0.3P, 0.7P]
  • the order of the user terminals UE_2 and UE_1 is obtained. . Since a high transmission power is allocated to the user terminal UE having a low channel gain (a small received SINR and a large path loss), the candidate user set [UE_1, UE_2] and the power ratio set [0.1P, 0.9P] In the combination, the transmission power P1 assigned to the user terminal UE_1 is 0.1P, and the transmission power P2 assigned to the user terminal UE_2 is 0.9P.
  • the transmission power P1 assigned to the user terminal UE_1 is 0.2P, and the transmission assigned to the user terminal UE_2.
  • the power P2 is 0.8P.
  • the transmission power P1 assigned to the user terminal UE_1 becomes 0.3P, and the transmission assigned to the user terminal UE_2.
  • the power P2 is 0.7P.
  • the transmission power P2 assigned to the user terminal UE_2 is 0.1P, and the transmission assigned to the user terminal UE_3.
  • the power P3 is 0.9P.
  • the transmission power P2 assigned to the user terminal UE_2 is 0.2P, and the transmission assigned to the user terminal UE_3.
  • the power P3 is 0.8P.
  • the transmission power P2 assigned to the user terminal UE_2 is 0.3P
  • the power P3 is 0.7P.
  • the transmission power P1 assigned to the user terminal UE_1 is 0.1P, and the transmission assigned to the user terminal UE_3.
  • the power P3 is 0.9P.
  • the transmission power P1 assigned to the user terminal UE_1 is 0.2P, and the transmission assigned to the user terminal UE_3.
  • the power P3 is 0.8P.
  • the transmission power P1 assigned to the user terminal UE_1 becomes 0.3P, and the transmission assigned to the user terminal UE_3.
  • the power P3 is 0.7P.
  • a power ratio set indicating transmission power allocation among the three user terminals UE is represented by [P1, P2, P3].
  • P1 + P2 + P3 P (total value of transmission power).
  • a power ratio set (hereinafter referred to as [0.1P, 0.2P, 0.7P]) indicating a transmission power ratio of 1: 2: 7
  • a power ratio set (hereinafter referred to as [0.1P, 0.2P, 0.7P]).
  • [0.1P, 0.3P, 0.6P]) and a power ratio set (hereinafter referred to as [0.1P, 0.4P, 0.5P]) showing a transmission power ratio of 1: 4: 5
  • [0.1P, 0.4P, 0.5P] a power ratio set showing a transmission power ratio of 1: 4: 5
  • the user terminals UE_1, UE_2, and UE_3 configuring the candidate user set [UE_1, UE_2, UE_3] are sorted in the order of decreasing channel gain (reception SINR is small, path loss is large), the user terminals UE_3, UE_2 , UE_1. Therefore, in the combination of the candidate user set [UE_1, UE_2, UE_3] and the power ratio set [0.1P, 0.2P, 0.7P], the transmission power P1 assigned to the user terminal UE_1 is 0.1P, and the user The transmission power P2 assigned to the terminal UE_2 is 0.2P, and the transmission power P3 assigned to the user terminal UE_3 is 0.7P.
  • the transmission power P1 allocated to the user terminal UE_1 is 0.1P
  • the user The transmission power P2 assigned to the terminal UE_2 is 0.3P
  • the transmission power P3 assigned to the user terminal UE_3 is 0.6P.
  • the transmission power P1 assigned to the user terminal UE_1 is 0.1P
  • the user The transmission power P2 assigned to the terminal UE_2 is 0.4P
  • the transmission power P3 assigned to the user terminal UE_3 is 0.5P.
  • the transmission power of the downlink signal addressed to each user terminal UE is determined according to the combination of the candidate user set and the power ratio set. That is, the transmission power P k, b assigned to the kth user terminal UE in the bth subband is expressed as the following equation (10).
  • P b represents the transmission power of the b-th subband.
  • ⁇ k is a parameter for adjusting the allocation of transmission power to each user terminal UE, and corresponds to a power ratio set.
  • the radio base station BS uses the above-described transmission power P k, b determined according to the combination of the candidate user set and the power ratio set, and based on Equation (3), each user terminal UE assumed under the application of NOMA SINR k, b (SINR for scheduling) is calculated (step ST23).
  • the radio base station BS obtains the BLER by comparing the calculated SINR k, b of each user terminal UE with a table indicating the block error rate (BLER) of each MCS set. And based on Formula (4), the instantaneous throughput Rk, b of each user terminal UE for scheduling is calculated (step ST24).
  • the radio base station BS calculates the scheduling metric M Sj by applying the instantaneous throughput R k, b of each user terminal UE and the average throughput T k of each user terminal to the equations (5) and (6) (steps). ST25).
  • the radio base station BS selects a candidate user set and a power ratio set that maximize the scheduling metric MSj in each subband (step ST26). Further, the radio base station BS transmits a downlink signal to each user terminal UE with the transmission power of Expression (10) (step ST27). Furthermore, based on these scheduling results, the average throughput T k of each user terminal UE shown in Expression (8) is updated.
  • the user terminal UE included in the candidate user set selected by the above-described process receives a signal addressed to the user terminal that is non-orthogonal-multiplexed to the same radio resource together with a signal addressed to another terminal (step ST27). Then, the signal addressed to the user terminal UE having a channel gain lower than that of the own terminal (reception SINR is small and path loss is large) is removed by SIC, and the signal addressed to the own terminal is separated. A signal addressed to the user terminal UE having a channel gain higher than that of the own terminal (the reception SINR is large and the path loss is small) is not greatly disturbed, and is ignored.
  • each user terminal UE needs to select whether a signal addressed to another terminal is to be removed by SIC or to be ignored as noise without being removed by SIC.
  • Each user terminal UE can perform this selection if it can know the power ratio set used for non-orthogonal multiplexing and the transmission power assigned to the terminal itself. Therefore, the radio base station BS notifies each user terminal UE of these pieces of information.
  • the radio base station BS notifies each user terminal UE indicated by the selected candidate user set of information (common notification information) corresponding to the selected power ratio set. That is, the radio base station BS notifies information corresponding to the selected power ratio set to all user terminals UE that are non-orthogonal-multiplexed to each subband.
  • the radio base station BS notifies each user terminal UE indicated by the selected candidate user set of information (individual notification information) related to the transmission power of the downlink signal unique to each user terminal UE. That is, the radio base station BS notifies a certain user terminal UE of information related to the transmission power of the downlink signal transmitted to the user terminal UE.
  • notifications can be performed using, for example, higher layer signaling (RRC signaling or the like), signaling based on PDCCH control information, or the like.
  • the signaling based on the PDCCH control information is easy to notify for each subband and for each user terminal UE, and is suitable for this notification.
  • the common notification information and the individual notification information described above may be jointly encoded. For example, if the arrangement of the bit sequence of the power ratio set is changed so that the power ratio corresponding to the user terminal UE to be notified comes to the first bit, each user terminal UE has information on the transmission power of the signal addressed to the terminal, The selected power ratio set can be acquired together. Such joint encoding can reduce the overhead associated with notification. In addition, the aspect of joint encoding is not restricted to this.
  • the allocated power P desired to the desired user terminal UE is notified by PDCCH or higher layer signaling (for example, RRC signaling), and the total transmission power P is You may make it notify by upper layer signaling (for example, RRC signaling).
  • RRC signaling for example, RRC signaling
  • Each user terminal UE notified of these pieces of information removes, for example, signals addressed to the user terminal UE to which transmission power larger than that of the own terminal is assigned based on the notified information by SIC in descending order of transmission power.
  • a signal addressed to the user terminal UE to which transmission power smaller than that of the own terminal is assigned is ignored as noise without being removed by the SIC.
  • the radio base station BS Since a power ratio set suitable for the communication environment of the UE is selected, it is possible to sufficiently increase the use efficiency of radio resources in a radio communication system to which non-orthogonal multiplexing is applied. Further, in the radio communication method according to the present embodiment, the radio base station BS provides information (common notification information) corresponding to the power ratio set to each user terminal UE and a downlink signal specific to each user terminal UE. Therefore, each user terminal UE can appropriately receive a downlink signal addressed to itself by canceling a downlink signal addressed to another terminal.
  • FIG. 4 is a schematic diagram showing a configuration example of the radio communication system according to the present embodiment.
  • the radio communication system shown in FIG. 4 is a system including, for example, an LTE system or an LTE-A (LTE-Advanced) system.
  • This radio communication system may be called IMT-Advanced or 4G.
  • the radio communication system 1 includes a radio base station 10 (10A, 10B) and a plurality of user terminals 20 (20A, 20B) communicating with the radio base station 10.
  • the radio base station 10 is connected to the upper station apparatus 30, and the upper station apparatus 30 is connected to the core network 40.
  • Each user terminal 20 can communicate with the radio base station 10 in the cells C1 and C2.
  • the user terminal 20 may be a mobile terminal or a fixed terminal.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands.
  • NOMA is applied to the downlink of the wireless communication system 1 as necessary.
  • the downlink communication channel includes a PDSCH (Physical Downlink Shared Channel) shared by each user terminal 20 and a downlink L1 / L2 control channel (PDCCH, PCFICH, PHICH, extended PDCCH).
