WO2014121443A1 - 光模块装置 - Google Patents

光模块装置 Download PDF

Info

Publication number
WO2014121443A1
WO2014121443A1 PCT/CN2013/071400 CN2013071400W WO2014121443A1 WO 2014121443 A1 WO2014121443 A1 WO 2014121443A1 CN 2013071400 W CN2013071400 W CN 2013071400W WO 2014121443 A1 WO2014121443 A1 WO 2014121443A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
laser
light
beam splitter
module device
Prior art date
Application number
PCT/CN2013/071400
Other languages
English (en)
French (fr)
Inventor
胡炜玄
陈波
曾理
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/071400 priority Critical patent/WO2014121443A1/zh
Priority to CN201380000044.8A priority patent/CN104662821B/zh
Publication of WO2014121443A1 publication Critical patent/WO2014121443A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters

Definitions

  • the present invention relates to the field of optical communications and, more particularly, to an optical module device. Background technique
  • optical module devices continue to develop toward miniaturization, high capacity, and low power consumption.
  • SFF Small Form Factor
  • GBIC hot-swappable Gigabit Interface Converter
  • CFP Compact Form
  • -Factor Compact Form
  • 100BASE (100M) has grown to 1000BASE (Gigabit), 10GE, 100GE, and future communication needs have placed greater demands on the capacity of optical module devices.
  • the optical module device usually includes functions such as a laser and a light modulator (or a direct modulation laser), an optical multiplexer (OMUX, an optical multiplexer), an optical demultiplexer (ODEMUX, a de-multiplexer), a photodetector, and an optical path collimation system.
  • OMUX optical multiplexer
  • ODEMUX optical demultiplexer
  • photodetector optical path collimation system.
  • integrated optical module devices have become the trend of integration, that is, integrating functional modules such as lasers, light modulators, optical multiplexers, optical demultiplexers, and photodetectors on the same substrate.
  • the integrated optical module device can take advantage of its integration to achieve high-volume production, high-density integration, and the interconnection between functional modules is greatly reduced, thereby ensuring performance.
  • the first solution Improve the performance of optical modulators and photodetectors to increase the transmission rate of single wavelength. For example, increase the modulation rate of the optical modulator from 10G to 25G, or even 100G.
  • the second option use high-order modulation technology to increase capacity, for example, using pulse amplitude modulation 4
  • PAM4 Pulse Amplitude Modulation 4
  • PAM8 and other modulation formats increase the single-wavelength transmission capacity by 2 times and 3 times.
  • the third scheme At present, most optical module devices use wavelength division multiplexing technology, that is, multiplexing multiple wavelengths in one optical fiber. If the space division multiplexing technique is further utilized on the basis of the wavelength division multiplexing technique, that is, spatially multiplexing the optical module device, for example, by manufacturing a plurality of optical module devices on one substrate, the capacity can be further increased. For example, for 4-wavelength wavelength division multiplexing, each wavelength transmission capacity is 25G. The 100G optical module device can realize 400G capacity if four 100G optical module devices are spatially multiplexed. This technology of wavelength division multiplexing and space division multiplexing technology is called space division and wavelength division multiplexing technology.
  • the basic principle of Arrayed Waveguide Grating is to realize the function of optical multiplexer and optical demultiplexer by controlling the phase of the array waveguide by using Roland circular diffraction.
  • AWG Arrayed Waveguide Grating
  • For an M 1 AWG if the center channel wavelengths of the M input ports of the AWG are ⁇ 1, ⁇ 2, ... ⁇ , respectively, the wavelengths of the signal light input to the AWG are ⁇ 1, ⁇ 2, ... ⁇ , respectively, flowing out of the AWG.
  • the signal light is a combination of signal light of wavelength ⁇ 1 ⁇ , and the AWG realizes the function of the optical multiplexer.
  • 5x5 AWG refers to AWG with 5 input ports on one end and 5 output ports on the other end.
  • Signal light having wavelengths of ⁇ 0, ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 flows from the input ports In0, Inl, ⁇ 2, ⁇ 3, ⁇ 4, respectively.
  • the wavelengths of the signal light flowing in from the input port ⁇ are denoted as ⁇ 00, ⁇ 10, ⁇ 20, ⁇ 30, ⁇ 40; the wavelengths of the signal light flowing in from the input port In1 are denoted as ⁇ ⁇ , ⁇ ⁇ , ⁇ 21 , ⁇ 31 , ⁇ 41 , ... analogy.
  • the output ports are Out0, Outl,
  • the wavelengths of the signal light flowing out from the output port OutO are ⁇ 10, ⁇ 01, ⁇ 42, ⁇ 33, ⁇ 24; the wavelengths of the signal light flowing out from the output port Out1 are ⁇ 00, ⁇ 41, ⁇ 32, ⁇ 23, ⁇ 14; and so on.
  • an AWG having a grouping function as shown in FIG. 2, signal light having a wavelength of ⁇ flows from input ports In1, ⁇ n2, and ⁇ n3, respectively, as al, a2, a2; and signal light having a wavelength of b, is input from the input.
  • Ports In4 ⁇ In9 flow in.
  • the output ports are Outl, Out2, and Out3, wherein the signal light flowing out of the output port Outl is ⁇ 1, b4, ⁇ 7; the signal light flowing out of the output port Out2 is ⁇ 2, b5. ⁇ 8; respectively, the signal light flowing out of the output port Out3 is respectively
  • the AWG with grouping function of ⁇ 3, b6. c9 0 has been successfully applied in multi-wavelength laser sources.
  • Echelle Diffraction Grating is also a common optical multiplexer and optical demultiplexer.
  • the EDG is a reflective grating that works like an AWG and can also perform the functions of the optical multiplexer and optical demultiplexer in Figures 1 and 2.
  • Figure 3 illustrates an integrated optical module device that includes a substrate, a laser, a beam splitter, and a plurality of light modulators.
  • a laser and a 1 XM splitter are prepared on the substrate, and the laser can be prepared by monolithic integration, hybrid integration, bonding, and the like.
  • the method of preparing the beam splitter is monolithically integrated, and the center wavelength of the laser is ⁇ .
  • the light from the laser is coupled to a 1 ⁇ ⁇ beam splitter through an optical waveguide, which splits a laser beam from the laser into M-beam lasers.
  • the beam splitter divides a laser beam into M beam lasers.
  • each optical modulator is prepared on the substrate, and the light modulator can be prepared by monolithic integration, hybrid integration, bonding, etc., and the modulation rate of each optical modulator is R bits per second (bit/ s).
  • One end of each optical modulator is connected to one of the optical waveguides of the l x M beam splitter, and the other end is connected to the optical fiber.
  • the optical module device of the prior art 1 cannot use the wavelength division multiplexing technique.
  • the optical module device In order to achieve the transmission rate of RxM (bit/s), the optical module device needs to use M fibers, and the utilization of the optical fiber resources is very low.
  • FIG. 4 shows a light module and wavelength division multiplexing optical module device of the prior art 2, taking an integrated optical module device as an example.
  • optical multiplexers (OMUX, Optical Multiplexer) are prepared on the substrate, and the optical multiplexer is prepared by monolithic integration, that is, OMUX 1-0MUX M, each optical multiplexer has N input ports and 1 Output port. Both the input port and the output port use optical waveguides to transmit signal light.
  • a plurality of optical modulators are prepared on the substrate, and the method of preparing the light modulators may be monolithic integration, hybrid integration, bonding, or the like.
  • the modulation rate of each optical modulator is R bits per second (bit/s).
  • Each N light modulators are connected to the same optical multiplexer through an optical waveguide.
  • each N optical modulators constitute one group, and a total of M groups are formed.
  • the first group includes the [1-1b [1-N] optical modulators, which are connected to the first optical multiplexer;
  • the second group includes the [2-1 ⁇ [2-N] optical modulators, and The second optical multiplexer is connected; and so on, the Mth group includes the [M-1MM-N] optical modulators connected to the Mth optical multiplexer.
  • a laser is prepared on the substrate, and the laser can be prepared by monolithic integration, hybrid integration, bonding, or the like.
  • Each laser is connected to an optical modulator through an optical waveguide.
  • each laser constitutes one group, which constitutes a group of ⁇ .
  • the first group includes the [1-1-[1-N] lasers whose center wavelengths are ⁇ 1, ⁇ 2, . . . ⁇ ; the second group includes the [2-1 ⁇ [2- ⁇ ] lasers, The center wavelengths are ⁇ 1, ⁇ 2, . . . ⁇ ; and so on,
  • Group M contains the [M-1] ⁇ [MN] lasers, and their center wavelengths are also ⁇ 1, ⁇ 2, ... ⁇ .
  • the laser beam emitted by each laser is modulated into signal light by an optical modulator, and the signal light outputted by each group of optical modulators is wavelength-multiplexed by an optical multiplexer and output to the optical fiber.
  • the modulation rate of each optical modulator is R bits per second (bit/s)
  • the rate of signal light output by each optical multiplexer is R x N (bit/s).
  • the laser beams emitted by each of the lasers of the first group of lasers are respectively modulated into signal light by one of the first group of optical modulators, and the signal light is wavelength-multiplexed by the first optical multiplexer.
  • the rate of the signal light output by the first optical multiplexer is RxN (bit/s).
  • the 2nd, 3rd, ..., M optical multiplexers also output signal light at a rate of RxN (bit/s). Therefore, the transmission capacity of the entire air separation and wavelength division multiplexing integrated optical module device is RxNxM (bit/s).
  • an embodiment of the present invention provides an optical module device that solves the technical problem that a large number of lasers are required to achieve space division and wavelength division multiplexing.
  • an optical module device comprising a substrate, a plurality of laser sources, and a plurality of sets of light modulators fabricated on the substrate.
  • the plurality of laser sources emit light of different wavelengths.
