WO2014122829A1 - トランスモジュール、受電装置および送電装置 - Google Patents

トランスモジュール、受電装置および送電装置 Download PDF

Info

Publication number
WO2014122829A1
WO2014122829A1 PCT/JP2013/079490 JP2013079490W WO2014122829A1 WO 2014122829 A1 WO2014122829 A1 WO 2014122829A1 JP 2013079490 W JP2013079490 W JP 2013079490W WO 2014122829 A1 WO2014122829 A1 WO 2014122829A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
transformers
winding group
output unit
substrate
Prior art date
Application number
PCT/JP2013/079490
Other languages
English (en)
French (fr)
Inventor
高橋博宣
家木勉
川原史聖
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201390001076.5U priority Critical patent/CN204834313U/zh
Priority to JP2014560639A priority patent/JP6098646B2/ja
Publication of WO2014122829A1 publication Critical patent/WO2014122829A1/ja
Priority to US14/806,698 priority patent/US9948202B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • H01F2027/065Mounting on printed circuit boards
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to a transformer module including a plurality of transformers, a power receiving device including the transformer module, and a power transmission device.
  • An electric field coupling method is known as a system for wirelessly transmitting power from a power transmitting device to a power receiving device.
  • power is transmitted from the active electrode of the power transmission apparatus to the active electrode of the power reception apparatus via an electric field.
  • a booster circuit is provided in a power transmission apparatus, a high voltage transmission is performed by providing a step-down circuit in a power receiving apparatus.
  • the power receiving device is a portable electronic device such as a mobile phone.
  • the portable electronic device has been made thinner and smaller, and accordingly, the built-in components are required to be thinner and smaller. ing. For this reason, a high voltage transformer with a small design and a low profile is required.
  • Patent Document 1 discloses an invention relating to a high-frequency transformer for high voltage and large current.
  • the high-frequency transformer according to Patent Document 1 has a configuration in which primary windings and secondary windings of a plurality of transformers can be connected in series or in parallel. With this configuration, it is possible to adjust the transformation ratio of the transformer, and it is possible to cope with both cases of outputting high voltage power of low voltage and large current and high frequency power of high voltage and small current.
  • an object of the present invention is to provide a transformer module that secures a distance between a high voltage part and a low voltage part and reduces the influence of the high voltage part on the low voltage part, and a power receiving device and a power transmission device including the transformer module. There is to do.
  • the present invention provides a primary winding group in which primary windings of a plurality of transformers are connected in series or in parallel, and a secondary winding in which secondary windings of the plurality of transformers are connected in series or in parallel.
  • a transformer module comprising a group, a board on which the plurality of transformers are arranged and mounted in one direction, a first input unit provided on the board and connected to a first end of the primary winding group, A first output unit and a second output unit provided on the substrate and connected to a first end and a second end of the secondary winding group; and the first input unit and the first output unit.
  • the second output unit is provided at a position where the plurality of transformers are interposed therebetween.
  • the distance between the first end of the primary winding group of the transformer module and the secondary winding group can be ensured by at least the area where a plurality of transformers are mounted.
  • the primary side of the transformer module is a high voltage part and the secondary side is a low voltage part
  • the high voltage part and the low voltage part can be separated from each other, resulting in the high voltage part.
  • the influence of noise etc. on the low voltage part can be reduced.
  • the transformer capacity of the transformer module is adjusted by configuring the primary winding group and secondary winding group of the transformer module by connecting the primary winding and secondary winding of each transformer in series or in parallel. can do. For this reason, even if a small (low profile) transformer is used, it is possible to avoid a shortage of the transformer capacity of the transformer module, and to realize miniaturization (low profile) of the transformer module.
  • a second input unit provided on the substrate and connected to a second end of the primary winding group, and the second input unit is provided between the second input unit and the first input unit.
  • the structure provided in the position where the said several transformer interposes is preferable.
  • the distance between the first end and the second end of the primary winding group can be secured. For this reason, one end of the primary winding group on the high voltage side and the other end on the reference potential side can be arranged apart from each other. As a result, noise generated in the high voltage portion affects the low voltage portion. Can be suppressed.
  • a second input unit provided on the substrate and connected to a second end of the primary winding group; and the second input unit includes the second input unit, the first output unit, and the second input unit.
  • the structure provided in the position where the said some transformer interposes between output parts may be sufficient.
  • the present invention provides a primary winding group in which primary windings of a plurality of transformers are connected in series or in parallel, and a secondary winding in which secondary windings of the plurality of transformers are connected in series or in parallel.
  • a plurality of transformers arranged in m (m is an integer of 2 or more) rows n (n is an integer of 2 or more) columns, and provided on the board.
  • the first input unit, the first output unit and the second output unit interpose a transformer mounting region in which the plurality of transformers are mounted, and the distance between them is It is characterized by being provided at the longest position.
  • the distance between the first end of the primary winding group of the transformer module and the secondary winding group can be ensured by at least the area where a plurality of transformers are mounted.
  • the transformer capacity of the transformer module is adjusted by configuring the primary winding group and secondary winding group of the transformer module by connecting the primary winding and secondary winding of each transformer in series or in parallel. can do. For this reason, even if a small (low profile) transformer is used, it is possible to avoid a shortage of the transformer capacity of the transformer module, and to realize miniaturization (low profile) of the transformer module.
  • a second input unit provided on the substrate and connected to a second end of the primary winding group; and the second input unit includes the second input unit, the first output unit, and the second input unit.
  • region interposes between output parts may be sufficient.
  • the distance between the first end and the second end of the primary winding group can be secured. For this reason, one end of the primary winding group on the high voltage side and the other end on the reference potential side can be arranged apart from each other. As a result, noise generated in the high voltage portion affects the low voltage portion. Can be suppressed.
  • a rectifying / smoothing circuit provided on the substrate and connected to the first output unit and the second output unit, and an output voltage current provided on the substrate and rectified and smoothed by the rectifying / smoothing circuit is supplied to a load circuit.
  • the rectifying / smoothing circuit and the load supplying unit between the plurality of transformers and the first output unit between the rectifying / smoothing circuit and the load supplying unit and the first input unit. And the structure provided in the position where the said 2nd output part interposes may be sufficient.
  • the distance between the first input unit, the rectifying / smoothing circuit, and the load supply unit can be secured. Accordingly, when the first input unit becomes a high voltage unit and the rectifying and smoothing circuit and the load supply unit become a low voltage unit, the high voltage unit and the low voltage unit can be arranged apart from each other. It can suppress that the noise etc. which arose in the part affect a low voltage part.
  • the present invention provides a primary winding group in which primary windings of a plurality of transformers are connected in series or in parallel, and a secondary winding in which secondary windings of the plurality of transformers are connected in series or in parallel.
  • a transformer module including a group, a board on which the plurality of transformers are arranged and mounted in one direction, and a third board provided on the board and connected to a first end and a second end of the primary winding group.
  • the third input unit and the fourth input unit The third output unit is provided at a position where the plurality of transformers are interposed therebetween.
  • the distance between the first end of the primary winding group of the transformer module and the secondary winding group can be ensured by at least the area where a plurality of transformers are mounted.
  • the transformer capacity of the transformer module is adjusted by configuring the primary winding group and secondary winding group of the transformer module by connecting the primary winding and secondary winding of each transformer in series or in parallel. can do. For this reason, even if a small (low profile) transformer is used, it is possible to avoid a shortage of the transformer capacity of the transformer module, and to realize miniaturization (low profile) of the transformer module.
  • a fourth output unit provided on the substrate and connected to a second end of the secondary winding group, and the fourth output unit is provided between the fourth output unit and the third input unit.
  • the structure provided in the position where the said some transformer interposes may be sufficient.
  • the distance between the first end and the second end of the secondary winding group can be secured. For this reason, one end of the secondary winding group on the high voltage side and the other end on the reference potential side can be arranged apart from each other. As a result, noise generated in the high voltage portion affects the low voltage portion. Can be suppressed.
  • a fourth output unit provided on the substrate and connected to a second end of the secondary winding group; and the fourth output unit includes the fourth output unit, the third input unit, and the fourth output unit.
  • the structure provided in the position where the said some transformer interposes between input parts may be sufficient.
  • the plurality of transformers may be mounted with the winding axis direction aligned with the one direction.
  • the plurality of transformers may be mounted with the winding axis direction orthogonal to the one direction.
  • the plurality of transformers are transformers in which the polarity of the terminal of the secondary winding with respect to the terminal of the primary winding is the same polarity, and the transformer in which the polarity of the terminal of the secondary winding with respect to the terminal of the primary winding is reversed,
  • This configuration can avoid complication of wiring patterns.
  • the present invention it is possible to reduce the influence of the high voltage part on the low voltage part by securing the distance between the high voltage part and the low voltage part.
  • Circuit diagram of power receiving device according to Embodiment 1
  • Top view of circuit module Diagram showing step-down transformer wiring pattern Plan view of another example circuit module
  • the figure which shows the wiring pattern of the step-down transformer which the circuit module of another example has Circuit diagram of power transmission device according to Embodiment 1
  • Top view of circuit module Plan view of another example circuit module Circuit diagram of step-down transformer with primary coil connected in series and secondary coil connected in parallel
  • the figure which shows the wiring pattern of the step-down transformer which concerns on Embodiment 2.
  • Circuit diagram of step-down transformer with primary coil and secondary coil connected in parallel The figure which shows the wiring pattern of the step-down transformer which concerns on Embodiment 3.
