WO2018054075A1 - 波长选择性光开关 - Google Patents

波长选择性光开关 Download PDF

Info

Publication number
WO2018054075A1
WO2018054075A1 PCT/CN2017/084769 CN2017084769W WO2018054075A1 WO 2018054075 A1 WO2018054075 A1 WO 2018054075A1 CN 2017084769 W CN2017084769 W CN 2017084769W WO 2018054075 A1 WO2018054075 A1 WO 2018054075A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
microring
microring resonators
resonators
polarization
Prior art date
Application number
PCT/CN2017/084769
Other languages
English (en)
French (fr)
Inventor
涂鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018054075A1 publication Critical patent/WO2018054075A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means

Definitions

  • the present application relates to the field of communications, and in particular to wavelength selective optical switches in the field of communications.
  • DWDM Dense Wavelength Division Multiplexing
  • each different optical wavelength carries a different optical signal, and optical signals of different wavelengths are transmitted in the same optical fiber, thereby realizing large-capacity and low-loss data communication.
  • the optical switch is a key component for implementing an all-optical switching system. It can implement all-optical layer routing, wavelength selection, optical cross-connection, and self-healing protection.
  • Optical switches that have been implemented at present include conventional mechanical structure optical switches, micro-optical electromechanical system based switches, liquid crystal optical switches, waveguide type optical switches, and semiconductor optical amplifier optical switches.
  • waveguide type optical switches usually rely on a mature complementary metal oxide semiconductor (CMOS) process on a silicon-on-insulator (SOI) platform or indium phosphide (Indium Phosphide, InP).
  • CMOS complementary metal oxide semiconductor
  • SOI silicon-on-insulator
  • InP indium Phosphide
  • the switching speed can be on the order of nanoseconds to microseconds, and the volume is small, the integration is high, and it is compatible with the CMOS process, so that a low-cost amount can be realized.
  • the waveguide type microring resonator is a wavelength-sensitive selective conduction device.
  • the optical switch array consisting of micro-ring resonators has a simple topology, few stages, and wavelength selectivity. Therefore, the optical signal of the through wavelength is not affected by the coupling of the microring resonator, and the insertion loss of the through is very low.
  • the micro-ring resonator type optical switch has the functions of filtering and downloading signals at the same time, which makes the switching node device simple and efficient.
  • microring resonators generally only support signal light uploading and downloading in a single polarization state because the resonant wavelength of the microring resonator is very sensitive to the effective refractive index and structural size of the waveguide.
  • the effective refractive index of the TE mode and the TM mode of the waveguide are different, resulting in different resonance wavelengths of the TE mode and the TM mode, and thus the microring resonator cannot process the polarization-multiplexed optical signal.
  • the embodiments of the present application provide a wavelength selective optical switch capable of reducing polarization dependent loss during the selection of a polarization-independent optical signal.
  • an embodiment of the present application provides a wavelength selective optical switch, including a polarization splitting unit and a wavelength selecting unit, where the wavelength selecting unit includes two sets of micro ring resonators and a polarization combining unit.
  • the polarization splitting unit is configured to split the input beam into a first polarized beam and a second polarized beam, and transmit the first polarized beam to the first set of microring resonators in the two sets of microring resonators Inputting the second polarized light beam to an input end of the second set of microring resonators of the two sets of microring resonators;
  • the first set of microring resonators for coupling a first one of the first polarized beams transmitted to an input of the first set of microring resonators to the first set of microring resonances And outputting, from the output of the first set of microring resonators, to the polarization combining unit, the first target beam coupled to the first set of microring resonators a wavelength of a target beam is equal to a target wavelength corresponding to the wavelength selection unit;
  • the second set of microring resonators for coupling a second one of the second polarized beams transmitted to an input of the second set of microring resonators to the second set of microring resonances And outputting, from the output of the second set of microring resonators, to the polarization combining unit, the second target beam coupled to the second set of microring resonators
  • the wavelength of the two target beams is equal to the target wavelength
  • the polarization combining unit for receiving the first target beam received from an output of the first set of microring resonators and receiving from an output of the second set of microring resonators
  • the second target beam is combined and outputs a beam that combines the first target beam and the second target beam.
  • the wavelength selective optical switch performs the same wavelength selection process on the two polarized light beams, so that the polarization states of the first polarized light beam and the second polarized light beam are converted the same, thereby reducing the polarization dependent loss and facilitating the optical switching node. Performance.
  • the transmission paths of the first polarized light beam and the second polarized light beam in the optical waveguide are equal or similar, which can further reduce the polarization dependent loss and reduce the differential group velocity delay.
  • the polarization splitting unit passes the first optical waveguide connecting the polarization splitting unit and the input end of the first group of microring resonators a first polarized beam is transmitted to an input of the first set of microring resonators, and a beam of the first polarized beam that is not coupled into the first set of microring resonators along the first optical waveguide Continue to transmit;
  • the polarization splitting unit transmits the second polarized beam to the second set of microring resonators by connecting a second optical waveguide of the polarization splitting unit and the input end of the second group of microring resonators And the light source of the second polarized light beam that is not coupled to the second set of microring resonators continues to be transmitted along the second optical waveguide.
  • the wavelength selective optical switch can be used for the selection of polarized light having any polarization state, that is, the first polarized light beam and the second polarized light beam can be polarized light beams having any polarization mode, in particular, first The polarized light beam may be an optical signal of TE mode or TM mode, and the second polarized light beam may be an optical signal of TE mode or TM mode.
  • the first polarized light beam and the second polarized light beam are polarized light beams of the same mode, wherein the micro ring in the first set of micro ring resonators
  • the resonator and the microring resonator in the second set of microring resonators are microring resonators that match the same pattern.
  • the microring resonator in the first set of microring resonators can be designed as a microring resonator that matches the TM mode; if the second polarized beam is in TE mode Polarization The beam, then the microring resonator in the second set of microring resonators can be designed as a microring resonator that matches the TE mode.
  • the polarization splitting unit comprises a polarization splitting rotator
  • the polarization combining unit comprises a polarization combining rotator
  • the number of polarization states of the first polarized beam and the second polarized beam are the same, and the paths of the first polarized beam and the second polarized beam are equal in the optical waveguide, which can reduce the polarization dependent loss and the differential group velocity. Delay.
  • microring resonators in the first group of microring resonators and the microring resonators in the second group of microring resonators are microring resonators for the same polarization mode, it is possible to use the same polarization state.
  • the same microring resonator of the beam does not require the design of two different microring resonators, which reduces the complexity of the system and reduces the control complexity.
  • the polarization splitting unit in this embodiment may further include other devices capable of splitting and rotating the input optical signal to realize dividing the input optical signal into two polarized light beams such as TE mode optical signals and TM mode light.
  • the signal converts one of the polarized beams, such as the TM mode optical signal, into a TE mode optical signal.
  • the polarization beam splitting unit may include a polarization beam splitter and a polarization converter, or other optical structure capable of performing this function.
  • the polarization combining unit can also include other devices that are capable of combining and rotating the input optical signals.
  • the first polarized light beam and the second polarized light beam are polarized light beams of different modes, wherein the micro ring in the first set of micro ring resonators
  • the resonator is a microring resonator that matches a pattern of the first polarized beam
  • the microring resonator in the second set of microring resonators is a microring that matches a pattern of the second polarized beam Resonator.
  • the polarization splitting unit comprises a polarization beam splitter
  • the polarization combining unit comprises a third optical waveguide
  • the third optical waveguide is used to The first target beam and the second target beam are coupled.
  • the combining of the first target beam and the second target beam is performed in the coupled optical waveguide, without adding other multiplexer devices.
  • the polarization of the first polarized beam and the second polarized beam without polarization transformation is greatly reduced.
  • the difference between the transmission paths of the first polarized beam and the second polarized beam in the optical waveguide is significantly reduced, and the polarization dependent loss can be further reduced while reducing the differential group velocity delay.
  • the first group of microring resonators comprise a microring resonator or a plurality of cascaded microring resonators, and the second group of microring resonators A microring resonator or a cascade of multiple microring resonators is included.
  • the wavelength selective optical switch can expand the operating spectral bandwidth of the optical opening by using a plurality of cascaded microring resonators.
  • the number of microring resonators in the first group of microring resonators is equal to the number of microring resonators in the second group of microring resonators.
  • the wavelength selective optical switch further includes a wavelength detecting unit corresponding to the wavelength selecting unit, where the wavelength detecting unit is configured to use the first target beam The wavelength and the wavelength of the second target beam are detected.
  • the wavelength detecting unit is located in the first group of micro a first optical coupler at the output of the ring resonator, and a first photodetector coupled to the first optical coupler, and a second at an output of the second set of microring resonators An optical coupler, and a second photodetector coupled to the second optical coupler.
  • an optical coupler can be disposed at the output ends of the two sets of microring resonators for extracting a small amount of optical signal energy from the trunk to be transported to the photodetector for monitoring.
  • the photodetector feeds the extracted optical signal to the electrode driving of the two sets of microring resonators through an external feedback circuit, and stabilizes the download by real-time compensating for the change of the resonant wavelength of the two sets of microring resonators.
  • the wavelength of the optical signal is disposed at the output ends of the two sets of microring resonators for extracting a small amount of optical signal energy from the trunk to be transported to the photodetector for monitoring.
  • the wavelength selective optical switch by setting the wavelength monitoring unit to monitor and compensate the target wavelength in real time, the wavelength of the optical signal downloaded by the wavelength selecting unit can be stabilized.
  • a wavelength selective optical switch comprising the polarization splitting unit of the first aspect and various implementations, and at least one of the first aspect and various implementations Wavelength selection unit, wherein each of the at least one wavelength selection unit has a different target wavelength
  • the wavelength selective optical switch may include the polarization splitting unit described above, and n wavelength selecting units, wherein the first polarized light beam outputted by the i th wavelength selecting unit does not satisfy the target wavelength, and the first The beams of the two polarized beams that do not satisfy the target wavelength enter the (i+1)th wavelength selection unit, respectively.
  • the light beam that does not satisfy the target wavelength in the first polarized light beam passes through the first set of micro ring resonators in the i+1th wavelength selecting unit, so that selection of the light beam satisfying the target wavelength ⁇ i+1 is achieved, and the second polarized light beam is not satisfied.
  • the beam of the target wavelength passes through the second set of microring resonators of the i+1th wavelength selection unit to effect selection of the beam satisfying the target wavelength ⁇ i+1.
  • two sets of micro ring resonators are respectively set to perform the same wavelength selection process on the two polarized light beams, so that the polarization states of the first polarized light beam and the second polarized light beam are converted the same.
  • reducing the polarization dependent loss which is beneficial to the performance of the optical switching node.
  • the transmission paths of the two polarized beams in the optical waveguide are equal or similar, which can further reduce the polarization dependent loss and reduce the differential group velocity delay.
  • the wavelength selective optical switch in the embodiment of the present application is simple in structure, compact in size, and can also constitute a large-scale optical switch matrix.
  • FIG. 1 is a schematic structural view of a polarization-independent microring resonator in the prior art.
  • FIG. 2 is a schematic structural diagram of a wavelength selective optical switch according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • the microring resonator 100 includes two portions: a polarization sensitive working unit 110 and a polarization rotating mirror 120.
  • the polarization multiplexed optical signal includes a TE mode optical signal and a TM mode optical signal, and the input polarization multiplexed optical signal enters the polarization independent microring resonator structure from the bus optical waveguide 130, passes through the polarization beam splitter 111, and the TE mode light
  • the signal is output from the optical waveguide 112, and the TM mode optical signal is output from the optical waveguide 113.
  • the optical waveguide 112 is coupled to the microring resonator 114, and the TE mode optical signal conforming to the resonant wavelength of the microring resonator 114 is coupled to the microring resonator 114 for transmission in a counterclockwise direction, coupled out from the output optical waveguide 115, and enters the polarization.
  • the TM mode optical signal in the optical waveguide 113 is transmitted to the remote polarization rotating mirror 121, and the optical signal TETM reflected back into the TE mode enters the optical waveguide 112 and is transmitted in reverse with the TE optical signal.
  • the polarization rotating mirror 120 includes a polarization rotator 121 and a curved waveguide 122.
  • the optical signal TETM conforming to the resonant wavelength of the microring resonator 114 is coupled to the microring resonator 114 for clockwise transmission, coupled out from the output optical waveguide 115, and converted to TM mode light by the curved optical waveguide 116 and the polarization rotator 117.
  • the signal enters the polarization combiner 118.
  • the polarization combiner 118 combines the input TE mode optical signal and the TM mode optical signal and outputs it from the bus optical waveguide 140, thereby implementing a polarization independent filter switching function.
  • the length of the optical waveguide through which the TE mode optical signal and the TM mode optical signal pass are greatly different, and the TM mode optical signal has a large number of polarization state conversions, which causes severe polarization dependent loss and
  • the differential group velocity delay affects the system performance; moreover, the microring resonator has a complicated structure and a large volume, and is not suitable for forming a large-scale optical switch matrix.
  • the polarization-dependent loss here refers to the difference in energy loss between the optical signals of different polarization states after passing through a system.
  • two polarized beams of different polarization states can pass through the optical switch, and the energy of the two is The difference in loss. The smaller the difference, the less sensitive the optical switch is to the polarization state.
  • Wavelength Selective Switch is a subsystem of the rapidly growing wavelength division system in recent years. It can switch optical signals of different wavelengths between arbitrary input and output ports, greatly improving the Networking capabilities of the WDM system.
  • the wavelength selective switch can be classified into a microelectromechanical type, a planar waveguide type, a liquid crystal type, and the like.
  • the wavelength selective optical switch in the embodiment of the present application is one of the planar waveguide types.
  • FIG. 2 is a schematic structural diagram of a wavelength selective optical switch according to an embodiment of the present application.
  • the wavelength selective optical switch includes a polarization splitting unit 310 and a wavelength selecting unit 320, wherein the wavelength selecting unit 320 includes two sets of microring resonators and a polarization combining unit 323, the two sets of microring resonators including the first group of micro A ring resonator 321 and a second set of microring resonators 322.