  • Each set of light modulators includes a plurality of light modulators that modulate the light into signal light.
  • the optical module device also includes a plurality of beam splitters and an optical multiplexer.
  • Each laser is coupled to a beam splitter, each beam splitter being coupled to a set of light modulators by an optical waveguide, each beam splitter splitting a beam of light from the laser source into multiple beams of light.
  • the optical multiplexer has a plurality of input ports and a plurality of output ports, each set of input ports includes a plurality of input ports, each of the optical modulators is connected to one input port through an optical waveguide, and each of the input ports has an input port Connect to the same output port.
  • the laser source is an optical gain medium
  • each input port of the optical multiplexer has an input port directly through the optical waveguide and the sub-portion a beam connector
  • the end of the output port connected to the input port has a highly reflective structure
  • a portion of the light emitted by the optical gain medium flows directly into the input port, and the portion of the light is reflected back to the output port through the high reflection structure Optical gain medium.
  • the beam splitter includes a first beam splitter and a second beam splitter, where the first beam splitter will Gain medium The emitted light is split into two beams, one of which flows directly into the input port through the optical waveguide, and the other of which is split into a plurality of beams by the second beam splitter and flows into the input port of the optical multiplexer through the optical modulator.
  • the end face of the optical gain medium away from the optical waveguide has a high reflective structure, and the high reflective structure and the optical recovery of the optical gain medium
  • a resonant cavity is formed at the end of the output port of the device to form a resonant cavity that resonates with the reflected light to produce a laser beam.
  • the beam splitter allocates a large proportion of optical power of the light emitted by the optical gain medium to directly into the input port Part of the light, the larger ratio is between 20% and 90%.
  • the high-reflection structure is one of a metal reflective surface, a multilayer dielectric film structure, a directional coupler, and a multimode interferometer.
  • the laser source and the optical multiplexer control a temperature through a semiconductor thermoelectric cooler, such that a center wavelength of the laser source and an optical multiplexer The center channel is aligned with the wavelength.
  • the laser source is a laser
  • the laser is disposed on the substrate, and each laser is coupled to a beam splitter through the optical waveguide.
  • the optical module device in the embodiment of the present invention reduces the size and cost of the optical module device by spatially splitting the optical splitting emitted by the laser source, and realizes wavelength division multiplexing by using an optical multiplexer, thereby improving utilization of optical fiber resources. effectiveness.
  • the optical module device implements space division and wavelength division multiplexing in the case where the optical modulator shares the laser source.
  • FIG. 1 is a schematic diagram of an arrayed waveguide grating having a routing function in the prior art.
  • FIG. 2 is a schematic diagram of an arrayed waveguide grating having a grouping function in the prior art.
  • FIG. 3 is a schematic block diagram of an optical module device in the prior art.
  • FIG. 4 is a schematic block diagram of another optical module device in the prior art.
  • FIG. 5 is a schematic block diagram of an optical module device according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of still another optical module device according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of another optical module device according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of still another optical module device according to an embodiment of the present invention. detailed description
  • laser beam and “laser” are often used interchangeably herein, and the terms “wide spectrum” and “laser” are collectively referred to as "light.”
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist separately. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • an embodiment of the present invention provides an optical module device, which implements a function of space division and wavelength division multiplexing.
  • the laser source is a laser.
  • the laser may be prepared by monolithic integration, hybrid integration, bonding, etc., and the preparation method of the beam splitter is monolithic integration,
  • the center wavelengths of the N lasers are ⁇ 1, ⁇ 2, ... ⁇ ⁇ , respectively, and ⁇ takes a positive integer greater than 1, and the lasers generate laser beams whose center wavelengths are ⁇ 1, ⁇ 2, ... ⁇ ⁇ , respectively.
  • Each laser is connected to a beam splitter through an optical waveguide, and the light emitted by each laser is coupled to a beam splitter through an optical waveguide.
  • a laser beam from each laser is split into a beam of laser light through a 1 X ⁇ beam splitter, and the value of ⁇ is a positive integer greater than one.
  • the beam splitter splits the laser beam into a beam laser.
  • ⁇ X ⁇ light modulators are prepared on the substrate, and the light modulator can be prepared by monolithic integration, hybrid integration, bonding, etc., and the modulation rate of each optical modulator is 25 Gbps.
  • Each M optical modulators constitute one group, and a total of N groups are formed, and each group of optical modulators is connected to a beam splitter through an optical waveguide.
  • Each set of light modulators is used to modulate a M beam of laser light split by a beam splitter, and the laser beam modulated by the light modulator is called signal light.
  • the first group includes the first [1-1] [1-M] optical modulators, which are connected to the first laser by the 1 ⁇ ⁇ beam splitter, and are used to modulate a signal having a central wavelength of ⁇ ⁇ No.
  • the second group includes the [2-l] ⁇ [2-M] light modulators, which are connected to the second laser through the lx M beam splitter, and are used to modulate the signal light having the center wavelength ⁇ 2; and so on.
  • the ⁇ group includes the first [ ⁇ -1] ⁇ [ ⁇ - ⁇ ] light modulators, which are connected to the second laser by a 1 X ⁇ beam splitter for modulating the signal light with a center wavelength of ⁇ .
  • the substrate may be a semiconductor material, a semi-insulating material, or a plastic material or the like, preferably a semiconductor material.
  • An optical multiplexer (OMUX, Optical Multiplexer) is prepared on the substrate, and the optical multiplexer is monolithically integrated, and the optical multiplexer can be an arrayed waveguide grating (AWG), a step diffraction grating ( EDG, Echelle Diffraction Grating) and so on.
  • the optical multiplexer has N x M input ports and M output ports. Each input port of the optical multiplexer is connected to an optical modulator through an optical waveguide.
  • each of the M input ports constitutes one group, and a total of N groups are formed, and each group of input ports flows into the M beam laser having the same wavelength.
  • the first group includes the input port In ll ⁇ In 1-M, the center channel wavelength is ⁇ ; the second group includes the input ports In 2-1 ⁇ 2- ⁇ , the center channel wavelength is ⁇ 2; and so on, the third The group contains the input port In Nl ⁇ In NM, and its center channel wavelength is ⁇ .
  • Each input port has an input port connected to the same output port.
  • the signal light flowing into one of the input ports of each group is combined and output from the same output port.
  • the first input port (ie, In 1-1, In 2-1, ... In Nl ) of each set of input ports of the optical multiplexer is connected to the output port Outl, and accordingly, the optical multiplexer will flow in.
  • the signal of the first input port of each group of input signals is combined and output from the output port Outl; the second input port of each group of input ports (ie, In 1-2, In 2-2, ... In N -2) are connected to the output port Out2.
  • the optical multiplexer combines the signal light flowing into the second input port of each group of input ports and outputs it from the output port Out2; and so on, in each group of input ports
  • the Mth input ports ie, In lM, In 2-M, ... In NM
  • the optical multiplexer combines the signals of the Mth input port into each of the input ports.
  • the wave is output from the output port OutM.
  • the optical module device of the embodiment of the invention implements space division and wavelength division multiplexing.
  • the optical module device shown in Fig. 6 utilizes an external laser.
  • the laser is located outside the substrate and each laser is connected to a beam splitter through an optical fiber and an optical waveguide.
  • the light from the laser first enters the fiber and is then coupled to the optical waveguide through the fiber.
  • the center wavelength of the laser and the center channel wavelength of the optical multiplexer are temperature sensitive and will change as the temperature changes.
  • the optical multiplexer is equivalent to a bandpass filter. If the center wavelength of the laser deviates from the center channel wavelength of the optical multiplexer to a wide value, the laser beam emitted by the laser cannot The optical multiplexer passes.
  • the substrate can be placed on a TEC (therm electric cooler) to control the temperature of the center wavelength of the laser. Align with the center channel wavelength of the optical multiplexer.
  • the optical module device of Figure 7 utilizes a special configuration such that the center wavelength of the laser source is automatically aligned with the center channel wavelength of the optical multiplexer, thereby circumventing temperature sensitive defects of the optical multiplexer.
  • the optical module device provided by another embodiment of the present invention implements a space division and wavelength division multiplexing function.
  • the laser source is an optical gain medium
  • the optical gain medium may be a Gain Chip or a Semiconductor Optical Amplifier (SOA).
  • SOA Semiconductor Optical Amplifier
  • N X M light modulators are prepared on the substrate, and the light modulator can be prepared by monolithic integration, hybrid integration, bonding, etc., and the modulation rate of each optical modulator is 25 Gbps.