  • Circuit diagram of step-down transformer with primary coil connected in parallel and secondary coil connected in series The figure which shows the wiring pattern of the step-down transformer which concerns on Embodiment 3.
  • the transformer module according to the present invention is used in a wireless power transmission system.
  • the wireless power transmission system power is wirelessly transmitted from the power transmission device to the power reception device by placing the power reception device on the power transmission device.
  • FIG. 1 is a circuit diagram of a power receiving device 101 according to the first embodiment.
  • the power receiving apparatus 101 includes a load RL.
  • the load RL is a secondary battery
  • the power receiving apparatus 101 is, for example, a portable electronic device including the secondary battery. Examples of portable electronic devices include mobile phones, PDAs, portable music players, notebook PCs, digital cameras, and the like.
  • the power receiving apparatus 101 charges the secondary battery with the transmission power from the power transmission apparatus.
  • the power receiving apparatus 101 includes an active electrode (first electrode of the present invention) 11 and a passive electrode (second electrode of the present invention) 12.
  • the active electrode 11 and the passive electrode 12 face the active electrode and the passive electrode included in the power transmission device via a gap when the power receiving device 101 is placed on the power transmission device.
  • a high voltage for example, AC 1000 V
  • AC 1000 V AC 1000 V
  • an electric field is generated between the electrodes. Electric power is transmitted from the power transmission device to the power reception device 101 via this electric field.
  • the active electrode 11 and the passive electrode 12 are connected to the circuit module 10A.
  • the circuit module 10A corresponds to a transformer module according to the present invention.
  • the circuit module 10 ⁇ / b> A includes a step-down transformer 13 ⁇ / b> A, a rectifier circuit 14, and a voltage stabilization circuit 15, and steps down the voltage induced in the active electrode 11 and the passive electrode 12 to rectify and smooth the voltage.
  • the step-down transformer 13A has two transformer elements 131 and 132.
  • the primary coil of the step-down transformer 13A (primary winding group according to the present invention) is configured by connecting primary coils L11 and L12 of transformer elements 131 and 132 in series.
  • the secondary coil (secondary winding group according to the present invention) of the step-down transformer 13A is configured by connecting the secondary coils L21 and L22 of the transformer elements 131 and 132 in series.
  • the step-down transformer 13A has a primary coil connected to the active electrode 11 and the passive electrode 12, and a secondary coil connected to the rectifier circuit 14.
  • a capacitor C1 is connected to the primary coil of the step-down transformer 13A.
  • the capacitor C1 forms a parallel resonance circuit with the primary coil of the step-down transformer 13A and a leakage inductance (not shown).
  • the rectifier circuit 14 includes a diode bridge, and the voltage stabilization circuit 15 includes a DC-DC converter.
  • the voltage stabilization circuit 15 is connected to the output terminals OUT1 and OUT2.
  • a load RL is connected to the output terminals OUT1 and OUT2.
  • An AC voltage induced in the active electrode 11 and the passive electrode 12 is stepped down by the step-down transformer 13A, and the voltage rectified and smoothed by the rectifier circuit 14 and the voltage stabilization circuit 15 is applied to the load RL.
  • FIG. 2 is a plan view of the circuit module 10A. In FIG. 2, the illustration of the capacitor C1 shown in FIG. 1 is omitted.
  • the circuit module 10A includes a rectangular printed board 17P.
  • a connection terminal (first input portion of the present invention) 16A is provided at one end (left side in the figure) in the long side direction of the printed circuit board 17P.
  • the connection terminal 16A is a terminal for connecting one end of the primary winding of the step-down transformer 13A and the active electrode 11. Further, output terminals OUT1 and OUT2 are provided on the other end (right side in the drawing) in the long side direction of the printed circuit board 17P. That is, the connection terminal 16A and the output terminals OUT1 and OUT2 are provided at the farthest positions on the printed circuit board 17P.
  • connection terminal 16A and the output terminals OUT1 and OUT2 a step-down transformer 13A, a rectifier circuit 14, and a voltage stabilization circuit 15 are mounted along the long side direction of the printed circuit board 17P.
  • the transformer elements 131 and 132 of the step-down transformer 13A are mounted along the long side direction.
  • connection terminals 16B, 16C, and 16D are provided on the opposite side of the connection terminal 16A across the step-down transformer 13A.
  • the connection terminal (second input unit of the present invention) 16B is a terminal that connects one end of the primary winding of the step-down transformer 13A and the passive electrode 12.
  • Connection terminals (first output unit and second output unit of the present invention) 16C and 16D are terminals for connecting the secondary winding of the step-down transformer 13A and the rectifier circuit 14.
  • a high voltage for example, AC 1000 V
  • the circuit module 10A steps down the voltage induced in the active electrode 11 and the passive electrode 12 and applies it to the load RL. That is, in the circuit module 10A, the connection terminal 16A is a high voltage portion, the connection terminals 16B, 16C, and 16D, the rectifier circuit 14, the voltage stabilization circuit 15, and the output terminals OUT1 and OUT2 are low voltage portions. Therefore, the high voltage portion and the low voltage portion of the printed circuit board 17P are arranged with the step-down transformer 13A interposed therebetween.
  • the distance between the high voltage portion and the low voltage portion in the circuit module 10A, it is possible to reduce the noise generated in the high voltage portion from affecting the low voltage portion. Furthermore, by arranging the two transformer elements 131 and 132 of the step-down transformer 13A along the long side direction, the distance between the high voltage part and the low voltage part can be further increased, and noise generated in the high voltage part is generated. The influence on the low voltage part can be reduced more effectively.
  • FIG. 3 is a diagram showing a wiring pattern of the step-down transformer 13A.
  • the transformer elements 131 and 132 are mounted with their winding axes aligned with the long side direction of the printed circuit board 17P.
  • One end of the primary coil L11 of the transformer element 131 is connected to the connection terminal 16A, and the other end is connected to one end of the primary coil L12 of the transformer element 132.
  • the other end of the primary coil L12 of the transformer element 132 is connected to the connection terminal 16B.
  • One end of the secondary coil L21 of the transformer element 131 is connected to the connection terminal 16D, and the other end is connected to one end of the secondary coil L22 of the transformer element 132.
  • the other end of the secondary coil L22 of the transformer element 132 is connected to the connection terminal 16C.
  • each component of the power receiving apparatus 101 that is a portable electronic device is required to be small and thin. For this reason, it is desired that the step-down transformer 13A also has a low profile.
  • the step-down transformer 13A is a single element, if the step-down transformer 13A is reduced in height, the transformer capacity becomes insufficient and a sufficient output voltage can be obtained. The problem that it is not possible arises.
  • by configuring the step-down transformer 13A from the two transformer elements 131 and 132 even if each of the transformer elements 131 and 132 is reduced in height, a shortage of transformer capacitance can be avoided by connecting them.
  • the overall height of the step-down transformer 13A can be reduced.
  • the wiring patterns of the primary coils L11 and L12 connected in series and the series are connected. Even if the wiring patterns of the secondary coils L21 and L22 to be connected are formed on the same surface (mounting surface) of the printed circuit board 17P, the wiring patterns can be formed without crossing each other, so that the wiring patterns are not complicated.
  • the circuit module secures the distance between the high-voltage part and the low-voltage part, in particular, the distance between the primary-side high-potential side connection terminal 16A and the secondary-side connection terminals 16C and 16D of the step-down transformer 13A.
  • Any configuration can be used, and the configuration is not limited to the above configuration.
  • FIG. 4 is a plan view of another example of the circuit module 10B.
  • FIG. 5 is a diagram illustrating a wiring pattern of a step-down transformer 13B included in another example circuit module 10B.
  • the broken lines shown in FIG. 5 are wiring patterns that connect the secondary coils L12 and L22 of the transformer elements 131 and 132, and indicate that they are formed on the back surface of the printed circuit board 17P.
  • the mounting surface of the printed circuit board 17P is the surface.
  • connection terminal 16B on the primary reference potential side is provided at the end of the printed circuit board 17P provided with the connection terminal 16A.
  • the transformer elements 131 and 132 included in the step-down transformer 13B are mounted with the winding axis aligned with the short side direction of the printed circuit board 17P. Further, between the transformer elements 131 and 132 in the printed circuit board 17P, an oval hole 17H for preventing the influence of a potential difference between the secondary coil L21 of the transformer element 131 and the primary coil L12 of the transformer element 132. Is formed.
  • connection terminals 16A and 16B at the end of the printed circuit board 17P on the same side, the input terminals of the circuit module 10A can be collected.
  • FIG. 6 is a circuit diagram of the power transmission apparatus 201 according to the first embodiment.
  • the power transmission apparatus 201 includes an active electrode (third electrode of the present invention) 21 and a passive electrode (fourth electrode of the present invention) 22.
  • the active electrode 21 and the passive electrode 22 are opposed to the active electrode 11 and the passive electrode 12 of the power receiving apparatus 101 via a gap.
  • the active electrode 21 and the passive electrode 22 are connected to the circuit module 20A.
  • the circuit module 20A corresponds to a transformer module according to the present invention.
  • the circuit module 20A includes a detection circuit 23, an inverter circuit 24, a step-up transformer 25, and a control circuit 26.
  • the circuit module 20A converts a voltage (DC5V or DC12V) from the DC power source Vin connected to the input terminals IN1 and IN2 into an AC voltage, The voltage is boosted and applied to the active electrode 21 and the passive electrode 22.
  • the detection circuit 23 detects the input voltage and input current from the DC power source Vin.
  • the inverter circuit 24 includes a plurality of switching elements and converts a DC voltage into an AC voltage.
  • the control circuit 26 receives the voltage detected by the detection circuit 23 and the information of the output voltage from the output terminals OUT1 and OUT2 detected on the power receiving apparatus 101 side, and feedback-controls the inverter circuit 24 according to them.
  • the step-up transformer 25 has transformer elements 251 and 252.
  • a primary coil (primary winding group according to the present invention) of the step-up transformer 25 is configured by connecting primary coils L31 and L32 of transformer elements 251 and 252 in series.
  • the secondary coil of the step-up transformer 25 (secondary winding group according to the present invention) is configured by connecting the secondary coils L41 and L42 of the transformer elements 251 and 252 in series.
  • the step-up transformer 25 has a primary coil connected to the inverter circuit 24 and a secondary coil connected to the active electrode 21 and the passive electrode 22.
  • a capacitor C2 is connected to the secondary coil of the step-up transformer 25.
  • the capacitor C2 forms a series resonance circuit with the secondary coil of the step-up transformer 25 and a leakage inductance (not shown).
  • FIG. 7 is a plan view of the circuit module 20A. In FIG. 7, the illustration of the capacitor C2 shown in FIG. 6 is omitted.
  • the circuit module 20A includes a rectangular printed board 28P.
