WO2016061826A1 - 模式复用解复用器和交换节点 - Google Patents
模式复用解复用器和交换节点 Download PDFInfo
- Publication number
- WO2016061826A1 WO2016061826A1 PCT/CN2014/089487 CN2014089487W WO2016061826A1 WO 2016061826 A1 WO2016061826 A1 WO 2016061826A1 CN 2014089487 W CN2014089487 W CN 2014089487W WO 2016061826 A1 WO2016061826 A1 WO 2016061826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mode
- optical
- optical signal
- fundamental
- coupling
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 949
- 230000008878 coupling Effects 0.000 claims abstract description 329
- 238000010168 coupling process Methods 0.000 claims abstract description 329
- 238000005859 coupling reaction Methods 0.000 claims abstract description 329
- 230000005540 biological transmission Effects 0.000 claims abstract description 171
- 230000007704 transition Effects 0.000 claims description 35
- 230000008054 signal transmission Effects 0.000 claims description 22
- 238000005516 engineering process Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29331—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/04—Mode multiplex systems
Definitions
- Embodiments of the present invention relate to the field of communications and, more particularly, to a mode multiplexing demultiplexer and a switching node.
- FIG. 1 schematically illustrates the architecture of a switching node 100 in a typical on-chip optical network system.
- the switching node 100 includes a substrate 160 on which a wave decomposition multiplexer 110, an N ⁇ M optical switch 120, a wavelength division multiplexing (WDM) 130, a photodetector 140, and Very large scale integration (VLSI) 150.
- the VLSI 150 is used to control at least one electrical drive device included in the switching node, such as the photodetector 140.
- the wave decomposition multiplexer 110 is configured to receive a beam of optical signals including a plurality of wavelengths input by an input fiber, and demultiplex the received ones of the optical signals into a plurality of optical signals each having a single wavelength, and The plurality of optical signals are transmitted to the N ⁇ M optical switch 120, wherein the wavelengths of the multiple optical signals are different from each other.
- the N ⁇ M optical switch 120 is configured to receive a plurality of optical signals transmitted by the wave decomposition multiplexer 110, and determine an output port of each of the multiple optical signals according to a destination node of the multiple optical signals. The output ports corresponding to the plurality of optical signals respectively output the plurality of optical signals.
- the N ⁇ M optical switch 120 outputs the beam by an output port corresponding to the photodetector 140.
- the WDM 130 is configured to receive at least one optical signal transmitted by the N ⁇ M optical switch 120, and multiplex the received at least one optical signal into a bundle of optical signals including at least one wavelength.
- the photodetector 140 is configured to receive at least one optical signal transmitted by the N ⁇ M optical switch 120, and convert the received at least one optical signal into an electrical signal.
- Mode Division Multiplexing (MDM) technology can effectively improve the performance of optical network systems. Therefore, how to apply MDM technology to on-chip optical network systems is a hot topic in this field.
- MDM technology Photonic Integrated Circuit (PIC)
- PIC Photonic Integrated Circuit
- a planar multimode waveguide is used to replace the traditional planar single-mode waveguide, and different information is transmitted on the eigenmode of a planar multimode waveguide with the same frequency, mutual orthogonality, different spatial energy distribution, and different mode orders.
- the core of the on-chip MDM technology lies in the mode multiplexer/demultiplexer corresponding to the planar multimode waveguide.
- mode multiplex demultiplexer there is currently no mode multiplex demultiplexer that can be satisfactorily applied to the on-chip optical network system.
- Embodiments of the present invention provide a mode multiplexing demultiplexer and a switching node, which can implement mode multiplexing or demultiplexing of an on-chip optical network system.
- an embodiment of the present invention provides a mode multiplexing demultiplexer, including: a multimode optical waveguide, a first transmission optical waveguide, and a second transmission optical waveguide, wherein the multimode optical waveguide includes a first mode a channel and a second mode channel, wherein the first mode channel is capable of transmitting an optical signal of a first mode, the second mode channel capable of transmitting an optical signal of a second mode, wherein the first mode is different from the second mode;
- the first transmission optical waveguide includes a first coupling region and a first input/output region, the first coupling region and the first input output region including a first fundamental mode channel, wherein the first fundamental mode channel is capable of transmitting a fundamental mode optical signal, And the first fundamental mode channel in the first coupling region is optically coupled to the first mode channel in the multimode optical waveguide;
- the second transmission optical waveguide includes a second coupling region and a second input/output region, The second coupling region and the second input output region comprise a second fundamental mode channel,
- the first coupling region and the second coupling region have different widths.
- the width of the first coupling region is different from the width of the first input/output region;
- the first transmission optical waveguide further includes: a first transition region, where The two ends of the first transition region have different widths, and both ends of the first transition region are respectively connected to the first input and output region and the first coupling region.
- a non-zero clip exists between the optical signal transmission direction in the first coupling region and the optical signal transmission direction in the first input and output region.
- An angle, the first transition region comprising a curved portion.
- the width of the multimode optical waveguide is a constant value.
- the first coupling region and the second coupling region are both parallel to the multimode optical waveguide, and the first coupling region and the second coupling region are The distance between the multimode optical waveguides is less than 1 ⁇ m.
- the first input output area is configured to receive a fundamental mode optical signal from the first transmitting end. Transmitting the received fundamental mode optical signal to the first coupling region; the first coupling region is configured to couple the fundamental mode optical signal transmitted by the first input/output region to the first mode channel; a second input/output area for receiving a fundamental mode optical signal from the second transmitting end, and transmitting the received fundamental mode optical signal to the second coupling area; the second coupling area is configured to transmit the second input/output area
- the fundamental mode optical signal is coupled to the second mode channel;
- the multimode optical waveguide is configured to perform optical mode coupling with the first coupling region to obtain the optical signal of the first mode transmitted by the first mode channel, and
- the second coupling region performs optical mode coupling, obtains the optical signal of the second mode transmitted by the second mode channel, and transmits the optical signals of the first mode and the second mode obtained by the coupling
- the multimode optical waveguide is configured to receive an optical signal from a third transmitting end.
- the optical signal of the first mode and the second mode, and the optical signal of the first mode is coupled to the first fundamental mode channel of the first coupling region, the second mode
- An optical signal is coupled to the second fundamental mode channel of the second coupling region;
- the first coupling region is configured to obtain a fundamental mode optical signal transmitted by the first fundamental mode channel by optical mode coupling with the multimode optical waveguide, And transmitting the fundamental mode optical signal obtained by the coupling to the first input/output area;
- the first input output area is configured to transmit the fundamental mode optical signal transmitted by the first coupling area to the second receiving end;
- a coupling region is configured to perform optical mode coupling with the multimode optical waveguide, obtain a fundamental mode optical signal transmitted by the second fundamental mode channel, and transmit the coupled fundamental mode optical signal to the second input/output region;
- an embodiment of the present invention provides a switching node, including: a mode demultiplexer, N 1 wavelength demultiplexers, and M 1 optical switches, wherein the mode demultiplexer is as claimed.