  • each M optical modulators constitute one group, which constitutes N groups, the first group includes the [1-1] ⁇ [1-M] light modulators, and the second group includes the [2-1] ⁇ [2- ⁇ ] light modulators, and so on, the Nth group includes the [N-1] ⁇ [NM] light modulators.
  • Each set of light modulators is used to modulate a plurality of laser beams of the same wavelength, and the laser beam modulated by the light modulator is referred to as signal light.
  • An optical multiplexer is prepared on the substrate, and the optical multiplexer is prepared by monolithic integration, and the ⁇ ⁇ ⁇ light modulators are connected to the optical multiplexer via an optical waveguide.
  • the optical multiplexer can be an AWG, an EDG, or the like.
  • the optical multiplexer has N ⁇ (M+1) input ports and (M+1) output ports.
  • the end of one of the output ports has a highly reflective structure that reflects the laser beam flowing out of the output port.
  • This output port is hereinafter referred to as a first output port, for example, an output port OutO, and the other M output ports are referred to as a second output. port.
  • the reflectivity of the highly reflective structure is close to 100%, typically more than 90%.
  • the highly reflective structure may be a metal reflective surface, a multilayer dielectric film structure, a Directioal Coupler, a MultiMode Interference, or the like.
  • N gain chips and N beam splitters are prepared on the substrate, and the preparation method of the gain chips may be monolithic integration, hybrid integration, bonding, etc., and the preparation method of the beam splitter is monolithic integration.
  • Each gain chip is coupled to a beam splitter via an optical waveguide.
  • the gain chip is a laser source made of InP material.
  • the light that the gain chip initially emits is broad-spectrum light, and the broad-spectrum light emitted by each gain chip is split into (M+1) beams by the beam splitter.
  • One of the (M+1) beam broad spectrum light directly flows into the optical multiplexer
  • the input port is hereinafter referred to as the first input port.
  • the number of the first input port and the number of the gain chips are the same, that is, the input ports Inl-0, In2-0, ... InN-0.
  • the first input port of the optical multiplexer is coupled to the beam splitter through an optical waveguide.
  • the other M-beam broad-spectrum light in the (M+1) beam broad spectrum light is modulated by the optical modulator and flows into the input port of the optical multiplexer.
  • This type of input port is referred to as a second input port, and the number of second input ports.
  • NXM there are NXM in the same number as the number of light modulators.
  • One end of each of the light modulators is connected to a second input port of the optical multiplexer via an optical waveguide, and the other end is connected to the beam splitter via an optical waveguide.
  • each of the M second input ports constitutes one group, and a total of N groups are formed, and each of the second input ports flows into the broad-spectrum light of the same wavelength.
  • the N first input ports are connected to the same output port of the optical multiplexer, and the output port is referred to as a first output port.
  • the signal light flowing into the N first input ports is combined from the first An output port flows out.
  • the first input port of the optical multiplexer ie, Inl-0, In2-0, ... InN-0
  • the first output port OutO is connected to the first output port OutO, and correspondingly, the N-beam signal flowing into the first input port is combined. Output from the first output port OutO.
  • the end of the first output port (i.e., OutO) has a highly reflective structure that reflects broad-spectrum light flowing out of the first output port, and the reflected broad-spectrum light returns to the gain chip through the first input port. Since the center channel wavelengths of the first input ports (ie, Inl-0, In2-0, ... InN-0) of the optical multiplexer are ⁇ 1, XI, ... ⁇ , respectively, the broad spectrum reflected back to the gain chip In the light, the portion of the wavelength away from ⁇ 1, ⁇ 2, ... ⁇ ⁇ is attenuated by the optical multiplexer.
  • the end face of the gain chip remote from the optical waveguide has a highly reflective structure, and forms a resonant cavity with a highly reflective structure at the end of the first output port, for example, a FF resonator (Fabry-perot Resonant Cavity).
  • FF resonator Fabry-perot Resonant Cavity
  • the wide-spectrum light emitted by the gain chip is combined with the cavity and the optical multiplexer, and the gain chip generates laser beams having center wavelengths of ⁇ 1, ⁇ 2, ... ⁇ , respectively.
  • a portion of the wide-spectrum light emitted by the gain chip that is away from the wavelength of the center channel is attenuated by the optical multiplexer, and the attenuated broad-spectrum light is reflected back to the optical multiplexer through the high-reflection structure at the end of the first output port OutO, and is reflected.
  • the portion of the broad-spectrum light whose wavelength is far from the wavelength of the center channel is again attenuated by the optical multiplexer.
  • This partially reflected light is reflected by the high-reflection structure of the gain chip, and the above process is repeated again, thereby generating center wavelengths of ⁇ , ⁇ 2, . . ⁇ laser beam.
  • the center wavelength of the laser beam is equal to the wavelength of the center channel of the optical multiplexer through which the reflection path passes.
  • the broad spectrum light undergoes multiple attenuations and resonances to produce a laser beam having center wavelengths of ⁇ 1, XI, ... ⁇ ⁇ , respectively.
  • the beam splitter distributes a greater proportion of the optical power to the wide-talk light that flows directly into the first input port of the optical multiplexer, the larger ratio being between 20% and 90% Preferably, 50%, thereby increasing the power of the broad spectrum light reflected back to the gain chip, enabling the gain chip to generate a laser beam.
  • the broad spectrum light and laser beam emitted by the gain chip are collectively referred to as light.
  • the N gain chips emit N laser beams of different wavelengths, and each laser beam is split into (M+1) laser beams by the beam splitter, and is divided into N x (M+1) laser beams. .
  • One of the (M+1) beam lasers directly flows into the first input port of the optical multiplexer, such as the input port Inl-0, and the other M beam lasers are modulated by the optical modulator and then flow into the second of the optical multiplexer.
  • Input ports such as input ports Inl-1, Inl-2, ... Inl-M.
  • the N laser beams of the N x (M+1) laser beam directly flow into the N first input ports of the optical multiplexer, that is, the input ports Inl-0, In2-0, ... InN-0.
  • the other beam of the N x (M+l) beam laser is modulated by the light modulator and flows into the N x M second input ports of the optical multiplexer.
  • each of the M second input ports constitutes one group, and a total of N groups are formed, and each of the second input ports flows signal light of the same wavelength.
  • the first group includes the second input port Inl-1-Inl-M, the center channel wavelength is ⁇ , and the signal light of the wavelength ⁇ flows; the second group includes the second input port ⁇ 2-1 ⁇ 2- ⁇ .
  • the center channel wavelength is ⁇ 2, and the signal light of the wavelength ⁇ 2 flows.
  • the second group includes the second input port ⁇ -1 ⁇ : InN-M, and the center channel wavelength is ⁇ , and the signal light of the wavelength ⁇ flows.
  • Each of the second input ports of each group has a second input port connected to the same output port.
  • Such an output port is called a second output port, and correspondingly, flows into one of the second input ports of each group of second input ports.
  • the signal light merges and flows out from the same second output port.
  • the first input port ie, In l-1, In 2-1, ...
  • each set of second input ports of the optical multiplexer is connected to the second output port Outl, correspondingly, The signal light flowing into the first input port of each set of the second input port is combined and outputted from the second output port Out1; and so on, the Mth input port of each set of the second input port of the optical multiplexer (ie, In 1-M, In 2-M, ... In NM ) is connected to the second output port OutM, and correspondingly, the signal light flowing into the second input port of each set of the second input port is combined with the second output Port OutM output.
  • the Mth input port of each set of the second input port of the optical multiplexer ie, In 1-M, In 2-M, ... In NM
  • the light emitted by each of the gain chips is split into two by the first beam splitter.
  • One of the two beams of light directly flows into a first input port of the optical multiplexer, such as input port Inl-0.
  • the other of the two beams is split into M beams by a second beam splitter, in the M beams
  • Each beam is modulated by a light modulator and flows into a second input port of the optical multiplexer.
  • the light emitted by the first gain chip is split into two beams by a 1 x 2 beam splitter, one of which directly flows into the first input port Inl-0 of the optical multiplexer, and the other beam passes through the 1 ⁇ 4 beam splitter.
  • the first group of light modulators modulating the light into The signal light then flows into the second input port of the optical multiplexer (ie, Inl-1 ⁇ Inl-4).
  • the light emitted by the 2nd to 4th gain chips is also processed in a similar manner.
  • the gain chip may be replaced by a semiconductor optical amplifier (SOA).
  • SOA semiconductor optical amplifier
  • the center channel wavelength of an optical multiplexer is typically temperature sensitive.
  • the center wavelength of the light emitted by the gain chip of this embodiment can be automatically aligned with the center channel wavelength of the optical multiplexer, thereby being able to circumvent temperature sensitive defects of the optical multiplexer.
  • the embodiment illustrated in Figures 7 and 8 can also use TEC to control temperature.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. You can choose some of them according to actual needs or All units are used to achieve the objectives of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