  • Input terminals IN1 and IN2 are provided at one end (left side in the figure) in the long side direction of the printed circuit board 28P.
  • the other end (right side in the figure) of the printed circuit board 28P is provided with a connection terminal (third output portion of the present invention) 27A for connecting the secondary coil of the step-up transformer 25 and the active electrode 21. ing. That is, the input terminals IN1 and IN2 and the connection terminal 27A are provided at the farthest positions on the printed circuit board 28P.
  • connection terminal 27A Between the input terminals IN1 and IN2 and the connection terminal 27A, a control circuit 26, a detection circuit 23, an inverter circuit 24, and a step-up transformer 25 are mounted along the long side direction.
  • the transformer elements 251 and 252 of the step-up transformer 25 are mounted along the long side direction.
  • connection terminals 27B, 27C, and 27D are provided on the opposite side of the connection terminal 27A across the step-up transformer 25.
  • the connection terminal (fourth output unit of the present invention) 27B is a terminal for connecting one end of the secondary coil of the step-up transformer 25 and the passive electrode 22.
  • Connection terminals (third input portion and fourth input portion of the present invention) 27C and 27D are terminals for connecting the primary coil of the step-up transformer 25 and the inverter circuit 24.
  • the circuit module 20A boosts the voltage (DC5V or DC12V) input from the input terminals IN1 and IN2 to a high voltage (AC1000V) by the step-up transformer 25 and applies it to the active electrode 21 and the passive electrode 22. That is, in the circuit module 20A, the input terminals IN1 and IN2, the control circuit 26, the detection circuit 23, the inverter circuit 24, and the connection terminals 27B, 27C, and 27D are low voltage parts, and the connection terminal 27A as the output part of the step-up transformer 25 is high. It is a voltage part. Therefore, the high voltage portion and the low voltage portion of the printed circuit board 28P are arranged with the step-up transformer 25 interposed therebetween.
  • the distance between the high voltage portion and the low voltage portion in the circuit module 20A, it is possible to reduce the influence of noise generated in the high voltage portion on the low voltage portion. Furthermore, by arranging the two transformer elements 251 and 252 of the step-up transformer 25 along the long side direction, the distance between the high voltage part and the low voltage part can be further increased, and noise generated in the high voltage part is generated. , The influence on the low voltage part can be reduced.
  • FIG. 8 is a plan view of another example of the circuit module 20B.
  • the connection terminal 27B on the secondary reference potential side of the step-up transformer 25 is the end on the same side of the printed circuit board 28P provided with the connection terminal 27A. Is provided.
  • the wiring pattern of the step-up transformer 25 included in the circuit modules 20A and 20B shown in FIGS. 7 and 8 is the same as that of the circuit modules 10A and 10B of the power receiving apparatus 101, and thus description thereof is omitted.
  • Embodiment 2 Embodiment 2 according to the present invention will be described below.
  • the configuration of the step-down transformer of the circuit module included in the power receiving device is different from that of the first embodiment.
  • the step-down transformer 13A according to the first embodiment includes two transformer elements 131 and 132, whereas the step-down transformer according to the present embodiment includes four transformer elements.
  • the primary coil and the secondary coil of each of the four transformer elements may be connected in series or may be connected in parallel.
  • the step-up transformer of the power transmission apparatus is the same as the description of the step-down transformer of the power receiving apparatus in which the primary side is the low voltage section, the secondary side is the high voltage section, the primary side is the high voltage section, and the secondary side is the low voltage section. Therefore, in the present embodiment, description of the power transmission device is omitted.
  • FIG. 9 is a circuit diagram of a step-down transformer 13C in which a primary coil is connected in series and a secondary coil is connected in parallel.
  • the step-down transformer 13C has four transformer elements 131.132, 133, and 134.
  • the primary coil of the step-down transformer 13C is configured by connecting primary coils L11, L12, L13, and L14 of transformer elements 131, 132, 133, and 134 in series.
  • the secondary coil of the step-down transformer 13C is configured by connecting in parallel secondary coils L21 and L22 of transformer elements 131 and 132 connected in series and secondary coils L23 and L24 of transformer elements 133 and 134 connected in series. Has been.
  • FIG. 10 and 11 are diagrams showing a wiring pattern of the step-down transformer 13C according to the second embodiment.
  • FIG. 10 shows a wiring pattern in which the transformer elements 131, 132, 133, and 134 are arranged with the winding axis aligned with the long side direction of the printed circuit board 17P.
  • FIG. 11 shows a wiring pattern having a configuration in which the transformer elements 131, 132, 133, and 134 are arranged with the winding axis aligned with the short side direction of the printed circuit board 17P.
  • parallel connection as shown in FIG. 11, by arranging the transformer elements 131, 132, 133, and 134, it is possible to avoid complication of the wiring pattern.
  • FIG. 12 is a circuit diagram of a step-down transformer 13D in which a primary coil and a secondary coil are connected in parallel.
  • the step-down transformer 13D has four transformer elements 131, 132, 133, and 134.
  • the primary coil of the step-down transformer 13D is configured by connecting primary coils L11 and L12 of transformer elements 131 and 132 connected in series with primary coils L13 and L14 of transformer elements 133 and 134 connected in series.
  • the secondary coil of the step-down transformer 13D is configured by connecting in parallel secondary coils L21 and L22 of transformer elements 131 and 132 connected in series and secondary coils L23 and L24 of transformer elements 133 and 134 connected in series. Has been.
  • FIG. 13 and 14 are diagrams showing a wiring pattern of the step-down transformer 13D according to the third embodiment.
  • FIG. 13 shows a wiring pattern in which the transformer elements 131, 132, 133, and 134 are arranged with the winding axis aligned with the long side direction of the printed circuit board 17P.
  • FIG. 14 shows a wiring pattern in which the transformer elements 131, 132, 133, and 134 are arranged with the winding axis aligned with the short side direction of the printed circuit board 17P.
  • FIG. 15 is a circuit diagram of a step-down transformer 13E in which a primary coil is connected in parallel and a secondary coil is connected in series.
  • the primary coil of the step-down transformer 13E is configured such that primary coils L11 and L12 of transformer elements 131 and 132 connected in series and primary coils L13 and L14 of transformer elements 133 and 134 connected in series are connected in parallel.
  • the secondary coil of the step-down transformer 13E is configured by connecting the secondary coils L21, L22, L23, and L24 of the transformer elements 131, 132, 133, and 134 in series.
  • FIG. 16 and 17 are diagrams showing a wiring pattern of the step-down transformer 13E according to the third embodiment.
  • FIG. 13 shows a wiring pattern in which the transformer elements 131, 132, 133, and 134 are arranged with the winding axis aligned with the long side direction of the printed circuit board 17P.
  • FIG. 14 shows a wiring pattern in which the transformer elements 131, 132, 133, and 134 are arranged with the winding axis aligned with the short side direction of the printed circuit board 17P.
  • the four transformer elements 131, 132, 133, and 134 of the step-down transformer 13C are arranged in the long side direction of the printed circuit board 17P.
  • the distance between the high voltage portion and the low voltage portion can be further ensured as compared with the first embodiment.
  • connection terminal 16A that becomes the high voltage portion and the connection terminal 16B that becomes the low voltage portion is secured, and the high voltage portion becomes the low voltage portion.
  • the influence exerted can be reduced.
  • the connection terminals 16 ⁇ / b> A and 16 ⁇ / b> B are provided at the end on the same side of the printed circuit board 17 ⁇ / b> P, whereby the input terminals of the circuit module can be combined.
  • the winding axis direction may not coincide with either the long side direction or the short side direction of the printed circuit board 17P.
  • the step-down transformer includes a mixture of transformer elements arranged with the winding axis direction aligned with the long side direction of the printed circuit board 17P and transformer elements arranged with the winding axis direction aligned with the short side direction. It may be a thing.
  • the configuration in which the transformer elements 131, 132, 133, and 134 of the step-down transformer are arranged in a line (in the long side direction of the printed circuit board 17P) has been described.
  • the four transformer elements 131, 132, 133, and 134 may be arranged in a matrix.
  • FIG. 18 is a diagram showing a wiring pattern of a step-down transformer in which a primary coil and a secondary coil are connected in series.
  • FIG. 19 is a diagram illustrating a wiring pattern of a step-down transformer in which a primary coil is connected in series and a secondary coil is connected in parallel.
  • FIG. 20 is a diagram illustrating a wiring pattern of a step-down transformer in which a primary coil and a secondary coil are connected in parallel.
  • FIG. 21 is a diagram showing a wiring pattern of a step-down transformer in which primary coils are connected in parallel and secondary coils are connected in series.
  • regions where transformer elements 131, 132, 133, and 134 are mounted are interposed between the connection terminals 16A and 16B and the connection terminals 16C and 16D. For this reason, in the printed circuit board 17P, the distance between the connection terminals 16A and 16B serving as the high voltage part and the connection terminals 16C and 16D serving as the low voltage part can be further increased.
  • the mounting direction of the transformer elements 131, 132, 133, and 134, or the polarity of the terminals of the secondary coil with respect to the terminals of the primary coil Etc. are appropriately changed.
  • the transformer elements 131 and 132 and the transformer elements 133 and 134 are mounted so that the directions of the elements are opposite by 180 degrees.
  • the polarity of the terminal of the secondary coil with respect to the terminal of the primary coil is reversed.
  • the step-down transformer is not limited to one in which transformer elements are arranged in two rows and two columns.
  • the transformer elements may be arranged in 2 rows and 3 columns or 3 rows and 2 columns.
  • the connection terminal that becomes the high voltage portion and the connection terminal that becomes the low voltage portion are mounted at the farthest distance in the mounting region of the transformer elements arranged in a matrix. Thereby, the distance of a high voltage part and a low voltage part can be ensured, and the influence which a high voltage part has on a low voltage part can be reduced.
  • the step-down transformer is described as an example of the transformer elements of 2 rows and 2 columns, 2 rows and 3 columns, 3 rows and 2 columns, and the like, but the present invention can be similarly applied to the step-up transformer.
  • 10A, 10B-circuit module (transformer module) 11-active electrode (first electrode) 12-Passive electrode (second electrode) 13A, 13B, 13C, 13D, 13E-Step-down transformer 14-Rectifier circuit 15-Voltage stabilization circuit 16A-Connection terminal (first input section) 16B-connection terminal (second input section) 16C-connection terminal (first output) 16D-connection terminal (second output section) 17P-Printed circuit board 17H-Hole 20A, 20B-Circuit module (transformer module) 21-active electrode (third electrode) 22-Passive electrode (fourth electrode) 23-detection circuit 24-inverter circuit 25-step-up transformer 27A-connection terminal (third output section) 27B-Connection terminal (4th output part) 27C-Connection terminal (3rd input part) 27D-Connection terminal (4th input part) 28P-printed circuit board 101-power receiving apparatus 201-power transmitting apparatuses 131, 132, 133, 134-transformer elements 25