- the mode multiplexing demultiplexer 1 ⁇ N 1 ⁇ N, M 1 is an integer greater than one, the mode demultiplexer for receiving a beam of light signals, wherein the one The beam optical signal includes N 2 modes and M 2 wavelengths of optical signals, M 2 ⁇ M 1 , 1 ⁇ N 2 ⁇ N 1 ; the mode demultiplexer is further used to separate the optical signal into N 2 Beaming the fundamental mode optical signal and transmitting the N 2 beam fundamental mode optical signal to the N 1 wavelength demultiplexer, wherein each of the N 2 beam fundamental mode optical signals includes at least one wavelength
- the first wavelength demultiplexer of the N 1 wavelength demultiplexer is configured to receive a bundle of fundamental mode optical signals including M 2 wavelengths transmitted by the mode demultiplexer, and the received a
- the switching node further includes: at least one receiver, wherein the first optical switch is specifically configured to: if received, the first fundamental mode in the at least one fundamental optical signal The destination node of the optical signal is the switching node, and transmits the first fundamental mode optical signal to one of the at least one receiver; the first receiver of the at least one receiver is configured to receive the first optical switch transmission The first fundamental mode optical signal.
- the switching node N has three wavelength multiplexers and one mode multiplexer, wherein the mode multiplexer is as claimed in any one of claims 1 to 8.
- a mode multiplexing demultiplexer wherein N 3 is an integer greater than one, the first optical switch is further configured to: if received, the second fundamental mode optical signal of the at least one fundamental optical signal The destination node is not the switching node, and transmits the second fundamental mode optical signal to one of the N 3 wavelength multiplexers; the first wavelength multiplexer of the N 3 wavelength multiplexers M 1 to the receiving optical switch transmission multibeam yl mode optical signal, the multi-beam mode light signal multiplexing group as a bundle of fundamental mode signals, and the bundle of optical signals transmitted fundamental mode to the pattern obtained a multiplexer, wherein the multi-beam fundamental mode optical signals have different wavelengths; the mode multiplexer is configured to receive the multi-beam fundamental mode optical signals transmitted by the N 3 wavelength multiplexers, and the multi-beam
- the switching node further comprising: at least one transmitter, wherein the at least one transmitter for M 1 to the optical switch mode light emitting at least one group signal, each beam of the fundamental mode at least a bundle of optical signals in the fundamental mode of an optical signal having a single wavelength; M 1 of the second optical switch switches the optical means for receiving the at least one transmitter transmits at least one beam of the fundamental mode light signal.
- the mode multiplexing demultiplexer and the switching node provided by the embodiments of the present invention include a multimode optical waveguide, a first transmission optical waveguide, and a second transmission optical waveguide, wherein the first transmission optical waveguide and the The second transmission optical waveguides respectively include a first coupling region and a second coupling region, the first coupling region and the second coupling region are both capable of transmitting a fundamental mode optical signal, and the fundamental mode optical signal is effective in the first coupling region
- the refractive index is different from the effective refractive index of the fundamental mode optical signal in the second coupling region.
- the first transmission optical waveguide and the second transmission optical waveguide can respectively satisfy the pattern matching condition and perform optical mode coupling with different mode channels in the multimode optical waveguide, and the first transmission optical waveguide and the second can be Transmitting a fundamental mode optical signal transmitted in the optical waveguide into two different modes of optical signals in the multimode optical waveguide, or coupling the two different modes of optical signals transmitted in the multimode optical waveguide to the first
- a fundamental mode optical signal in the optical waveguide and the second transmission optical waveguide is transmitted to implement mode multiplexing or demultiplexing of the on-chip optical network system.
- FIG. 1 is a schematic diagram of the architecture of a switching node in a typical on-chip optical network system.
- FIG. 2 is a top plan view of a prior art mode multiplex demultiplexer.
- FIG. 3 is a top plan view of a mode multiplexing demultiplexer in accordance with an embodiment of the present invention.
- FIG. 4 is a cross-sectional view of the mode multiplexing demultiplexer shown in FIG.
- FIG. 5 is a graph of effective refractive index of a different mode of optical signal as a function of waveguide width, in accordance with an embodiment of the present invention.
- Figure 6 is a top plan view of a first transmission optical waveguide in accordance with an embodiment of the present invention.
- FIG. 7 is another top view of a first transmission optical waveguide in accordance with an embodiment of the present invention.
- Figure 8 is still another top plan view of a first transmission optical waveguide in accordance with an embodiment of the present invention.
- FIG. 9 is a top plan view of another mode multiplexing demultiplexer in accordance with an embodiment of the present invention.
- FIG. 10 is a diagram of light energy distribution of an example mode demultiplexer in implementing mode multiplexing, in accordance with an embodiment of the present invention.
- FIG. 11 is a schematic block diagram of a switching node in accordance with an embodiment of the present invention.
- Figure 12 is another schematic block diagram of a switching node in accordance with an embodiment of the present invention.
- FIG. 13 is still another schematic block diagram of a switching node according to an embodiment of the present invention.
- FIG. 14 is a schematic diagram of an example of a switching node in accordance with an embodiment of the present invention.
- WDM Wavelength Division Multiplexing
- MDM Mode Division Multiplexing
- FDM Frequency Division Multiplexing
- TDM Time Division Multiplexing
- FMF Few mode fiber
- the conversion, separation and merging of different modes in an on-chip optical network system can be achieved by the principle of effective refractive index, that is, two modes in which the effective refractive indices of adjacent two waveguides are close or equal can be converted. Specifically, when the effective refractive indices of the two modes corresponding to the two adjacent waveguides are close or equal, the two modes satisfy the pattern matching condition, and energy coupling can occur between the two modes satisfying the pattern matching condition. Mode conversion.
- the effective refractive index of the optical signal of mode 1 in the waveguide 1 is equal or close to the effective refractive index of the optical signal of mode 2 in the waveguide 2, and the waveguide 1 and the waveguide 2 satisfy the evanescent field coupling condition, that is, the waveguide 1
- the mode 1 with the waveguide 2 is less than or equal to the wavelength of the optical signal in vacuum, and mode 1 in the waveguide 1 can be optically coupled with mode 2 in the waveguide 2 such that the optical energy coupling of mode 1 transmitted in the waveguide 1 In mode 2 of the waveguide 2, or the mode 2 light energy transmitted in the waveguide 2 is coupled into mode 1 of the waveguide 1.
- FIG. 2 schematically shows a mode multiplexing demultiplexer 200 in the prior art.
- the mode multiplexing demultiplexer 200 includes: N+1 input optical waveguides, N tapered optical waveguides (21, 22, ..., 2N), and N multimode optical waveguides (31, 32, ..., 3N). And output optical waveguide 7.
- the N+1 input optical waveguides may have the same width value and are only used to transmit a fundamental mode optical signal (ie, a 0th order mode optical signal), in which case the fundamental mode optical signal is in the N+1 input optical waveguides.
- the effective refractive indices are equal or similar.
- Each of the N multimode optical waveguides has a plurality of mode channels, of which The mode channels are respectively used to transmit optical signals of different order modes.
- any two of the N multimode optical waveguides have different width values such that the optical signals of the same mode have different effective refractive indices in two different multimode optical signals, and the greater the width The number of modes supported by the multimode optical waveguide is greater.
- the N+1 input optical waveguides include an input optical waveguide 10 and the remaining N input optical waveguides, wherein the input optical waveguide 10 is sequentially connected to the tapered optical waveguide 21 and the multimode optical waveguide 31, and the remaining N
- Each input optical waveguide in the input optical waveguide includes first curved portions (41, 42, ..., 4N), coupling portions (51, 52, ..., 5N), and second curved portions (61, 62, ..., which are sequentially connected... , 6N).