  • a polarization splitting unit 310 configured to split the input beam into a first polarized beam and a second polarized beam, and transmit the first polarized beam to an input end of the first set of microring resonators 321 of the two sets of microring resonators, Transmitting a second polarized beam to an input of a second set of microring resonators 322 of the two sets of microring resonators;
  • a first set of microring resonators 321 for coupling a first one of the first polarized beams transmitted to the input of the first set of microring resonators 321 to the first set of microring resonators 321 and
  • the first target beam coupled to the first group of microring resonators 321 is output from the output of the first group of microring resonators 321 to the polarization combining unit 323, and the wavelength of the first target beam is equal to the wavelength selection unit 320.
  • a second set of microring resonators 322 for coupling a second one of the second polarized beams transmitted to the input of the second set of microring resonators 322 to the second set of microring resonators 322 and a second target beam coupled to the second set of microring resonators 322 is output from the output of the second set of microring resonators 322 to a polarization combining unit 323 having a wavelength equal to the target wavelength;
  • a polarization combining unit 323 for performing a first target beam received from an output of the first group of microring resonators 321 and a second target beam received from an output of the second group of microring resonators 322 Combine and output a beam that combines the first target beam and the second target beam.
  • the polarization-multiplexed and wavelength-multiplexed input beam is split into two polarized beams of different polarization states, that is, a first polarized beam and a second polarized beam, by a polarization splitting unit.
  • the two polarized beams enter the wavelength selection unit 320 through the input assembly.
  • the first polarized light beam enters the first set of microring resonators 321 in the wavelength selecting unit 320
  • the second polarized light beam enters the second set of microrings.
  • the direction of the arrow in the drawing is an illustration of the direction of propagation of the light beam in the optical waveguide.
  • a first one of the first polarized beams transmitted to the input of the first set of microring resonators 321 is coupled to the first set of microring resonators 321 to generate a resonance, thereby effecting selection of an optical signal of a specified wavelength ⁇ i
  • the first set of microring resonators 321 couples a first target beam of the first polarized beam that satisfies the target wavelength ⁇ i into the first set of microring resonators 321, wherein ⁇ i is the resonant wavelength of the first set of microring resonators 321 .
  • the second polarized beam entering the second set of microring resonators 322 is coupled into the second set of microring resonators 322 to produce a resonance, thereby effecting selection of an optical signal of a specified wavelength ⁇ i, and the second microring resonant group 322 will
  • a second target beam of the second polarized beam that satisfies the target wavelength ⁇ i is coupled into the second set of microring resonators 322, wherein the resonant wavelength of the second set of microring resonators 322 is also ⁇ i.
  • the resonant wavelength of the first set of microring resonators 321 is equal to the resonant wavelength of the second set of microring resonators 322, both equal to the target wavelength ⁇ i.
  • the first target beam coupled from the first polarized beam by the first group of microring resonators 321 is transmitted to the polarization beam 323 through the optical waveguide between the first group of microring resonators 321 and the polarization combining unit 323.
  • the optical waveguide between the first group of microring resonators 321 and the polarization combining unit 323 is coupled to the first group of microring resonators 321 such that the beam of the output of the first group of microring resonators 321 can enter.
  • the optical waveguide is thereby transmitted to the polarization combining unit 323.
  • the first target beam coupled from the first polarized beam by the second set of microring resonators 322 is transmitted to the polarized beam by the optical waveguide between the second set of microring resonators 322 and the polarization combining unit 323.
  • the optical waveguide between the second group of microring resonators 322 and the polarization combining unit 323, and the second group of microring resonators 322 are coupled to each other such that the output beam of the second group of microring resonators 322
  • the optical waveguide can be entered to be transmitted to the polarization combining unit 323.
  • the polarization combining unit 323 combines the first target beam coupled by the first group of microring resonators 321 and the second target beam coupled by the second group of microring resonators 322 and combines the first target beam and the second target beam.
  • the target beam performs a combined beam output to complete a wavelength selection process.
  • the single-wavelength optical signal output by the wavelength selection unit 320 satisfies the target wavelength ⁇ i.
  • the polarization state of the first polarized light beam and the second polarized light beam are the same, so that the wavelength can be reduced.
  • Polarization dependent loss is beneficial to the performance of the optical switching node.
  • the first group of microring resonators and the second group of microring resonators respectively process the two polarized beams in a uniform manner, so that the transmission paths of the first polarized beam and the second polarized beam in the optical waveguide are equal or Similar, it is possible to further reduce the polarization-dependent loss while reducing the differential group velocity delay.
  • the wavelength selective optical switch in the embodiment of the present application has a simple structure and a compact volume, and is suitable for forming a large-scale optical switch matrix.
  • the polarization splitting unit 310 is coupled to the first group of microrings by connecting the polarization splitting unit 310.
  • the first optical waveguide at the input of the vibrator 321 transmits the first polarized beam to the input of the first set of microring resonators 321 and is not coupled to the first set of microring resonators 321
  • the light beam continues to be transmitted along the first optical waveguide;
  • the polarization splitting unit 310 transmits the second polarized light beam to the input end of the second group of microring resonators 322 through the second optical waveguide connecting the polarization splitting unit 321 and the input end of the second group of microring resonators 322, and None of the two polarized beams that are coupled into the second set of microring resonators 322 continue to travel along the second optical waveguide.
  • the edge of the microring resonator when the edge of the microring resonator is in close proximity to other devices (e.g., a straight waveguide) in space, until the spacing between the two reaches the same order of magnitude as the wavelength (e.g., on the order of microns) or smaller (e.g., on the order of nanometers), The light field in the two interacts, which we call coupling.
  • other devices e.g., a straight waveguide
  • the light fields in the two interact to achieve the first a coupling between the set of microring resonators 321 and the first optical waveguide; when the input ends of the second set of microring resonators 322 and the second optical waveguide are in close proximity to each other until the spacing between the two reaches the same target wavelength On the order of magnitude or less, the light fields in the two interact to effect coupling between the second set of microring resonators 322 and the second optical waveguide.
  • the first microring resonance group 321 couples the first target beam satisfying the target wavelength ⁇ i to the first group of microring resonators
  • the second microring resonance group 322 couples the second target beam that satisfies the target wavelength ⁇ i to the second group of microring resonators 322.
  • first target beam and the second target beam are combined after being combined in the polarization combining unit 323, and the remaining beams not coupled to the first group of microring resonators 321 that do not conform to the target wavelength ⁇ i are The transmission continues in the first optical waveguide, and the remaining light beams that are not coupled to the second set of microring resonators 322 that do not conform to the target wavelength ⁇ i continue to be transmitted in the second optical waveguide.
  • the light beam in the embodiment of the present application may also be referred to as an optical signal, and each different optical wavelength carries a different optical signal, and optical signals of different wavelengths are commonly transmitted in the optical waveguide, for example, transmitted in the same optical fiber. It can realize large-capacity and low-loss data communication.
  • the wavelength selective optical switch of the embodiment of the present application includes a polarization splitting unit 310, and at least one wavelength selecting unit 320, wherein each of the wavelength selecting units 320 has a different target wavelength.
  • each of the wavelength selective units of the wavelength selective optical switches has a different target wavelength corresponding to each other, that is, the wavelength of the optical signal output by each of the wavelength selecting units is different.
  • the wavelengths corresponding to the three wavelength selection units shown in FIG. 3 are ⁇ i, ⁇ i+1, and ⁇ n, respectively. The above is described by taking one of the wavelength selecting units 320 as an example, and the wavelength selected by the wavelength selecting unit 320 is ⁇ i.
  • the input beam is polarization-multiplexed and wavelength division multiplexed; the output beam finally output by the polarization combining unit 323, that is, the beam after combining the first target beam and the second target beam Is a single-wavelength polarization multiplexed beam that satisfies the target wavelength.
  • the original input beam is changed from a multi-wavelength beam to a single-wavelength output beam.
  • the wavelength selective optical switch of the embodiment of the present application will be described in detail below with reference to FIGS. 4 to 9.
  • Two wavelength selection units 320 i.e., the i-th wavelength selection unit 320 (corresponding to the wavelength ⁇ i) and the i+1th wavelength selection unit 320 (corresponding to the wavelength ⁇ i+1), are shown in FIGS. 3 to 9, but
  • the wavelength selective optical switch can also include more wavelength selection units 320, which can be selected according to actual application conditions. The details are described below in conjunction with the ith wavelength selection unit shown in FIGS. 3 through 9, and other wavelength selection units may refer to the related description of the wavelength selection unit.
  • the first polarized light beam is a TM mode or a TE mode optical signal
  • the second polarized light beam is a TM mode or Optical signal in TE mode.
  • the mode is an electromagnetic field distribution that the waveguide of a specific shape can support, which is mathematically a guided mode solution of the Maxwell equation of the structure, corresponding to an eigenvalue, that is, an effective refractive index.
  • the effective refractive index is an important parameter in the waveguide, which is related to the structure of the waveguide, material properties (refractive index), operating wavelength, and mode order. Once the characteristics of these parameters of the waveguide are determined, the effective refractive index of a certain mode of the waveguide will also be determined.
  • the beam of the TM mode and the TE mode will be described later as an example.
  • the wavelength selective optical switch of the embodiment of the present application can be used for the selection of polarized light having any polarization state, that is, the first polarized light beam and the second polarized light beam can be polarized light beams having any polarization mode, in particular, A polarized beam may be an TE mode or a TM mode optical signal, and the second polarized beam may be a TE mode or a TM mode optical signal.
  • the first polarized light beam is an optical signal of the TM mode or the TE mode
  • the second polarized light beam is an optical signal of the TE mode.
  • the present application is not limited thereto.
  • the first group of microring resonators 321 may include one microring resonator or a plurality of cascaded microring resonators
  • the second group of microring resonators 322 includes a microring resonator or stage. Multiple microring resonators connected.
  • the number of microring resonators in the first group of microring resonators 321 is equal to the number of microring resonators in the second group of microring resonators 322.
  • FIG. 4 shows a schematic structural diagram of a wavelength selective optical switch of another embodiment of the present application.
  • a microring resonator is included in the first group of microring resonators 321 and a microring resonator is included in the second group of microring resonators 322.
  • the first polarized beam and the second polarized beam are polarized beams of different modes, wherein the microring resonators in the first set of microring resonators 321 are matched with the pattern of the first polarized beams.
  • the ring resonator, the microring resonator in the second set of microring resonators 322 is a microring resonator that matches the pattern of the second polarized beam.
  • Pattern matching means that the effective refractive indices of adjacent two waveguides are close or equal.
  • the effective refractive indices of two of the adjacent waveguides in the two spaces are close or equal, the corresponding two modes satisfy the phase matching condition.
  • Energy coupling and mode switching can occur between modes that satisfy the phase matching condition.
  • the waveguides in a planar waveguide loop usually have the same height, so the waveguide width of adjacent regions determines the effective refractive index of a certain mode of the waveguide; the waveguide spacing of adjacent regions determines the energy coupling and mode conversion efficiency per unit length;
  • the waveguide length of the adjacent region ie, the coupling length determines the total energy coupling and mode conversion efficiency of the device.
  • waveguide pitch By selecting the appropriate waveguide pitch, waveguide width, and waveguide length (ie, coupling length) of adjacent regions, it is possible to fully couple (convert) the light energy of one mode in one waveguide to the corresponding mode of the other waveguide.
  • the first polarized beam is a polarized beam of the TM mode
  • the microring resonator in the first set of microring resonators 321 can be designed as a microring resonator matched with the TM mode
  • the second polarized beam The polarized beam in the TE mode
  • the microring resonator in the second set of microring resonators 322 can be designed as a microring resonator that matches the TE mode.
  • the target beam satisfying the target wavelength ⁇ i is coupled to the microring resonator matched with the TM mode
  • the optical signal of the TE mode passes In the second set of microring resonators 322, the target beam that satisfies the target wavelength ⁇ i is coupled into the microring resonator that matches the TE mode.
  • the polarization splitting unit 320 includes a polarization beam splitter
  • the polarization combining unit 323 includes a A three-optical waveguide for coupling the first target beam and the second target beam.
  • the combining of the first target beam and the second target beam is performed in the coupled optical waveguide (or optical waveguide), and the first target beam and the second target beam are resonated from the respective corresponding microrings.
  • the output of the device group After the output of the device group is output, it enters the optical waveguide to perform multiplexing, and finally outputs through the optical waveguide. At this time, it is not necessary to add other multiplexer devices.
  • the first set of microring resonators 321 can be implemented in the first optical waveguide.
  • the light energy of the TM mode is fully coupled (converted) to a mode corresponding to the first set of microring resonators 321, and the first target beam of the TM mode coupled to the first set of microring resonators 321 is output to the third light.
  • the microring resonator in the second group of microring resonators 322 is a microring resonator matched with the pattern of the second polarized beam, and then the second group of microring resonators 322 can realize the second optical waveguide
  • the light energy of the TE mode is fully coupled to the corresponding mode of the second set of microring resonators 322, and the second target beam of the TE mode coupled to the second set of microring resonators 322 is output to the third light In the waveguide.
  • polarizing beam splitter 310 is used to split the input optical signal into a first polarized beam and a second polarized beam.
  • the receiving end of the first group of microring resonators 321 receives a first polarized beam, the first target beam of the first polarized beam that satisfies the target wavelength ⁇ i is coupled to the first set of microring resonators 321
  • An output end of a microring resonator 321 is output;
  • a receiving end of the second group of microring resonators 322 receives a second polarized beam, and the second target beam of the second polarized beam that satisfies the target wavelength ⁇ i is coupled to the second
  • the set of microring resonators 322 are output from the output of the second microring resonator 322.
  • An output end of the first group of microring resonators 321 outputs the first target beam to a third optical waveguide
  • an output end of the second group of microring resonators 322 outputs the second target beam to the third optical waveguide.
  • the first target beam output by the first group of microring resonators 321 and the second target beam output by the second group of microring resonators 322 are combined in the third optical waveguide.
  • the first target beam and the second target beam that are combined in the third optical waveguide are output.