  • PDSCH Physical Downlink Shared Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the uplink communication channel includes a PUSCH (Physical Uplink Shared Channel) as an uplink data channel shared by each user terminal 20 and a PUCCH (Physical Uplink Control Channel) as an uplink control channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • User data and higher control information are transmitted by this PUSCH.
  • downlink channel quality information CQI: Channel Quality Indicator
  • ACK / NACK and the like are transmitted by PUCCH.
  • FIG. 5 is a block diagram showing a configuration example of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for beam forming, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Yes.
  • User data transmitted from the radio base station 10 to the user terminal 20 in the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC (Radio Link Control) retransmission control transmission processing such as RLC layer transmission processing, MAC ( Medium Access Control (retransmission control), for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. Forward.
  • RLC Radio Link Control
  • MAC Medium Access Control (retransmission control)
  • HARQ transmission processing scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. Forward.
  • transmission processing such as channel coding and IFFT processing is performed on the downlink control information, and the transmission information is transferred to each transmission / reception section 103.
  • the baseband signal processing unit 104 notifies the control information for communication in the serving cell to the user terminal 20 through the broadcast channel.
  • the information for communication in the serving cell includes, for example, the system bandwidth in the uplink or the downlink.
  • Each transmission / reception unit 103 converts the baseband signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 101.
  • each transmitting / receiving antenna 101 receives data transmitted from the user terminal 20 to the radio base station 10 via the uplink.
  • the amplifier unit 102 amplifies the radio frequency signal input from each transmission / reception antenna 101 and sends the amplified signal to each transmission / reception unit 103.
  • the amplified radio frequency signal is converted into a baseband signal by each transmitting / receiving unit 103 and input to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, error on user data included in the input baseband signal. Correction decoding, MAC retransmission control reception processing, RLC layer, PDCP layer reception processing, and the like are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • FIG. 6 is a block diagram illustrating a configuration example of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • Downlink data is received by a plurality of transmission / reception antennas 201 and input to an amplifier unit 202.
  • the amplifier unit 202 amplifies the radio frequency signal input from each transmission / reception antenna 201 and sends the amplified signal to each transmission / reception unit 203.
  • the amplified radio frequency signal is converted into a baseband signal by each transmission / reception unit 203 and input to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • User data included in the downlink data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information included in downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control (H-ARQ (Hybrid ARQ)) transmission processing, channel coding, precoding, and discrete Fourier transform (DFT) processing on input user data. Then, IFFT processing and the like are performed and transferred to each transmitting / receiving unit 203.
  • Each transmitting / receiving unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band. Thereafter, the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 201.
  • FIG. 7 is a block diagram illustrating a configuration example of a baseband signal processing unit included in the radio base station and the user terminal according to the present embodiment. 7 shows only a part of the configuration, it is assumed that the radio base station 10 and the user terminal 20 are provided with the necessary configuration without shortage.
  • the radio base station 10 includes a beam generator 301, a downlink control information generator 302, a downlink control information encoder / modulator 303, a downlink transmission data generator 304, and a downlink transmission data encoder / modulator. 305, a downlink reference signal generation unit 306, a downlink channel multiplexing unit 307, and a scheduling unit 308.
  • the beam generation unit 301 generates a plurality of transmission beams using arbitrary radio resources (frequency band, time slot).
  • a downlink signal addressed to the user terminal 20 selected by the scheduling unit 308 described later is non-orthogonally multiplexed on each transmission beam generated by the beam generation unit 301.
  • the downlink control information generation unit 302 generates user terminal specific (UE-specific) downlink control information (DCI) transmitted on the PDCCH.
  • the downlink control information unique to the user terminal includes DL assignment (DL assignment), which is PDSCH assignment information, and UL grant (UL grant), which is PUSCH assignment information.
  • the downlink control information includes control information for requesting CSI feedback to each user terminal 20, information necessary for reception processing of non-orthogonal multiplexed signals, and the like. That is, the radio base station 10 includes information corresponding to the power ratio set selected for non-orthogonal multiplexing (common notification information), and information related to the transmission power of the downlink signal unique to the user terminal 20 (individual notification information). Are notified to each user terminal 20 by PDCCH. However, these pieces of information may be included in higher control information notified by higher layer signaling (such as RRC signaling).
  • Downlink control information generated by the downlink control information generation unit 302 is input to the downlink control information encoding / modulation unit 303 as downlink control information transmitted on the PDCCH together with common control information common to the user terminals 20.
  • the downlink control information encoding / modulating section 303 performs channel encoding and modulation on the input downlink control information.
  • the modulated downlink control information is output to the downlink channel multiplexing unit 307.
  • the downlink transmission data generation unit 304 generates downlink user data for each user terminal 20. Downlink user data generated by the downlink transmission data generation unit 304 is input to the downlink transmission data encoding / modulation unit 305 as downlink transmission data transmitted on the PDSCH together with higher control information.
  • the downlink transmission data encoding / modulation section 305 performs channel encoding and modulation on the downlink transmission data for each user terminal 20.
  • the modulated downlink transmission data is output to downlink channel multiplexing section 307.
  • the downlink reference signal generation unit 306 generates downlink reference signals (CRS (Cell-specific Reference Signal), CSI-RS, DM-RS, etc.).
  • CRS Cell-specific Reference Signal
  • CSI-RS Cell-specific Reference Signal
  • DM-RS DM-RS
  • the generated downlink reference signal is output to the downlink channel multiplexing unit 307.
  • the downlink channel multiplexing unit 307 combines downlink control information, downlink reference signals, and downlink transmission data (including higher control information) to generate a downlink signal. Specifically, the downlink channel multiplexing unit 307 transmits downlink signals addressed to the plurality of user terminals 20 selected by the scheduling unit 308 with the selected transmission power according to the scheduling information notified from the scheduling unit 308. Thus, non-orthogonal multiplexing is performed on each transmission beam.
  • the downlink signal generated by the downlink channel multiplexing unit 307 is transferred to the transmission / reception unit 103 through inverse fast Fourier transform processing, precoding processing, and the like.
  • the scheduling unit 308 provides scheduling information for instructing radio resource allocation based on instruction information from the upper station apparatus 30 and CSI (CQI (Channel Quality Indicator), RI (Rank Indicator), etc.) from each user terminal 20. Generate. Specifically, the scheduling unit 308, based on the CSI fed back from the user terminal 20, a plurality of candidate user sets indicating candidates for the user terminal 20 to be non-orthogonally multiplexed in an arbitrary frequency band, and each candidate user set A candidate user set and a power ratio set used for non-orthogonal multiplexing are selected from a plurality of power ratio sets indicating the transmission power ratio of the downlink signal addressed to the user terminal 20 indicated by (steps ST22 to ST26 in FIG. 3).
  • CSI Channel Quality Indicator
  • RI Rank Indicator
  • the user terminal 20 includes a downlink control information reception unit 401, a channel estimation unit 402, a feedback unit 403, an interference removal unit 404, and a downlink transmission data reception unit 405.
  • the downlink signal transmitted from the radio base station 10 is received by the transmission / reception antenna 201 and transferred to the baseband signal processing unit 204 through cyclic prefix removal, fast Fourier transform processing, and the like.
  • the downlink signal is separated by the baseband signal processing unit 204 into downlink control information, downlink transmission data (including higher control information), and a downlink reference signal.
  • the downlink control information is input to the downlink control information reception unit 401, the downlink transmission data is input to the downlink transmission data reception unit 405, and the downlink reference signal is input to the channel estimation unit 402.
  • the downlink control information receiving unit 401 demodulates the downlink control information and outputs it to the channel estimation unit 402, the feedback unit 403, the interference removal unit 404, and the like.
  • channel estimation section 402 Upon receiving a CSI feedback request based on downlink control information, channel estimation section 402 performs channel estimation based on the received downlink reference signal, and calculates a channel gain.
  • CSI including information such as channel gain obtained by channel estimation is fed back to the radio base station 10 through the feedback unit 403.
  • the interference removing unit 404 removes interference between transmission beams using, for example, a linear filter.
  • the interference cancellation unit 404 is information corresponding to the power ratio set selected for non-orthogonal multiplexing (common notification information) and information related to the transmission power of the downlink signal unique to the user terminal 20 (individual notification information). Based on the above, interference due to signals addressed to other user terminals 20 is removed. Specifically, for example, signals addressed to the user terminal 20 to which transmission power higher than that of the terminal itself is assigned are removed by SIC in descending order of transmission power. On the other hand, a signal addressed to the user terminal 20 to which transmission power smaller than that of the own terminal is assigned is treated as noise and ignored without being canceled.
  • the radio base station 10 uses the power ratio set indicating the transmission power ratio of the downlink signal addressed to each user terminal 20 to Since a power ratio set suitable for the communication environment is selected, it is possible to sufficiently increase the utilization efficiency of radio resources. Also, in the radio communication system 1 according to the present embodiment, the radio base station 10 transmits information corresponding to the power ratio set (common notification information) to each user terminal 20 and a downlink unique to each user terminal 20. Since the information regarding the signal transmission power (individual notification information) is notified, each user terminal 20 can cancel the downlink signal addressed to the other terminal and appropriately receive the downlink signal addressed to itself.