- the coupling portion 5n included in the nth input optical waveguide of the remaining N input optical waveguides is disposed in parallel with the multimode optical waveguide 3n, and the coupling portion 5n and the mode channel n in the multimode optical waveguide 3n satisfy the mode
- the fundamental mode optical signal transmitted in the coupling region 5n can be coupled to the nth-order mode optical signal in the multimode optical waveguide 3n.
- each of the N+1 input optical waveguides receives a fundamental mode optical signal from the input end.
- the fundamental mode optical signal is coupled from the coupling region 5n to the nth-order mode optical signal of the multimode optical waveguide 3n, and sequentially passes through the tapered optical waveguide 2(n+1), the multimode optical waveguide 3(n+1)
- the tapered optical waveguide 2N and the multimode optical waveguide 3N are transmitted to the output optical waveguide 7.
- the output optical waveguide 7 receives N different modes of optical signals, and the N different modes of optical signals are a fundamental mode optical signal, a first order mode optical signal, ..., an nth order mode optical signal, ..., N Order mode optical signal.
- the inventors have found through research that in the mode multiplexing demultiplexer 200: 1. Two adjacent multimode optical waveguides are connected by an additional tapered optical waveguide, resulting in the overall length of the mode multiplexing demultiplexer 200. Longer; 2. When the coupling mode is coupled with the multimode optical waveguide in optical mode, since the effective refractive index of the fundamental mode optical signal in the coupling region is high, in order to improve the coupling efficiency, it is necessary to ensure the coupling region and the multimode light. The waveguide performs a longer length of the coupling region, thereby further increasing the overall length of the mode multiplexing demultiplexer 200. 3. The overall volume of the mode multiplexing demultiplexer 200 is large, which is disadvantageous for more modes of optical signals. The multiplexed transmission has poor scalability.
- FIG. 3 is a schematic top view of a mode multiplexing demultiplexer 300 according to an embodiment of the present invention.
- the mode multiplexing demultiplexer 300 is mainly applied to an on-chip optical network, but can also be applied to other optical networks.
- the mode multiplexing demultiplexer 300 includes a multimode optical waveguide 310, a first transmission optical waveguide 320, and a second transmission optical waveguide 330.
- the multimode optical waveguide 310 includes a first mode channel capable of transmitting an optical signal of a first mode, and a second mode channel capable of transmitting an optical signal of a second mode, wherein the The first mode is different from the second mode.
- the first transmission optical waveguide 320 includes a first coupling region 321 and a first input/output region 322.
- the first coupling region 321 and the first input/output region 322 include a first fundamental mode channel, and the first fundamental mode channel can transmit A fundamental mode optical signal, and the first fundamental mode channel in the first coupling region 321 is capable of optical mode coupling with the first mode channel in the multimode optical waveguide 310.
- the second transmission optical waveguide 330 includes a second coupling region 331 and a second input/output region 332.
- the second coupling region 331 and the second input/output region 332 include a second fundamental mode channel, and the second fundamental mode channel can transmit The fundamental mode optical signal, and the second fundamental mode channel in the second coupling region 331 is capable of optical mode coupling with the second mode channel in the multimode optical waveguide 310.
- the effective refractive index of the fundamental mode optical signal in the first coupling region 321 is different from the effective refractive index of the fundamental mode optical signal in the second coupling region 331.
- the mode multiplexing demultiplexer 300 includes a multimode optical waveguide, a first transmission optical waveguide, and a second transmission optical waveguide, wherein the first transmission optical waveguide and the second transmission optical waveguide Separating a first coupling region and a second coupling region, respectively, the first coupling region and the second coupling region are capable of transmitting a fundamental mode optical signal, and an effective refractive index of the fundamental mode optical signal in the first coupling region is different from the The effective refractive index of the fundamental mode optical signal in the second coupling region.
- the first transmission optical waveguide and the second transmission optical waveguide can respectively satisfy the pattern matching condition and perform optical mode coupling with different mode channels in the multimode optical waveguide, and the first transmission optical waveguide and the second can be Transmitting a fundamental mode optical signal transmitted in the optical waveguide into two different modes of optical signals in the multimode optical waveguide, or coupling the two different modes of optical signals transmitted in the multimode optical waveguide to the first
- a fundamental mode optical signal in the optical waveguide and the second transmission optical waveguide is transmitted to implement mode multiplexing or demultiplexing of the on-chip optical network system.
- the multimode optical waveguide 310 includes a first mode channel and the second mode channel, respectively capable of transmitting optical signals of the first mode and the second mode, wherein the first mode and the second mode One of them may be a fundamental mode, and the other may be a higher-order mode (ie, a non-zero-order mode); or, the The first mode and the second mode may both be high-order modes, which are not limited by the embodiment of the present invention.
- the multimode optical waveguide 310 may also include other mode channels for transmitting optical signals of other modes.
- the multimode optical waveguide 310 includes N mode channels, and the N mode channels are in one-to-one correspondence with the optical signals of the N different modes, but the embodiment of the present invention does not limit this.
- the effective refractive index of the fundamental mode optical signal in the first coupling region 321 is different from the effective refractive index of the same fundamental mode optical signal in the second coupling region 331.
- the first transmission optical waveguide 320 and the second transmission optical waveguide 330 may be located on the same side of the multimode optical waveguide 310; or the first transmission optical waveguide 320 and the second transmission optical waveguide 330 may be located respectively in the multimode optical
- the two sides of the waveguide 310 are not limited in this embodiment of the present invention.
- the first transmission optical waveguide 320 and the second transmission optical waveguide 330 may be disposed in any order, which is not limited by the embodiment of the present invention.
- the first fundamental mode channel in the first coupling region 321 and the first mode channel in the multimode optical waveguide 310 satisfy a pattern matching condition, that is, an effective refractive index of the fundamental mode optical signal in the first coupling region 321
- the optical signals of the first mode have equal or similar effective refractive indices in the first mode channel of the multimode optical waveguide 310.
- the distance between the first coupling region 321 and the multimode optical waveguide 310 is less than or equal to the wavelength of the optical signal in vacuum, that is, the first coupling region 321 and the multimode optical waveguide 310 satisfy the evanescent field coupling condition.
- the first fundamental mode channel in the first coupling region 321 can be optically coupled with the first mode channel in the multimode optical waveguide 310, and transmitted in the first fundamental mode channel of the first coupling region 321
- the fundamental mode optical signal is coupled to the first mode channel of the multimode optical waveguide 310, or the first mode optical signal transmitted in the first mode channel of the multimode optical waveguide 310 is coupled to the first coupled region 321 A fundamental mode channel.
- the second fundamental mode channel in the second coupling region 331 and the second mode channel in the multimode optical waveguide 310 satisfy a pattern matching condition, that is, the fundamental mode optical signal is valid in the second coupling region 331.
- the refractive index is equal to or similar to the effective refractive index of the second mode optical signal in the second mode channel of the multimode optical waveguide 310.
- the distance between the second coupling region 331 and the multimode optical waveguide 310 is less than or equal to the wavelength of the optical signal in vacuum, that is, the second coupling region 331 and the multimode optical waveguide 310 satisfy the evanescent field coupling condition.
- the second fundamental mode channel in the second coupling region 331 can be optically coupled with the second mode channel in the multimode optical waveguide 310, and transmitted in the second fundamental mode channel of the second coupling region 331.
- the fundamental mode optical signal is coupled to the second mode channel of the multimode optical waveguide 310, or the second mode optical signal transmitted in the second mode channel of the multimode optical waveguide 310 is coupled to the second coupled region 331 Two fundamental mode channels.