  • the input optical signal can be divided into TMs in the polarization beam splitter 310.
  • the mode optical signal and the TE mode optical signal enter the wavelength selection unit 320, respectively.
  • the TM mode optical signal is transmitted to the input of the first set of microring resonators 321, and the TE mode optical signal is transmitted to the input of the second set of microring resonators 322.
  • the first group of microring resonators 321 the first target of the TM mode optical signal that satisfies the target wavelength ⁇ i A beam of light is coupled into the first set of microring resonators 321; if the wavelength ⁇ i in the TE mode optical signal conforms to the resonant wavelength of the second set of microring resonators 322, then the second set of microring resonators 322 the TE mode A second target beam in the optical signal that satisfies the target wavelength ⁇ i is coupled into the second set of microring resonators 322.
  • the first target beam in the first group of microring resonators 321 is output from the output end of the first group of microring resonators 321 to the coupling region of the first group of microring resonators 321 and the third optical waveguide;
  • the second target beam in the microring resonator 322 is output from the output of the second set of microring resonators 322 to the coupling region of the second set of microring resonators 322 and the third waveguide.
  • the first target beam output from the first group of microring resonators 321 and the second target beam output from the second group of microring resonators 322 are combined in the third optical waveguide.
  • the first target beam and the second target beam after the multiplexed in the third optical waveguide are output.
  • the first target beam of the TM mode is combined with the second target beam of the TE mode to form a polarization-multiplexed single-wavelength optical signal, and the output beam has a wavelength of ⁇ i, satisfying the first group of microring resonators 321 and the second group.
  • the difference between the transmission paths of the first polarized beam and the second polarized beam in the optical waveguide is significantly reduced, and the polarization dependent loss can be further reduced while reducing the differential group velocity delay.
  • the wavelength selective optical switch may further include a wavelength detecting unit corresponding to the wavelength selecting unit, the wavelength detecting unit configured to detect the wavelength of the first target beam and the wavelength of the second target beam.
  • the wavelength detecting unit is respectively disposed, respectively, for the first target The wavelength of the beam and the wavelength of the second target beam are detected.
  • the wavelength detecting unit includes a first photocoupler 341 at an output end of the first group of microring resonators 321, a first photodetector 351 connected to the first photocoupler 341, and a second A second optical coupler 342 at the output of the set of microring resonators 322 and a second photodetector 352 coupled to the second optical coupler 342.
  • FIG. 5 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • a first optical coupler 341 may be disposed at an output end of the first group of microring resonators 321 for extracting a small amount of optical signal energy from the trunk to be delivered to the first photodetector. Monitoring is performed in 351.
  • the first optical coupler 341 outputs a part of the optical signals of the first target beam to the first photodetector 351.
  • the first photodetector 351 feeds back the optical signals to the first set of microrings through an external feedback circuit.
  • the electrode of the resonator 321 is driven to stabilize the wavelength of the downloaded optical signal by compensating for the amount of change in the resonant wavelength ⁇ i of the first group of microring resonators in real time.
  • a second optical coupler 342 can be disposed at the output of the second set of microring resonators 322 to output a portion of the optical signals of the second target beam to the second photodetector 352.
  • the partial optical signal is fed back to the electrode driving of the second group of microring resonators 322 through an external feedback circuit, and the wavelength of the downloaded optical signal is stabilized by real-time compensation of the amount of change of the resonant wavelength ⁇ i of the second group of microring resonators. .
  • the wavelength of the optical signal downloaded by the wavelength selecting unit can be stabilized by real-time monitoring and compensation of the target wavelength.
  • FIG. 4 and 5 are each illustrated by taking a microring resonator included in the first group of microring resonators 321 and a microring resonator in the second group of microring resonators 322 as an example.
  • the first set of microring resonators 321 and the second set of microring resonators 322 may each include a plurality of microring resonators.
  • FIG. 6 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • the first group of microring resonators 321 may include two cascaded microring resonators, and the second group of microrings. Two cascaded microring resonators can be included in the resonator 322. That is to say, it is possible here to replace one of the above-mentioned wavelength selection units with a plurality of cascaded microring resonators, and other places may be unchanged. Thereby, the operating spectral bandwidth of the optical switch can be expanded.
  • the number of microring resonators in the first set of microring resonators is the same as the number of microring resonators in the second set of microring resonators.
  • FIG. 7 shows a schematic structural diagram of a wavelength selective optical switch of another embodiment of the present application.
  • the first group of microring resonators 321 includes a microring resonator
  • the second group of microring resonators 322 includes a microring resonator as an example.
  • the first polarized beam and the second polarized beam are polarized beams of the same mode, wherein the microring resonators in the first set of microring resonators 321 and the microarrays in the second set of microring resonators 322 Ring resonator, for Microring resonators that match the same pattern.
  • the first polarized beam is a polarized beam of TE mode
  • the microring resonator in the first set of microring resonators 321 can be designed as a microring resonator matched with the TE mode
  • the polarized beam is also a polarized beam in TE mode
  • the microring resonator in the second set of microring resonators 322 is also designed as a microring resonator that matches the TE mode.
  • the target beam satisfying the target wavelength ⁇ i is coupled to the microring resonator matched with the TE mode, while the other TE mode light is As the signal passes through the second set of microring resonators 322, the target beam that satisfies the target wavelength ⁇ i is coupled into the microring resonator that matches the TE mode.
  • the first group of micro- The ring resonator 321 and the second set of microring resonators 322 process the two TE beams, respectively.
  • the polarization splitting unit 310 includes a polarization beam splitting rotator
  • the polarization combining unit 323 includes a polarization combining beam rotator
  • the input of the first set of microring resonators 321 receives a first polarized beam
  • the first target beam of the first polarized beam that satisfies the target wavelength ⁇ i is coupled to the first set of microring resonators 321
  • the input of the second set of microring resonators 322 receives the second polarized beam and couples the second target beam of the second polarized beam that satisfies the target wavelength ⁇ i into the second set of microring resonators 322.
  • the output of the first set of microring resonators 321 outputs a first target beam to the polarization combining rotator 323, and the output of the second group of microring resonators 322 outputs the second target beam to the polarization combining rotator 323
  • the polarization combining rotator 323 is configured to combine the first target beam and the second target beam, and combine the first target beam and the second target beam to be output.
  • the input optical signal can be divided into the polarization beam splitter 310.
  • Two TE mode optical signals wherein the first TE mode optical signal (first polarized light beam) is a TE mode component in the original polarization multiplexing and wavelength division multiplexed optical signal, and the second TE mode light
  • the signal (second polarized light beam) is obtained by converting the TM mode components in the original polarization multiplexed and wavelength division multiplexed optical signals, and the two optical signals respectively enter the wavelength selecting unit 320.
  • the first group of microring resonators 321 satisfy the target wavelength ⁇ i in the optical signals of the TE mode.
  • a first target beam is coupled into the first set of microring resonators 321; if the wavelength ⁇ i in the second TE mode optical signal conforms to the resonant wavelength of the second set of microring resonators 322, then the second set of microrings Resonator 322 couples a second target beam of the TE mode optical signal that satisfies the target wavelength ⁇ i into the second set of microring resonators 322.
  • the first target beam in the first set of microring resonators 321 is output from the output of the first set of microring resonators to the polarization combining rotator 323; the second target beam in the second set of microring resonators 322 From the output of the second set of microring resonators 322, the output is to the polarization combining rotator 323.
  • a polarization combining rotator 323 is used to combine the first target beam and the second target beam.
  • the first target beam output from the first group of microring resonators 321 and the second target beam output from the second group of microring resonators 322 are combined in the polarization combining rotator 323.
  • the TE mode optical signal originally input to the optical signal is converted into the TM mode optical signal by the polarization combining rotator 323.
  • the other TE mode optical signal passes through the polarization combining rotator 323 to maintain the TE mode optical signal, and combines to form a polarization multiplexed single wavelength optical signal.
  • the combined TE mode optical signal and TM mode output by the polarization combining rotator 323 The optical signal, the wavelength of the output beam is ⁇ i, and satisfies the resonant wavelength ⁇ i of the first group of microring resonators 321 and the second group of microring resonators 322.
  • the number of polarization states of the first polarized beam and the second polarized beam are the same, and the paths transmitted by the first polarized beam and the second polarized beam from the splitting to the combining are equal in the optical waveguide. Therefore, polarization dependent loss and differential group velocity delay can be reduced.
  • microring resonators in the first group of microring resonators 321 and the microring resonators in the second group of microring resonators 322 are microring resonators for the same polarization mode, it is possible to use the same processing The same microring resonator of the polarization beam does not need to design two different microring resonators, which reduces the complexity of the system and reduces the control complexity.
  • the polarization splitting unit in this embodiment may further include other devices capable of splitting and rotating the input optical signal to realize dividing the input optical signal into two polarized light beams such as TE mode optical signals and TM mode light. Signal and convert the TM mode optical signal into a TE mode optical signal.
  • the polarization beam splitting unit may include a polarization beam splitter and a polarization converter, or other optical structure capable of performing this function.
  • the polarization combining unit can also include other devices that are capable of combining and rotating the input optical signals. This application does not limit this.
  • the wavelength selective optical switch in this embodiment may further include a wavelength detecting unit corresponding to the wavelength selecting unit, where the wavelength detecting unit is configured to perform wavelengths of the first target beam and wavelengths of the second target beam Detection.
  • the wavelength detecting unit 320 includes a first photocoupler 341 at an output end of the first group of microring resonators 321, a first photodetector 351 connected to the first photocoupler 341, and a first photodetector 351 A second optical coupler 342 at the output of the two sets of microring resonators 322, and a second photodetector 352 connected to the second optical coupler 342.
  • FIG. 8 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • a first optical coupler 341 may be disposed at an output end of the first group of microring resonators 321 for extracting a small amount of optical signal energy from the trunk to be delivered to the first photodetector. Monitoring is performed in 351.
  • the first optical coupler 341 outputs a part of the optical signals of the first target beam to the first photodetector 351.
  • the first photodetector 351 feeds back the optical signals to the first set of microrings through an external feedback circuit.
  • the electrode of the resonator 321 is driven to stabilize the wavelength of the downloaded optical signal by compensating for the amount of change in the resonant wavelength ⁇ i of the first group of microring resonators in real time.
  • a second optical coupler 342 can be disposed at the output of the second set of microring resonators 322 to output a portion of the optical signals of the second target beam to the second photodetector 352.
  • the partial optical signal is fed back to the electrode driving of the second group of microring resonators 322 through an external feedback circuit, and the wavelength of the downloaded optical signal is stabilized by real-time compensation of the amount of change of the resonant wavelength ⁇ i of the second group of microring resonators. .
  • the wavelength of the optical signal downloaded by the wavelength selecting unit can be stabilized by real-time monitoring and compensation of the target wavelength.
  • FIG. 7 and FIG. 8 both illustrate that the first group of microring resonators 321 includes one microring resonator, and the second group of microring resonators 322 includes a microring resonator as an example. .
  • the first set of microring resonators 321 and the second set of microring resonators 322 may each include a plurality of microring resonators.
  • FIG. 9 is a schematic structural diagram of a wavelength selective optical switch according to another embodiment of the present application.
  • the first group of microring resonators 321 may include two cascaded microring resonators, and the second group of microrings. Two cascaded microring resonators can be included in the resonator 322. That is to say, it is possible here to replace one of the above-mentioned wavelength selection units with a plurality of cascaded microring resonators, and other places may be unchanged. Thereby, the operating spectral bandwidth of the optical switch can be expanded.
  • the wavelength selective optical switch described in the above embodiment is described by taking a wavelength selecting unit included in the wavelength selective optical switch as an example.
  • the wavelength selective may include a plurality of such wavelength selecting units to form Large scale optical switch matrix.
  • the wavelength selective optical switch may further include a polarization splitting unit 310 as described in FIGS. 2 to 9, and n wavelength selection units as described in FIGS. 2 to 9, according to FIGS. 2 to 9, The light beam that does not satisfy the target wavelength among the first polarized light beams output by the i-th wavelength selecting unit and the light beam that does not satisfy the target wavelength of the second polarized light beam enter the (i+1)th wavelength selecting unit, respectively.
  • the light beam that does not satisfy the target wavelength in the first polarized light beam passes through the first set of micro ring resonators in the i+1th wavelength selecting unit, so that selection of the light beam satisfying the target wavelength ⁇ i+1 is achieved, and the second polarized light beam is not satisfied.
  • the beam of the target wavelength passes through the second set of microring resonators of the i+1th wavelength selection unit to effect selection of the beam satisfying the target wavelength ⁇ i+1.
  • i is a positive integer greater than zero and less than n.
  • the wavelength selective optical switch in the embodiment of the present application has the same number of polarization states of the first polarized light beam and the second polarized light beam, so that the polarization dependent loss can be greatly reduced, which is beneficial to the performance of the optical switching node.
  • first group of microring resonators and the second group of microring resonators are symmetrically distributed along the input direction of the optical signal, and they respectively process the processing of the two polarized beams, thereby making the first polarized beam and the second polarized beam.
  • the equal or close transmission paths in the optical waveguide can further reduce the polarization dependent loss while reducing the differential group velocity delay.
  • the wavelength selective optical switch in the embodiment of the present application has a simple structure and a compact volume, and is suitable for forming a large-scale optical switch matrix.
  • the wavelength selective optical switch based on the embodiment of the present application can be connected to form an optical switch having other deformed connection relationships.
  • the direction of the incident light input port and the target output port in the wavelength selective optical switch in FIG. 2 to FIG. 9 can be changed by making a corresponding change in the connection relationship of the wavelength selecting unit, and details are not described herein.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple orders.
  • Meta or components may be combined or integrated into another system, or some features may be omitted or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种波长选择性光开关,包括偏振分束单元(310)和波长选择单元(320),该偏振分束单元(310),用于将输入光束分成第一偏振光束和第二偏振光束,并将第一偏振光束传输至第一组微环谐振器(321)的输入端,将第二偏振光束传输至第二组微环谐振器(322)的输入端;第一组微环谐振器(321),用于将第一偏振光束中的第一目标光束耦合至第一组微环谐振器(321)中,并将第一目标光束输出至偏振合束单元(323);第二组微环谐振器(322),用于将第二偏振光束中的第二目标光束耦合至第二组微环谐振器(322)中,并将第二目标光束输出至偏振合束单元(323);偏振合束单元(323),用于对第一目标光束和第二目标光束进行合束。这样,第一偏振光束与第二偏振光束的偏振态转换次数相同,能够降低偏振相关损耗。