一种光模块装置,包括衬底、多个激光源、以及在衬底上制备的多组光调制器。多个激光源发出不同波长的光。每组光调制器包括多个光调制器,将光调制为信号光。光模块装置还包括多个分束器和一个光复用器。每个激光器连接到一个分束器。每个分束器通过光波导与一组光调制器连接,将激光源发出的一束光分成多束光。光复用器具有多组输入端口和多个输出端口,每组输入端口包含多个输入端口。每个光调制器通过光波导与一个输入端口连接,每组输入端口中都有一个输入端口与同一个输出端口连接。该光模块装置实现了在光调制器共用激光源的情况下的空分与波分复用。

Description

光模块装置 技术领域
本发明涉及光通信领域, 并且更具体地, 涉及一种光模块装置。 背景技术
随着光通信的进步, 光模块装置不断向小型化、 高容量、 低功耗发展。 从最初直接固定在电路板上的小尺寸架构 (SFF, Small Form Factor ), 可热 插拔的千兆位接口转换器(GBIC, Gigabit Interface Converter ), 一直发展到 紧凑型架构 (CFP, Compact Form-Factor ) 等。 而光模块装置的容量也从
100BASE (百兆)发展到 1000BASE (千兆)、 10GE、 100GE, 未来的通信 需求对光模块装置容量提出更大需求。
光模块装置通常包括激光器与光调制器(或者直调激光器)、 光复用器 ( OMUX, Optical Multiplexer ), 光解复用器( ODEMUX, De-multiplexer )、 光电探测器、光路准直系统等功能模块。离散的功能模块之间需要考虑连接、 封装方面的难题, 带来成本、 尺寸方面的困难, 难以满足小型化、 高容量密 度的需求。
随着技术的发展, 集成光模块装置已经成为大势所趋, 即在同一衬底上 集成激光器、 光调制器、 光复用器、 光解复用器、 光电探测器等功能模块。 集成光模块装置可以利用其在集成方面的优势, 实现大批量生产、 高密度集 成, 而且各功能模块之间的互联难度大大降低, 从而保证性能。
为了满足下一代光模块装置更高的容量, 目前主要有三种解决方案: 第一种方案: 提高光调制器、 光电探测器的性能, 从而提高单波长的传 输速率。 例如, 将光调制器的调制速率从 10G, 提高到 25G, 乃至 100G。
第二种方案: 利用高阶调制技术提升容量, 例如, 利用脉冲幅度调制 4
( PAM4, Pulse Amplitude Modulation 4 )、 PAM8等调制格式将单波长传输容 量提高 2倍、 3倍。
第三种方案: 目前大部分光模块装置釆用波分复用技术, 即在一根光纤 中复用多个波长。 如果在波分复用技术的基础上进一步釆用空分复用技术, 即在空间上复用光模块装置, 例如, 在一种衬底上制造多个光模块装置, 则 可以进一步提高容量。例如,对于 4波长波分复用、每个波长传输容量是 25G 的 100G光模块装置, 如果在空间上复用 4个 100G光模块装置, 可以实现 400G容量。 这种将波分复用技术和空分复用技术技术方案称为空分与波分 复用技术。
阵列波导光栅(AWG, Arrayed Waveguide Grating ) 的基本原理是利用 罗兰圓衍射, 通过控制阵列波导的相位, 从而实现光复用器和光解复用器的 功能。 对于一个 M 1 AWG, 假如 AWG的 M个输入端口的中心通道波长 分别是 λ1、 λ2、 ...λΜ, 则输入 AWG的信号光的波长分别是 λ1、 λ2、 ...λΜ, 流出 AWG的信号光则是波长是 λ1~λΜ的信号光的合波, 此时 AWG实现光 复用器的功能。
在上述简单的 AWG基础上, 人们对 AWG的结构和功能做了改进, 得 到了多种类型的 AWG, 例如具有路由功能的 AWG。 该种 AWG能实现的路 由功能如图 1所示,以 5x5 AWG为例, 5x5 AWG是指一端有 5个输入端口, 另一端有 5个输出端口的 AWG。 波长为 λ0、 λ1、 λ2、 λ3、 λ4的信号光都分 别从输入端口 In0、 Inl、 Ιη2、 Ιη3、 Ιη4流入。 从输入端口 ΙηΟ流入的信号光 的波长记做 λ00、 λ10、 λ20、 λ30、 λ40; 从输入端口 Inl流入的信号光的波 长记做 λθΐ 、 λΐΐ 、 λ21 、 λ31 、 λ41 ; ... , 以 此类推。 其中 , λ0=λ00=λ01=λ02=λ03=λ04 , λ1=λ10=λ11=λ12=λ13=λ14 、 λ2=λ20=λ21=λ22=λ23=λ24 以此类推。 输出端口分别是 Out0、 Outl、
Out2、 Out3、 Out4。从输出端口 OutO流出的信号光的波长是 λ10、 λ01、 λ42、 λ33、λ24;从输出端口 Outl流出的信号光的波长是 λ00、λ41、λ32、λ23、λ14; 以此类推。
除了上述的具有路由功能的 AWG之外, 还有其他类型的 AWG。 例如, 具有分组功能的 AWG,如图 2所示,波长为 λ 的信号光分别从输入端口 Inl、 Ιη2、 Ιη3流入, 分别记为 al、 a2, a2; 波长为 b、 的信号光则从输入 端口 In4~In9流入。 输出端口为 Outl、 Out2、 Out3 , 其中输出端口 Outl流 出的信号光分别为 λ 1、 b4、 λο7; 输出端口 Out2流出的信号光分别为 λ 2、 b5. λο8; 输出端口 Out3流出的信号光分别为 λ 3、 b6. c90 这种具有分 组功能的 AWG已经成功应用在多波长激光源中。
阶梯衍射光栅(EDG, Echelle Diffraction Grating )也是一种常见的光复 用器和光解复用器。 EDG是一种反射式的光栅, 工作原理和 AWG相似, 同 样能实现图 1、 图 2中的光复用器和光解复用器的功能。 图 3示出了一种集成光模块装置, 所述集成光模块装置包括衬底、 激光 器、 分束器和多个光调制器。
在衬底上制备一个激光器和一个 1 X M分束器 ( splitter ), 所述激光器的 制备方法可以是单片集成 ( monolithic integration )、 混合集成 ( hybrid integration ), 键合( bonding )等方法, 所述分束器的制备方法是单片集成, 所述激光器的中心波长是 λ。激光器发出的光通过光波导( optical waveguide ) 耦合到一个 1 χ Μ分束器,将激光器发出的一束激光分成 M束激光。优选的, 所述分束器将一束激光均勾的分成 M束激光。
在该衬底上制备 M个光调制器, 所述光调制器的制备方法可以是单片 集成、混合集成、键合等方法,每个光调制器的调制速率是 R比特每秒( bit/s )。 每个光调制器的一端与 l x M分束器的其中一支光波导连接, 另一端与光纤 连接。 该技术方案实现了容量是 R X M(bit/s)的集成光模块装置。
现有技术一中的光模块装置无法使用波分复用技术。为了实现 RxM(bit/s) 的传输速率, 光模块装置需要使用 M根光纤, 光纤资源的利用率很低。
图 4示出了现有技术二的一种空分与波分复用的光模块装置, 以集成光 模块装置为例。
在衬底上制备 M个光复用器(OMUX, Optical Multiplexer ), 所述光复 用器的制备方法是单片集成, 即 OMUX 1-0MUX M, 每个光复用器具有 N 个输入端口和 1个输出端口。输入端口和输出端口都使用光波导传输信号光。