- the mode multiplexing demultiplexer 300 may also include other transmission optical waveguides for optical mode coupling with other mode channels in the multimode optical waveguide 310.
- the mode multiplexing demultiplexer 300 includes N transmission optical waveguides, and a coupling region of each transmission optical waveguide includes a fundamental mode channel, and a fundamental mode channel in the N transmission optical waveguides can be coupled to the multimode optical waveguide
- the N different mode channels in the 310 are optically coupled in a one-to-one manner, but the embodiment of the present invention does not limit this.
- the effective refractive index of the same fundamental mode optical signal in the first coupling region 321 and the second coupling region 331 may be different.
- the difference between the wavelength of the first fundamental mode optical signal transmitted in the first coupling region 321 and the wavelength of the second fundamental mode optical signal transmitted in the second coupling region 331 is less than a preset threshold, the The effective refractive index of the first fundamental mode optical signal in the first coupling region 321 is different from the effective refractive index of the second fundamental mode optical signal in the second coupling region 331, and the first fundamental mode optical signal is The effective refractive index in the first coupling region 321 is equal to or close to the effective refractive index of the first mode optical signal in the multimode optical waveguide 310, and the effective refractive index of the second fundamental mode optical signal in the second coupling region 331
- the effective refractive index of the optical signal in the multimode optical waveguide 310 is equal or similar to the optical signal of the second mode, but the embodiment of the present invention does not limit
- the configuration of the first transmission optical waveguide 320 and the second transmission optical waveguide 330 may satisfy a preset condition such that an effective refractive index second base of the first fundamental mode optical signal in the first coupling region 321 An effective refractive index of the mode light signal in the second coupling region 331, wherein the first fundamental mode optical signal and the second fundamental mode optical signal are the same fundamental mode optical signal or the first fundamental mode optical signal and the The second fundamental mode optical signal has the same wavelength.
- the preset condition may include at least one of the following conditions:
- the first coupling region 321 and the second coupling region 331 have different widths
- the first transmission optical waveguide 320 and the second transmission optical waveguide 330 have different heights
- the first transmission optical waveguide 320 and the second transmission optical waveguide 330 have different materials.
- first coupling region 321 and the second coupling region 331 have different widths.
- the first transmission optical waveguide 320 and the second transmission optical waveguide 330 may have the same material and height, but the embodiment of the present invention does not limit this.
- the first coupling region and the second coupling region may have a length of 10 ⁇ m to 100 ⁇ m and a width of 0.4 ⁇ m to 10 ⁇ m.
- the width of at least one of the first input and output regions and the second output region may be less than 0.5. ⁇ m, but the embodiment of the present invention does not limit this.
- FIG. 4 shows a plurality of cross-sectional views of the mode multiplexing demultiplexer 300 shown in FIG.
- the mode multiplexing demultiplexer 300 includes a substrate 340 on which a multimode optical waveguide 310, a first transmission optical waveguide 320, and a second transmission optical waveguide 330 are disposed, and the multimode optical waveguide 310
- a cover layer 350 (not shown in FIG. 3) is disposed on the first transmission optical waveguide 320 and the second transmission optical waveguide 330.
- the cover layer 350 and the substrate 340 may be composed of the same or different materials.
- the substrate 340 is silicon dioxide and the cap layer 350 is a silicon dioxide or polymethyl methacrylate PMMA material.
- the plurality of optical waveguides included in the mode multiplexing demultiplexer 300 may all be silicon waveguides, but the embodiment of the present invention does not limit this.
- Figure 5 shows a plot of the effective refractive index of an optical signal having a wavelength of 1550 nm and a mode of TE0-TE3 as a function of waveguide width.
- the effective refractive index of the TE2 mode optical signal in the waveguide having a width of 1.6 ⁇ m is close to the effective refractive index of the TE0 mode optical signal in the waveguide having a width of 0.5 ⁇ m
- the TE1 mode optical signal is
- the effective refractive index in the waveguide having a width of 1.6 ⁇ m is similar to the effective refractive index in the waveguide of the TE0 mode in a waveguide having a width of 0.8 ⁇ m.
- the multimode optical waveguide 310 can be designed based on FIG. a width of a coupling region 321 and the second coupling region 332 such that the first fundamental mode channel in the first coupling region 321 and the first mode channel in the multimode optical waveguide 310 satisfy a pattern matching condition and the second The second fundamental mode channel in the coupling region 331 and the second mode channel in the multimode optical waveguide 310 satisfy the pattern matching condition, but the embodiment of the present invention is not limited thereto.
- the configuration of the first coupling region, the second coupling region, and the length of the multimode optical waveguide may enable the optical mode coupling to have a higher coupling efficiency.
- the effective refractive index of the fundamental mode optical signal increases as the waveguide width increases. Therefore, the first coupling region and the second coupling region have different widths compared to the wider widths of the respective input and output regions in the prior art, so that the fundamental mode optical signal can be made in the first coupling region and/or Or reducing the effective refractive index of the second coupling region, thereby reducing the length of the first coupling region and/or the second coupling region while ensuring the required coupling efficiency, thereby reducing the overall mode of the mode multiplexing demultiplexer length.
- the first coupling region 321 and the first input/output region 322 have a channel for transmitting a fundamental mode optical signal, so that the first coupling region 321 can transmit the fundamental mode optical signal to the first An input-output region 322, and the first input-output region 322 is capable of transmitting a fundamental mode optical signal to the first coupling region 321.
- the first coupling region 321 and the first input/output region 322 may be adjacent to each other.
- the first coupling region 321 and the first input/output region 322 are directly connected; or the first coupling region 321 and The first input and output area 322
- the first coupling region 321 and the first input/output region 322 are indirectly connected through other regions, which is not limited in this embodiment of the present invention.
- the first coupling region 321 and the first input/output region 322 may only transmit a fundamental mode optical signal, that is, a single mode optical waveguide; or the first coupling region 321 and the first input/output region 322 At least one of the regions may also be capable of transmitting optical signals of other modes, which is not limited by the embodiment of the present invention.
- the width of the first coupling region 321 is different from the width of the first input/output region 322;
- the first transmission optical waveguide 320 further includes: a first transition region 323, wherein both ends of the first transition region have different widths, and two ends of the first transition region are respectively associated with the first input/output region 322 and The first coupling region 321 is connected.
- the first input and output region 322 and the first coupling region 321 may each have a constant width value.
- the width of the first transition region 323 connected to the first input/output region 322 may be equal to the width of the first input/output region 322, and the width of the end connected to the first coupling region 321 may be equal to the first The width of the coupling region 321 .
- the width of the first input/output area 322 may be smaller than the width of the first coupling area 321 .
- the first transition area 323 is at one end connected to the first coupling area 321 .
- the width is greater than the width of the end connected to the first input/output area 322; or the width of the first input/output area 322 may be smaller than the width of the first coupling area 321, and the first transition area 323 is The width of one end connected to the first coupling region 321 is smaller than the width of one end connected to the first input and output region 322, which is not limited in this embodiment of the present invention.
- At least one of the first coupling region 321 and the first input/output region 322 may include a curved portion.
- the first coupling region 321 and the first input and output region 322 may both be straight.
- the first transition region 323 may have a circular arc shape, a trigonometric function curve, a polynomial curve or a progressive curve, which is not limited in the embodiment of the present invention.
- the first transition region 323 includes a curved portion.
- the two ends of the curved portion have different widths, that is, the first The crossing region 323 is specifically a curved optical waveguide having a width gradient, and the width of the curved optical waveguide gradually increases in a direction approaching the first coupling region 321.