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Dc-Dc Converters (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

 複数のトランス素子(131,132)の1次コイルが直列接続された降圧トランス(13)の1次コイルと、トランス素子(131,132)の2次コイルが直列接続された2次コイルとを備えた回路モジュール(10A)において、トランス素子(131,132)が長辺方向に配列実装されたプリント基板(17P)と、降圧トランス(13A)の1次コイルの第1端が接続された接続端子(16A)と、降圧トランス(13A)の2次コイルが接続された接続端子(16C,16D)とを備え、接続端子(16A)と接続端子(16C,16D)とは、間にトランス素子(131,132)が介在する位置に設けられている。これにより、高電圧部と低電圧部との距離を確保して、高電圧部が低電圧部に及ぼす影響を低減するトランスモジュール、それを備えた受電装置および送電装置を提供する。

Description

トランスモジュール、受電装置および送電装置
 本発明は、複数のトランスで構成されるトランスモジュール、それを備えた受電装置および送電装置に関する。
 送電装置から受電装置へワイヤレスで電力伝送を行うシステムとして、電界結合方式が知られている。この電界結合方式の電力伝送システムでは、送電装置のアクティブ電極から受電装置のアクティブ電極に電界を介して電力が伝送される。そして、電力伝送効率を高めるために、送電装置に昇圧回路を設け、受電装置で降圧回路を設けて高電圧伝送が行われる。また、受電装置の例としては、携帯電話機等の携帯電子機器が挙げられるが、近年、携帯電子機器は薄型化および小型化が進んでおり、それに伴い内蔵部品の薄型化および小型化も要求されている。このため、小型設計および低背設計された高耐電圧トランスが必要となる。
 特許文献1には、高電圧用、大電流用の高周波トランスに関する発明が開示されている。この特許文献1に係る高周波トランスは、複数のトランスの1次巻線および2次巻線それぞれを直列接続または並列接続できる構成としてある。この構成により、トランスの変圧比を調整でき、低電圧大電流の高周波電力を出力する場合、および高電圧小電流の高周波電力を出力する場合の何れにも対応することができる。
特開2012-80011号公報
 電界結合方式の電力伝送システムの場合、上述のように、受電装置は薄型化等が要求されるため、内蔵する部品配置スペースには制約がある。このため、部品間の距離を十分に確保できないことから、高電圧部で発生するノイズ等が低電圧部に影響を及ぼすといった問題があった。特許文献1では、トランスの変圧比を調整して高耐電圧トランスを実現することはできるが、前記のような問題を解決することはできない。
 そこで、本発明の目的は、高電圧部と低電圧部との距離を確保して、高電圧部が低電圧部に及ぼす影響を低減するトランスモジュール、それを備えた受電装置および送電装置を提供することにある。
 本発明は、複数のトランスそれぞれの1次巻線が直列接続または並列接続された1次巻線群と、前記複数のトランスそれぞれの2次巻線が直列接続または並列接続された2次巻線群とを備えたトランスモジュールにおいて、前記複数のトランスが一方向に配列実装された基板と、前記基板に設けられ、前記1次巻線群の第1端が接続された第1入力部と、前記基板に設けられ、前記2次巻線群の第1端および第2端が接続された第1出力部および第2出力部と、を備え、前記第1入力部と、前記第1出力部および前記第2出力部とは、間に前記複数のトランスが介在する位置に設けられていることを特徴とする。
 この構成では、トランスモジュールの1次巻線群の第1端と2次巻線群との間の距離を、少なくとも複数のトランスが実装された領域分だけ確保することができる。これにより、トランスモジュールの1次側が高電圧部となり、2次側が低電圧部となる場合、高電圧部と低電圧部とを離して配置することができ、その結果、高電圧部で生じたノイズ等が低電圧部に及ぼす影響を低減できる。
 また、各トランスの1次巻線および2次巻線を直列接続または並列接続して、トランスモジュールの1次巻線群および2次巻線群を構成することで、トランスモジュールのトランス容量を調整することができる。このため、小型(低背型)のトランスを用いても、トランスモジュールのトランス容量が不足することを回避でき、トランスモジュールの小型化(低背化)を実現できる。
 前記基板に設けられ、前記1次巻線群の第2端が接続された第2入力部、を備え、前記第2入力部は、この第2入力部と前記第1入力部との間に前記複数のトランスが介在する位置に設けられている構成が好ましい。
 この構成では、1次巻線群の第1端と第2端との距離を確保できる。このため、高電圧側の1次巻線群の一端と、基準電位側の他端とを離して配置することができ、その結果、高電圧部で生じたノイズ等が低電圧部に影響を及ぼすことを抑制できる。
 前記基板に設けられ、前記1次巻線群の第2端が接続された第2入力部、を備え、前記第2入力部は、この第2入力部と前記第1出力部および前記第2出力部との間に前記複数のトランスが介在する位置に設けられている構成でもよい。
 この構成では、1次巻線群の両端を近傍に配置することができるため、トランスモジュールの入力端子の実装が容易となる。
 本発明は、複数のトランスそれぞれの1次巻線が直列接続または並列接続された1次巻線群と、前記複数のトランスそれぞれの2次巻線が直列接続または並列接続された2次巻線群とを備えたトランスモジュールにおいて、前記複数のトランスがm(mは2以上の整数)行n(nは2以上の整数)列に配列実装された基板と、前記基板に設けられ、前記1次巻線群の第1端が接続された第1入力部と、前記基板に設けられ、前記2次巻線群の第1端および第2端が接続された第1出力部および第2出力部と、を備え、前記第1入力部と、前記第1出力部および前記第2出力部とは、間に前記複数のトランスが実装されたトランス実装領域を介在し、かつ、互いの距離が最長となる位置に設けられていることを特徴とする。
 この構成では、トランスモジュールの1次巻線群の第1端と2次巻線群との間の距離を、少なくとも複数のトランスが実装された領域分だけ確保することができる。これにより、トランスモジュールの1次側が高電圧部となり、2次側が低電圧部となる場合、高電圧部と低電圧部とを離して配置することができ、その結果、高電圧部で生じたノイズ等が低電圧部に影響を及ぼすことを抑制できる。
 また、各トランスの1次巻線および2次巻線を直列接続または並列接続して、トランスモジュールの1次巻線群および2次巻線群を構成することで、トランスモジュールのトランス容量を調整することができる。このため、小型(低背型)のトランスを用いても、トランスモジュールのトランス容量が不足することを回避でき、トランスモジュールの小型化(低背化)を実現できる。
 前記基板に設けられ、前記1次巻線群の第2端が接続された第2入力部、を備え、前記第2入力部は、この第2入力部と前記第1出力部および前記第2出力部との間に前記領域が介在する位置に設けられている構成でもよい。
 この構成では、1次巻線群の第1端と第2端との距離を確保できる。このため、高電圧側の1次巻線群の一端と、基準電位側の他端とを離して配置することができ、その結果、高電圧部で生じたノイズ等が低電圧部に影響を及ぼすことを抑制できる。
 前記基板に設けられ、前記第1出力部および前記第2出力部に接続された整流平滑回路と、前記基板に設けられ、前記整流平滑回路により整流および平滑された出力電圧電流を負荷回路へ供給する負荷供給部と、を備え、前記整流平滑回路および前記負荷供給部は、これら整流平滑回路および負荷供給部と、前記第1入力部との間に、前記複数のトランス、前記第1出力部および前記第2出力部が介在する位置に設けられている構成でもよい。
 この構成では、第1入力部と、整流平滑回路および負荷供給部との距離を確保することができる。これにより、第1入力部が高電圧部となり、整流平滑回路および負荷供給部が低電圧部となる場合、高電圧部と低電圧部とを離して配置することができ、その結果、高電圧部で生じたノイズ等が低電圧部に影響を及ぼすことを抑制できる。
 本発明は、複数のトランスそれぞれの1次巻線が直列接続または並列接続された1次巻線群と、前記複数のトランスそれぞれの2次巻線が直列接続または並列接続された2次巻線群とを備えたトランスモジュールにおいて、前記複数のトランスが一方向に配列実装された基板と、前記基板に設けられ、前記1次巻線群の第1端および第2端が接続された第3入力部および第4入力部と、前記基板に設けられ、前記2次巻線群の第1端が接続された第3出力部と、を備え、前記第3入力部および前記第4入力部と、前記第3出力部とは、間に前記複数のトランスが介在する位置に設けられていることを特徴とする。
 この構成では、トランスモジュールの1次巻線群の第1端と2次巻線群との間の距離を、少なくとも複数のトランスが実装された領域分だけ確保することができる。これにより、トランスモジュールの1次側が高電圧部となり、2次側が低電圧部となる場合、高電圧部と低電圧部とを離して配置することができ、その結果、高電圧部で生じたノイズ等が低電圧部に影響を及ぼすことを抑制できる。
 また、各トランスの1次巻線および2次巻線を直列接続または並列接続して、トランスモジュールの1次巻線群および2次巻線群を構成することで、トランスモジュールのトランス容量を調整することができる。このため、小型(低背型)のトランスを用いても、トランスモジュールのトランス容量が不足することを回避でき、トランスモジュールの小型化(低背化)を実現できる。
 前記基板に設けられ、前記2次巻線群の第2端が接続された第4出力部、を備え、前記第4出力部は、この第4出力部と前記第3入力部との間に前記複数のトランスが介在する位置に設けられている構成でもよい。
 この構成では、2次巻線群の第1端と第2端との距離を確保できる。このため、高電圧側の2次巻線群の一端と、基準電位側の他端とを離して配置することができ、その結果、高電圧部で生じたノイズ等が低電圧部に影響を及ぼすことを抑制できる。
 前記基板に設けられ、前記2次巻線群の第2端が接続された第4出力部、を備え、前記第4出力部は、この第4出力部と前記第3入力部および前記第4入力部との間に前記複数のトランスが介在する位置に設けられている構成でもよい。
 この構成では、2次巻線群の両端を近傍に配置することができるため、トランスモジュールの出力端子の実装が容易となる。
 前記複数のトランスは、巻回軸方向を前記一方向に一致させて実装されている構成でもよい。
 この構成では、複数のトランスの1次巻線および2次巻線を直列接続する場合、配線パターンの複雑化を回避できる。
 前記複数のトランスは、巻回軸方向を前記一方向に直交させて実装されている構成でもよい。
 この構成では、複数のトランスの1次巻線および2次巻線を並列接続する場合、配線パターンの複雑化を回避できる。
 前記複数のトランスは、1次巻線の端子に対する2次巻線の端子の極性が同極性のトランスと、1次巻線の端子に対する2次巻線の端子の極性が逆極性のトランスと、を含む構成でもよい。
 この構成では、配線パターンの複雑化を回避できる。
 本発明によれば、高電圧部と低電圧部との距離を確保することで、高電圧部が低電圧部に及ぼす影響を低減できる。