在该衬底上制备 ΜχΝ个光调制器(Optical Modulator ), 所述光调制器 的制备方法可以是单片集成、 混合集成、 键合等方法。 每个光调制器的调制 速率是 R比特每秒(bit/s )。 每 N个光调制器通过光波导与同一个光复用器 连接。 优选的, 每 N个光调制器构成 1组, 则共构成 M组。 第 1组包含第 [1-1卜 [1-N]个光调制器, 与第 1个光复用器连接; 第 2组包含第 [2-1卜 [2-N] 个光调制器,与第 2个光复用器连接;以此类推,第 M组包含第 [M-1MM-N] 个光调制器, 与第 M个光复用器连接。
在该衬底上制备 ΜχΝ个激光器, 所述激光器的制备方法可以是单片集 成、 混合集成、 键合等方法。 每个激光器与一个光调制器通过光波导连接。 相应于光调制器的分组规则, 每 Ν个激光器构成 1组, 则共构成 Μ组。 第 1组包含第 [1-1卜 [1-N]个激光器, 其中心波长分别是 λ1、 λ2、 . . . λΝ; 第 2组 包含第 [2-1卜 [2-Ν]个激光器, 其中心波长分别是 λ1、 λ2、 . . . λΝ; 以此类推, 第 M组包含第 [M-1]~[M-N]个激光器, 其中心波长也分别是 λ1、 λ2、 ...λΝ。 每 1个激光器发出的激光束被一个光调制器调制成信号光,每 1组光调 制器输出的信号光再通过一个光复用器波分复用后输出到光纤。每一个光调 制器的调制速率是 R 比特每秒(bit/s ), 则每一个光复用器输出的信号光的 速率为 R x N(bit/s)。 例如, 第 1组激光器中的每一个激光器发出的激光束分 别被第 1组光调制器中的一个光调制器调制成信号光, 所述信号光再通过第 1个光复用器波分复用后输出到光纤, 第 1个光复用器输出的信号光的速率 为 RxN(bit/s)。 同样的, 第 2、 3、 ...M个光复用器也都输出速率为 RxN(bit/s) 的信号光。 因此, 整个空分与波分复用集成光模块装置的传输容量是 RxNxM(bit/s)。
集成光模块装置为了实现 R X N X M(bit/s)的传输速率, 现有技术二需要 Ν χ M个激光器, 对制造工艺、 封装技术带来较高难度, 并导致较高成本。 发明内容
有鉴于此, 本发明实施例提供一种光模块装置, 该光模块装置解决了需 要大量激光器才能实现空分与波分复用的技术问题。
第一方面, 提供了一种光模块装置, 所述光模块装置包括衬底、 多个激 光源、 以及在衬底上制备的多组光调制器。 所述多个激光源发出不同波长的 光。 每组光调制器包括多个光调制器, 将所述光调制成信号光。 所述光模块 装置还包括多个分束器和一个光复用器。 每个激光器连接到一个分束器, 每 个分束器通过光波导与一组光调制器连接,每个分束器将激光源发出的一束 光分成多束光。 所述光复用器具有多组输入端口和多个输出端口, 每组输入 端口包含多个输入端口, 每个光调制器通过光波导与一个输入端口连接, 每 组输入端口中都有一个输入端口与同一个输出端口连接。
结合第一方面, 在第一种可能的实现方式中, 所述激光源是一种光增益 介质, 所述光复用器的每组输入端口中都有一个输入端口通过光波导直接与 所述分束器连接, 该输入端口连接的输出端口的末端具有高反射结构, 所述 光增益介质发出的光一部分直接流入所述输入端口, 这部分光在所述输出端 口通过高反射结构反射回所述光增益介质。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述分束器包括第一分束器和第二分束器, 第一分束器将所述光增益介质发 出的光分成两束, 其中一束通过光波导直接流入所述输入端口, 另一束被第 二分束器分成多束并通过所述光调制器流入所述光复用器的输入端口。
结合第一方面的第一种可能的实现方式, 在第三种可能的实现方式中, 所述光增益介质远离光波导连接的端面具有高反射结构, 所述光增益介质的 高反射结构与光复用器输出端口末端的高反射面结构形成谐振腔, 所述谐振 腔对反射回的光谐振, 产生激光束。
结合第一方面的上述可能的实现方式, 在第四种可能的实现方式中, 所 述分束器将所述光增益介质发出的光的较大比例光功率分配给直接流入到 所述输入端口的部分光, 所述较大比例在 20%和 90%之间。
结合第一方面的上述可能的实现方式, 在第五种可能的实现方式中, 所 述高反射结构是金属反射面、 多层介质膜结构、 方向耦合器、 多模干涉器中 的一种。
结合第一方面的上述可能的实现方式, 在第六种可能的实现方式中, 所 述激光源和光复用器通过半导体热电制冷器控制温度,使得所述激光源的中 心波长和光复用器的中心通道波长对准。
结合第一方面, 在第七种可能的实现方式中, 所述激光源是激光器, 激 光器位于衬底上, 每个激光器通过光波导与一个分束器连接。
本发明实施例中的光模块装置通过将激光源发出的光分束实现空分复 用, 降低光模块装置的尺寸和成本; 通过使用光复用器, 实现波分复用, 提 高了光纤资源利用效率。 所述光模块装置实现了在光调制器共用激光源的情 况下的空分与波分复用。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中的具有路由功能的阵列波导光栅的示意图。
图 2是现有技术中的具有分组功能的阵列波导光栅的示意图。
图 3是现有技术中的一种光模块装置的示意框图。
图 4是现有技术中的另一种光模块装置的示意框图。 图 5是本发明实施例的一种光模块装置的示意框图。
图 6是本发明实施例的又一种光模块装置的示意框图。
图 7是本发明实施例的另一种光模块装置的示意框图。
图 8是本发明实施例的再一种光模块装置的示意框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本文中术语"激光束 "和"激光"在本文中常被可互换使用,术语 "宽谱光" 和 "激光" 统称为 "光"。 本文中术语"和 /或", 仅仅是一种描述关联对象的 关联关系, 表示可以存在三种关系, 例如, A和 /或 B , 可以表示: 单独存在 A, 同时存在 A和 B , 单独存在 B这三种情况。 另外, 本文中字符 "/" , 一 般表示前后关联对象是一种 "或" 的关系。
如图 5所示, 本发明实施例提供了一种光模块装置, 实现了空分与波分 复用功能。 本发明实施例中, 激光源为激光器。
在衬底上制备 N个激光器和 N个分束器, 所述激光器的制备方法可以 是单片集成、 混合集成、 键合等方法, 所述分束器的制备方法是单片集成, 所述 N个激光器的中心波长分别是 λ1、 λ2、 ...λΝ, Ν的取值为大于 1的正 整数, 所述 Ν个激光器产生中心波长分别是 λ1、 λ2、 ...λΝ的激光束。
每个激光器通过光波导连接到一个分束器,每个激光器发出的光通过光 波导耦合到一个分束器。 每个激光器发出的一束激光经过一个 1 X Μ分束器 分成 Μ束激光, Μ的取值为大于 1的正整数。 优选的, 所述分束器将该激 光束均勾的分成 Μ束激光。
在该衬底上制备 Ν X Μ个光调制器,所述光调制器的制备方法可以是单 片集成、 混合集成、 键合等方法, 每个光调制器的调制速率是 25Gbps。 每 M个光调制器构成 1组, 则共构成 N组, 每组光调制器通过光波导与一个 分束器连接。 每组光调制器用于调制一个分束器分成的 M束激光, 经过光 调制器调制后的激光束称为信号光。 第 1组包含第 [1-1卜 [1-M]个光调制器, 通过所述 1 χ Μ分束器与第 1个激光器连接, 用于调制中心波长为 λΐ的信 号光。 第 2组包含第 [2-l]~[2-M]个光调制器, 通过 l x M分束器与第 2个激 光器连接, 用于调制中心波长为 λ2 的信号光; 以此类推, 第 Ν组包含第 [Ν-1]~[Ν-Μ]个光调制器, 通过 1 X Μ分束器与第 Ν个激光器连接, 用于调 制中心波长为 λΝ的信号光。 该衬底可以是半导体材料、 半绝缘材料、 或者 塑料材料等, 优选半导体材料。