- the first transition region 323 includes a tapered portion 3231 and a curved portion 3232, wherein the curved portion 3232 has a constant width value, and the tapered portion 3231 is straight, that is, Has a constant optical signal transmission direction.
- the first coupling region 321, the curved portion 3232, the tapered portion 3231, and the first input-output region 322 are sequentially connected, and are sequentially disposed in a direction away from the multimode optical waveguide 310, wherein
- the optical signal transmission direction in the tapered portion 3231 is parallel to the optical signal transmission direction in the first input/output region 322, and the width of the tapered portion 3231 is gradually increased in a direction away from the first input/output region 222. Big.
- the multimode optical waveguide 310 has a fixed width in the mode multiplexing demultiplexer provided by the embodiment of the present invention, it is not necessary to use additional tapered light in the length direction of the multimode optical waveguide 310.
- the waveguide connects the two portions of the multimode optical waveguide having different widths, thereby reducing the overall length of the on-chip multiplexer demultiplexer 300.
- the first coupling region 321, the tapered portion 3231, the curved portion 3232, and the first input-output region 322 are sequentially connected, and are sequentially disposed in a direction away from the multimode optical waveguide 310, wherein the The optical signal transmission direction in the tapered portion 3231 is parallel to the optical signal transmission direction in the first coupling region 321, and the width of the tapered portion 3231 is gradually increased in a direction close to the first coupling region 221, the present invention
- the embodiment does not limit the shape and structure of the first transition region 323.
- the width of the second coupling area 331 and the width of the second input/output area 332 may be the same or different, which is not limited by the embodiment of the present invention.
- the second coupling region 331 and the second input/output region 332 may be directly connected under the condition that the second coupling region 331 and the second input/output region 332 have the same width.
- the second coupling region 331 and At least one of the second input and output regions 332 may include a curved portion; if the optical signal transmission direction and the second input and output region 332 in the second coupling region 331 are both straight, and the second coupling region 331 There is a non-zero angle between the optical signal transmission direction and the optical signal transmission direction in the second input/output area 332, and the second coupling area 331 and the second input/output area 332 can be connected through a curved area. This embodiment of the present invention does not limit this.
- the second coupling region 331 and the second input/output region 332 have a channel for transmitting a fundamental mode optical signal, so that the second coupling region 331 can transmit the fundamental mode optical signal to the second input/output region. 332, and the second input/output area 332 can transmit the fundamental mode optical signal It is input to the second coupling region 331.
- the second coupling region 331 and the second input/output region 332 may be adjacent to each other. In this case, the second coupling region 331 and the second input/output region 332 are directly connected; or the second coupling region 331 and The second input and output area 332 may not be adjacent to each other.
- the second coupling area 331 and the second input/output area 332 are indirectly connected through other areas, which is not limited in this embodiment of the present invention.
- the second coupling region 331 and the second input/output region 332 may only transmit a fundamental mode optical signal, that is, a single mode optical waveguide; or the second coupling region 331 and the second input/output region 332 At least two of the regions may also be capable of transmitting optical signals of other modes, which are not limited in this embodiment of the present invention.
- the second transmission optical waveguide 330 further includes: a second transition region, wherein both ends of the second transition region have different widths, and two ends of the second transition region respectively correspond to the second input/output region 332 is connected to the second coupling region 331.
- the width of the first coupling region 321 and the width of the first input/output region 322 may be the same or different, which is not limited in this embodiment of the present invention.
- the width of the second transition region connected to the second input/output region 332 may be equal to the width of the second input/output region 332, and the width of one end connected to the second coupling region 331 may be equal to the second coupling.
- the second input/output area 332 and the second coupling area 331 may each have a constant width value.
- the width of the second transition region connected to the second input/output region 332 may be equal to the width of the second input/output region 332, and the width of one end connected to the second coupling region 331 may be equal to the second coupling.
- the width of the second input/output area 332 may be smaller than the width of the second coupling area 331.
- the width of the second transition area at the end connected to the second coupling area 331 is greater than that of the second The width of one end of the input/output area 332 is connected; or the width of the second input/output area 332 may be smaller than the width of the first coupling area 331.
- the second transition area is in the second coupling area.
- the width of one end of the connection of the field 331 is smaller than the width of the end of the connection with the second input and output area 332, which is not limited in this embodiment of the present invention.
- the second coupling region 331 and the second input and output region 332 may include a curved portion.
- the second coupling region 331 and the second input/output region 332 may be straight.
- the second transition region may include a curved portion, which may have a circular arc shape, a trigonometric function curve, a polynomial curve or a progressive The curve is not limited in this embodiment of the present invention.
- the second transition region includes a curved portion.
- the two ends of the curved portion have different widths, that is, the second transition region is specifically a curved optical waveguide with a gradual width, and the width of the curved optical waveguide gradually increases along the direction of the second coupling region 331.
- the second transition region includes a tapered portion and a curved portion, wherein the curved portion has a constant width value, and the tapered portion is straight, that is, has a constant optical signal transmission direction, and the specific arrangement may refer to the above. The description of the first transition area 323 will not be repeated here.
- the multimode optical waveguide 310 may have a constant width value.
- the width of the multimode optical waveguide 310 may be from 0.4 ⁇ m to 10 ⁇ m, which is not limited in the embodiment of the present invention. Alternatively, as another embodiment, the width of the multimode optical waveguide 310 may not be constant.
- the multimode optical waveguide 310 is a tapered optical waveguide, but the embodiment of the present invention is not limited thereto.
- the first coupling region 321 and the second coupling region 331 are both parallel to the multimode optical waveguide 310, and the first coupling region 321 and the second coupling region 331 are The distance between the mode optical waveguides 310 is less than 1 ⁇ m.
- the first input output area 322 is configured to receive a fundamental mode optical signal from the first transmitting end, and receive the received signal.
- the fundamental mode optical signal is transmitted to the first coupling region 321; the first coupling region 321 is configured to couple the fundamental mode optical signal transmitted by the first input/output region 322 to the first mode channel; the second input The output area 332 is configured to receive a fundamental mode optical signal from the second transmitting end, and transmit the received fundamental mode optical signal to the second coupling area 331; the second coupling area 331 is configured to input the second input The fundamental mode optical signal transmitted by the out-of-area 332 is coupled to the second mode channel; the multi-mode optical waveguide 310 is configured to perform optical mode coupling with the first coupling region 321 to obtain the first mode of the first mode channel transmission.
- the optical signal is optically coupled with the second coupling region 331 to obtain the optical signal of the second mode transmitted by the second mode channel, and the optical signal
- the first sending end may be the same as or different from the second sending end, which is not limited by the embodiment of the present invention.
- the two fundamental optical signals transmitted in the first input optical waveguide 320 and the second input optical waveguide 330 are both coupled into the multimode optical waveguide 310 for transmission to implement mode multiplexing of the optical signals.
- the multimode optical waveguide 310 is configured to receive a beam of optical signals from a third transmitting end, where the one The beam light signal includes an optical signal of the first mode and the second mode, and couples the optical signal of the first mode to the first fundamental mode channel of the first coupling region 321 to couple the optical signal of the second mode to The second fundamental mode channel of the second coupling region 331;
- the first coupling region 321 is configured to obtain a fundamental mode optical signal transmitted by the first fundamental mode channel by performing optical mode coupling with the multimode optical waveguide 310, and Transmitting the fundamental mode optical signal obtained by the coupling to the first input/output area 322;
- the first input/output area 322 is configured to transmit the fundamental mode optical signal transmitted by the first coupling area 321 to the second receiving end;
- the second coupling region 331 is configured to perform optical mode coupling with the multimode optical waveguide 310, obtain a fundamental mode optical signal transmitted by the second fundamental mode
- the second receiving end may be the same as or different from the third receiving end, which is not limited in this embodiment of the present invention.