Description

波长选择性光开关
本申请要求于2016年09月26日提交中国专利局、申请号为201610852485.6、发明名称为“波长选择性光开关”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信领域中的波长选择性光开关。
背景技术
随着密集波分复用(Dense Wavelength Division Multiplexing,DWDM)技术在光纤通信系统和数据中心系统中的应用,全光交换已经成为一种满足日益增长的带宽的趋势。在密集波分复用系统中,每个不同的光波长承载一路不同的光信号,不同波长的光信号在同一条光纤中传输,实现了大容量和低损耗的数据通信。光开关是实现全光交换系统的关键器件,它可以实现全光层的路由选择、波长选择、光交叉连接、自愈保护等功能等。目前已经实现的光开关包括传统的机械结构光开关、基于微光机电系统开关、液晶光开关、波导型光开关和半导体光放大器光开关。其中波导型光开关通常依靠成熟的互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺在绝缘衬底上的硅(Silicon-On-Insulator,SOI)平台或磷化铟(Indium Phosphide,InP)平台上制备,利用硅材料的热光效应或等离子体色散效应可以使切换速度达到纳秒到微秒量级,且体积小,集成度高,并且与CMOS工艺兼容,因此可实现低成本的量产。波导型微环谐振器是一种对波长具有敏感的选择性导通的器件,它具有结构紧凑、集成度高、功耗低、设计简单等优点,可用于实现滤波、复用、解复用、路由、波长变换、光调制、光交换等功能。当波分复用的光信号通过微环谐振器时,如果光信号的波长符合微环谐振器的谐振波长,此光信号将会被耦合到微环谐振器中产生共振,从而实现指定波长的光信号的路由功能。与级联马赫-曾德尔干涉仪(Mach-Zehnder-interferomete,MZI)型硅基光开关矩阵相比,由微环谐振器组成的光开关阵列拓扑结构简单,级数少,并具有波长选择性,因此穿通波长的光信号不会受微环谐振器的耦合影响,直通的插损很低。尤其是在城域光网络的城域汇聚环中,微环谐振器型的光开关同时具备滤波和上下载信号的功能,使交换节点设备简单高效。
然而现有的微环谐振器通常只能支持单偏振态的信号光上传和下载,这是因为微环谐振器的谐振波长对波导的有效折射率和结构尺寸十分敏感。通常来讲,波导的TE模式和TM模式的有效折射率不相同,导致TE模式和TM模式的谐振波长也不相同,因此微环谐振器无法处理偏振复用的光信号。即使采用一些横截面为正方形或者脊形的特殊设计的波导结构,使波导的TE模式和TM模式的有效折射率或者群折射率相等,工艺误差造成的波长结构尺寸的改变也会导致TE模式和TM模式的谐振波长不相同。这将限制了微环谐振器在城域光网络中的应用场景。如何设计一种偏振相关损耗低的微环谐振器光开关,是城域光网络中汇聚环光交换节点的关键技术之一。
发明内容
有鉴于此,本申请实施例提供了一种波长选择性光开关,能够在偏振无关的光信号的选择过程中,降低偏振相关损耗。
第一方面,本申请实施例提供了一种波长选择性光开关,包括偏振分束单元和波长选择单元,所述波长选择单元包括两组微环谐振器和偏振合束单元,
所述偏振分束单元,用于将输入光束分成第一偏振光束和第二偏振光束,并将所述第一偏振光束传输至所述两组微环谐振器中的第一组微环谐振器的输入端,将所述第二偏振光束传输至所述两组微环谐振器中的第二组微环谐振器的输入端;
所述第一组微环谐振器,用于将传输至所述第一组微环谐振器的输入端的所述第一偏振光束中的第一目标光束,耦合至所述第一组微环谐振器中,并将耦合至所述第一组微环谐振器中的所述第一目标光束,从所述第一组微环谐振器的输出端输出至所述偏振合束单元,所述第一目标光束的波长等于所述波长选择单元对应的目标波长;
所述第二组微环谐振器,用于将传输至所述第二组微环谐振器的输入端的所述第二偏振光束中的第二目标光束,耦合至所述第二组微环谐振器中,并将耦合至所述第二组微环谐振器中的所述第二目标光束,从所述第二组微环谐振器的输出端输出至所述偏振合束单元,所述第二目标光束的波长等于所述目标波长;
所述偏振合束单元,用于对从所述第一组微环谐振器的输出端接收到的所述第一目标光束,以及从所述第二组微环谐振器的输出端接收到的所述第二目标光束进行合束,并输出对所述第一目标光束和所述第二目标光束进行合束后的光束。
因此,该波长选择性光开关通过对两个偏振光束进行相同的波长选择处理,使得第一偏振光束与第二偏振光束的偏振态转换次数相同,因此能够降低偏振相关损耗,有利于光交换节点的性能。
而且,在该波长选择性光开关中,第一偏振光束与第二偏振光束在光波导中的传输路程相等或相近,可以在进一步降低偏振相关损耗的同时,还降低差分群速度时延。
可选地,在第一方面的一种实现方式中,所述偏振分束单元通过连接所述偏振分束单元与所述第一组微环谐振器的输入端的第一光波导,将所述第一偏振光束传输至所述第一组微环谐振器的输入端,且所述第一偏振光束中的没有耦合至所述第一组微环谐振器中的光束沿所述第一光波导继续传输;
所述偏振分束单元通过连接所述偏振分束单元与所述第二组微环谐振器的输入端的第二光波导,将所述第二偏振光束传输至所述第二组微环谐振器的输入端,且所述第二偏振光束中的没有耦合至所述第二组微环谐振器中的光束,沿所述第二光波导继续传输。
应理解,该波长选择性光开关可以用于具有任何偏振态的偏振光的选择,也就是说,第一偏振光束和第二偏振光束可以为具有任何偏振模式的偏振光束,特别地,第一偏振光束可以为TE模式或TM模式的光信号,第二偏振光束可以为TE模式或TM模式的光信号。
可选地,在第一方面的一种实现方式中,所述第一偏振光束与所述第二偏振光束为相同模式的偏振光束,其中,所述第一组微环谐振器中的微环谐振器和所述第二组微环谐振器中的微环谐振器,为与所述相同模式相匹配的微环谐振器。
例如,如果第一偏振光束为TM模式的偏振光束,那么第一组微环谐振器中的微环谐振器可以设计成与TM模式相匹配的微环谐振器;如果第二偏振光束为TE模式的偏振 光束,那么第二组微环谐振器中的微环谐振器可以设计成与TE模式相匹配的微环谐振器。
可选地,在第一方面的一种实现方式中,所述偏振分束单元包括偏振分束旋转器,所述偏振合束单元包括偏振合束旋转器。
因此,第一偏振光束与第二偏振光束的偏振态转换次数是相同的,而且第一偏振光束与第二偏振光束在光波导中传输的路程是相等的,可以降低偏振相关损耗和差分群速度时延。
而且,由于第一组微环谐振器中的微环谐振器,与第二组微环谐振器中的微环谐振器,为针对同一偏振模式的微环谐振器,因此可以使用处理同一偏振态光束的相同的微环谐振器,不用设计两套不同的微环谐振器,降低了系统的复杂程度,降低了控制复杂度。
应理解,该实施例中的偏振分束单元,还可以包括其他能够对输入光信号进行分束和旋转的器件,以实现将输入光信号分成两路偏振光束例如TE模式光信号和TM模式光信号,并将其中一路偏振光束例如TM模式光信号转换成TE模式光信号。例如偏振分束单元可以包括偏振分束器和偏振转换器,或者其他能够实现该功能的光学结构。同样,偏振合束单元也可以包括其他能够对输入光信号进行合束和旋转的器件。
可选地,在第一方面的一种实现方式中,所述第一偏振光束与所述第二偏振光束为不同模式的偏振光束,其中,所述第一组微环谐振器中的微环谐振器为与所述第一偏振光束的模式相匹配的微环谐振器,所述第二组微环谐振器中的微环谐振器为与所述第二偏振光束的模式相匹配的微环谐振器。
可选地,在第一方面的一种实现方式中,所述偏振分束单元包括偏振分束器,所述偏振合束单元包括第三光波导,所述第三光波导用于对所述第一目标光束和所述第二目标光束进行耦合。
也就是说,这里对第一目标光束和第二目标光束的合束是在耦合光波导中完成的,无需增加其他的合波器件。
因此,第一偏振光束与第二偏振光束的无需经过偏振态转换,大大降低了偏振相关损耗。另外,第一偏振光束与第二偏振光束在光波导中的传输路程的差值明显减小,可以在进一步降低偏振相关损耗的同时,还降低差分群速度时延。
可选地,在第一方面的一种实现方式中,所述第一组微环谐振器包括一个微环谐振器或者级联的多个微环谐振器,所述第二组微环谐振器包括一个微环谐振器或者级联的多个微环谐振器。
因此,该波长选择性光开关通过使用级联的多个微环谐振器,能够扩大该光开光的工作光谱带宽。
进一步地,第一组微环谐振器中的微环谐振器的个数,等于第二组微环谐振器中的微环谐振器的个数。从而降低波长选择单元的结构复杂性,减少两路偏振光束在光波导中传输时的路程差,减少偏振相关损耗。
可选地,在第一方面的一种实现方式中,所述波长选择性光开关还包括与所述波长选择单元对应的波长检测单元,所述波长检测单元用于对所述第一目标光束的波长和所述第二目标光束的波长进行检测。
可选地,在第一方面的一种实现方式中,所述波长检测单元包括位于所述第一组微 环谐振器的输出端处的第一光耦合器,和与所述第一光耦合器相连接的第一光探测器,以及位于所述第二组微环谐振器的输出端处的第二光耦合器,和与所述第二光耦合器相连接的第二光探测器。
在该波长选择单元中,可以在两组组微环谐振器的输出端处各设置一个光耦合器,用于从干路中抽取少量的光信号能量输送到光探测器中进行监控。光探测器通过外部的反馈电路,将这抽取出的这部分光信号分别反馈给两组微环谐振器的电极驱动,通过实时补偿两组微环谐振器的谐振波长的改变量来稳定下载的光信号的波长。
因此,该波长选择性光开关中通过设置波长监测单元,以对目标波长的实时监测与补偿,能够稳定波长选择单元下载的光信号的波长。
第二方面,提供了一种波长选择性光开关,其特征在于,包括第一方面及各种实现方式中所述的偏振分束单元,以及至少一个第一方面及各种实现方式中所述的波长选择单元,其中,所述至少一个波长选择单元中的每个波长选择单元所对应的目标波长不同
例如,该波长选择性光开关可以包括上述的偏振分束单元,以及n个上述的波长选择单元,其中,第i个波长选择单元输出的第一偏振光束中不满足目标波长的光束,与第二偏振光束中不满足目标波长的光束,分别进入第i+1个波长选择单元。第一偏振光束中不满足目标波长的光束通过第i+1个波长选择单元中的第一组微环谐振器,实现对满足目标波长λi+1的光束的选择,第二偏振光束中不满足目标波长的光束通过第i+1个波长选择单元中的第二组微环谐振器,实现对满足目标波长λi+1的光束的选择。
基于本申请实施例的波长选择性光开关,通过设置两组微环谐振器分别对两个偏振光束进行相同的波长选择处理,使得第一偏振光束与第二偏振光束的偏振态转换次数相同,从而降低偏振相关损耗,有利于光交换节点的性能。
而且,两路偏振光束在光波导中的传输路程相等或相近,可以在进一步降低偏振相关损耗的同时,还降低差分群速度时延。
另外,本申请实施例中的该波长选择性光开关结构简单,体积紧凑,还能够组成大规模光开关矩阵。
附图说明
图1是现有技术中的一个偏振无关的微环谐振器的示意性结构图。
图2是本申请一个实施例的波长选择性光开关的示意性结构图。
图3是本申请另一实施例的波长选择性光开关的示意性结构图。
图4是本申请另一实施例的波长选择性光开关的示意性结构图。