  • the power ratio set common notification information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線リソースの利用効率を十分に高めることのできる新たな構成の無線基地局、ユーザ端末、無線通信システム、及び無線通信方法を提供すること。複数のユーザ端末が、無線基地局に対してチャネル状態情報をフィードバックし、無線基地局が、任意の無線リソースに非直交多重されるユーザ端末の候補を示す複数の候補ユーザセット、及び各候補ユーザセットによって示されるユーザ端末宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセットから、フィードバックされたチャネル状態情報に基づき下りリンク信号の送信に用いる候補ユーザセット及びパワーレシオセットをそれぞれ選択し、選択された候補ユーザセットによって示される複数のユーザ端末宛ての下りリンク信号を選択されたパワーレシオセットによって示される送信パワー比で送信し、選択された候補ユーザセットが受信する。

Description

無線基地局、ユーザ端末、無線通信システム、及び無線通信方法
 本発明は、無線基地局、ユーザ端末、無線通信システム、及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)の高速化、低遅延化などを目的としたロングタームエボリューション(LTE:Long Term Evolution)の仕様が策定された(非特許文献1)。LTEでは、下り回線(下りリンク)にOFDMA(Orthogonal Frequency Division Multiple Access)をベースとする通信方式を用い、上り回線(上りリンク)にSC-FDMA(Single Carrier Frequency Division Multiple Access)をベースとする通信方式を用いている。
 ところで、FRA(Future Radio Access)などと呼ばれる将来の無線通信システムでは、受信側での干渉除去を前提とする非直交多重アクセス(NOMA(Non-Orthogonal Multiple Access))を応用した通信方式の採用が想定される。NOMAでは、チャネルゲインの異なる複数のユーザ端末宛ての情報データ系列を、同じ無線リソース(周波数帯域、時間スロット)に重畳する。各情報データ系列は、チャネルゲインに応じて異なる送信パワー(送信電力)で送信されるので、各ユーザ端末は、SIC(Successive Interference Cancellation)などで他端末宛ての信号をキャンセルし、自端末宛ての情報を適切に取得できる。
 上述のように、NOMAでは、同じ無線リソースに複数の情報データ系列を重畳する。そのため、OFDMAにNOMAを組み合わせれば、無線リソースの利用効率をさらに高めることができると考えられる。しかしながら、従来のNOMAは、処理能力の比較的低い通信環境に最適化されているので、高い処理能力が想定される将来の無線通信システムにおいて必ずしも有効ではない。
 本発明はかかる点に鑑みてなされたものであり、無線リソースの利用効率を十分に高めることのできる新たな構成の無線基地局、ユーザ端末、無線通信システム、及び無線通信方法を提供することを目的とする。
 本発明の無線基地局は、複数のユーザ端末からフィードバックされたチャネル状態情報を受信する受信部と、任意の無線リソースに非直交多重されるユーザ端末の候補を示す複数の候補ユーザセット、及び各候補ユーザセットによって示されるユーザ端末宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセットから、フィードバックされたチャネル状態情報に基づき下りリンク信号の送信に用いる候補ユーザセット及びパワーレシオセットをそれぞれ選択するスケジューリング部と、選択された候補ユーザセットによって示される複数のユーザ端末宛ての下りリンク信号を、選択されたパワーレシオセットによって示される送信パワー比で送信する送信部と、を備えたことを特徴とする。
 本発明によれば、無線リソースの利用効率を十分に高めることのできる新たな構成の無線基地局、ユーザ端末、無線通信システム、及び無線通信方法を提供できる。
NOMAが適用された無線通信システムの基本的な構成例を示す模式図である。 NOMAの通信シーケンスを説明するためのフロー図である。 本実施の形態に係る無線通信方法の通信シーケンスを説明するためのフロー図である。 無線通信システムの構成例を示す模式図である。 無線基地局の構成例を示すブロック図である。 ユーザ端末の構成例を示すブロック図である。 無線基地局及びユーザ端末が有するベースバンド信号処理部の構成例を示すブロック図である。
 図1は、NOMA(Non-Orthogonal Multiple Access)が適用された無線通信システムの基本的な構成例を示す模式図である。図1では、無線基地局BSにより形成されるセルを例示している。無線基地局BSのカバレッジエリア内には、複数のユーザ端末UE(ここでは、ユーザ端末UE_1,UE_2,UE_3)が在圏している。この無線通信システムは、複数のユーザ端末UE宛ての下りリンク信号を同じ無線リソース(周波数帯域、時間スロット)に非直交多重して異なる送信パワー(送信電力)で送信できる。
 図1に示す無線通信システムでは、例えば、ユーザ端末UEのチャネルゲイン(代表的には、受信SINR)、無線基地局BSとユーザ端末UEとの間のパスロス(伝搬損失、経路損失)などに応じて送信パワーが制御される。例えば、チャネルゲインが高い(受信SINRが大きい、パスロスが小さい)ユーザ端末UE_1の送信パワーを小さく割り当て、チャネルゲインが低い(受信SINRが小さい、パスロスが大きい)ユーザ端末UE_3の送信パワーを大きく割り当てるような制御が行われる。
 この送信パワー制御により、例えば、ユーザ端末UE_3の在圏位置では、ユーザ端末UE_1,UE_2宛ての信号は十分に弱くなる。よって、ユーザ端末UE_3は、ユーザ端末UE_1,UE_2宛ての信号による干渉を無視して自端末宛ての信号を受信できる。一方、ユーザ端末UE_1の在圏位置において、ユーザ端末UE_2,UE_3宛ての信号は強い。そのため、ユーザ端末UE_1は、自端末宛ての信号に加え、ユーザ端末UE_2,UE_3宛ての信号を受信する。
 NOMAにおいて、各ユーザ端末UE宛ての信号は識別できる態様で多重されており、例えば、ユーザ端末UE_1は、ユーザ端末UE_2,UE_3宛ての信号を復号してキャンセルすることができる。このようなSIC(Successive Interference Cancellation)受信により、各ユーザ端末UEは、非直交多重された自端末宛ての信号を適切に分離して取得する。
 ここで、NOMAの通信シーケンスを説明する。図2は、NOMAの通信シーケンスを説明するためのフロー図である。まず、無線基地局BSは、各ユーザ端末UEに対して下りリンクの参照信号を送信する。この参照信号としては、例えば、CSI-RS(Channel State Information Reference Signal)、DM-RS(DeModulation Reference Signal)などを用いることができる。各ユーザ端末UEは、受信した参照信号に基づきチャネルゲイン(例えば、受信SINR)を算出し、チャネル状態情報(CSI:Channel State Information)として無線基地局BSにフィードバックする(ステップST11)。
 無線基地局BSは、非直交多重の対象となるユーザ端末UEの組み合わせを決定するために、各ユーザ端末UEからフィードバックされたCSIに基づいて後述する一連の処理を行う(ステップST12~ST16)。具体的には、任意の周波数帯域(サブバンド)に多重されるユーザ端末UEの候補を示す複数の候補ユーザセット(candidate user set)から、1組の候補ユーザセットを選択する。
 各送信ビームに対応するサブバンド毎の候補ユーザセットの総数は、非直交多重可能なユーザ端末UEの最大数をNmax、送信ビームのカバレッジエリア内に在圏するユーザ端末UEの総数をMとして、下記式(1)で表される。無線基地局BSは、式(1)で表される全ての候補ユーザセットから1組の候補ユーザセットを選択する(全探索(Exhaustive search))。
Figure JPOXMLDOC01-appb-M000001
 ユーザ端末UEの組み合わせを決定するための一連の処理(ステップST12~ST16)について詳細に説明する。無線基地局BSは、まず、フィードバックされたCSIに基づいて、各候補ユーザセットのユーザ端末UEに割り当てられる送信パワーを算出する(ステップST12)。第b番目のサブバンドにおいて第k番目のユーザ端末UEに割り当てられる送信パワーPk,bは、フラクショナル送信パワー制御(FTPC:Fractional Tx Power Control)に基づく下記式(2)で算出される。式(2)において、Kは、各候補ユーザセット内のユーザ端末UEの数を示し、Pは、第b番目のサブバンドの送信パワーを示し、hk,bは、対象ユーザ端末UE(第b番目のサブバンドにおける第k番目のユーザ端末UE)のチャネル係数の2乗値を示し、Nk,bは、対象ユーザ端末UEで観測されるノイズを示す。すなわち、hk,b/Nk,bは、対象ユーザ端末UEのチャネルゲインに相当する。また、式(2)のαは、各ユーザ端末UEへの送信パワーの割り当てを調整するためのパラメータであり、固定値となっている。
Figure JPOXMLDOC01-appb-M000002
 次に、無線基地局BSは、算出された送信パワーPk,bを含む下記式(3)に基づき、NOMAの適用下で想定される各ユーザ端末UEのSINRk,b(スケジューリング用のSINR)を算出する(ステップST13)。
Figure JPOXMLDOC01-appb-M000003
 その後、無線基地局BSは、算出された各ユーザ端末UEのSINRk,bを、各MCS(Modulation and Coding Scheme)セットのブロック誤り率(BLER:Block Error Rate)を示すテーブルに照らし合わせてBLERを求める。そして、下記式(4)に基づき、スケジューリング用の各ユーザ端末UEの瞬時スループットRk,bを算出する(ステップST14)。
Figure JPOXMLDOC01-appb-M000004
 無線基地局BSは、下記式(5),(6)に、各ユーザ端末UEの瞬時スループットRk,b、及び後述する各ユーザ端末の平均スループットTを適用し、候補ユーザセットSのスケジューリングメトリックMSjを算出する(ステップST15)。ここで、式(5),(6)を用いて2種類のスケジューリングメトリックMSjを算出するのは、各候補ユーザセットSの特性を容易に比較できるようにするためである。式(5),(6)において、tは、ウィンドウサイズを示し、Wは、重み付け係数を示す。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 次に、無線基地局BSは、下記式(7)で示すように、各サブバンドにおいてスケジューリングメトリックMSjを最大化する候補ユーザセットSを選択する(ステップST16)。また、無線基地局BSは、各サブバンドに各ユーザ端末UE宛ての下りリンク信号を非直交多重し、式(2)の送信パワーで送信する(ステップST17)。さらに、これらのスケジューリング結果に基づき、下記式(8)で示すように、各ユーザ端末UEの平均スループットTを更新する。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 上述の処理で選択された候補ユーザセットSに含まれる各ユーザ端末UEは、他端末宛ての信号と共に同じ無線リソースに非直交多重された自端末宛ての信号を受信する(ステップST17)。そして、自端末よりチャネルゲインの低い(受信SINRが小さい、パスロスが大きい)ユーザ端末UE宛ての信号をSICで除去し、自端末宛ての信号を分離する。自端末よりチャネルゲインの高い(受信SINRが大きい、パスロスが小さい)ユーザ端末UE宛ての信号は、大きな妨げとならないので無視する。