実施形態1に係る受電装置の回路図 回路モジュールの平面図 降圧トランスの配線パターンを示す図 別の例の回路モジュールの平面図 別の例の回路モジュールが有する降圧トランスの配線パターンを示す図 実施形態1に係る送電装置の回路図 回路モジュールの平面図 別の例の回路モジュールの平面図 1次コイルが直列接続、2次コイルが並列接続された降圧トランスの回路図 実施形態2に係る降圧トランスの配線パターンを示す図 実施形態2に係る降圧トランスの配線パターンを示す図 1次コイルおよび2次コイルが並列接続された降圧トランスの回路図 実施形態3に係る降圧トランスの配線パターンを示す図 実施形態3に係る降圧トランスの配線パターンを示す図 1次コイルが並列接続、2次コイルが直列接続された降圧トランスの回路図 実施形態3に係る降圧トランスの配線パターンを示す図 実施形態3に係る降圧トランスの配線パターンを示す図 4つのトランス素子が2行2列に配置された構成における配線パターンを示す図 4つのトランス素子が2行2列に配置された構成における配線パターンを示す図 4つのトランス素子が2行2列に配置された構成における配線パターンを示す図 4つのトランス素子が2行2列に配置された構成における配線パターンを示す図
 以下に説明する実施形態では、本発明に係るトランスモジュールをワイヤレス電力伝送システムに用いた例を示す。ワイヤレス電力伝送システムでは、受電装置を送電装置に載置することで、送電装置から受電装置へワイヤレスで電力伝送される。
(実施形態1)
 図1は、実施形態1に係る受電装置101の回路図を示す。受電装置101は負荷RLを備えている。負荷RLは二次電池であり、受電装置101は、その二次電池を備えた、例えば携帯電子機器である。携帯電子機器としては携帯電話機、PDA、携帯音楽プレーヤ、ノート型PC、デジタルカメラなどが挙げられる。受電装置101は、送電装置からの伝送電力により二次電池を充電する。
 受電装置101は、アクティブ電極(本発明の第1の電極)11およびパッシブ電極(本発明の第2の電極)12を備えている。アクティブ電極11およびパッシブ電極12は、受電装置101を送電装置に載置した場合に、送電装置が備えるアクティブ電極およびパッシブ電極と間隙を介して対向する。送電装置のアクティブ電極およびパッシブ電極には、高電圧(例えばAC1000V)が印加される。アクティブ電極11が送電装置のアクティブ電極と対向することで、電極間に電界が生じる。この電界を介して送電装置から受電装置101へ電力が伝送される。
 アクティブ電極11およびパッシブ電極12は、回路モジュール10Aに接続されている。回路モジュール10Aは、本発明に係るトランスモジュールに相当する。回路モジュール10Aは、降圧トランス13A、整流回路14および電圧安定化回路15を備え、アクティブ電極11およびパッシブ電極12に誘起される電圧を降圧し、整流平滑する。
 降圧トランス13Aは二つのトランス素子131,132を有している。降圧トランス13Aの1次コイル(本発明に係る1次巻線群)は、トランス素子131,132の1次コイルL11,L12が直列接続されて構成されている。降圧トランス13Aの2次コイル(本発明に係る2次巻線群)は、トランス素子131,132の2次コイルL21,L22が直列接続されて構成されている。降圧トランス13Aは、1次コイルがアクティブ電極11およびパッシブ電極12に接続され、2次コイルが整流回路14に接続されている。
 なお、降圧トランス13Aの1次コイルにはキャパシタC1が接続されている。このキャパシタC1は、降圧トランス13Aの1次コイルおよび漏れインダクタンス(不図示)とで並列共振回路を構成している。
 整流回路14はダイオードブリッジを含み、電圧安定化回路15はDC-DCコンバータを含む。電圧安定化回路15は、出力端子OUT1,OUT2に接続されている。出力端子OUT1,OUT2には負荷RLが接続されている。負荷RLには、アクティブ電極11およびパッシブ電極12に誘起される交流電圧が降圧トランス13Aで降圧され、整流回路14および電圧安定化回路15で整流平滑された電圧が印加される。
 図2は回路モジュール10Aの平面図である。なお、図2では、図1に示すキャパシタC1の図示を省略している。
 回路モジュール10Aは矩形状のプリント基板17Pを備えている。プリント基板17Pの長辺方向における一端(図中左側)には接続端子(本発明の第1入力部)16Aが設けられている。この接続端子16Aは、降圧トランス13Aの1次巻線の一端とアクティブ電極11とを接続する端子である。また、プリント基板17Pの長辺方向における他端(図中右側)には、出力端子OUT1,OUT2が設けられている。すなわち、接続端子16Aと出力端子OUT1,OUT2とは、プリント基板17Pにおける最も離れた位置に設けられている。
 接続端子16Aと出力端子OUT1,OUT2との間には、降圧トランス13A、整流回路14および電圧安定化回路15が、プリント基板17Pの長辺方向に沿って実装されている。また、降圧トランス13Aのトランス素子131,132は長辺方向に沿って実装されている。長辺方向において、降圧トランス13Aを挟んで接続端子16Aの反対側には、接続端子16B,16C,16Dが設けられている。接続端子(本発明の第2入力部)16Bは、降圧トランス13Aの1次巻線の一端とパッシブ電極12とを接続する端子である。接続端子(本発明の第1出力部および第2出力部)16C,16Dは、降圧トランス13Aの2次巻線と整流回路14とを接続する端子である。
 前記のように、送電装置のアクティブ電極およびパッシブ電極には高電圧(例えばAC1000V)が印加される。回路モジュール10Aは、アクティブ電極11およびパッシブ電極12に誘起される電圧を降圧して負荷RLへ印加する。すなわち、回路モジュール10Aにおいて、接続端子16Aが高電圧部、接続端子16B,16C,16D、整流回路14、電圧安定化回路15および出力端子OUT1,OUT2が低電圧部となる。したがって、プリント基板17Pの高電圧部と低電圧部とは、降圧トランス13Aを挟んで配置される。
 このように、回路モジュール10Aにおいて高電圧部と低電圧部との距離を確保することで、高電圧部で生じるノイズなどが、低電圧部に影響を及ぼすことを軽減できる。さらに、降圧トランス13Aの二つのトランス素子131,132を長辺方向に沿って配列することで、高電圧部と低電圧部との距離をより稼ぐことができ、高電圧部で生じるノイズなどが低電圧部に及ぼす影響をより効果的に低減できる。
 図3は降圧トランス13Aの配線パターンを示す図である。トランス素子131,132は、巻回軸をプリント基板17Pの長辺方向に一致させて実装されている。トランス素子131の1次コイルL11の一端は接続端子16Aに接続されて、他端はトランス素子132の1次コイルL12の一端に接続されている。トランス素子132の1次コイルL12の他端は接続端子16Bに接続されている。
 トランス素子131の2次コイルL21の一端は接続端子16Dに接続され、他端はトランス素子132の2次コイルL22の一端に接続されている。トランス素子132の2次コイルL22の他端は、接続端子16Cに接続されている。
 上述したように、携帯電子機器である受電装置101の各部品は小型化・薄型化が要求される。このため、降圧トランス13Aも低背型とすることが望まれるが、仮に降圧トランス13Aが一つの素子であった場合、それを低背化すると、トランス容量が不足し、十分な出力電圧が得られないといった問題が生じる。本実施形態では、降圧トランス13Aを、二つのトランス素子131,132から構成することで、各トランス素子131,132を低背化しても、それらを接続することでトランス容量の不足を回避できる。また、構成する各素子を低背化することで、降圧トランス13A全体の低背化が可能となる。
 また、図3に示すように、巻回軸をプリント基板17Pの長辺方向に一致させてトランス素子131,132を配置することで、直列接続する1次コイルL11、L12の配線パターンと、直列接続する2次コイルL21,L22の配線パターンとをプリント基板17Pの同一面(実装面)に形成しても、各配線パターンを交差させずに形成できるため、配線パターンが複雑にならない。
 なお、回路モジュールは、高電圧部と低電圧部との距離、特に、降圧トランス13Aの1次側の高電位側の接続端子16Aと、2次側の接続端子16C,16Dとの距離を確保できる構成であればよく、上述の構成に限定されない。図4は、別の例の回路モジュール10Bの平面図である。図5は、別の例の回路モジュール10Bが有する降圧トランス13Bの配線パターンを示す図である。図5に示す破線は、トランス素子131,132の2次コイルL12,L22を接続する配線パターンであり、プリント基板17Pの裏面に形成されていることを示す。なお、プリント基板17Pの実装面を表面とする。
 この例では、1次側の基準電位側の接続端子16Bは、接続端子16Aが設けられたプリント基板17Pの端部に設けられている。また、降圧トランス13Bが有するトランス素子131,132は、巻回軸をプリント基板17Pの短辺方向に一致させて実装されている。さらに、プリント基板17Pにおけるトランス素子131,132の間には、トランス素子131の2次コイルL21とトランス素子132の1次コイルL12との間の電位差による影響を防止するための長円形の穴17Hが形成されている。
 接続端子16A,16Bをプリント基板17Pの同じ側の端部に設けることで、回路モジュール10Aの入力端子を纏めることができる。
 次に、受電装置101と対をなし、受電装置101へ電力を伝送する送電装置について説明する。
 図6は、実施形態1に係る送電装置201の回路図を示す。送電装置201は、アクティブ電極(本発明の第3の電極)21およびパッシブ電極(本発明の第4の電極)22を備えている。アクティブ電極21およびパッシブ電極22は、受電装置101のアクティブ電極11およびパッシブ電極12と間隙を介して対向する。
 アクティブ電極21およびパッシブ電極22は、回路モジュール20Aに接続されている。回路モジュール20Aは、本発明に係るトランスモジュールに相当する。回路モジュール20Aは、検出回路23、インバータ回路24、昇圧トランス25および制御回路26を備え、入力端子IN1,IN2に接続された直流電源Vinからの電圧(DC5VまたはDC12V)を交流電圧に変換し、昇圧してアクティブ電極21およびパッシブ電極22へ印加する。
 検出回路23は、直流電源Vinからの入力電圧および入力電流を検出する。インバータ回路24は、複数のスイッチング素子を備え、直流電圧を交流電圧に変換する。制御回路26は、検出回路23により検出された電圧、および、受電装置101側で検出された出力端子OUT1,OUT2からの出力電圧の情報を受け取り、それらに応じてインバータ回路24をフィードバック制御する。
 昇圧トランス25は、トランス素子251,252を有している。昇圧トランス25の1次コイル(本発明に係る1次巻線群)は、トランス素子251,252の1次コイルL31,L32が直列接続されて構成されている。昇圧トランス25の2次コイル(本発明に係る2次巻線群)は、トランス素子251,252の2次コイルL41,L42が直列接続されて構成されている。昇圧トランス25は、1次コイルがインバータ回路24に接続され、2次コイルがアクティブ電極21およびパッシブ電極22に接続されている。
 なお、昇圧トランス25の2次コイルにはキャパシタC2が接続されている。このキャパシタC2は、昇圧トランス25の2次コイルおよび漏れインダクタンス(不図示)とで直列共振回路を構成している。
 図7は回路モジュール20Aの平面図である。なお、図7では、図6に示すキャパシタC2の図示を省略している。
 回路モジュール20Aは矩形状のプリント基板28Pを備えている。プリント基板28Pの長辺方向における一端(図中左側)には入力端子IN1,IN2が設けられている。また、プリント基板28Pの長辺方向における他端(図中右側)には、昇圧トランス25の2次コイルとアクティブ電極21とを接続する接続端子(本発明の第3出力部)27Aが設けられている。すなわち、入力端子IN1,IN2と接続端子27Aとは、プリント基板28Pにおける最も離れた位置に設けられている。