图5是本申请另一实施例的波长选择性光开关的示意性结构图。
图6是本申请另一实施例的波长选择性光开关的示意性结构图。
图7是本申请另一实施例的波长选择性光开关的示意性结构图。
图8是本申请另一实施例的波长选择性光开关的示意性结构图。
图9是本申请另一实施例的波长选择性光开关的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图1是现有技术中的一个偏振无关的微环谐振器的示意性结构图。该微环谐振器100包含两个部分:偏振敏感工作单元110和偏振旋转反射镜120。偏振复用的光信号包含TE模式光信号和TM模式光信号,输入的偏振复用的光信号从总线光波导130进入此偏振无关微环谐振器结构,经过偏振分束器111,TE模式光信号从光波导112输出,TM模式光信号从光波导113输出。其中,光波导112与微环谐振器114耦合,符合微环谐振器114的谐振波长的TE模式光信号耦合到微环谐振器114中逆时针方向传输,从输出光波导115耦合输出,进入偏振合波器118。光波导113中的TM模式光信号传输到远端的偏振旋转反射镜121,反射回来转变成TE模式的光信号TETM进入光波导112,与TE光信号反向传输。其中偏振旋转反射镜120包含偏振旋转器121和弯曲波导122。符合微环谐振器114的谐振波长的光信号TETM耦合到微环谐振器114中顺时针方向传输,从输出光波导115耦合输出,再通过弯曲光波导116和偏振旋转器117转换成TM模式光信号,进入偏振合波器118。偏振合波器118将输入的TE模式光信号和TM模式光信号进行合波并从总线光波导140输出,从而实现偏振无关的滤波切换功能。
但是,在该微环谐振器中,TE模式的光信号和TM模式的光信号经过的光波导长度相差很大,TM模式光信号的偏振态转换次数较多,会造成严重的偏振相关损耗和差分群速度时延,影响系统性能;而且,该微环谐振器的结构复杂,体积庞大,不适合组成大规模的光开关矩阵。
这里的偏振相关损耗是指不同偏振状态的光信号通过一个系统后,产生的能量损失的差,本申请实施例中可以使两个不同偏振态的偏振光束通过该光开关之后,两者的能量损耗的差值。该差值越小,表明该光开关对偏振状态越不敏感。
波长选择性光开关(Wavelength Selective Switch,WSS)是近几年发展迅速的波分系统的子系统,它可以使不同的波长的光信号在任意的输入与输出端口之间进行切换,大大提高了波分系统的组网能力。从工作原理上来讲,波长选择性开关可以划分为微机电型,平面波导型和液晶型等等。本申请实施例中的波长选择性光开关就是平面波导型中的一种。
图2是本申请实施例的波长选择性光开关的示意性结构图。该波长选择性光开关包括偏振分束单元310和波长选择单元320,其中,波长选择单元320包括两组微环谐振器和偏振合束单元323,该两组微环谐振器包括第一组微环谐振器321和第二组微环谐振器322。
偏振分束单元310,用于将输入光束分成第一偏振光束和第二偏振光束,并将第一偏振光束传输至两组微环谐振器中的第一组微环谐振器321的输入端,将第二偏振光束传输至两组微环谐振器中的第二组微环谐振器322的输入端;
第一组微环谐振器321,用于将传输至第一组微环谐振器321的输入端的第一偏振光束中的第一目标光束,耦合至第一组微环谐振器321中,并将耦合至第一组微环谐振器321中的第一目标光束,从第一组微环谐振器321的输出端输出至偏振合束单元323,第一目标光束的波长等于波长选择单元320对应的目标波长;
第二组微环谐振器322,用于将传输至第二组微环谐振器322的输入端的第二偏振光束中的第二目标光束,耦合至第二组微环谐振器322中,并将耦合至第二组微环谐振器322中的第二目标光束,从第二组微环谐振器322的输出端输出至偏振合束单元323,第二目标光束的波长等于目标波长;
偏振合束单元323,用于对从第一组微环谐振器321的输出端接收到的第一目标光束,以及从第二组微环谐振器322的输出端接收到的第二目标光束进行合束,并输出对第一目标光束和第二目标光束进行合束后的光束。
具体而言,偏振复用且波长复用的输入光束,经过偏振分束单元被分成两种偏振态不同的偏振光束,即第一偏振光束和第二偏振光束。这两束偏振光束通过输入组件进入波长选择单元320,如图2所示,第一偏振光束进入波长选择单元320中的第一组微环谐振器321,第二偏振光束进入第二组微环谐振器322中,其中,本申请实施例中,附图中的箭头方向为光束在光波导中的传播方向的示意。
传输至第一组微环谐振器321的输入端的第一偏振光束中的第一目标光束,被耦合到第一组微环谐振器321中产生共振,从而实现指定波长λi的光信号的选择,第一组微环谐振器321将第一偏振光束中满足目标波长λi的第一目标光束耦合至第一组微环谐振器321中,其中λi为该第一组微环谐振器321的谐振波长。进入第二组微环谐振器322中的第二偏振光束,被耦合到第二组微环谐振器322中产生共振,从而实现指定波长λi的光信号的选择,第二微环谐振组322将第二偏振光束中满足目标波长λi的第二目标光束耦合至第二组微环谐振器322中,其中该第二组微环谐振器322的谐振波长也为λi。该第一组微环谐振器321的谐振波长与第二组微环谐振器322的谐振波长相等,均等于目标波长λi。
第一组微环谐振器321从第一偏振光束中耦合出来的第一目标光束,通过第一组微环谐振器321与偏振合束单元323之间的光波导,传输至偏振合束323,第一组微环谐振器321与偏振合束单元323之间的该光波导,与第一组微环谐振器321之间相互耦合,使得第一组微环谐振器321的输出的光束可以进入该光波导从而传输至偏振合束单元323。
同样,第二组微环谐振器322从第一偏振光束中耦合出来的第一目标光束,通过第二组微环谐振器322与偏振合束单元323之间的光波导,传输至偏振合束323,第二组微环谐振器322与偏振合束单元323之间的该光波导,与第二组微环谐振器322之间相互耦合,使得第二组微环谐振器322的输出的光束可以进入该光波导从而传输至偏振合束单元323。
偏振合束单元323对第一组微环谐振器321耦合出来的第一目标光束,以及第二组微环谐振器322耦合出来的第二目标光束进行合束并将第一目标光束和第二目标光束进行合束后的光束输出,从而完成一次波长选择的过程。该波长选择单元320输出的单波长光信号满足目标波长λi。
可以看出,在本申请实施例的波长选择性光开关中,通过对两个偏振光束同时进行波长选择的处理,使得第一偏振光束与第二偏振光束的偏振态转换次数相同,因此能够降低偏振相关损耗,有利于光交换节点的性能。
而且,第一组微环谐振器和第二组微环谐振器分别对两路偏振光束的处理过程也是一致的,从而使得第一偏振光束与第二偏振光束在光波导中的传输路程相等或相近,可以在进一步降低偏振相关损耗的同时,还降低差分群速度时延。
另外,相比于现有技术的波长选择性光开关,本申请实施例中的该波长选择性光开关结构简单,体积紧凑,适合组成大规模光开关矩阵。
作为另一个实施例,偏振分束单元310通过连接偏振分束单元310与第一组微环谐 振器321的输入端的第一光波导,将第一偏振光束传输至第一组微环谐振器321的输入端,且第一偏振光束中的没有耦合至第一组微环谐振器321中的光束沿第一光波导继续传输;
偏振分束单元310通过连接偏振分束单元321与第二组微环谐振器322的输入端的第二光波导,将第二偏振光束传输至第二组微环谐振器322的输入端,且第二偏振光束中的没有耦合至第二组微环谐振器322中的光束,沿第二光波导继续传输。
应理解,当微环谐振器的边缘与其他器件(例如直波导)在空间内相互靠近,直到两者的间距达到与波长同一数量级(例如微米量级)或者更小(例如纳米量级),两者中的光场发生相互作用,我们称之为耦合。
当第一组微环谐振器321的输入端与第一光波导在空间内相互靠近,直到两者的间距达到与目标波长同一数量级或者更小,两者中的光场发生相互作用,实现第一组微环谐振器321与第一光波导之间的耦合;当第二组微环谐振器322的输入端与第二光波导在空间内相互靠近,直到两者的间距达到与目标波长同一数量级或者更小,两者中的光场发生相互作用,实现第二组微环谐振器322与第二光波导之间的耦合。
具体而言,在传输至第一组微环谐振器321的输入端的第一偏振光束中,第一微环谐振组321将满足目标波长λi的第一目标光束耦合至第一组微环谐振器321中;在传输至第二组微环谐振器322的输入端的第二偏振光束中,第二微环谐振组322将满足目标波长λi的第二目标光束耦合至第二组微环谐振器322中,且第一目标光束与第二目标光束在偏振合束单元323中进行合束处理后被输出,而没有被耦合至第一组微环谐振器321的不符合目标波长λi的剩余光束在第一光波导中继续传输,没有被耦合至第二组微环谐振器322的不符合目标波长λi的剩余光束在第二光波导中继续传输。
应理解,本申请实施例中的光束,也可以称为光信号,每个不同的光波长承载一路不同的光信号,不同波长的光信号在光波导中共同传输,例如在同一条光纤中传输,可以实现大容量低损耗的数据通信。
作为另一个实施例,本申请实施例的波长选择性光开关包括偏振分束单元310,以及至少一个波长选择单元320,其中,每个波长选择单元320所对应的目标波长不同。
应理解,该波长选择性光开关中的至少一个波长选择单元中的每个波长选择单元320所对应的目标波长不同,也就是说,每个波长选择单元所输出的光信号的波长不相同。例如图3所示的三个波长选择单元所对应的波长分别为λi、λi+1和λn。上面是以其中的一个波长选择单元320为例进行说明,该波长选择单元320对应的目标波长为λi。
还应理解,本申请实施例中,输入光束是偏振复用且波分复用的;偏振合束单元323最后输出的输出光束,即对第一目标光束与第二目标光束合束后的光束,是满足目标波长的单波长的偏振复用的光束。经过偏振分束单元310和波长选择单元320后,原本的输入光束由多波长光束变为了单波长的输出光束。
下面结合图4至图9详细描述本申请实施例的波长选择性光开关。如图3至图9中均示出了两个波长选择单元320,即第i个波长选择单元320(对应波长λi)和第i+1个波长选择单元320(对应波长λi+1),但该波长选择性光开关还可以至包括更多的波长选择单元320,可以根据实际应用情况加以选择。下面结合图3至图9中所示的第i个波长选择单元进行详细描述,其他波长选择单元可以参考对该波长选择单元的相关描述。
可选地,第一偏振光束为TM模式或TE模式的光信号,第二偏振光束为TM模式或 TE模式的光信号。
本申请实施例中,模式是特定形状的波导能够支持的一种电磁场分布,数学上讲是此结构的麦克斯韦方程的一个导模解,对应一个特征值,即有效折射率。有效折射率是波导中的一个重要参数,它与波导的结构、材料特性(折射率)、工作波长以及模式阶数有关。一旦波导的这些参数特性确定之后,波导的某个模式的有效折射率也将确定。后面以TM模式和TE模式的光束为例进行描述。
本申请实施例的波长选择性光开关可以用于具有任何偏振态的偏振光的选择,也就是说,第一偏振光束和第二偏振光束可以为具有任何偏振模式的偏振光束,特别地,第一偏振光束可以为TE模式或TM模式的光信号,第二偏振光束可以为TE模式或TM模式的光信号。