- the first mode and the second mode optical signals transmitted in the multimode optical waveguide 310 are coupled to the first input optical waveguide 220 and the second input optical waveguide 230 for transmission, respectively, thereby effecting mode demultiplexing of the optical signal.
- the mode multiplexing demultiplexer 300 includes a multimode optical waveguide, a first transmission optical waveguide, and a second transmission optical waveguide, wherein the first transmission optical waveguide and the second transmission optical waveguide Separating a first coupling region and a second coupling region, respectively, the first coupling region and the second coupling region are capable of transmitting a fundamental mode optical signal, and an effective refractive index of the fundamental mode optical signal in the first coupling region is different from the The effective refractive index of the fundamental mode optical signal in the second coupling region.
- the first transmission optical waveguide and the second transmission optical waveguide can respectively satisfy the mode matching condition and perform optical mode coupling with different mode channels in the multimode optical waveguide
- the first transmission optical waveguide and the The fundamental mode optical signal transmitted in the second transmission optical waveguide is coupled to two different modes of the optical signal in the multimode optical waveguide, or the two different modes of optical signals transmitted in the multimode optical waveguide are respectively coupled to the optical signal
- the first transmission optical waveguide and the fundamental optical signal in the second transmission optical waveguide thereby implementing mode multiplexing or demultiplexing of the on-chip optical network system.
- the first coupling region and the second coupling region have different widths such that the first transmission optical waveguide and the second transmission optical waveguide are optically coupled to different mode channels in the multimode optical waveguide, respectively. It is avoided in the prior art that an additional tapered optical waveguide needs to be introduced by changing the width of the multimode optical waveguide, thereby reducing the overall length of the mode multiplexing demultiplexer. Furthermore, since the coupling region in the transmission optical waveguide that is optically coupled to the higher order mode in the multimode optical waveguide is wider, the fundamental mode optical signal has a smaller effective refractive index in the coupling region, thereby being capable of reducing the multimode The optical waveguide and the length of the coupling region further reduce the overall length of the mode multiplexing demultiplexer.
- the mode multiplexing demultiplexer provided by the embodiment of the invention has a small overall volume, and thus can be used for multiplexing transmission of optical signals of more modes, and has better expandability.
- FIG. 9 schematically shows a mode multiplexing demultiplexer 400 in accordance with another embodiment of the present invention.
- the mode multiplexing demultiplexer 400 includes: a multimode optical waveguide 410 and N transmission optical waveguides 420 (transmission optical waveguide 1, ..., transmission optical waveguide i, ..., transmission optical waveguide N), where N ⁇ 2, wherein
- the multimode optical waveguide 410 includes N mode channels, and the N mode channels are in one-to-one correspondence with N different modes of optical signals;
- Each of the N transmission optical waveguides 420 includes a coupling region 421 and an input-output region 422, wherein a fundamental mode optical signal can be transmitted between the coupling region 421 and the input-output region 422 of the same transmission optical waveguide;
- the coupling regions 421 of the N transmission optical waveguides 420 are used for optical mode coupling with the N mode channels in the multimode optical waveguide 410, and the fundamental mode optical signals are transmitted in any two of the N transmission optical waveguides 420.
- the coupling region of the optical waveguide has a different effective refractive index.
- the coupling region of the ith transmission optical waveguide is used for optical mode coupling with the i-th mode channel in the multimode optical waveguide, 1 ⁇ i ⁇ N.
- a mode multiplexing demultiplexer 400 includes a multimode optical waveguide and N transmission optical waveguides, each transmission optical waveguide including an input/output region and for performing optical mode with the multimode optical waveguide
- the coupling regions are coupled, and the widths of the coupling regions of the N transmission optical waveguides are different from each other such that the effective refractive indices of the fundamental mode optical signals in the N transmission optical waveguides are different from each other.
- the N transmission optical waveguides can respectively satisfy the pattern matching condition and the optical mode coupling with different mode channels in the multimode optical waveguide, so that the fundamental mode optical signals transmitted in the N transmission optical waveguides can be coupled into N different modes of optical signals in the multimode optical waveguide, or coupling N different modes of optical signals transmitted in the multimode optical waveguide into fundamental optical signals in the N transmitted optical waveguides to implement on-chip light Mode multiplexing or demultiplexing of network systems.
- the multimode optical waveguide may have M mode channels, wherein each mode channel is used to transmit one mode of optical signals and the modes of the optical signals transmitted by the respective mode channels are different from each other, M ⁇ N.
- the N different modes of optical signals corresponding to the N mode channels may be specifically N consecutive optical signals of a mode order.
- the N modes of the optical signals are transmitted from a 0th order mode (ie, a fundamental mode) optical signal to the N-
- the first-order mode optical signal is composed of, or is composed of a first-order mode optical signal to an N-order mode optical signal, and the like.
- the optical signals of the N different modes may also be N optical signals whose mode order is discontinuous, which is not limited in this embodiment of the present invention.
- the multimode optical waveguide and the N transmission optical waveguides may be disposed on the same substrate, and the substrate may be a silicon based substrate or other semiconductor substrate, which is not in this embodiment of the present invention. Make a limit.
- the multi-mode optical waveguide and the N transmission optical waveguides may have the same height, or the N transmission optical waveguides may have different heights, which is not limited by the embodiment of the present invention.
- the coupling regions in the N transmission optical waveguides are optically coupled to the N mode channels in the multimode optical waveguide, respectively.
- the coupling region in the ith transmission optical waveguide is optically coupled to the i-th mode channel in the multimode optical waveguide.
- the configuration of the N transmission optical waveguides may satisfy a preset condition such that the fundamental mode optical signals have different effective refractive indices in any two coupling regions of the N transmission optical waveguides.
- the preset condition may include at least one of the following conditions:
- the N transmission optical waveguides include at least two coupling regions having different widths
- At least two of the N transmission optical waveguides have different heights
- At least two of the N transmitted optical waveguides have different materials.
- the N transmission optical waveguides comprise at least two coupling regions having different widths.
- the coupling region and the input and output region in the same transmission optical waveguide may be directly or indirectly connected.
- the coupling region and the input/output region in the transmission optical waveguide may be directly connected, and in this case, the transmission optical waveguide
- the input/output area may include a curved portion at one end connected to the coupling region, and the curved portion has a single width value,
- this embodiment of the present invention does not limit this.
- the transmission optical waveguide may further include a transition region, wherein both ends of the transition region There are different widths, and both ends of the transition region in the transmission optical waveguide are respectively connected to the input and output regions and the coupling region of the transmission optical waveguide.
- coupling regions in the N transmission optical waveguides may be parallel to the multimode optical waveguide, and a coupling region in the N transmission optical waveguides and the multimode optical waveguide 210 The distance is less than or equal to the wavelength of the optical signal in vacuum to meet the evanescent field coupling condition.
- the coupling regions in the N transmission optical waveguides may have the same distance from the multimode optical waveguide, but the embodiment of the invention is not limited thereto.
- the length of the coupling region in the N transmission optical waveguides may also be sufficiently long to provide high coupling efficiency for optical mode coupling between the N transmission optical waveguides and the multimode optical waveguide.