 ところで、NOMAでは、各ユーザ端末UE宛ての下りリンク信号の送信パワーは式(2)に基づいて算出される。式(2)において、各ユーザ端末UEへの送信パワーの割り当ては、固定値αによって調整されている。すなわち、NOMAでは、各ユーザ端末UEのチャネルゲインに応じてあらかじめ決められたパワーレシオ(power ratio)となるように送信パワーが決定されている。このように、各ユーザ端末UE宛ての下りリンク信号の送信パワーを固定されたパワーレシオで調整する方法は、処理能力の比較的低い通信システムに適している。
 しかしながら、各ユーザ端末UEの最適なパワーレシオは、各ユーザ端末UE間のSNR差に応じて変動する。各ユーザ端末UE間のSNR差は、各ユーザ端末UEの在圏位置(パスロスやフェージングなど)に依存するので、高い処理能力が予想される将来の無線通信システムにおいて、上述のような固定されたパワーレシオを用いる方法は、無線リソースの利用効率を高めるために必ずしも有効でない。
 この課題に対し、本発明者らは、各ユーザ端末UEの通信環境に応じてパワーレシオを選択できるように無線通信システムを構成すれば、将来の無線通信システムにおいて無線リソースの利用効率を十分に高めることができるのではないかと考えた。そして、この考えに基づき本発明を完成させた。すなわち、本発明の骨子は、各ユーザ端末UE宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセット(power ratio set)をあらかじめ用意しておき、各ユーザ端末UEの通信環境に応じて適したパワーレシオセットを選択して下りリンク信号の送信パワー比を調整することである。以下、本実施の形態に係る無線通信方法について詳細に説明する。
(無線通信方法)
 図3は、本実施の形態に係る無線通信方法の通信シーケンスを説明するためのフロー図である。まず、無線基地局BSは、各ユーザ端末UEに対して下りリンクの参照信号(CSI-RS、DM-RSなど)を送信する。各ユーザ端末UEは、受信した参照信号に基づきチャネルゲイン(例えば、受信SINR)を算出し、チャネル状態情報(CSI)として無線基地局BSにフィードバックする(ステップST21)。
 無線基地局BSは、非直交多重の対象となるユーザ端末UEの組み合わせを決定するために、各ユーザ端末UEからフィードバックされたCSIに基づいて後述する一連の処理を行う(ステップST22~ST26)。具体的には、任意の周波数帯域(サブバンド)に多重されるユーザ端末UEの候補を示す複数の候補ユーザセット(candidate user set)、及び各候補ユーザセットによって示されるユーザ端末UE宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセット(power ratio set)を用意し(ステップST22)、複数の候補ユーザセット及び複数のパワーレシオセットから、候補ユーザセット及びパワーレシオセットをそれぞれ選択する(ステップST23~ST26)。
 各送信ビームに対応するサブバンド毎の候補ユーザセット及びパワーレシオセットの組み合わせ総数は、非直交多重可能なユーザ端末UEの最大数をNmax、送信ビームのカバレッジエリア内に在圏するユーザ端末UEの総数をM、非直交多重されるユーザ端末UEの数が2~Nmaxの場合にそれぞれとり得るパワーレシオセットの組数をN~NNmaxとして、下記式(9)で表される。無線基地局BSは、式(9)で表される複数の候補ユーザセット及びパワーレシオセットの組み合わせから、1組の候補ユーザセット及びパワーレシオセットの組み合わせを選択する(全探索(Exhaustive search))。
Figure JPOXMLDOC01-appb-M000009
 例えば、図1に示すように、送信ビームのカバレッジエリア内にユーザ端末UE_1,UE_2,UE_3が在圏する状況を想定する。非直交多重可能なユーザ端末UEの最大数を3とする。ユーザ端末UEの非直交多重数が1の場合、すなわち、ユーザ端末UEが非直交多重されない場合には、ユーザ端末UE_1のみでなる候補ユーザセット(以下、[UE_1])、ユーザ端末UE_2のみでなる候補ユーザセット(以下、[UE_2])、及びユーザ端末UE_3のみでなる候補ユーザセット(以下、[UE_3])が考えられる。
 ユーザ端末UEの非直交多重数が2の場合、ユーザ端末UE_1,UE_2でなる候補ユーザセット(以下、[UE_1,UE_2])、ユーザ端末UE_2,UE_3でなる候補ユーザセット(以下、[UE_2,UE_3])、及びユーザ端末UE_3,UE_1でなる候補ユーザセット(以下、[UE_3,UE_1])が考えられる。また、ユーザ端末UEの非直交多重数が3の場合、ユーザ端末UE_1,UE_2,UE_3でなる候補ユーザセット(以下、[UE_1,UE_2,UE_3])が考えられる。すなわち、候補ユーザセットの総数は7通りである。
 ユーザ端末UEの非直交多重数が1の場合、複数のユーザ端末UE間における送信パワーの割り当てを考慮する必要はない。つまり、[UE_1],[UE_2],[UE_3]の3通りの候補ユーザセットに対して想定されるパワーレシオセットは、各1通りとなる。
 ユーザ端末UEの非直交多重数が2の場合、2個のユーザ端末UE間における送信パワーの割り当てを考慮する必要がある。以下、2個のユーザ端末UE間における送信パワーの割り当てを示すパワーレシオセットを、[P1,P2]で表す。ここで、P1+P2=P(送信パワーの合計値)である。例えば、1:9の送信パワー比を示すパワーレシオセット(以下、[0.1P,0.9P])、2:8の送信パワー比を示すパワーレシオセット(以下、[0.2P,0.8P])、及び3:7の送信パワー比を示すパワーレシオセット(以下、[0.3P,0.7P])が用意されているとする。
 図1の場合、候補ユーザセット[UE_1,UE_2]を構成するユーザ端末UE_1,UE_2を、チャネルゲインの低い(受信SINRが小さい、パスロスが大きい)順にソートすると、ユーザ端末UE_2,UE_1の順序となる。チャネルゲインの低い(受信SINRが小さい、パスロスが大きい)ユーザ端末UEには、高い送信パワーを割り当てるので、候補ユーザセット[UE_1,UE_2]とパワーレシオセット[0.1P,0.9P]との組み合わせにおいて、ユーザ端末UE_1に割り当てられる送信パワーP1は0.1Pとなり、ユーザ端末UE_2に割り当てられる送信パワーP2は0.9Pとなる。また、候補ユーザセット[UE_1,UE_2]とパワーレシオセット[0.2P,0.8P]との組み合わせにおいて、ユーザ端末UE_1に割り当てられる送信パワーP1は0.2Pとなり、ユーザ端末UE_2に割り当てられる送信パワーP2は0.8Pとなる。そして、候補ユーザセット[UE_1,UE_2]とパワーレシオセット[0.3P,0.7P]との組み合わせにおいて、ユーザ端末UE_1に割り当てられる送信パワーP1は0.3Pとなり、ユーザ端末UE_2に割り当てられる送信パワーP2は0.7Pとなる。
 候補ユーザセット[UE_2,UE_3],[UE_3,UE_1]も同様である。すなわち、候補ユーザセット[UE_2,UE_3]とパワーレシオセット[0.1P,0.9P]との組み合わせにおいて、ユーザ端末UE_2に割り当てられる送信パワーP2は0.1Pとなり、ユーザ端末UE_3に割り当てられる送信パワーP3は0.9Pとなる。また、候補ユーザセット[UE_2,UE_3]とパワーレシオセット[0.2P,0.8P]との組み合わせにおいて、ユーザ端末UE_2に割り当てられる送信パワーP2は0.2Pとなり、ユーザ端末UE_3に割り当てられる送信パワーP3は0.8Pとなる。また、候補ユーザセット[UE_2,UE_3]とパワーレシオセット[0.3P,0.7P]との組み合わせにおいて、ユーザ端末UE_2に割り当てられる送信パワーP2は0.3Pとなり、ユーザ端末UE_3に割り当てられる送信パワーP3は0.7Pとなる。
 また、候補ユーザセット[UE_3,UE_1]とパワーレシオセット[0.1P,0.9P]との組み合わせにおいて、ユーザ端末UE_1に割り当てられる送信パワーP1は0.1Pとなり、ユーザ端末UE_3に割り当てられる送信パワーP3は0.9Pとなる。また、候補ユーザセット[UE_3,UE_1]とパワーレシオセット[0.2P,0.8P]との組み合わせにおいて、ユーザ端末UE_1に割り当てられる送信パワーP1は0.2Pとなり、ユーザ端末UE_3に割り当てられる送信パワーP3は0.8Pとなる。また、候補ユーザセット[UE_3,UE_1]とパワーレシオセット[0.3P,0.7P]との組み合わせにおいて、ユーザ端末UE_1に割り当てられる送信パワーP1は0.3Pとなり、ユーザ端末UE_3に割り当てられる送信パワーP3は0.7Pとなる。
 ユーザ端末UEの非直交多重数が3の場合、3個のユーザ端末UE間における送信パワーの割り当てを考慮する必要がある。以下、3個のユーザ端末UE間における送信パワーの割り当てを示すパワーレシオセットを、[P1,P2,P3]で表す。ここで、P1+P2+P3=P(送信パワーの合計値)である。例えば、1:2:7の送信パワー比を示すパワーレシオセット(以下、[0.1P,0.2P,0.7P])、1:3:6の送信パワー比を示すパワーレシオセット(以下、[0.1P,0.3P,0.6P])、及び1:4:5の送信パワー比を示すパワーレシオセット(以下、[0.1P,0.4P,0.5P])が用意されているとする。
 図1の場合、候補ユーザセット[UE_1,UE_2,UE_3]を構成するユーザ端末UE_1,UE_2,UE_3を、チャネルゲインの低い(受信SINRが小さい、パスロスが大きい)順にソートすると、ユーザ端末UE_3,UE_2,UE_1の順序となる。よって、候補ユーザセット[UE_1,UE_2,UE_3]とパワーレシオセット[0.1P,0.2P,0.7P]との組み合わせにおいて、ユーザ端末UE_1に割り当てられる送信パワーP1は0.1Pとなり、ユーザ端末UE_2に割り当てられる送信パワーP2は0.2Pとなり、ユーザ端末UE_3に割り当てられる送信パワーP3は0.7Pとなる。また、候補ユーザセット[UE_1,UE_2,UE_3]とパワーレシオセット[0.1P,0.3P,0.6P]との組み合わせにおいて、ユーザ端末UE_1に割り当てられる送信パワーP1は0.1Pとなり、ユーザ端末UE_2に割り当てられる送信パワーP2は0.3Pとなり、ユーザ端末UE_3に割り当てられる送信パワーP3は0.6Pとなる。そして、候補ユーザセット[UE_1,UE_2,UE_3]とパワーレシオセット[0.1P,0.4P,0.5P]との組み合わせにおいて、ユーザ端末UE_1に割り当てられる送信パワーP1は0.1Pとなり、ユーザ端末UE_2に割り当てられる送信パワーP2は0.4Pとなり、ユーザ端末UE_3に割り当てられる送信パワーP3は0.5Pとなる。