下面均以第一偏振光束为TM模式或TE模式的光信号,第二偏振光束为TE模式的光信号为例进行说明,但本申请并不限于此。
作为另一个实施例,第一组微环谐振器321中可以包括一个微环谐振器或者级联的多个微环谐振器,第二组微环谐振器322中包括一个微环谐振器或者级联的多个微环谐振器。
进一步地,第一组微环谐振器321中的微环谐振器的个数,等于第二组微环谐振器322中的微环谐振器的个数。
图4示出了本申请另一实施例的波长选择性光开关的示意性结构图。如图4所示,这里以第一组微环谐振器321中包括一个微环谐振器,第二组微环谐振器322中包括一个微环谐振器为例进行说明。
作为另一个实施例,第一偏振光束与第二偏振光束为不同模式的偏振光束,其中,第一组微环谐振器321中的微环谐振器为与第一偏振光束的模式相匹配的微环谐振器,第二组微环谐振器322中的微环谐振器为与第二偏振光束的模式相匹配的微环谐振器。
模式匹配即相邻两个波导中有效折射率相近或者相等。当两条空间中相邻的波导中的两个模式的有效折射率相近或者相等时,对应的两个模式就满足了相位匹配条件。满足相位匹配条件的模式之间可以发生能量耦合和模式转换。平面波导回路中的波导通常具有相同的高度,因此相邻区域的波导宽度决定了波导的某个模式的有效折射率;相邻区域的波导间距决定了单位长度的能量耦合和模式转换效率;相邻区域的波导长度(即耦合长度)决定了器件总的能量耦合和模式转换效率。
通过选择合适的波导间距、波导宽度和相邻区域的波导长度(即耦合长度),可以实现将一条波导中的一个模式的光能量完全耦合(转换)到另一条波导对应的模式中。
例如图4所示,第一偏振光束为TM模式的偏振光束,那么第一组微环谐振器321中的微环谐振器可以设计成与TM模式相匹配的微环谐振器;第二偏振光束为TE模式的偏振光束,那么第二组微环谐振器322中的微环谐振器可以设计成与TE模式相匹配的微环谐振器。
这时,当TM模式的光信号经过第一组微环谐振器321时,满足目标波长λi的目标光束就被耦合到与TM模式相匹配的微环谐振器中,当TE模式的光信号经过第二组微环谐振器322时,满足目标波长λi的目标光束就被耦合到与TE模式相匹配的微环谐振器中。
作为另一个实施例,偏振分束单元320包括偏振分束器,偏振合束单元323包括第 三光波导,第三光波导用于对第一目标光束和第二目标光束进行耦合。
也就是说,这里对第一目标光束和第二目标光束的合束是在耦合光波导(或称为光波导)中完成的,第一目标光束和第二目标光束从各自对应的微环谐振器组的输出端输出后,分别进入该光波导中进行合波,最后通过该光波导输出,这时无需增加其他的合波器件。
由于第一组微环谐振器321中的微环谐振器为与第一偏振光束的模式相匹配的微环谐振器,那么第一组微环谐振器321就能够实现将第一光波导中的TM模式的光能量完全耦合(转换)到第一组微环谐振器321对应的模式中,并将耦合至第一组微环谐振器321的TM模式的第一目标光束,输出至第三光波导中;第二组微环谐振器322中的微环谐振器为与第二偏振光束的模式相匹配的微环谐振器,那么第二组微环谐振器322就能够实现将第二光波导中的TE模式的光能量完全耦合到第二组微环谐振器322对应的模式中,并将耦合至第二组微环谐振器322的TE模式的第二目标光束,输出至该第三光波导中。
在该实施例中,偏振分束器310用于将输入光信号分束为第一偏振光束和第二偏振光束。第一组微环谐振器321的接收端接收第一偏振光束,该第一偏振光束中满足该目标波长λi的该第一目标光束耦合至该第一组微环谐振器321中,并从第一微环谐振器321的输出端输出;第二组微环谐振器322的接收端接收第二偏振光束,该第二偏振光束中满足该目标波长λi的该第二目标光束耦合至该第二组微环谐振器322中,并从第二微环谐振器322的输出端输出。第一组微环谐振器321的输出端输出该第一目标光束至第三光波导中,该第二组微环谐振器322的输出端输出该第二目标光束至该第三光波导中,第一组微环谐振器321输出的该第一目标光束与该第二组微环谐振器322输出的该第二目标光束在第三光波导中进行合束。在第三光波导中进行合束后的该第一目标光束和该第二目标光束被输出。
具体而言,当偏振复用和波分复用的输入光束(波长λ1、λ2…λn、)从输入端口输入偏振分束器310后,输入光信号在偏振分束器310中可以被分成TM模式的光信号和TE模式的光信号,这两路光信号分别进入波长选择单元320。TM模式的光信号传输至第一组微环谐振器321的输入端,TE模式的光信号传输至第二组微环谐振器322的输入端。如果TM模式的光信号中的波长λi符合第一组微环谐振器321的谐振波长,那么第一组微环谐振器321将该TM模式的光信号中的满足该目标波长λi的第一目标光束耦合至该第一组微环谐振器321中;如果TE模式的光信号中的波长λi符合第二组微环谐振器322的谐振波长,那么第二组微环谐振器322将该TE模式的光信号中的满足该目标波长λi的第二目标光束耦合至该第二组微环谐振器322中。
第一组微环谐振器321中的第一目标光束,从第一组微环谐振器321的输出端,输出至第一组微环谐振器321与第三光波导的耦合区;第二组微环谐振器322中的第二目标光束,从第二组微环谐振器322的输出端,输出至第二组微环谐振器322与第三波导的耦合区。从第一组微环谐振器321输出的第一目标光束,与从第二组微环谐振器322输出的第二目标光束,在第三光波导中进行合波。
在第三光波导中进行合波后的第一目标光束和第二目标光束被输出。TM模式的第一目标光束与TE模式的第二目标光束合波后形成偏振复用的单波长光信号,输出后的光束的波长为λi,满足第一组微环谐振器321和第二组微环谐振器322的谐振波长λi。
这样,第一偏振光束与第二偏振光束的无需经过偏振态转换,大大降低了偏振相关损耗。
另外,第一偏振光束与第二偏振光束在光波导中的传输路程的差值明显减小,可以在进一步降低偏振相关损耗的同时,还降低差分群速度时延。
作为另一个实施例,该波长选择性光开关还可以包括与波长选择单元对应的波长检测单元,该波长检测单元用于对该第一目标光束的波长和该第二目标光束的波长进行检测。
具体而言,该波长选择单元320中,在第一组微环谐振器321的输出端与第二组微环谐振器322的输出端处,分别设置有该波长检测单元,分别对第一目标光束的波长和第二目标光束的波长进行检测。
进一步地,波长检测单元包括位于第一组微环谐振器321的输出端处的第一光耦合器341,和与第一光耦合器341相连接的第一光探测器351,以及位于第二组微环谐振器322的输出端处的第二光耦合器342,和与第二光耦合器342相连接的第二光探测器352。
如图5所示的本申请另一实施例的波长选择性光开关的示意性结构图。在第i个波长选择单元中,可以在第一组微环谐振器321的输出端处设置第一光耦合器341,用于从干路中抽取少量的光信号能量输送到第一光探测器351中进行监控。第一光耦合器341将第一目标光束中的部分光信号输出到第一光探测器351上,第一光探测器351通过外部的反馈电路,将这部分光信号反馈给第一组微环谐振器321的电极驱动,通过实时补偿第一组微环谐振器的谐振波长λi的改变量来稳定下载的光信号的波长。
同样,可以在第二组微环谐振器322的输出端处设置第二光耦合器342,将第二目标光束中的部分光信号输出到第二光探测器352上,第二光探测器352通过外部的反馈电路,将这部分光信号反馈给第二组微环谐振器322的电极驱动,通过实时补偿第二组微环谐振器的谐振波长λi的改变量来稳定下载的光信号的波长。
因此,通过设置波长监测单元,通过对目标波长的实时监测与补偿,能够稳定波长选择单元下载的光信号的波长。
图4和图5都是以第一组微环谐振器321中包括一个微环谐振器,第二组微环谐振器322中包括一个微环谐振器为例进行说明的。但是,第一组微环谐振器321和第二组微环谐振器322中分别可以包括多个微环谐振器。如图6所示的本申请另一实施例的波长选择性光开关的示意性结构图,第一组微环谐振器321中可以包括两个级联的微环谐振器,第二组微环谐振器322中可以包括两个级联的微环谐振器。也就是说,这里可以用级联的多个微环谐振器替代上述波长选择单元中的一个微环谐振器,而其他地方可以不变。从而能够扩大该光开关的工作光谱带宽。
可选地,第一组微环谐振器中的微环谐振器的个数,与第二组微环谐振器中的微环谐振器的个数相同。从而降低波长选择单元的结构复杂性,减少两路偏振光束在光波导中传输时的路程差,减少偏振相关损耗。
图7示出了本申请另一实施例的波长选择性光开关的示意性结构图。如图7所示,这里以第一组微环谐振器321中包括一个微环谐振器,第二组微环谐振器322中包括一个微环谐振器为例进行说明。
作为另一个实施例,第一偏振光束与第二偏振光束为相同模式的偏振光束,其中,第一组微环谐振器321中的微环谐振器和第二组微环谐振器322中的微环谐振器,为与 相同模式相匹配的微环谐振器。
例如,如图7所示,第一偏振光束为TE模式的偏振光束,那么第一组微环谐振器321中的微环谐振器可以设计成与TE模式相匹配的微环谐振器;第二偏振光束也为TE模式的偏振光束,那么第二组微环谐振器322中的微环谐振器也设计成与TE模式相匹配的微环谐振器。
这时,当TE模式的光信号经过第一组微环谐振器321时,满足目标波长λi的目标光束就被耦合到与TE模式相匹配的微环谐振器中,当另一路TE模式的光信号经过第二组微环谐振器322时,满足目标波长λi的目标光束就被耦合到与TE模式相匹配的微环谐振器中。
由于偏振态相同的两路光束携带的信号不同,如果耦合在一起处理会发生相干相长和相干相消的干涉效应,这要导致信号丢失无法再解调出来,因此,这里通过第一组微环谐振器321和第二组微环谐振器322分别对两路TE光束进行处理。
作为另一个实施例,偏振分束单元310包括偏振分束旋转器,偏振合束单元323包括偏振合束旋转器。
在该实施例中,第一组微环谐振器321的输入端接收第一偏振光束,第一偏振光束中满足该目标波长λi的第一目标光束被耦合至第一组微环谐振器321中,第二组微环谐振器322的输入端接收第二偏振光束,并将第二偏振光束中满足目标波长λi的第二目标光束耦合至第二组微环谐振器322中。第一组微环谐振器321的输出端输出第一目标光束至该偏振合束旋转器323,第二组微环谐振器322的输出端输出该第二目标光束至该偏振合束旋转器323,偏振合束旋转器323用于对该第一目标光束和该第二目标光束进行合束,并对该第一目标光束和该第二目标光束进行合束后的光束被输出。
具体而言,当偏振复用和波分复用的输入光束(波长λ1、λ2…λn、)从输入端口输入偏振旋转分束器310后,输入光信号在偏振分束器310中可以被分成两路TE模式的光信号,其中,第一路TE模式的光信号(第一偏振光束)是原偏振复用和波分复用的光信号中的TE模式分量,第二路TE模式的光信号(第二偏振光束)是原偏振复用和波分复用的光信号中的TM模式分量转变而得到的,这两路光信号分别进入波长选择单元320。如果第一路TE模式的光信号中的波长λi符合第一组微环谐振器321的谐振波长,那么第一组微环谐振器321将该路TE模式的光信号中的满足该目标波长λi的第一目标光束耦合至该第一组微环谐振器321中;如果第二路TE模式的光信号中的波长λi符合第二组微环谐振器322的谐振波长,那么第二组微环谐振器322将该TE模式的光信号中的满足该目标波长λi的第二目标光束耦合至该第二组微环谐振器322中。