- the length of the coupling region in the N transmission optical waveguides may be from 10 ⁇ m to 100 ⁇ m, and the width may be from 0.4 ⁇ m to 10 ⁇ m, which is not limited in the embodiment of the present invention.
- the multimode optical waveguide and the N transmission optical waveguides are disposed such that the N transmission optical waveguides can respectively satisfy pattern matching conditions with different mode channels of the multimode optical waveguide.
- the jth mode channel of the multimode optical waveguide corresponds to the optical signal of the jth mode of the N different modes
- coupling of the i th transmission optical waveguide of the N transmission optical waveguides The region may satisfy a pattern matching condition with the jth mode channel of the multimode optical waveguide, 1 ⁇ i, j ⁇ N, that is, an effective refractive index and a base of the optical signal of the jth mode in the jth mode channel
- the effective refractive index of the mode optical signal in the coupling region of the ith transmission optical waveguide is equal or similar, such that the fundamental mode optical signal transmitted in the coupling region of the ith transmission optical waveguide can be coupled to the multimode optical waveguide
- the jth mode channel in the transmission is transmitted, or the optical signal of
- Each of the N transmission optical waveguides transmits a fundamental mode optical signal
- each of the transmission optical waveguides includes a coupling region and an input and output region.
- the coupling region and the input and output region of a transmission optical waveguide may include only a fundamental mode channel, for example, the transmission optical waveguide is a single mode optical waveguide.
- the at least one of the coupling region and the input and output regions further includes a high-order mode channel for transmitting the high-order mode optical signal, which is not limited by the embodiment of the present invention.
- mode multiplexing demultiplexer 400 when used as a mode multiplexer Time,
- An input/output area of the i-th transmission optical waveguide of the N transmission optical waveguides is configured to receive a fundamental mode optical signal from the first transmitting end, and transmit the fundamental mode optical signal to a coupling region of the ith transmission optical waveguide , 1 ⁇ i ⁇ N;
- the multimode optical waveguide is configured to perform optical mode coupling with the coupling regions in the N transmission optical waveguides, obtain the N different modes of optical signals corresponding to the N mode channels, and use the N different modes of optical signals Transfer to the first receiving end.
- the mode multiplexing demultiplexer 400 can implement coupling N N-mode optical signals transmitted in the N transmission optical waveguides into N different modes of optical signals in the multi-mode optical waveguide, thereby implementing optical signals. Mode multiplexed transmission.
- mode multiplexing demultiplexer 400 when used as a mode demultiplexer, is used as a mode demultiplexer,
- the multimode optical waveguide is configured to receive an optical signal from a second transmitting end, the optical signal comprising the N different modes of optical signals corresponding to the N channel modes, and the N different modes of light a signal coupled to the coupling region of the N transmitted optical waveguides;
- a coupling region of the i-th transmission optical waveguide of the N transmission optical waveguides for coupling the optical signal of the i-th mode transmitted by the multi-mode optical waveguide to the fundamental-mode optical signal, and coupling the obtained fundamental mode light Transmitting a signal to an input/output area of the i-th transmission optical waveguide, 1 ⁇ i ⁇ N;
- the input/output area of the ith transmission optical waveguide is specifically configured to transmit the received fundamental optical signal to the second receiving end.
- the mode multiplexing demultiplexer can realize the mode of coupling the N different modes of optical signals transmitted in the multimode optical waveguide into the N transmission optical waveguides as the fundamental mode optical signals for transmission. Demultiplexing.
- the mode multiplexing demultiplexer includes a multimode optical waveguide and three input optical waveguides, each of the three input optical waveguides
- the input optical waveguide includes a coupling region, a curved region, a tapered region, and an input and output region which are sequentially disposed.
- FIG. 10 shows a light energy distribution curve when the mode multiplexing demultiplexer example implements mode multiplexing.
- the light energy distribution map has a black background, and the light energy distribution map includes a plurality of U-shaped (or U-like) energy distribution curves.
- the downward U-shaped curve on the left side indicates the light energy distribution curve corresponding to one mode channel of the multimode optical waveguide
- the U-shaped curve on the right side of the opening indicates the light energy distribution corresponding to one transmission optical waveguide.
- a single U-shaped curve corresponds to the TE0 mode
- two parallel U-shaped curves having the same opening direction correspond to the TE1 mode
- three parallel U-shaped curves having the same opening direction correspond to the TE2 mode.
- the three transmission optical waveguides are optically coupled to the TE0 mode, the TE1 mode, and the TE2 mode in the multimode optical waveguide, respectively.
- a mode multiplexing demultiplexer includes a multimode optical waveguide and N transmission optical waveguides, each transmission optical waveguide including an input/output region and for optical mode coupling with the multimode optical waveguide Coupling regions, and the widths of the coupling regions of the N transmission optical waveguides are different from each other, so that the effective refractive indices of the fundamental mode optical signals in the N transmission optical waveguides are different from each other, so that the N transmission optical waveguides can Different mode channels in the multimode optical waveguide respectively satisfy the pattern matching condition and are capable of optical mode coupling, so that the fundamental mode optical signals transmitted in the N transmitted optical waveguides can be coupled into N of the multimode optical waveguides Different modes of optical signals, or coupling N different modes of optical signals transmitted in the multimode optical waveguide into fundamental optical signals in the N transmitted optical waveguides, to implement mode multiplexing or decoding of the on-chip optical network system use.
- the widths of the coupling regions in the N transmission optical waveguides are different from each other, so that the N transmission optical waveguides can be optically coupled with different mode channels in the multimode optical waveguide, avoiding changes in the prior art.
- the width of the multimode optical waveguide requires the introduction of an additional tapered optical waveguide, thereby reducing the overall length of the mode multiplexing demultiplexer.
- the fundamental mode optical signal has a smaller effective refractive index in the coupling region, thereby being able to reduce the excess
- the mode optical waveguide and the length of the coupling region further reduce the overall length of the mode multiplexing demultiplexer.
- the mode multiplexing demultiplexer provided by the embodiment of the invention has a small overall volume, and thus can be used for multiplexing transmission of optical signals of more modes, and has better expandability.
- Mode multiplexing demultiplexing according to an embodiment of the present invention is described in detail above with reference to FIGS. 3 through 10.
- the switching node according to the embodiment of the present invention is described below with reference to FIG. 11 to FIG. 14, wherein the switching node can simultaneously transmit optical signals by using Wavelength Division Multiplexing (WDM) technology and mode multiplexing technology.
- WDM Wavelength Division Multiplexing
- the embodiment of the present invention uses the switching node to transmit optical signals in combination with wavelength multiplexing and mode multiplexing techniques as an example, but the switching node can use the mode multiplexing technology and polarization multiplexing when transmitting optical signals.
- the foregoing embodiment of the present invention does not limit the combination of at least one of the techniques of the multiplex, the multiplex, and the multiplex.
- FIG. 11 shows a schematic block diagram of a switching node 500 in accordance with an embodiment of the present invention.
- the switching node 500 can perform wavelength multiplexing on multiple optical signals of the same mode and different wavelengths, and perform mode multiplexing on multiple optical signals respectively including multiple wavelengths in different modes, but the embodiment of the present invention is not limited thereto. this.
- the switching node 500 includes:
- a demultiplexer, 1 ⁇ N 1 ⁇ N, M 1 is an integer greater than one.