 このように、候補ユーザセットとパワーレシオセットとの組み合わせに応じて各ユーザ端末UE宛ての下りリンク信号の送信パワーは決定される。すなわち、第b番目のサブバンドにおいて第k番目のユーザ端末UEに割り当てられる送信パワーPk,bは、下記式(10)のように表される。式(10)において、Pは、第b番目のサブバンドの送信パワーを示す。αは、各ユーザ端末UEへの送信パワーの割り当てを調整するためのパラメータであり、パワーレシオセットに対応している。
 無線基地局BSは、候補ユーザセットとパワーレシオセットとの組み合わせに応じて決まる上述の送信パワーPk,bを用い、式(3)に基づき、NOMAの適用下で想定される各ユーザ端末UEのSINRk,b(スケジューリング用のSINR)を算出する(ステップST23)。
Figure JPOXMLDOC01-appb-M000011
 その後、無線基地局BSは、算出された各ユーザ端末UEのSINRk,bを、各MCSセットのブロック誤り率(BLER)を示すテーブルに照らし合わせてBLERを求める。そして、式(4)に基づき、スケジューリング用の各ユーザ端末UEの瞬時スループットRk,bを算出する(ステップST24)。
Figure JPOXMLDOC01-appb-M000012
 無線基地局BSは、式(5),(6)に、各ユーザ端末UEの瞬時スループットRk,b、及び各ユーザ端末の平均スループットTを適用し、スケジューリングメトリックMSjを算出する(ステップST25)。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 次に、無線基地局BSは、式(7)で示すように、各サブバンドにおいてスケジューリングメトリックMSjを最大化する候補ユーザセット及びパワーレシオセットを選択する(ステップST26)。また、無線基地局BSは、式(10)の送信パワーで各ユーザ端末UEに下りリンク信号を送信する(ステップST27)。さらに、これらのスケジューリング結果に基づき、式(8)で示す各ユーザ端末UEの平均スループットTを更新する。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 上述の処理で選択された候補ユーザセットに含まれるユーザ端末UEは、他端末宛ての信号と共に同じ無線リソースに非直交多重された自端末宛ての信号を受信する(ステップST27)。そして、自端末よりチャネルゲインの低い(受信SINRが小さい、パスロスが大きい)ユーザ端末UE宛ての信号をSICで除去し、自端末宛ての信号を分離する。自端末よりチャネルゲインの高い(受信SINRが大きい、パスロスが小さい)ユーザ端末UE宛ての信号は、大きな妨げとならないので無視する。
 この無線通信方法において、各ユーザ端末UEは、他端末宛ての信号をSICで除去するか、又はSICで除去せずノイズとみなして無視するかを選択する必要がある。各ユーザ端末UEは、非直交多重に使用されたパワーレシオセットと、自端末に割り当てられた送信パワーとを知ることができれば、この選択を実行できる。そこで、無線基地局BSは、これらの情報を各ユーザ端末UEに対して通知する。
 具体的には、無線基地局BSは、選択された候補ユーザセットによって示される各ユーザ端末UEに対し、選択されたパワーレシオセットに対応する情報(共通通知情報)を通知する。すなわち、無線基地局BSは、各サブバンドに非直交多重される全てのユーザ端末UEに対し、選択されたパワーレシオセットに対応する情報を通知する。また、無線基地局BSは、選択された候補ユーザセットによって示される各ユーザ端末UEに対し、各ユーザ端末UEに固有の下りリンク信号の送信パワーに関する情報(個別通知情報)を通知する。すなわち、無線基地局BSは、あるユーザ端末UEに対し、当該ユーザ端末UE宛てに送信される下りリンク信号の送信パワーに関する情報を通知する。
 これらの通知は、例えば、ハイヤレイヤシグナリング(RRCシグナリングなど)、PDCCHの制御情報によるシグナリングなどを用いて行うことができる。特に、PDCCHの制御情報によるシグナリングは、サブバンド毎、ユーザ端末UE毎の通知が容易であり、この通知に適している。なお、上述の共通通知情報及び個別通知情報は、ジョイントエンコーディング(joint encoding)されても良い。例えば、通知対象となるユーザ端末UEに対応するパワーレシオが先頭ビットにくるようパワーレシオセットのビット列の配列を変更すれば、各ユーザ端末UEは、自端末宛ての信号の送信パワーに関する情報と、選択されたパワーレシオセットとをまとめて取得できる。このようなジョイントエンコーディングにより、通知に係るオーバヘッドを低減できる。なお、ジョイントエンコーディングの態様は、これに限られない。
 また、例えば、最大2個のユーザ端末UEを多重する場合、所望のユーザ端末UEへの割り当て電力PdesiredのみをPDCCHや上位レイヤシグナリング(例えば、RRCシグナリング)などで通知し、総送信パワーPを上位レイヤシグナリング(例えば、RRCシグナリング)で通知するようにしても良い。この場合、各ユーザ端末UEでPとPdesiredが既知となるため、干渉となるユーザ端末UEへの割り当て電力をP-Pdesiredで推定できる。
 これらの情報を通知された各ユーザ端末UEは、通知された情報に基づき、例えば、自端末より大きい送信パワーが割り当てられたユーザ端末UE宛ての信号を、送信パワーの大きい順にSICで除去する。また、自端末より小さい送信パワーが割り当てられたユーザ端末UE宛ての信号をSICで除去せずノイズとして無視する。
 このように、本実施の形態に係る無線通信方法では、各ユーザ端末UE宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセットが用意されており、無線基地局BSが、各ユーザ端末UEの通信環境に応じて適したパワーレシオセットを選択するので、非直交多重の適用される無線通信システムにおいて無線リソースの利用効率を十分に高めることができる。また、本実施の形態に係る無線通信方法では、無線基地局BSは、各ユーザ端末UEに対し、パワーレシオセットに対応する情報(共通通知情報)と、各ユーザ端末UEに固有の下りリンク信号の送信パワーに関する情報(個別通知情報)とを通知するので、各ユーザ端末UEは、他端末宛ての下りリンク信号をキャンセルして自端末宛ての下りリンク信号を適切に受信できる。
(無線通信システムの構成例)
 以下、本実施の形態に係る無線通信システムの詳細を説明する。図4は、本実施の形態に係る無線通信システムの構成例を示す模式図である。なお、図4に示す無線通信システムは、例えば、LTEシステム、又はLTE-A(LTEアドバンスト(LTE-Advanced))システムが包含されるシステムである。この無線通信システムは、IMT-Advancedと呼ばれても良いし、4Gと呼ばれても良い。
 図4に示すように、無線通信システム1は、無線基地局10(10A,10B)と、この無線基地局10と通信する複数のユーザ端末20(20A,20B)とを含んでいる。無線基地局10は、上位局装置30と接続され、この上位局装置30は、コアネットワーク40と接続される。各ユーザ端末20は、セルC1、C2において無線基地局10と通信を行うことができる。この無線通信システム1において、ユーザ端末20は、移動端末でも良いし固定端末でもよい。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これらに限定されない。
 無線通信システム1においては、無線アクセス方式として、下りリンクにOFDMA(Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにSC-FDMA(Single Carrier Frequency Division Multiple Access)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、この無線通信システム1の下りリンクには、必要に応じてNOMAが適用される。
 ここで、図4に示す無線通信システム1で用いられる通信チャネルについて説明する。下りリンクの通信チャネルは、各ユーザ端末20で共有されるPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH、拡張PDCCH)とを有する。PDSCHにより、ユーザデータ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCH及びPUSCHのスケジューリング情報などが伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。
 上りリンクの通信チャネルは、各ユーザ端末20で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、ユーザデータや上位制御情報が伝送される。また、PUCCHにより、下りリンクのチャネル品質情報(CQI:Channel Quality Indicator)、ACK/NACKなどが伝送される。
 図5は、本実施の形態に係る無線基地局の構成例を示すブロック図である。無線基地局10は、ビームフォーミングのための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
 下りリンクにおいて無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104は、入力されたユーザデータに対して、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などを行い、各送受信部103に転送する。また、下りリンクの制御情報に対してチャネル符号化やIFFT処理などの送信処理を行い、各送受信部103に転送する。
 また、ベースバンド信号処理部104は、報知チャネルにより、ユーザ端末20に対して、在圏セルにおける通信のための制御情報を通知する。在圏セルにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅などが含まれる。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101より送信する。
 一方、上りリンクによりユーザ端末20から無線基地局10に送信されるデータは、各送受信アンテナ101で受信されてアンプ部102に入力される。アンプ部102は、各送受信アンテナ101から入力される無線周波数信号を増幅して各送受信部103に送る。増幅された無線周波数信号は、各送受信部103でベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104は、入力されたベースバンド信号に含まれるユーザデータに対して、高速フーリエ変換(FFT: Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理などを行い、伝送路インターフェース106を介して上位局装置30に転送する。呼処理部105は、通信チャネルの設定や解放などの呼処理、無線基地局10の状態管理、無線リソースの管理などを行う。