第一组微环谐振器321中的第一目标光束,从第一组微环谐振器的输出端,输出至偏振合束旋转器323;第二组微环谐振器322中的第二目标光束,从第二组微环谐振器322的输出端,输出至偏振合束旋转器323。偏振合束旋转器323用于对所述第一目标光束和所述第二目标光束进行合束。从第一组微环谐振器321输出的第一目标光束,与从第二组微环谐振器322输出的第二目标光束,在偏振合束旋转器323中进行合束。
在偏振合束旋转器323中进行合束后的第一目标光束和第二目标光束中,原本输入光信号中的TE模式的光信号经过偏振合束旋转器323转变成TM模式的光信号,而另一路TE模式的光信号经过偏振合束旋转器323后保持TE模式的光信号,合束后形成偏振复用的单波长光信号。偏振合束旋转器323输出的合束后的TE模式的光信号和TM模式 的光信号,输出后的光束的波长为λi,满足第一组微环谐振器321和第二组微环谐振器322的谐振波长λi。
这样,第一偏振光束与第二偏振光束的偏振态转换次数是相同的,而且第一偏振光束与第二偏振光束从分波至合波的过程中,在光波导中传输的路程是相等的,因此可以降低偏振相关损耗和差分群速度时延。
而且,由于第一组微环谐振器321中的微环谐振器,与第二组微环谐振器322中的微环谐振器,为针对同一偏振模式的微环谐振器,因此可以使用处理同一偏振态光束的相同的微环谐振器,不用设计两套不同的微环谐振器,降低了系统的复杂程度,降低了控制复杂度。
应理解,该实施例中的偏振分束单元,还可以包括其他能够对输入光信号进行分束和旋转的器件,以实现将输入光信号分成两路偏振光束例如TE模式光信号和TM模式光信号,并将TM模式光信号转换成TE模式光信号。例如偏振分束单元可以包括偏振分束器和偏振转换器,或者其他能够实现该功能的光学结构。同样,偏振合束单元也可以包括其他能够对输入光信号进行合束和旋转的器件。本申请对此不做限定。
可选地,该实施例中的波长选择性光开关还可以包括与所述波长选择单元对应的波长检测单元,该波长检测单元用于对第一目标光束的波长和第二目标光束的波长进行检测。
进一步地,波长检测单元320包括位于第一组微环谐振器321的输出端处的第一光耦合器341,和与第一光耦合器341相连接的第一光探测器351,以及位于第二组微环谐振器322的输出端处的第二光耦合器342,和与第二光耦合器342相连接的第二光探测器352。
如图8所示的本申请另一实施例的波长选择性光开关的示意性结构图。在第i个波长选择单元中,可以在第一组微环谐振器321的输出端处设置第一光耦合器341,用于从干路中抽取少量的光信号能量输送到第一光探测器351中进行监控。第一光耦合器341将第一目标光束中的部分光信号输出到第一光探测器351上,第一光探测器351通过外部的反馈电路,将这部分光信号反馈给第一组微环谐振器321的电极驱动,通过实时补偿第一组微环谐振器的谐振波长λi的改变量来稳定下载的光信号的波长。
同样,可以在第二组微环谐振器322的输出端处设置第二光耦合器342,将第二目标光束中的部分光信号输出到第二光探测器352上,第二光探测器352通过外部的反馈电路,将这部分光信号反馈给第二组微环谐振器322的电极驱动,通过实时补偿第二组微环谐振器的谐振波长λi的改变量来稳定下载的光信号的波长。
因此,通过设置波长监测单元,通过对目标波长的实时监测与补偿,能够稳定波长选择单元下载的光信号的波长。
在该实施例中,图7和图8都是以第一组微环谐振器321中包括一个微环谐振器,第二组微环谐振器322中包括一个微环谐振器为例进行说明的。但是,第一组微环谐振器321和第二组微环谐振器322中分别可以包括多个微环谐振器。如图9所示的本申请另一实施例的波长选择性光开关的示意性结构图,第一组微环谐振器321中可以包括两个级联的微环谐振器,第二组微环谐振器322中可以包括两个级联的微环谐振器。也就是说,这里可以用级联的多个微环谐振器替代上述波长选择单元中的一个微环谐振器,而其他地方可以不变。从而能够扩大该光开关的工作光谱带宽。
上述实施例中描述的波长选择性光开关,是以波长选择性光开关中包括的一个波长选择单元为例进行描述的,实际该波长选择性该中可以包括多个这种波长选择单元从而形成大规模光开关矩阵。该波长选择性光开关中还可以包括如图2至图9所描述的偏振分束单元310,以及n个如图2至图9所描述的波长选择单元,根据图2至图9所示,第i个波长选择单元输出的第一偏振光束中不满足目标波长的光束,与第二偏振光束中不满足目标波长的光束,分别进入第i+1个波长选择单元。第一偏振光束中不满足目标波长的光束通过第i+1个波长选择单元中的第一组微环谐振器,实现对满足目标波长λi+1的光束的选择,第二偏振光束中不满足目标波长的光束通过第i+1个波长选择单元中的第二组微环谐振器,实现对满足目标波长λi+1的光束的选择。其中,i为大于零且小于n的正整数。
可以看出,本申请实施例中的波长选择性光开关,第一偏振光束与第二偏振光束的偏振态转换的次数相同,因此能够大大降低偏振相关损耗,有利于光交换节点的性能。
另外,第一组微环谐振器和第二组微环谐振器沿光信号输入方向对称分布,他们分别对两个偏振光束的处理过程也是一致的,从而使得第一偏振光束与第二偏振光束在光波导中的传输路程相等或相近,可以在进一步降低偏振相关损耗的同时,还降低差分群速度时延。
而且,相比于现有技术的波长选择性光开关,本申请实施例中的该波长选择性光开关结构简单,体积紧凑,适合组成大规模光开关矩阵。
应注意的是,基于本申请实施例的波长选择性光开关,可以连接形成具有其他变形的连接关系的光开关。例如变换图2至图9中的波长选择性光开关中的入射光输入端口和目标输出端口的方向,可以通过将波长选择单元的连接关系作出相应的变化来实现,此处不进行赘述。
应理解,本文中涉及的第一、第二和第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单 元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种波长选择性光开关,其特征在于,包括偏振分束单元和波长选择单元,所述波长选择单元包括两组微环谐振器和偏振合束单元,
    所述偏振分束单元,用于将输入光束分成第一偏振光束和第二偏振光束,并将所述第一偏振光束传输至所述两组微环谐振器中的第一组微环谐振器的输入端,将所述第二偏振光束传输至所述两组微环谐振器中的第二组微环谐振器的输入端;
    所述第一组微环谐振器,用于将传输至所述第一组微环谐振器的输入端的所述第一偏振光束中的第一目标光束,耦合至所述第一组微环谐振器中,并将耦合至所述第一组微环谐振器中的所述第一目标光束,从所述第一组微环谐振器的输出端输出至所述偏振合束单元,所述第一目标光束的波长等于所述波长选择单元对应的目标波长;
    所述第二组微环谐振器,用于将传输至所述第二组微环谐振器的输入端的所述第二偏振光束中的第二目标光束,耦合至所述第二组微环谐振器中,并将耦合至所述第二组微环谐振器中的所述第二目标光束,从所述第二组微环谐振器的输出端输出至所述偏振合束单元,所述第二目标光束的波长等于所述目标波长;
    所述偏振合束单元,用于对从所述第一组微环谐振器的输出端接收到的所述第一目标光束,以及从所述第二组微环谐振器的输出端接收到的所述第二目标光束进行合束,并输出对所述第一目标光束和所述第二目标光束进行合束后的光束。
  2. 根据权利要求1所述的波长选择性光开关,其特征在于,所述偏振分束单元通过连接所述偏振分束单元与所述第一组微环谐振器的输入端的第一光波导,将所述第一偏振光束传输至所述第一组微环谐振器的输入端,且所述第一偏振光束中的没有耦合至所述第一组微环谐振器中的光束沿所述第一光波导继续传输;
    所述偏振分束单元通过连接所述偏振分束单元与所述第二组微环谐振器的输入端的第二光波导,将所述第二偏振光束传输至所述第二组微环谐振器的输入端,且所述第二偏振光束中的没有耦合至所述第二组微环谐振器中的光束,沿所述第二光波导继续传输。
  3. 根据权利要求1或2所述的波长选择性光开关,其特征在于,所述第一偏振光束与所述第二偏振光束为相同模式的偏振光束,其中,所述第一组微环谐振器中的微环谐振器和所述第二组微环谐振器中的微环谐振器,为与所述相同模式相匹配的微环谐振器。
  4. 根据权利要求3所述的波长选择性光开关,其特征在于,所述偏振分束单元包括偏振分束旋转器,所述偏振合束单元包括偏振合束旋转器。
  5. 根据权利要求1或2所述的波长选择性光开关,其特征在于,所述第一偏振光束与所述第二偏振光束为不同模式的偏振光束,其中,所述第一组微环谐振器中的微环谐振器为与所述第一偏振光束的模式相匹配的微环谐振器,所述第二组微环谐振器中的微环谐振器为与所述第二偏振光束的模式相匹配的微环谐振器。
  6. 根据权利要求5所述的波长选择性光开关,其特征在于,所述偏振分束单元包括偏振分束器,所述偏振合束单元包括第三光波导,所述第三光波导用于对所述第一目标光束和所述第二目标光束进行耦合。
  7. 根据权利要求1至6中任一项所述的波长选择性光开关,其特征在于,所述第一组微环谐振器包括一个微环谐振器或者级联的多个微环谐振器,所述第二组微环谐振器包括一个微环谐振器或者级联的多个微环谐振器。
  8. 根据权利要求1至7中任一项所述的波长选择性光开关,其特征在于,还包括与 所述波长选择单元对应的波长检测单元,所述波长检测单元用于对所述第一目标光束的波长和所述第二目标光束的波长进行检测。
  9. 根据权利要求8所述的波长选择性光开关,其特征在于,所述波长检测单元包括位于所述第一组微环谐振器的输出端处的第一光耦合器,和与所述第一光耦合器相连接的第一光探测器,
    以及位于所述第二组微环谐振器的输出端处的第二光耦合器,和与所述第二光耦合器相连接的第二光探测器。
  10. 根据权利要求1至9中任一项所述的波长选择性光开关,其特征在于,所述第一偏振光束为TM模式或TE模式的光信号,所述第二偏振光束为TE模式或TM模式的光信号。
  11. 一种波长选择性光开关,其特征在于,包括如权利要求1至10中任一项所述的偏振分束单元,以及至少一个如权利要求1至10中任一项所述的波长选择单元,其中,所述至少一个波长选择单元中的每个波长选择单元所对应的目标波长不同。
PCT/CN2017/084769 2016-09-26 2017-05-17 波长选择性光开关 WO2018054075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610852485.6A CN107870397B (zh) 2016-09-26 2016-09-26 波长选择性光开关
CN201610852485.6 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018054075A1 true WO2018054075A1 (zh) 2018-03-29