在该衬底上制备一个光复用器 (OMUX, Optical Multiplexer ), 所述光 复用器的制备方法是单片集成, 光复用器可以是阵列波导光栅(AWG, Arrayed Waveguide Grating ) , 阶梯衍射光栅 (EDG , Echelle Diffraction Grating )等。 光复用器具有 N x M个输入端口和 M个输出端口。 光复用器 的每个输入端口通过光波导与一个光调制器连接。 优选的, 每 M个输入端 口构成 1组, 则共构成 N组, 每组输入端口流入波长相同的的 M束激光。 第 1组包含输入端口 In l-l~In 1-M,其中心通道波长是 λΐ ; 第 2组包含输入 端口 In 2-1~Ιη 2-Μ, 其中心通道波长是 λ2; 以此类推, 第 Ν组包含输入端 口 In N-l~In N-M, 其中心通道波长是 λΝ。
每组输入端口中都有一个输入端口与同一个输出端口连接, 相应的, 流 入每组输入端口中的其中一个输入端口的信号光合波后从同一个输出端口 输出。 例如, 光复用器的每组输入端口中的第 1个输入端口 (即 In 1-1、 In 2-1、 ...In N-l ) 均与输出端口 Outl连接, 相应的, 光复用器将流入每组输 入端口中的第 1个输入端口的信号光合波后从输出端口 Outl输出; 每组输 入端口中的第 2个输入端口(即 In 1-2、 In 2-2、 ...In N-2 )均与输出端口 Out2 连接, 相应的, 光复用器将流入每组输入端口中的第 2个输入端口的信号光 合波后从输出端口 Out2输出; 以此类推, 每组输入端口中的第 M个输入端 口 (即 In l-M、 In 2-M、 ...In N-M ) 均与输出端口 OutM连接, 相应的, 光 复用器将流入每组输入端口中的第 M个输入端口的信号光合波后从输出端 口 OutM输出。 本发明实施例的光模块装置实现了空分与波分复用。
作为不同的实施例, 图 6所示的光模块装置利用了外部激光器。 激光器 位于衬底外, 每个激光器通过光纤和光波导与一个分束器连接。 激光器发出 的光首先进入光纤, 然后通过光纤耦合到光波导。
激光器的中心波长和光复用器的中心通道波长是温度敏感的,会随着温 度的改变而改变。 光复用器相当于带通滤波器, 假如激光器的中心波长偏离 光复用器的中心通道波长达到一个阔值, 那么激光器发出的激光束就不能从 光复用器通过。 在需要控温的场景, 如密集波分复用 (DWDM , Dense Waveleng Division Multiplexing )场景中, 可以将该衬底放置在半导体热电制 冷器(TEC, Thermoelectric cooler )上控温, 保证激光器的中心波长和光复 用器的中心通道波长对准。
作为不同的实施例, 图 7所示的光模块装置利用一种特殊的结构使得激 光源的中心波长自动和光复用器的中心通道波长对准,从而规避了光复用器 的温度敏感缺陷。
如图 7所示, 本发明另一实施例提供的光模块装置实现了空分与波分复 用功能。 本实施例中, 激光源为光增益介质, 光增益介质可以是增益芯片 ( Gain Chip )或半导体光放大器( SOA, Semiconductor Optical Amplifier ), 下面以增益芯片为例进行说明。
在衬底上制备 N X M个光调制器,所述光调制器的制备方法可以是单片 集成、 混合集成、 键合等方法, 每个光调制器的调制速率是 25Gbps。 优选 的, 每 M个光调制器构成 1组, 共构成 N组, 第 1组包含第 [1-1]~[1-M]个 光调制器, 第 2组包含第 [2-1]~[2-Μ]个光调制器, 以此类推, 第 N组包含第 [N-1]~[N-M]个光调制器。 每组光调制器用于调制波长相同的多束激光, 经 过光调制器调制后的激光束称为信号光。
在衬底上制备一个光复用器, 所述光复用器的制备方法是单片集成, 所 述 Ν χ Μ 个光调制器经过光波导与所述光复用器连接。 光复用器可以是 AWG、 EDG等。 光复用器具有 N χ (M+1)个输入端口和 (M+1)个输出端口。 其中一个输出端口的末端具有高反射结构,对流出该输出端口的激光束进行 反射, 这种输出端口以下称为第一输出端口, 例如, 输出端口 OutO , 其他 M 个输出端口称为第二输出端口。高反射结构的反射率接近 100%,—般为 90% 以上。 所述高反射结构可以是金属反射面、 多层介质膜结构、 方向耦合器 ( Directioal Coupler )、 多模干涉器 ( MultiMode Interference )等。
在该衬底上制备 N个增益芯片和 N个分束器, 所述增益芯片的制备方 法可以是单片集成、 混合集成、 键合等方法, 所述分束器的制备方法是单片 集成,每个增益芯片经过光波导耦合到一个分束器。例如,增益芯片是由 InP 材料制造的激光源。
增益芯片最开始发出的光是宽谱光,每个增益芯片发出的宽谱光通过分 束器分成 (M+1)束。所述 (M+1)束宽谱光中的一束宽谱光直接流入到光复用器 的输入端口, 这类输入端口下称第一输入端口, 第一输入端口的数量和增益 芯片的数量相同共有 N个, 即输入端口 Inl-0、 In2-0、 ...InN-0。 所述光复用 器的第一输入端口通过光波导与分束器连接。
所述 (M+1)束宽谱光中的其他 M束宽谱光经过光调制器调制后流入光复 用器的输入端口, 这类输入端口下称第二输入端口, 第二输入端口的数量和 光调制器的数量相同共有 N X M个。每个光调制器的一端经过光波导与光复 用器的一个第二输入端口连接, 另一端经过光波导与分束器连接。 优选的, 每 M个第二输入端口构成 1组, 则共构成 N组, 每组第二输入端口流入相 同波长的宽谱光。
所述 N个第一输入端口与光复用器的同一个输出端口连接,这个输出端 口称为第一输出端口,相应的, 流入所述 N个第一输入端口的信号光合波后 从所述第一输出端口流出。 例如, 光复用器的第一输入端口 (即 Inl-0、 In2-0、 ... InN-0 )与第一输出端口 OutO连接, 相应的, 流入第一输入端口的 N束信号光合波后从第一输出端口 OutO输出。
第一输出端口 (即 OutO )的末端具有高反射结构, 对流出第一输出端口 的宽谱光进行反射, 反射的宽谱光通过第一输入端口返回增益芯片。 由于光 复用器的第一输入端口 (即 Inl-0、 In2-0、 ...InN-0 )的中心通道波长分别是 λ1、 XI、 ...λΝ, 因此, 反射回增益芯片的宽谱光中, 波长远离 λ1、 λ2、 ...λΝ 的部分被光复用器衰减。
增益芯片的远离光波导连接的端面具有高反射结构, 与第一输出端口末 端的高反射结构形成谐振腔,例如, FP谐振腔( Fabry-perot Resonant Cavity , 法布里-珀罗谐振腔)。