 入力端子IN1,IN2と接続端子27Aとの間には、制御回路26、検出回路23、インバータ回路24および昇圧トランス25が長辺方向に沿って実装されている。また、昇圧トランス25のトランス素子251,252は長辺方向に沿って実装されている。長辺方向において、昇圧トランス25を挟んで接続端子27Aの反対側には、接続端子27B,27C,27Dが設けられている。接続端子(本発明の第4出力部)27Bは、昇圧トランス25の2次コイルの一端とパッシブ電極22とを接続する端子である。接続端子(本発明の第3入力部および第4入力部)27C,27Dは、昇圧トランス25の1次コイルとインバータ回路24とを接続する端子である。
 回路モジュール20Aは、入力端子IN1,IN2から入力された電圧(DC5VまたはDC12V)を、昇圧トランス25で高電圧(AC1000V)に昇圧して、アクティブ電極21およびパッシブ電極22に印加する。すなわち、回路モジュール20Aにおいて、入力端子IN1,IN2、制御回路26、検出回路23、インバータ回路24および接続端子27B,27C,27Dが低電圧部、昇圧トランス25の出力部としての接続端子27Aが高電圧部である。したがって、プリント基板28Pの高電圧部と低電圧部とは、昇圧トランス25を挟んで配置される。
 このように、回路モジュール20Aにおいて高電圧部と低電圧部との距離を確保することで、高電圧部で生じるノイズなどが低電圧部に影響を及ぼすことを軽減できる。さらに、昇圧トランス25の二つのトランス素子251,252を長辺方向に沿って配列することで、高電圧部と低電圧部との距離をより稼ぐことができ、高電圧部で生じるノイズなどが、低電圧部に影響を及ぼすことを軽減できる。
 図8は、別の例の回路モジュール20Bの平面図である。この例では、図4で説明した受電装置101と同様に、昇圧トランス25の2次側の基準電位側となる接続端子27Bは、接続端子27Aが設けられたプリント基板28Pの同じ側の端部に設けられている。接続端子27A,27Bをプリント基板28Pの同じ側の端部に設けることで、回路モジュール20Bの出力端子を纏めることができる。
 なお、図7および図8に示す回路モジュール20A,20Bが有する昇圧トランス25の配線パターンは、受電装置101の回路モジュール10A,10Bと同じであるため、説明は省略する。
(実施形態2)
 以下に、本発明に係る実施形態2について説明する。本実施形態では、受電装置が備える回路モジュールの降圧トランスの構成が、実施形態1と相違している。具体的には、実施形態1に係る降圧トランス13Aは、2つのトランス素子131,132を有しているのに対し、本実施形態に係る降圧トランスは、4つのトランス素子を有している。本実施形態に係る降圧トランスの1次コイルおよび2次コイルは、4つのトランス素子それぞれの1次コイルおよび2次コイルが直列接続されていてもよいし、並列接続されていてもよい。
 以下、降圧トランスの2次コイルが並列接続された場合、1次コイルおよび2次コイルがそれぞれ並列接続された場合、1次コイルが並列接続された場合について、それぞれ説明する。なお、送電装置の昇圧トランスについては、1次側が低電圧部、2次側が高電圧部であり、1次側が高電圧部、2次側が低電圧部である受電装置の降圧トランスの説明と同じであるため、本実施形態では、送電装置の説明は省略する。
 図9は、1次コイルが直列接続、2次コイルが並列接続された降圧トランス13Cの回路図である。
 降圧トランス13Cは、4つのトランス素子131.132,133,134を有している。降圧トランス13Cの1次コイルは、トランス素子131,132,133,134の1次コイルL11,L12,L13,L14が直列接続されて構成されている。降圧トランス13Cの2次コイルは、直列接続されたトランス素子131,132の2次コイルL21,L22と、直列接続されたトランス素子133,134の2次コイルL23,L24とが並列接続されて構成されている。
 このように、降圧トランス13Cの1次コイルを直列接続することで、例えば、1次側にAC1000Vが印加された場合、各1次コイルL11,L12,L13,L14にはAC250Vが印加される。したがって、各トランス素子131,132,133,134でのヒステリシス損を低減することができ、効率の良い電力伝送を実現できる。
 図10および図11は、実施形態2に係る降圧トランス13Cの配線パターンを示す図である。図10は、巻回軸をプリント基板17Pの長辺方向に一致させて、トランス素子131,132,133,134それぞれを配置した構成の配線パターンを示す。図11は、巻回軸をプリント基板17Pの短辺方向と一致させて、トランス素子131,132,133,134それぞれを配置した構成の配線パターンを示す。並列接続する場合、図11に示すように、トランス素子131,132,133,134それぞれを配置することで、配線パターンの複雑化を回避できる。
 図12は、1次コイルおよび2次コイルが並列接続された降圧トランス13Dの回路図である。
 降圧トランス13Dは、4つのトランス素子131,132,133,134を有している。降圧トランス13Dの1次コイルは、直列接続されたトランス素子131,132の1次コイルL11,L12と、直列接続されたトランス素子133,134の1次コイルL13,L14とが並列接続されて構成されている。降圧トランス13Dの2次コイルは、直列接続されたトランス素子131,132の2次コイルL21,L22と、直列接続されたトランス素子133,134の2次コイルL23,L24とが並列接続されて構成されている。
 図13および図14は、実施形態3に係る降圧トランス13Dの配線パターンを示す図である。図13は、巻回軸をプリント基板17Pの長辺方向に一致させて、トランス素子131,132,133,134それぞれを配置した構成の配線パターンを示す。図14は、巻回軸をプリント基板17Pの短辺方向と一致させて、トランス素子131,132,133,134それぞれを配置した構成の配線パターンを示す。
 図15は、1次コイルが並列接続、2次コイルが直列接続された降圧トランス13Eの回路図である。
 降圧トランス13Eの1次コイルは、直列接続されたトランス素子131,132の1次コイルL11,L12と、直列接続されたトランス素子133,134の1次コイルL13,L14とが並列接続されて構成されている。降圧トランス13Eの2次コイルは、トランス素子131,132,133,134の2次コイルL21,L22,L23,L24が直列接続されて構成されている。
 図16および図17は、実施形態3に係る降圧トランス13Eの配線パターンを示す図である。図13は、巻回軸をプリント基板17Pの長辺方向に一致させて、トランス素子131,132,133,134それぞれを配置した構成の配線パターンを示す。図14は、巻回軸をプリント基板17Pの短辺方向と一致させて、トランス素子131,132,133,134それぞれを配置した構成の配線パターンを示す。
 図10、図11、図13、図14、図16および図17に示すように、降圧トランス13Cの4つのトランス素子131,132,133,134をプリント基板17Pの長辺方向に配列することで、高電圧部と低電圧部との距離を、実施形態1と比べて、さらに確保することができる。
 また、図10、図13および図16に示す構成の場合、高電圧部となる接続端子16Aと、低電圧部となる接続端子16Bとの距離を確保して、高電圧部が低電圧部へ及ぼす影響を低減することができる。図11、図14および図17に示す構成の場合、接続端子16A,16Bをプリント基板17Pの同じ側の端部に設けることで、回路モジュールの入力端子を纏めることができる。
 なお、トランス素子131,132,133,134の実装方向は、上述したように、巻回軸方向がプリント基板17Pの長辺方向または短辺方向の何れかに一致していなくてもよい。また、降圧トランスは、巻回軸方向がプリント基板17Pの長辺方向に一致して配置されたトランス素子と、巻回軸方向が短辺方向に一致して配置されたトランス素子とが混在したものであってもよい。
 以下、実施形態2の変形例について説明する。実施形態2では、降圧トランスの各トランス素子131,132,133,134が一列(プリント基板17Pの長辺方向)に配置されている構成について説明したが、降圧トランスが有する4つのトランス素子131,132,133,134が行列配置されていてもよい。
 図18、図19、図20および図21は、4つのトランス素子131,132,133,134が2行2列に配置された構成における配線パターンを示す図である。図18は、1次コイルおよび2次コイルが直列接続された降圧トランスの配線パターンを示す図である。図19は、1次コイルが直列接続、2次コイルが並列接続された降圧トランスの配線パターンを示す図である。図20は、1次コイルおよび2次コイルが並列接続された降圧トランスの配線パターンを示す図である。図21は、1次コイルが並列接続、2次コイルが直列接続された降圧トランスの配線パターンを示す図である。
 図18~図21に示すように、接続端子16A,16Bと、接続端子16C,16Dとの間には、トランス素子131,132,133,134が実装された領域が介在している。このため、プリント基板17Pにおいて、高電圧部となる接続端子16A,16Bと、低電圧部となる接続端子16C,16Dとの間の距離をより長くすることができる。
 また、4つのトランス素子131,132,133,134を2行2列に配置した場合、トランス素子131,132,133,134の実装方向、または1次コイルの端子に対する2次コイルの端子の極性などは、適宜変更されている。例えば、図18では、トランス素子131,132とトランス素子133,134とは、素子の方向が180度反対に実装されている。また、図21では、トランス素子132,133は、1次コイルの端子に対する2次コイルの端子の極性が逆極性とされている。これにより、プリント基板17Pの同一面に形成された降圧トランスの各配線パターンが交差しないようにでき、配線パターンの複雑化を低減できる。
 なお、降圧トランスは、トランス素子を2行2列に配置するものに限られない。例えば、降圧トランスが6つのトランス素子を有している場合、トランス素子は2行3列または3行2列に配置してもよい。この場合、高電圧部となる接続端子と、低電圧部となる接続端子とは、行列配置されたトランス素子の実装領域において、最も距離が離れた位置に実装される。これにより、高電圧部と低電圧部との距離を確保でき、高電圧部が低電圧部に及ぼす影響を低減できる。また、上記では2行2列や2行3列、3行2列等のトランス素子について降圧トランスを例として述べているが、昇圧トランスにおいても同様に適用できる。
10A,10B-回路モジュール(トランスモジュール)
11-アクティブ電極(第1の電極)
12-パッシブ電極(第2の電極)
13A,13B,13C,13D,13E-降圧トランス
14-整流回路
15-電圧安定化回路
16A-接続端子(第1入力部)
16B-接続端子(第2入力部)
16C-接続端子(第1出力部)
16D-接続端子(第2出力部)
17P-プリント基板
17H-穴
20A,20B-回路モジュール(トランスモジュール)
21-アクティブ電極(第3の電極)
22-パッシブ電極(第4の電極)
23-検出回路
24-インバータ回路
25-昇圧トランス
27A-接続端子(第3出力部)
27B-接続端子(第4出力部)
27C-接続端子(第3入力部)
27D-接続端子(第4入力部)
28P-プリント基板
101-受電装置
201-送電装置
131,132,133,134-トランス素子
251,252-トランス素子
IN1,IN2-入力端子
OUT1,OUT2-出力端子