Family

ID=61689773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084769 WO2018054075A1 (zh) 2016-09-26 2017-05-17 波长选择性光开关

Country Status (2)

Country Link
CN (1) CN107870397B (zh)
WO (1) WO2018054075A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110543034A (zh) * 2019-07-18 2019-12-06 武汉邮电科学研究院有限公司 一种片上集成宽带可调光子滤波器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981172B (zh) * 2019-03-01 2021-06-15 上海交通大学 基于多波长调制和色散时延的全光矩阵乘加实现方法
CN112433297B (zh) * 2020-11-30 2023-06-02 武汉光谷信息光电子创新中心有限公司 光接收芯片
CN112946826A (zh) * 2020-12-16 2021-06-11 东南大学 一种基于soi材料制备的具有偏振旋转功能的热光开关
CN113759469B (zh) * 2021-09-23 2023-06-16 龙岩学院 一种偏振不敏感的双通道双波长选择开关
CN113985521B (zh) * 2021-10-22 2022-08-09 上海交通大学 硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片
CN114280738B (zh) * 2021-12-31 2024-01-30 武汉光谷信息光电子创新中心有限公司 封装方法及其封装结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431531A (zh) * 2003-01-28 2003-07-23 中国科学院上海光学精密机械研究所 全光纤波长选择型偏振分束器
US20040247227A1 (en) * 2001-10-25 2004-12-09 Haim Eder Polarization insensitive tunable optical filters
CN104169759A (zh) * 2012-03-19 2014-11-26 富士通株式会社 偏振度降低装置、光源装置、光放大装置和喇曼放大用激励光源装置
CN104297854A (zh) * 2014-11-05 2015-01-21 武汉邮电科学研究院 硅基多波长光源及其实现的方法
CN104350698A (zh) * 2012-06-08 2015-02-11 瑞典爱立信有限公司 光路由选择装置和方法
CN105765798A (zh) * 2013-10-15 2016-07-13 科锐安先进科技有限公司 基于硅微环的mod-mux wdm发射机的操作和稳定化

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177515B2 (en) * 2002-03-20 2007-02-13 The Regents Of The University Of Colorado Surface plasmon devices
US7010183B2 (en) * 2002-03-20 2006-03-07 The Regents Of The University Of Colorado Surface plasmon devices
CN100362379C (zh) * 2005-11-10 2008-01-16 北京北方烽火科技有限公司 自适应宽带偏振模色散补偿方法和装置
CN101881862A (zh) * 2010-06-07 2010-11-10 南昌大学 基于光子晶体微谐振环的超微偏振分束器
CN104300347A (zh) * 2014-10-27 2015-01-21 山东大学 一种偏振态可选择的线偏振掺镱双包层全光纤激光器及其工作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040247227A1 (en) * 2001-10-25 2004-12-09 Haim Eder Polarization insensitive tunable optical filters
CN1431531A (zh) * 2003-01-28 2003-07-23 中国科学院上海光学精密机械研究所 全光纤波长选择型偏振分束器
CN104169759A (zh) * 2012-03-19 2014-11-26 富士通株式会社 偏振度降低装置、光源装置、光放大装置和喇曼放大用激励光源装置
CN104350698A (zh) * 2012-06-08 2015-02-11 瑞典爱立信有限公司 光路由选择装置和方法
CN105765798A (zh) * 2013-10-15 2016-07-13 科锐安先进科技有限公司 基于硅微环的mod-mux wdm发射机的操作和稳定化
CN104297854A (zh) * 2014-11-05 2015-01-21 武汉邮电科学研究院 硅基多波长光源及其实现的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110543034A (zh) * 2019-07-18 2019-12-06 武汉邮电科学研究院有限公司 一种片上集成宽带可调光子滤波器

Also Published As

Publication number Publication date
CN107870397B (zh) 2020-02-21
CN107870397A (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
WO2018054075A1 (zh) 波长选择性光开关
US10809459B2 (en) Integrated polarization splitter and rotator including a PDL tuning region
Dai Advanced passive silicon photonic devices with asymmetric waveguide structures
JP2545047B2 (ja) 光通信ネットワ―クにおける光搬送波抽出,再挿入機器
EP2659299A1 (en) Core-selective optical switches
CN112041717A (zh) 具有三叉戟结构的分光器
US9780903B2 (en) Optical wavelength demultiplexer having optical interference filters connected in cascade
WO2016061826A1 (zh) 模式复用解复用器和交换节点
JP6129099B2 (ja) 複合合波器
Han et al. Reconfigurable on-chip mode exchange for mode-division multiplexing optical networks
Li et al. Silicon-based on-chip hybrid (de) multiplexers
EP3499282B1 (en) Polarization independent optical device
Fujisawa et al. Low-loss and small 2× 4λ multiplexers based on 2× 2 and 2× 1 Mach–Zehnder interferometers with on-chip polarization multiplexing for 400GbE
Hammood et al. Four-channel, silicon photonic, wavelength multiplexer-demultiplexer with high channel isolations
CN108833016B (zh) 一种单片集成的波分复用单纤双向数据传输模块
US6571031B1 (en) Device for multiplexing/demultiplexing and method therewith
Zhou et al. Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks
Wang et al. Silicon-based reconfigurable optical add-drop multiplexer for hybrid MDM-WDM systems
JP2014134561A (ja) マッハツェンダー合波・分波フィルター
JP3566172B2 (ja) 光パケットバッファ
Jiang et al. Quantitative dispersion model for self-dispersion compensation and parameter optimization of interleavers
Chen et al. Silicon-based on-chip all-optical wavelength conversion for two-dimensional hybrid multiplexing signals
JP6745399B2 (ja) 光信号処理方法および光学構成要素
Dai et al. Proposal of a Coupled-Microring-Based Wavelength-Selective $1\times N $ Power Splitter
Wang et al. A low-loss integrated beam combiner based on polarization multiplexing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852149

Country of ref document: EP

Kind code of ref document: A1