增益芯片发出的宽谱光在谐振腔、 光复用器的共同作用下, 增益芯片产 生中心波长分别为 λ1、 λ2、 ...λΝ的激光束。 具体的, 增益芯片发出的宽谱 光中波长远离中心通道波长的部分被光复用器衰减, 衰减后的宽谱光再经过 第一输出端口 OutO末端的高反射结构反射回光复用器, 反射的宽谱光中波 长远离中心通道波长的部分再次被光复用器衰减, 这部分反射回来的光被增 益芯片的高反射结构反射,再次重复上述过程,从而产生中心波长分别为 λΐ、 λ2、 ...λΝ 的激光束。 激光束的中心波长与其反射路径经过的光复用器的中 心通道波长相等。 优选的, 作为不同的实施例, 所述宽谱光经过多次衰减和 谐振才能产生中心波长分别为 λ1、 XI、 ...λΝ的激光束。 优选的, 作为不同的实施例, 分束器将较大比例的光功率分配给直接流 入到光复用器的第一输入端口的宽语光, 所述较大比例在 20%和 90%之间, 优选的为 50%, 从而增大反射回增益芯片的宽谱光的功率, 使得增益芯片能 够产生激光束。 增益芯片发出的宽谱光和激光束统称为光。
如图 6所示, 所述 N个增益芯片发出 N束不同波长的激光束, 每束激 光经过所述分束器分成(M+1 )束激光, 共分成 N x ( M+1 )束激光。 所述 ( M+1 )束激光中的其中一束直接流入到光复用器的第一输入端口, 例如输 入端口 Inl-0, 其他 M束激光经过光调制器调制后流入光复用器的第二输入 端口, 例如输入端口 Inl-1、 Inl-2、 ...Inl-M。
如图 6所示, 所述 N x (M+1)束激光中的 N束激光直接流入到光复用器 的 N个第一输入端口, 即输入端口 Inl-0、 In2-0、 ...InN-0。 所述 N x (M+l) 束激光中的其他束激光经过光调制器调制后流入光复用器的 N x M 个第二 输入端口。 优选的 , 每 M个第二输入端口构成 1组, 则共构成 N组, 每组 第二输入端口流入相同波长的信号光。 例如, 第 1 组包含第二输入端口 Inl-1-Inl-M, 其中心通道波长是 λΐ , 流入波长为 λΐ的信号光; 第 2组包含 第二输入端口 Ιη2-1~Ιη2-Μ,其中心通道波长是 λ2,流入波长为 λ2的信号光; 以此类推, 第 Ν组包含第二输入端口 ΙηΝ-1〜: InN-M, 其中心通道波长是 λΝ, 流入波长为 λΝ的信号光。
每组第二输入端口中都有一个第二输入端口与同一个输出端口连接, 这 类输出端口称为第二输出端口, 相应的, 流入每组第二输入端口中的其中一 个第二输入端口的信号光合波后从同一个第二输出端口流出。 例如, 光复用 器的每组第二输入端口中的第 1个输入端口 (即 In l-1、 In 2-1 , ...Ιη Ν-1 ) 与第二输出端口 Outl连接, 相应的, 流入每组第二输入端口中的第 1个输 入端口的信号光合波后从第二输出端口 Outl输出; 以此类推, 光复用器的 每组第二输入端口中的第 M个输入端口 (即 In 1-M、 In 2-M、 ...In N-M )与 第二输出端口 OutM连接,相应的,流入每组第二输入端口中的第 Μ个输入 端口的信号光合波后从第二输出端口 OutM输出。
作为不同的实施例, 如图 7所示, 每个增益芯片发出的光通过第一分束 器分成两束。 所述两束光中的其中一束直接流入光复用器的第一输入端口, 例如输入端口 Inl-0。
所述两束光中的另一束通过第二分束器分成 M束光, 所述 M束光中的 每一束经过一个光调制器调制后流入光复用器的第二输入端口。 例如, 第 1个增益芯片发出的光通过 1 x 2分束器分成两束, 其中一束 光直接流入光复用器的第一输入端口 Inl-0 , 另一束光通过 1 χ 4分束器分成 4束后分别流入第 1组光调制器(即第 [1-1卜 [1-4]个光调制器)中的每个光调 制器, 第 1组光调制器将所述光调制成信号光后分别流入光复用器的第二输 入端口 (即 Inl-l~Inl-4 )。 第 2~4个增益芯片发出的光也釆用类似的方式处 理。
可选的, 作为不同的实施例, 增益芯片可以用半导体光放大器 (SOA, Semiconductor Optical Amplifier )替代。
光复用器的中心通道波长通常是温度敏感的。该实施例的增益芯片发出 的光的中心波长能够自动和光复用器的中心通道波长对准,从而能够规避光 复用器的温度敏感缺陷。 当然, 可选的, 图 7和图 8所述的实施例也可以用 TEC来控制温度。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种光模块装置, 所述光模块装置包括衬底、 多个激光源、 以及在 衬底上制备的多组光调制器, 所述多个激光源发出不同波长的光; 每组光调 制器包括多个光调制器, 将所述光调制成信号光; 其特征在于,
所述光模块装置还包括多个分束器和一个光复用器;
每个激光器连接到一个分束器,每个分束器通过光波导与一组光调制器 连接, 每个分束器将激光源发出的一束光分成多束光;
所述光复用器具有多组输入端口和多个输出端口,每组输入端口包含多 个输入端口, 每个光调制器通过光波导与一个输入端口连接, 每组输入端口 中都有一个输入端口与同一个输出端口连接。
2、 如权利要求 1 所述的光模块装置, 其特征在于, 所述激光源是一种 光增益介质, 所述光复用器的每组输入端口中都有一个输入端口通过光波导 直接与所述分束器连接, 该输入端口连接的输出端口的末端具有高反射结 构, 所述光增益介质发出的光一部分直接流入所述输入端口, 这部分光在所 述输出端口通过高反射结构反射回所述光增益介质。
3、 如权利要求 2所述的光模块装置, 所述分束器包括第一分束器和第 二分束器, 第一分束器将所述光增益介质发出的光分成两束, 其中一束通过 光波导直接流入所述输入端口, 另一束被第二分束器分成多束并通过所述光 调制器流入所述光复用器的输入端口。
4、 如权利要求 2所述的光模块装置, 其特征在于, 所述光增益介质远 离光波导连接的端面具有高反射结构, 所述光增益介质的高反射结构与光复 用器输出端口末端的高反射面结构形成谐振腔, 所述谐振腔对反射回的光谐 振, 产生激光束。
5、 如权利要求 2到 4中的任一项所述的光模块装置, 其特征在于, 所 述分束器将所述光增益介质发出的光的较大比例光功率分配给直接流入到 所述输入端口的部分光, 所述较大比例在 20%和 90%之间。
6、 如权利要求 2到 5中的任一项所述的光模块装置, 其特征在于, 所 述高反射结构是金属反射面、 多层介质膜结构、 方向耦合器、 多模干涉器中 的一种。
7、 如权利要求 1到 6中任一项所述的光模块装置, 其特征在于, 所述 激光源和光复用器通过半导体热电制冷器控制温度,使得所述激光源的中心 波长和光复用器的中心通道波长对准。
8、 如权利要求 1 所述的光模块装置, 其特征在于, 所述激光源是激光 器, 激光器位于衬底上, 每个激光器通过光波导与一个分束器连接。
9、 如权利要求 1 所述的光模块装置, 其特征在于, 所述激光源是激光 器, 激光器位于衬底外, 每个激光器通过光纤和光波导与一个分束器连接。
PCT/CN2013/071400 2013-02-05 2013-02-05 光模块装置 WO2014121443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/071400 WO2014121443A1 (zh) 2013-02-05 2013-02-05 光模块装置
CN201380000044.8A CN104662821B (zh) 2013-02-05 2013-02-05 光模块装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071400 WO2014121443A1 (zh) 2013-02-05 2013-02-05 光模块装置