 図6は、本実施の形態に係るユーザ端末の構成例を示すブロック図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。
 下りリンクのデータは、複数の送受信アンテナ201で受信されてアンプ部202に入力される。アンプ部202は、各送受信アンテナ201から入力される無線周波数信号を増幅して各送受信部203に送る。増幅された無線周波数信号は、各送受信部203でベースバンド信号に変換され、ベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、入力されたベースバンド信号に対してFFT処理、誤り訂正復号、再送制御の受信処理などが行われる。下りリンクのデータに含まれるユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータに含まれる報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータは、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204は、入力されたユーザデータに対して、再送制御(H-ARQ(Hybrid ARQ))の送信処理、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などを行い、各送受信部203に転送する。各送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201より送信する。
 図7は、本実施の形態に係る無線基地局及びユーザ端末が有するベースバンド信号処理部の構成例を示すブロック図である。なお、図7では、構成の一部のみを示しているが、無線基地局10及びユーザ端末20は、必要な構成を不足なく備えているものとする。
 図7に示すように、無線基地局10は、ビーム生成部301、下り制御情報生成部302、下り制御情報符号化・変調部303、下り送信データ生成部304、下り送信データ符号化・変調部305、下り参照信号生成部306、下りチャネル多重部307、スケジューリング部308を備えている。
 ビーム生成部301は、任意の無線リソース(周波数帯域、時間スロット)を用いる複数の送信ビームを生成する。ビーム生成部301で生成される各送信ビームには、後述のスケジューリング部308で選択されたユーザ端末20宛ての下りリンク信号が非直交多重される。
 下り制御情報生成部302は、PDCCHで伝送されるユーザ端末固有(UE-specific)の下り制御情報(DCI)を生成する。ユーザ端末固有の下り制御情報には、PDSCHの割り当て情報であるDLアサイメント(DL assignment)や、PUSCHの割り当て情報であるULグラント(UL grant)などが含まれる。また、この下り制御情報には、各ユーザ端末20に対してCSIのフィードバックを要求する制御情報や、非直交多重された信号の受信処理に必要な情報などが含まれる。すなわち、無線基地局10は、非直交多重のために選択されたパワーレシオセットに対応する情報(共通通知情報)や、ユーザ端末20に固有の下りリンク信号の送信パワーに関する情報(個別通知情報)などを、各ユーザ端末20に対してPDCCHで通知する。ただし、これらの情報は、ハイヤレイヤシグナリング(RRCシグナリングなど)で通知される上位制御情報に含まれても良い。
 下り制御情報生成部302で生成された下り制御情報は、ユーザ端末20に共通の共通制御情報と共に、PDCCHで伝送される下り制御情報として下り制御情報符号化・変調部303に入力される。下り制御情報符号化・変調部303は、入力された下り制御情報をチャネル符号化して変調する。変調された下り制御情報は、下りチャネル多重部307へと出力される。
 下り送信データ生成部304は、ユーザ端末20毎に下りユーザデータを生成する。下り送信データ生成部304で生成された下りユーザデータは、上位制御情報と共に、PDSCHで伝送される下り送信データとして下り送信データ符号化・変調部305に入力される。下り送信データ符号化・変調部305は、各ユーザ端末20に対する下り送信データをチャネル符号化して変調する。変調された下り送信データは、下りチャネル多重部307へと出力される。
 下り参照信号生成部306は、下り参照信号(CRS(Cell-specific Reference Signal)、CSI-RS、DM-RSなど)を生成する。生成された下り参照信号は、下りチャネル多重部307へと出力される。
 下りチャネル多重部307は、下り制御情報、下り参照信号、下り送信データ(上位制御情報を含む)を合成して下りリンク信号を生成する。具体的には、下りチャネル多重部307は、スケジューリング部308から通知されるスケジューリング情報に従い、スケジューリング部308で選択された複数のユーザ端末20宛ての下りリンク信号が、選択された送信パワーで送信されるように各送信ビームに非直交多重する。下りチャネル多重部307で生成された下りリンク信号は、逆高速フーリエ変換処理、プリコーディング処理などを経て、送受信部103へと転送される。
 スケジューリング部308は、上位局装置30からの指示情報や各ユーザ端末20からのCSI(CQI(Channel Quality Indicator)、RI(Rank Indicator)など)に基づいて、無線リソースの割り当てを指示するスケジューリング情報を生成する。具体的には、スケジューリング部308は、ユーザ端末20からフィードバックされたCSIに基づいて、任意の周波数帯域に非直交多重されるユーザ端末20の候補を示す複数の候補ユーザセット、及び各候補ユーザセットによって示されるユーザ端末20宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセットから、非直交多重に用いる候補ユーザセット及びパワーレシオセットを選択する(図3のステップST22~ST26)。
 図7に示すように、ユーザ端末20は、下り制御情報受信部401、チャネル推定部402、フィードバック部403、干渉除去部404、下り送信データ受信部405を備えている。
 無線基地局10から送出された下りリンク信号は、送受信アンテナ201で受信され、サイクリックプリフィクスの除去、高速フーリエ変換処理などを経て、ベースバンド信号処理部204へと転送される。下りリンク信号は、ベースバンド信号処理部204で下り制御情報、下り送信データ(上位制御情報を含む)、下り参照信号に分離される。下り制御情報は下り制御情報受信部401に入力され、下り送信データは下り送信データ受信部405に入力され、下り参照信号はチャネル推定部402に入力される。
 下り制御情報受信部401は、下り制御情報を復調し、チャネル推定部402、フィードバック部403、干渉除去部404などに出力する。チャネル推定部402は、下り制御情報によるCSIのフィードバック要求を受けると、受信した下り参照信号に基づいてチャネル推定を行い、チャネルゲインを算出する。チャネル推定で得られたチャネルゲインなどの情報を含むCSIは、フィードバック部403を通じて無線基地局10にフィードバックされる。
 干渉除去部404は、例えば、線形フィルタを用いて送信ビーム間の干渉を除去する。また、干渉除去部404は、非直交多重のために選択されたパワーレシオセットに対応する情報(共通通知情報)や、ユーザ端末20に固有の下りリンク信号の送信パワーに関する情報(個別通知情報)などに基づいて、他のユーザ端末20宛ての信号による干渉を除去する。具体的には、例えば、自端末より大きい送信パワーが割り当てられたユーザ端末20宛ての信号を、送信パワーの大きい順にSICで除去する。一方、自端末より小さい送信パワーが割り当てられたユーザ端末20宛ての信号は、ノイズとして扱いキャンセルせずに無視する。
 以上のように、本実施の形態に係る無線通信システム1では、無線基地局10は、各ユーザ端末20宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセットから、各ユーザ端末20の通信環境に応じて適したパワーレシオセットを選択するので、無線リソースの利用効率を十分に高めることができる。また、本実施の形態に係る無線通信システム1では、無線基地局10は、各ユーザ端末20に対し、パワーレシオセットに対応する情報(共通通知情報)と、各ユーザ端末20に固有の下りリンク信号の送信パワーに関する情報(個別通知情報)とを通知するので、各ユーザ端末20は、他端末宛ての下りリンク信号をキャンセルして自端末宛ての下りリンク信号を適切に受信できる。
 本発明は、その趣旨及び範囲を逸脱することなく修正及び変更態様として実施できる。つまり、本明細書の記載は、例示を目的とするものに過ぎず、本発明に対して制限を加えるものではない。
 本出願は、2013年2月12日出願の特願2013-024335に基づく。この内容は、すべてここに含めておく。

Claims (9)

  1.  複数のユーザ端末からフィードバックされたチャネル状態情報を受信する受信部と、
     任意の無線リソースに非直交多重されるユーザ端末の候補を示す複数の候補ユーザセット、及び各候補ユーザセットによって示されるユーザ端末宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセットから、フィードバックされたチャネル状態情報に基づき下りリンク信号の送信に用いる候補ユーザセット及びパワーレシオセットをそれぞれ選択するスケジューリング部と、
     選択された候補ユーザセットによって示される複数のユーザ端末宛ての下りリンク信号を選択されたパワーレシオセットによって示される送信パワー比で送信する送信部と、を備えたことを特徴とする無線基地局。
  2.  前記スケジューリング部は、ユーザ端末からフィードバックされたチャネル状態情報に基づいて、
     候補ユーザセットによって示される複数のユーザ端末宛ての下りリンク信号をパワーレシオセットによって示される送信パワー比で送信する場合に各ユーザ端末において想定されるSINRを、全ての候補ユーザセット及びパワーレシオセットの組に関して算出し、
     算出されたSINRに基づき下りリンク信号の送信に用いる候補ユーザセット及びパワーレシオセットを選択することを特徴とする請求項1に記載の無線基地局。
  3.  選択された候補ユーザセットによって示される各ユーザ端末に対し、選択されたパワーレシオセットに関する情報を通知することを特徴とする請求項2に記載の無線基地局。
  4.  選択された候補ユーザセットによって示される各ユーザ端末に対し、各ユーザ端末に固有の下りリンク信号の送信パワーに関する情報を通知することを特徴とする請求項3に記載の無線基地局。
  5.  無線基地局に対してチャネル状態情報をフィードバックするフィードバック部と、
     フィードバックしたチャネル状態情報に基づき無線基地局で選択された候補ユーザセットによって示される複数のユーザ端末宛てに選択されたパワーレシオセットによって示される送信パワー比で送信された下りリンク信号を受信する受信部と、を備えたことを特徴とするユーザ端末。
  6.  複数のユーザ端末が、無線基地局に対してチャネル状態情報をフィードバックし、