Claims (14)

  1.  複数のトランスそれぞれの1次巻線が直列接続または並列接続された1次巻線群と、前記複数のトランスそれぞれの2次巻線が直列接続または並列接続された2次巻線群とを備えたトランスモジュールにおいて、
     前記複数のトランスが一方向に配列実装された基板と、
     前記基板に設けられ、前記1次巻線群の第1端が接続された第1入力部と、
     前記基板に設けられ、前記2次巻線群の第1端および第2端が接続された第1出力部および第2出力部と、
     を備え、
     前記第1入力部と、前記第1出力部および前記第2出力部とは、間に前記複数のトランスが介在する位置に設けられている、
     トランスモジュール。
  2.  前記基板に設けられ、前記1次巻線群の第2端が接続された第2入力部、
     を備え、
     前記第2入力部は、この第2入力部と前記第1入力部との間に前記複数のトランスが介在する位置に設けられている、
     請求項1に記載のトランスモジュール。
  3.  前記基板に設けられ、前記1次巻線群の第2端が接続された第2入力部、
     を備え、
     前記第2入力部は、この第2入力部と前記第1出力部および前記第2出力部との間に前記複数のトランスが介在する位置に設けられている、
     請求項1に記載のトランスモジュール。
  4.  複数のトランスそれぞれの1次巻線が直列接続または並列接続された1次巻線群と、前記複数のトランスそれぞれの2次巻線が直列接続または並列接続された2次巻線群とを備えたトランスモジュールにおいて、
     前記複数のトランスがm(mは2以上の整数)行n(nは2以上の整数)列に配列実装された基板と、
     前記基板に設けられ、前記1次巻線群の第1端が接続された第1入力部と、
     前記基板に設けられ、前記2次巻線群の第1端および第2端が接続された第1出力部および第2出力部と、
     を備え、
     前記第1入力部と、前記第1出力部および前記第2出力部とは、間に前記複数のトランスが実装されたトランス実装領域を介在し、かつ、互いの距離が最長となる位置に設けられている、
     トランスモジュール。
  5.  前記基板に設けられ、前記1次巻線群の第2端が接続された第2入力部、
     を備え、
     前記第2入力部は、この第2入力部と前記第1出力部および前記第2出力部との間に前記領域が介在する位置に設けられている、
     請求項4に記載のトランスモジュール。
  6.  前記基板に設けられ、前記第1出力部および前記第2出力部に接続された整流平滑回路と、
     前記基板に設けられ、前記整流平滑回路により整流および平滑された出力電圧電流を負荷回路へ供給する負荷供給部と、
     を備え、
     前記整流平滑回路および前記負荷供給部は、
     これら整流平滑回路および負荷供給部と、前記第1入力部との間に、前記複数のトランス、前記第1出力部および前記第2出力部が介在する位置に設けられている、
     請求項1から5の何れかに記載のトランスモジュール。
  7.  複数のトランスそれぞれの1次巻線が直列接続または並列接続された1次巻線群と、前記複数のトランスそれぞれの2次巻線が直列接続または並列接続された2次巻線群とを備えたトランスモジュールにおいて、
     前記複数のトランスが一方向に配列実装された基板と、
     前記基板に設けられ、前記1次巻線群の第1端および第2端が接続された第3入力部および第4入力部と、
     前記基板に設けられ、前記2次巻線群の第1端が接続された第3出力部と、
     を備え、
     前記第3入力部および前記第4入力部と、前記第3出力部とは、間に前記複数のトランスが介在する位置に設けられている、
     トランスモジュール。
  8.  前記基板に設けられ、前記2次巻線群の第2端が接続された第4出力部、
     を備え、
     前記第4出力部は、この第4出力部と前記第3入力部との間に前記複数のトランスが介在する位置に設けられている、
     請求項7に記載のトランスモジュール。
  9.  前記基板に設けられ、前記2次巻線群の第2端が接続された第4出力部、
     を備え、
     前記第4出力部は、この第4出力部と前記第3入力部および前記第4入力部との間に前記複数のトランスが介在する位置に設けられている、
     請求項7に記載のトランスモジュール。
  10.  前記複数のトランスは、巻回軸方向を前記一方向に一致させて実装されている、
     請求項1から3及び請求項7から9の何れかに記載のトランスモジュール。
  11.  前記複数のトランスは、巻回軸方向を前記一方向に直交させて実装されている、
     請求項1から3及び請求項7から9の何れかに記載のトランスモジュール。
  12.  前記複数のトランスは、
     1次巻線の端子に対する2次巻線の端子の極性が同極性のトランスと、
     1次巻線の端子に対する2次巻線の端子の極性が逆極性のトランスと、
     を含む、請求項1から11の何れかに記載のトランスモジュール。
  13.  複数のトランスそれぞれの1次巻線が直列接続または並列接続された1次巻線群と、前記複数のトランスそれぞれの2次巻線が直列接続または並列接続された2次巻線群と有した降圧型のトランスモジュールと、
     前記1次巻線群の第1端に接続された第1の電極と、
     前記1次巻線群の第2端に接続された第2の電極と、
     前記2次巻線群の第1端および第2端に接続された整流平滑回路と、
     前記整流平滑回路に接続された負荷と、
     を備え、
     前記第1の電極および前記第2の電極に誘起された電圧を前記トランスモジュールで降圧し、降圧した電圧を前記整流平滑回路で整流および平滑し、前記負荷へ供給する受電装置において、
     前記トランスモジュールは、
     前記複数のトランスが一方向に配列実装された基板と、
     前記基板に設けられ、前記1次巻線群の第1端と前記第1の電極とを接続する入力部と、
     前記基板に設けられ、前記2次巻線群と前記整流平滑回路とを接続する出力部と、
     を有し、
     前記入力部と前記出力部とは、間に前記複数のトランスが介在する位置に設けられている、
     受電装置。
  14.  複数のトランスそれぞれの1次巻線が直列接続または並列接続された1次巻線群と、前記複数のトランスそれぞれの2次巻線が直列接続または並列接続された2次巻線群と有した降圧型のトランスモジュールと、
     前記1次巻線群の第1端に接続された第3の電極と、
     前記1次巻線群の第2端に接続された第4の電極と、
     前記1次巻線群の第1端および第2端に接続されたインバータ回路と、
     を備え、
     前記インバータ回路で入力された直流電圧を交流電圧に変換し、前記トランスモジュールで昇圧した電圧を、前記第3の電極および前記第4の電極に印加する送電装置において、
     前記トランスモジュールは、
     前記複数のトランスが一方向に配列実装された基板と、
     前記基板に設けられ、前記1次巻線群の第1端および第2端が接続された第3入力部および第4入力部と、
     前記基板に設けられ、前記2次巻線群の第1端が接続された第3出力部と、
     を有し、
     前記第3入力部および前記第4入力部と、前記第3出力部とは、間に前記複数のトランスが介在する位置に設けられている、
     送電装置。
PCT/JP2013/079490 2013-02-06 2013-10-31 トランスモジュール、受電装置および送電装置 WO2014122829A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201390001076.5U CN204834313U (zh) 2013-02-06 2013-10-31 变压器模块、受电装置以及送电装置
JP2014560639A JP6098646B2 (ja) 2013-02-06 2013-10-31 トランスモジュール、受電装置および送電装置
US14/806,698 US9948202B2 (en) 2013-02-06 2015-07-23 Transformer module, power reception device and power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-021010 2013-02-06
JP2013021010 2013-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/806,698 Continuation US9948202B2 (en) 2013-02-06 2015-07-23 Transformer module, power reception device and power transmission device