Publications (1)

Publication Number Publication Date
WO2014121443A1 true WO2014121443A1 (zh) 2014-08-14

Family

ID=51299157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071400 WO2014121443A1 (zh) 2013-02-05 2013-02-05 光模块装置

Country Status (2)

Country Link
CN (1) CN104662821B (zh)
WO (1) WO2014121443A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016112789A1 (en) * 2015-01-13 2016-07-21 Huawei Technologies Co., Ltd. Optical power supply and a system for summation of parallel modulated signals of different wavelengths
CN106330332A (zh) * 2015-07-02 2017-01-11 刘继忠 光模块新型光调制发射方法及装置
WO2018013987A1 (en) 2016-07-14 2018-01-18 Ayar Labs, Inc. Laser module for optical data communication system
CN108885320A (zh) * 2016-02-08 2018-11-23 斯考皮欧技术有限公司 具有硅衬底的高速光发射机
CN110830119A (zh) * 2019-11-13 2020-02-21 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022228554A1 (en) * 2021-04-30 2022-11-03 Huawei Technologies Co., Ltd. Optical power distribution system
US11585977B2 (en) 2016-02-08 2023-02-21 Skorpios Technologies, Inc. Broadband back mirror for a photonic chip

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218453B2 (en) * 2016-04-27 2019-02-26 Juniper Networks, Inc. Methods and apparatus for logical associations between routers and optical nodes within a wavelength division multiplexing (WDM) system
CN110798265A (zh) * 2018-08-01 2020-02-14 中兴通讯股份有限公司 光模块、得到光信号的方法、装置、系统及存储介质
CN114428379B (zh) * 2020-10-29 2023-09-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN214756361U (zh) * 2021-02-10 2021-11-16 苏州旭创科技有限公司 光子集成芯片及光发射组件和光收发模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1639614A (zh) * 2002-02-25 2005-07-13 英特尔公司 用于对光发射模块进行集成的方法和装置
CN1894871A (zh) * 2003-12-19 2007-01-10 诺维拉光学公司 无源光网络的激光源和检测器的集成
US20100142962A1 (en) * 2006-11-18 2010-06-10 Poustie Alistair J Multiwavelength transmitter
CN102882601A (zh) * 2012-09-10 2013-01-16 胡朝阳 硅光子集成高速光通信收发模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1639614A (zh) * 2002-02-25 2005-07-13 英特尔公司 用于对光发射模块进行集成的方法和装置
CN1894871A (zh) * 2003-12-19 2007-01-10 诺维拉光学公司 无源光网络的激光源和检测器的集成
US20100142962A1 (en) * 2006-11-18 2010-06-10 Poustie Alistair J Multiwavelength transmitter
CN102882601A (zh) * 2012-09-10 2013-01-16 胡朝阳 硅光子集成高速光通信收发模块

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016112789A1 (en) * 2015-01-13 2016-07-21 Huawei Technologies Co., Ltd. Optical power supply and a system for summation of parallel modulated signals of different wavelengths
CN106330332A (zh) * 2015-07-02 2017-01-11 刘继忠 光模块新型光调制发射方法及装置
CN108885320A (zh) * 2016-02-08 2018-11-23 斯考皮欧技术有限公司 具有硅衬底的高速光发射机
US11585977B2 (en) 2016-02-08 2023-02-21 Skorpios Technologies, Inc. Broadband back mirror for a photonic chip
WO2018013987A1 (en) 2016-07-14 2018-01-18 Ayar Labs, Inc. Laser module for optical data communication system
EP3485543A4 (en) * 2016-07-14 2020-03-25 Ayar Labs, Inc. LASER MODULE FOR OPTICAL DATA COMMUNICATION SYSTEM
US10771160B2 (en) 2016-07-14 2020-09-08 Ayar Labs, Inc. Laser module for optical data communication system
CN110830119A (zh) * 2019-11-13 2020-02-21 青岛海信宽带多媒体技术有限公司 一种光模块
CN110830119B (zh) * 2019-11-13 2022-04-29 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022228554A1 (en) * 2021-04-30 2022-11-03 Huawei Technologies Co., Ltd. Optical power distribution system

Also Published As

Publication number Publication date
CN104662821B (zh) 2017-03-29
CN104662821A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2014121443A1 (zh) 光模块装置
US10958339B2 (en) Methods and systems relating to optical networks
US20220019038A1 (en) Optical interconnect for switch applications
EP3342071B1 (en) Multi-wavelength laser system for optical data communication links and associated methods
JP3284659B2 (ja) 波長多重光通信用光スイッチング装置
US10222549B2 (en) Mode multiplexer/demultiplexer and switching node
EP2062076B1 (en) Method and system for grating taps for monitoring a dwdm transmitter array integrated on a plc platform
EP2989737B1 (en) Reconfigurable optical access network architectures
US9225454B1 (en) Aggregation and de-agreggation of bandwidth within data centers using passive optical elements
US20080031625A1 (en) WDM hybrid splitter module
WO2020125768A1 (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
US20190165877A1 (en) ENERGY EFFICIENT, CONTENTIONLESS NxM ROADM WITH AMPLIFIED SINGLE WAVELENGTH DROP/ADD PORTS AND CORRESPONDING METHODS
CN109073828B (zh) 具有集成在同一芯片上的光学分离器及调制器的光学互连件
US11029476B2 (en) Injection locked multi-wavelength optical source
WO2018054075A1 (zh) 波长选择性光开关
KR20120065809A (ko) 멀티 코어 중앙처리장치를 위한 광네트워크 구조
WO2014100942A1 (zh) 一种激光光源输出装置及激光输出系统
JP2003185876A (ja) 波長多重化器及び波長多重化装置
JP2016523484A (ja) 非インタリーブチャネルプランを有するマルチプレクサ
JP4230934B2 (ja) 多チャンネル光変調装置および多チャンネル光送信装置
US20060147210A1 (en) Wavelength-division-multiplexed passive optical network
JP6008371B2 (ja) 光波長分割多重伝送システム
JP2005510754A (ja) 光学チャネルマトリクスのための分割多重デバイスならびに波長分割多重技術やアッドドロップ技術に対する応用
JP7408032B2 (ja) 光送信器および光送受信器
JP7438472B2 (ja) 光モジュールおよび光通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874315

Country of ref document: EP

Kind code of ref document: A1