     無線基地局が、任意の無線リソースに非直交多重されるユーザ端末の候補を示す複数の候補ユーザセット、及び各候補ユーザセットによって示されるユーザ端末宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセットから、フィードバックされたチャネル状態情報に基づき下りリンク信号の送信に用いる候補ユーザセット及びパワーレシオセットをそれぞれ選択し、選択された候補ユーザセットによって示される複数のユーザ端末宛ての下りリンク信号を選択されたパワーレシオセットによって示される送信パワー比で送信し、
     選択された候補ユーザセットによって示される複数のユーザ端末が、無線基地局で選択された候補ユーザセットが示す複数のユーザ端末宛てに選択されたパワーレシオセットが示す送信パワー比で送信された下りリンク信号を受信することを特徴とする無線通信システム。
  7.  前記無線基地局は、下りリンク信号の送信に用いる候補ユーザセット及びパワーレシオセットをそれぞれ選択した後、選択された候補ユーザセットによって示される複数のユーザ端末に対して選択されたパワーレシオセットに関する情報を通知し、
     前記選択された候補ユーザセットによって示される複数のユーザ端末は、パワーレシオセットに関する情報に基づいて、自端末より大きなパワーで送信された他端末宛ての下りリンク信号をSICで除去し、自端末より小さなパワーで送信された他端末宛ての下りリンク信号をSICで除去せずにノイズとみなすことを特徴とする請求項6に記載の無線通信システム。
  8.  複数のユーザ端末が、無線基地局に対してチャネル状態情報をフィードバックし、
     無線基地局が、任意の無線リソースに非直交多重されるユーザ端末の候補を示す複数の候補ユーザセット、及び各候補ユーザセットによって示されるユーザ端末宛ての下りリンク信号の送信パワー比を示す複数のパワーレシオセットから、フィードバックされたチャネル状態情報に基づき下りリンク信号の送信に用いる候補ユーザセット及びパワーレシオセットをそれぞれ選択し、選択された候補ユーザセットによって示される複数のユーザ端末宛ての下りリンク信号を選択されたパワーレシオセットによって示される送信パワー比で送信し、
     選択された候補ユーザセットによって示される複数のユーザ端末が、無線基地局で選択された候補ユーザセットが示す複数のユーザ端末宛てに選択されたパワーレシオセットが示す送信パワー比で送信された下りリンク信号を受信することを特徴とする無線通信方法。
  9.  前記無線基地局は、下りリンク信号の送信に用いる候補ユーザセット及びパワーレシオセットをそれぞれ選択した後、選択された候補ユーザセットによって示される複数のユーザ端末に対して選択されたパワーレシオセットに関する情報を通知し、
     前記選択された候補ユーザセットによって示される複数のユーザ端末は、パワーレシオセットに関する情報に基づいて、自端末より大きなパワーで送信された他端末宛ての下りリンク信号をSICで除去し、自端末より小さなパワーで送信された他端末宛ての下りリンク信号をSICで除去せずにノイズとみなすことを特徴とする請求項8に記載の無線通信方法。
PCT/JP2014/051447 2013-02-12 2014-01-24 無線基地局、ユーザ端末、無線通信システム、及び無線通信方法 WO2014125892A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14751801.3A EP2958389A4 (en) 2013-02-12 2014-01-24 WIRELESS BASE STATION, USER DEVICE, WIRELESS COMMUNICATION SYSTEM AND WIRELESS COMMUNICATION PROCESS
US14/766,851 US10334603B2 (en) 2013-02-12 2014-01-24 Radio base station, user terminal, radio communication system, and radio communication method
EP18168174.3A EP3370463A1 (en) 2013-02-12 2014-01-24 Radio base station, user terminal, radio communication system, and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-024335 2013-02-12
JP2013024335A JP5875540B2 (ja) 2013-02-12 2013-02-12 無線基地局、ユーザ端末、無線通信システム、及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2014125892A1 true WO2014125892A1 (ja) 2014-08-21

Family

ID=51353902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051447 WO2014125892A1 (ja) 2013-02-12 2014-01-24 無線基地局、ユーザ端末、無線通信システム、及び無線通信方法

Country Status (4)

Country Link
US (1) US10334603B2 (ja)
EP (2) EP3370463A1 (ja)
JP (1) JP5875540B2 (ja)
WO (1) WO2014125892A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017021772A1 (en) * 2015-08-06 2017-02-09 Alcatel Lucent Method and apparatus for indicating power allocation in multiuser superposition transmission
CN106464322A (zh) * 2014-10-07 2017-02-22 联发科技股份有限公司 网络辅助小区内干扰消除以及抑制的信令
WO2017051660A1 (ja) * 2015-09-25 2017-03-30 シャープ株式会社 基地局装置、端末装置および通信方法
CN107873127A (zh) * 2015-07-10 2018-04-03 高通股份有限公司 针对传统用户设备作为基本层的非正交多址的参考信号和信令设计
EP3223444A4 (en) * 2014-11-21 2018-07-25 Sony Corporation Device
CN108605238A (zh) * 2016-02-04 2018-09-28 株式会社Ntt都科摩 基站、用户装置、功率比应用方法及信道状态信息发送方法
CN112369084A (zh) * 2018-06-27 2021-02-12 华为技术有限公司 一种功率分配方法及相关设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102070938B1 (ko) * 2013-04-19 2020-01-29 삼성전자주식회사 다중 사용자 빔포밍 시스템에서 비 직교 다중 접속 기법을 운용하기 위한 방법 및 장치
WO2015021239A1 (en) * 2013-08-07 2015-02-12 Huawei Technologies Co., Ltd. System and method for scalable digital communications with adaptive system parameters
JP2015041941A (ja) * 2013-08-23 2015-03-02 株式会社Nttドコモ 無線基地局、中継局及び無線通信方法
US10003486B2 (en) * 2014-04-28 2018-06-19 Intel IP Corporation Non-orthogonal multiple access (NOMA) wireless systems and methods
US9712272B2 (en) * 2014-06-02 2017-07-18 Intel IP Corporation User equipment and method for dynamic non-orthogonal multiple access communication
US10411856B2 (en) 2014-10-27 2019-09-10 Qualcomm Incorporated Reference signal and transmit power ratio design for non-orthogonal transmissions
EP3214884B1 (en) 2014-10-27 2019-06-19 Huawei Technologies Co., Ltd. Method and device for adaptive modulation and coding
JP6296167B2 (ja) * 2014-11-06 2018-03-20 富士通株式会社 通信システムおよび通信方法
EP3248420B1 (en) * 2015-02-12 2019-07-10 Huawei Technologies Co., Ltd. Apparatus and method for signalling of non-orthogonal transmissions
CN106034349B (zh) * 2015-03-12 2020-11-20 株式会社Ntt都科摩 传输功率控制方法及装置
KR102348214B1 (ko) * 2015-05-28 2022-01-07 삼성전자 주식회사 무선 통신 시스템에서 스케줄링 방법 및 장치
KR102176635B1 (ko) * 2015-06-05 2020-11-09 삼성전자주식회사 무선 통신 시스템에서 제어 정보를 송수신하기 위한 장치 및 방법
WO2017057655A1 (ja) * 2015-10-02 2017-04-06 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
JP6310494B2 (ja) * 2016-04-08 2018-04-11 株式会社Nttドコモ ユーザ装置、及び基地局
US10237035B2 (en) 2016-06-15 2019-03-19 Electronics And Telecommunications Research Institute Operation method of communication node supporting superposition transmission in cellular communication system
WO2019095299A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Determining beam failure based on a dynamic range of transmission power ratios
KR102257505B1 (ko) 2019-07-25 2021-05-31 한양대학교 산학협력단 비 직교 다중 접속을 지원하는 무선 통신 시스템에서 위치 기반 전력 할당 장치 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009291A (ja) * 2011-05-20 2013-01-10 Ntt Docomo Inc 受信装置、送信装置及び無線通信方法