Publications (1)

Publication Number Publication Date
WO2014122829A1 true WO2014122829A1 (ja) 2014-08-14

Family

ID=51299436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079490 WO2014122829A1 (ja) 2013-02-06 2013-10-31 トランスモジュール、受電装置および送電装置

Country Status (4)

Country Link
US (1) US9948202B2 (ja)
JP (1) JP6098646B2 (ja)
CN (2) CN204834313U (ja)
WO (1) WO2014122829A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299764A (zh) * 2014-09-12 2015-01-21 合肥金德电力设备制造有限公司 一种新型调容变压器
JP2019170034A (ja) * 2018-03-22 2019-10-03 スミダコーポレーション株式会社 共振整合回路
JP2020518060A (ja) * 2017-04-24 2020-06-18 アーベーベー・シュバイツ・アーゲー 適応型電圧変換システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6938911B2 (ja) * 2016-12-28 2021-09-22 富士電機株式会社 装置
CN108512425A (zh) * 2017-02-23 2018-09-07 通用电气公司 能量转换装置,及用于为石油勘探设备供电的供电装置
TWI692182B (zh) 2018-08-31 2020-04-21 群光電能科技股份有限公司 電壓轉換器以及用於降低共模雜訊的電壓轉換方法
US10811185B2 (en) * 2018-09-13 2020-10-20 Analog Devices Global Unlimited Company Saturation prevention of current transformer
US10742123B1 (en) 2019-03-05 2020-08-11 Astec International Limited Low common mode noise transformers and switch-mode DC-DC power converters
US20210036623A1 (en) * 2019-07-30 2021-02-04 Hewlett Packard Enterprise Development Lp Two-stage step-down converter
US20220085142A1 (en) * 2020-09-14 2022-03-17 Intel Corporation Modular coupled magnetic voltage regulators

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636715U (ja) * 1986-07-01 1988-01-18
JPH0629114U (ja) * 1992-09-11 1994-04-15 株式会社村田製作所 面実装型トランスの実装構造
JPH08279592A (ja) * 1995-04-06 1996-10-22 Fuji Electric Co Ltd スイッチング電源用整流部の組立構造
JP2000228312A (ja) * 1999-02-05 2000-08-15 Tamura Seisakusho Co Ltd 電源用回路ブロック
JP2010148241A (ja) * 2008-12-18 2010-07-01 Murata Mfg Co Ltd 高圧電源装置
WO2012086411A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 ワイヤレス電力伝送システム、送電装置および受電装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470444A (en) * 1967-06-21 1969-09-30 North Electric Co Control circuit for rectifiers using silicon controlled rectifiers
JPH0377284U (ja) * 1989-11-27 1991-08-02
JP3027284B2 (ja) * 1993-06-30 2000-03-27 新電元工業株式会社 スイッチング電源
JP3182294B2 (ja) 1994-05-11 2001-07-03 アスモ株式会社 移動体の位置検出装置
JP4439979B2 (ja) * 2003-09-17 2010-03-24 太陽誘電株式会社 電源装置
JP4738545B1 (ja) 2010-10-05 2011-08-03 株式会社精電製作所 高周波トランス
JP5765591B2 (ja) * 2013-04-18 2015-08-19 株式会社デンソー 電源装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636715U (ja) * 1986-07-01 1988-01-18
JPH0629114U (ja) * 1992-09-11 1994-04-15 株式会社村田製作所 面実装型トランスの実装構造
JPH08279592A (ja) * 1995-04-06 1996-10-22 Fuji Electric Co Ltd スイッチング電源用整流部の組立構造
JP2000228312A (ja) * 1999-02-05 2000-08-15 Tamura Seisakusho Co Ltd 電源用回路ブロック
JP2010148241A (ja) * 2008-12-18 2010-07-01 Murata Mfg Co Ltd 高圧電源装置
WO2012086411A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 ワイヤレス電力伝送システム、送電装置および受電装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299764A (zh) * 2014-09-12 2015-01-21 合肥金德电力设备制造有限公司 一种新型调容变压器
JP2020518060A (ja) * 2017-04-24 2020-06-18 アーベーベー・シュバイツ・アーゲー 適応型電圧変換システム
JP2019170034A (ja) * 2018-03-22 2019-10-03 スミダコーポレーション株式会社 共振整合回路
JP7067174B2 (ja) 2018-03-22 2022-05-16 スミダコーポレーション株式会社 共振整合回路

Also Published As

Publication number Publication date
CN205508604U (zh) 2016-08-24
JP6098646B2 (ja) 2017-03-22
JPWO2014122829A1 (ja) 2017-01-26
US20150326141A1 (en) 2015-11-12
CN204834313U (zh) 2015-12-02
US9948202B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6098646B2 (ja) トランスモジュール、受電装置および送電装置
US7012414B1 (en) Vertically packaged switched-mode power converter
EP1760867B1 (en) Switching power supply unit
US20180102644A1 (en) Coupled Split Path Power Conversion Architecture
US11496064B2 (en) Resonant converter and manufacturing method of transformer thereof
US20180040410A1 (en) Isolated switching power supply
KR20180129470A (ko) 변압기 및 이를 가지는 llc 공진형 컨버터
EP2175549A1 (en) Switching power supply device
KR20140043975A (ko) 유선-무선 전력 전송 장치 및 그 방법
JPWO2012108221A1 (ja) 絶縁型スイッチング電源装置
EP3235113B1 (en) Power source interface module with compact emi filter
US20200111599A1 (en) Inductor and power supply conversion circuit
US11862377B2 (en) Transformer and power supply
US8379415B2 (en) Systems and methods for reducing EMI in switch mode converter systems
KR20180101070A (ko) 코일 모듈 및 그를 이용한 무선 전력 송신 장치
CN113950727A (zh) 堆叠矩阵变压器
US8305183B2 (en) Transformer for multi-output power supplies
US10707699B2 (en) Interphase transformer based rectifier for wireless power transfer
JP2013198387A (ja) 絶縁型dc−dcコンバータ
US20190122812A1 (en) Power module and power circuit
CN212231338U (zh) 一种基于ir2153s的中大功率多路电压输出的开环半桥谐振电路
JP4796101B2 (ja) 電源装置
US20230124799A1 (en) Wireless power transfer system
JP2013172583A (ja) スイッチング電源装置
CN117097148A (zh) Llc变换器、电源模块和充电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874249

Country of ref document: EP

Kind code of ref document: A1