JP2013024335A (ja) 2011-07-21 2013-02-04 Panasonic Corp 固定装置及び便器装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020172166A1 (en) 2001-03-22 2002-11-21 Huseyin Arslan Communications system and method for measuring short-term and long-term channel characteristics
US20030116447A1 (en) * 2001-11-16 2003-06-26 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
JP2004343524A (ja) * 2003-05-16 2004-12-02 Mitsubishi Electric Corp 基地局、移動局、通信システムおよび通信方法
KR101141112B1 (ko) * 2004-09-15 2012-05-02 가부시키가이샤 엔.티.티.도코모 이동 통신 시스템, 무선 제어국, 무선 기지국, 이동국 및 이동 통신 방법
KR100696208B1 (ko) * 2004-12-08 2007-03-20 한국전자통신연구원 다중 안테나 송수신 시스템의 제어 방법, 송신기 및 수신기
US7477622B2 (en) * 2005-01-28 2009-01-13 Qualcomm, Incorporated Superposition coding in a wireless communication system
US7869417B2 (en) * 2005-07-21 2011-01-11 Qualcomm Incorporated Multiplexing and feedback support for wireless communication systems
KR101430265B1 (ko) * 2008-03-13 2014-08-14 엘지전자 주식회사 다중 안테나 시스템에서 사용자 스케줄링 방법
US8185798B2 (en) * 2008-06-30 2012-05-22 Freescale Semiconductor, Inc. Techniques for reducing joint detection complexity in a channel-coded multiple-input multiple-output communication system
KR101819739B1 (ko) * 2009-10-28 2018-01-19 엘지전자 주식회사 무선통신 시스템에서 셀간 간섭을 완화하는 장치 및 방법
US9337954B2 (en) 2010-07-28 2016-05-10 Qualcomm Incorporated Protocol for channel state information feedback
JP5864199B2 (ja) * 2011-05-20 2016-02-17 株式会社Nttドコモ 受信装置、送信装置及び無線通信方法
KR102061700B1 (ko) 2012-11-02 2020-01-02 삼성전자주식회사 무선 통신 시스템에서 간섭 인지 검출 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009291A (ja) * 2011-05-20 2013-01-10 Ntt Docomo Inc 受信装置、送信装置及び無線通信方法
JP2013024335A (ja) 2011-07-21 2013-02-04 Panasonic Corp 固定装置及び便器装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Requirements for Evolved UTRA and Evolved UTRAN", 3GPP TR 25.913
See also references of EP2958389A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464322B (zh) * 2014-10-07 2019-12-24 寰发股份有限公司 小区内干扰消除以及抑制的信令的方法以及用户设备
CN106464322A (zh) * 2014-10-07 2017-02-22 联发科技股份有限公司 网络辅助小区内干扰消除以及抑制的信令
US10555314B2 (en) 2014-10-07 2020-02-04 Hfi Innovation Inc. Signaling of network-assisted intra-cell interference cancellation and suppression
EP3223444A4 (en) * 2014-11-21 2018-07-25 Sony Corporation Device
CN107873127A (zh) * 2015-07-10 2018-04-03 高通股份有限公司 针对传统用户设备作为基本层的非正交多址的参考信号和信令设计
WO2017021772A1 (en) * 2015-08-06 2017-02-09 Alcatel Lucent Method and apparatus for indicating power allocation in multiuser superposition transmission
US10575311B2 (en) 2015-09-25 2020-02-25 Sharp Kabushiki Kaisha Base station device, terminal device, and communication method
JPWO2017051660A1 (ja) * 2015-09-25 2018-08-16 シャープ株式会社 基地局装置、端末装置および通信方法
WO2017051660A1 (ja) * 2015-09-25 2017-03-30 シャープ株式会社 基地局装置、端末装置および通信方法
CN108605238A (zh) * 2016-02-04 2018-09-28 株式会社Ntt都科摩 基站、用户装置、功率比应用方法及信道状态信息发送方法
CN112369084A (zh) * 2018-06-27 2021-02-12 华为技术有限公司 一种功率分配方法及相关设备
CN112369084B (zh) * 2018-06-27 2022-04-05 华为技术有限公司 一种功率分配方法及相关设备
US11503549B2 (en) 2018-06-27 2022-11-15 Huawei Technologies Co., Ltd. Power allocation method and related device

Also Published As

Publication number Publication date
EP2958389A1 (en) 2015-12-23
JP2014155092A (ja) 2014-08-25
EP2958389A4 (en) 2016-10-05
EP3370463A1 (en) 2018-09-05
JP5875540B2 (ja) 2016-03-02
US10334603B2 (en) 2019-06-25
US20160014785A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP5875540B2 (ja) 無線基地局、ユーザ端末、無線通信システム、及び無線通信方法
US10470173B2 (en) Radio base station, user terminal and radio communication method
US10098073B2 (en) Radio base station, user terminal, radio communication method and radio communication system
US9634808B2 (en) Radio communication system, radio communication method, user terminal and radio base station
JP6342618B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP6364159B2 (ja) 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
WO2014104117A1 (ja) 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
EP2706799B1 (en) Wireless base station device, mobile terminal device, wireless communication method, and wireless communication system
WO2016199768A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2014104114A1 (ja) 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
AU2013236181B2 (en) Radio communication system, user terminal, radio base station apparatus and radio communication method
WO2016163499A1 (ja) 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
EP2779741B1 (en) Wireless communication system, wireless base station, user equipment, and wireless communication method
US9509462B2 (en) Radio communication system, user terminal, radio base station apparatus and radio communication method
US8983485B2 (en) Base station apparatus, mobile terminal apparatus and scheduling method
JP6989368B2 (ja) 基地局、端末、及び無線通信方法
JP2017216700A (ja) ユーザ端末、無線基地局、及び無線通信方法
WO2013137219A1 (ja) 無線通信システム、ユーザ端末、無線基地局装置及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14766851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014751801

Country of ref document: EP