- the demultiplexer 510 for receiving a mode signal beam of light, wherein the beam of light signal patterns comprising N 2 and M 2 are the optical signal wavelength, M 2 ⁇ M 1, 1 ⁇ N 2 ⁇ N 1 .
- the mode demultiplexer 510 is further configured to separate the optical signal into an N 2 beam fundamental mode optical signal, and transmit the N 2 beam fundamental mode optical signal to the N 1 wavelength demultiplexer 520, where Each of the fundamental mode optical signals in the N 2 bundle fundamental mode optical signal includes an optical signal of at least one wavelength.
- the first wavelength demultiplexer in the N 1 wavelength demultiplexer 520 is configured to receive a bundle of fundamental mode optical signals including the M 2 wavelengths transmitted by the mode demultiplexer 510, and receive the received beam
- the fundamental mode optical signal is separated into an M 2 beam fundamental mode optical signal, and the obtained M 2 beam fundamental mode optical signal is transmitted to the M 1 optical switch 530, wherein each of the M 2 beam fundamental mode optical signals
- the fundamental mode optical signal has a single wavelength, and the wavelengths of the M 2 bundle fundamental mode optical signals are different from each other.
- M 1 of the first optical switch optical switch 530 is used to receive the N transmission wavelength demultiplexer 520, at least one bundle of optical signals having a fundamental mode of a single wavelength, and in accordance with the received at least one bundle of the group A destination node of the optical signal, routing the at least one fundamental optical signal.
- the switching node includes a mode demultiplexer, a plurality of wavelength demultiplexers, and a plurality of optical switches, and can sequentially perform a mode solution on a beam of optical signals including a plurality of wavelengths and a plurality of modes.
- the mode demultiplexer 510 is capable of performing mode demultiplexing processing on the N modes of optical signals, wherein the N modes may include the N 1 modes, N ⁇ N 1 .
- the wavelength demultiplexer 520 can perform wavelength demultiplexing processing on the optical signals of the M wavelengths, that is, the wavelength demultiplexer 520 can have M output ports, wherein the M wavelengths include the M 2 Wavelengths, M ⁇ M 2 .
- Each of the fundamental mode optical signals in the N 1 bundle fundamental mode optical signal may include at least one wavelength, for example, a fundamental mode optical signal of one wavelength or a fundamental mode optical signal of M 2 wavelengths, etc., etc. This example does not limit this.
- the difference between the M 2 wavelengths may be less than a certain threshold such that the effective refractive indices of the M 2 wavelengths of the fundamental mode optical signals in the same optical waveguide are equal or similar.
- At least one of the N 1 wavelength demultiplexers 520 receives the fundamental mode optical signal transmitted by the mode demultiplexer 510, and each wavelength of the at least one wavelength demultiplexer is resolved
- the receiver receives a bundle of fundamental mode optical signals including one or more wavelengths, but the embodiment of the present invention does not limit this.
- At least one of the M 1 optical switches 530 receives the plurality of fundamental mode optical signals transmitted by the N 1 wavelength demultiplexers 520.
- Each of the at least one optical switch receives at least one of the fundamental mode optical signals, but the embodiment of the present invention does not limit this.
- Each optical switch M 1 of the optical switch 530 may be a destination node according to the received optical signal, the routing of the received optical signal. Specifically, if the destination node of the optical signal received by the optical switch is the switching node 500, the optical switch may output the received optical signal from the output port corresponding to the switching node 500, so that the optical signal is Transmitted to the switching node 500 local; if the destination node of the optical signal received by the optical switch is another switching node, the optical switch may output the received optical signal from an output port corresponding to the other switching node, to The optical signal is transmitted to the other switching node, which is not limited in this embodiment of the present invention.
- the switching node 500 further includes: at least one receiver 540, wherein the at least one receiver 540 is configured to receive at least one bundle of fundamental mode optical signals.
- the at least one receiver 540 can be specifically configured to receive the M 1 base-mode optical signal transmission of the optical switch, at this time, the first optical switch is configured, if the received The destination node of the first fundamental mode optical signal of the at least one base mode optical signal is the switching node 300, and the first fundamental mode optical signal is transmitted to one of the at least one receiver 540;
- the first receiver of the at least one receiver 540 is configured to receive the first optical switch The first fundamental mode optical signal transmitted.
- the at least one receiver 540 can be specifically configured to receive the N 1 of the optical signals in wavelength demultiplexer 520 transmission case, the at least one receiver The 540 may be specifically configured to receive at least one of the plurality of fundamental mode optical signals output by the N 1 wavelength demultiplexers 520, and correspondingly, the multiple beams output by the N 1 wavelength demultiplexers fundamental mode optical signal are transmitted to the M 1 may be optical switch 530, or a portion is transmitted to the M 1 optical switch 530, the other portion is transmitted to the at least one receiver 540, this embodiment is not limited in embodiments of the present invention .
- the number of the at least one receiver 540 is multiple, at a certain moment, all of the plurality of receivers 540 may receive the fundamental mode optical signal, or only some of the receivers receive the fundamental mode light.
- the signal is not limited in this embodiment of the present invention.
- the switching node 500 further includes:
- N 3 wavelength multiplexers 550 and a mode multiplexer 560 wherein the mode multiplexer 560 can be any mode multiplex demultiplexer shown in FIG. 3 to FIG. 10, and N 3 is greater than one. Integer.
- the first optical switch is further configured to transmit the second fundamental mode optical signal if the destination node of the received second fundamental mode optical signal in the at least one fundamental optical signal is not the switching node To one of the N 3 wavelength multiplexers.
- the first wavelength multiplexer of the N 3 wavelength multiplexers 550 is configured to receive the multi-beam fundamental mode optical signals transmitted by the M 1 optical switches 530, and multiplex the multi-beam fundamental mode optical signals into a basic mode.
- the optical signal is transmitted to the mode multiplexer 560, and the wavelengths of the multi-beam fundamental optical signals are different from each other.
- the mode multiplexer 560 is configured to receive the multi-beam fundamental mode optical signals transmitted by the N 3 wavelength multiplexers 550, and multiplex the multi-beam fundamental mode optical signals into a single optical signal including a plurality of different modes, and The obtained one of the plurality of different modes of light signals is transmitted.
- the fundamental mode optical signal received by one of the N 3 wavelength multiplexers 550 may be derived from one or more optical switches, which is not limited in this embodiment of the present invention.
- the N 1 wavelength demultiplexers 520 can form a wavelength demultiplexer array
- the M 1 optical switches 530 can form an optical opening array
- the N 3 wavelength multiplexers 550 can form a wavelength resolution.
- the switching node 500 may include a mode demultiplexer 510, a wavelength demultiplexer array 520, an optical switch array 530, a wavelength multiplexer array 550, and a mode multiplexer 560 that are sequentially connected.
- the switching node 500 further includes: at least one transmitter 570, configured to transmit at least one base mode optical signal, wherein each of the at least one base mode optical signal The optical signal has a single wavelength.
- the at least one transmitter 570 for this particular M 1 optical switch 530 emitting at least one fundamental mode of the optical signal, each beam of the fundamental mode at least one beam of the fundamental mode of the optical signal
- the optical signal has a single wavelength
- the second optical switch M 1 of the optical switch 530 is further configured to receive the at least one emitter 570 emitting at least one beam of the fundamental mode of the optical signal.
- At some point, at least one of the fundamental mode optical signals received by an optical switch 530 may all come from the N 1 wavelength demultiplexer 520, or partially from the at least one transmitter 570, and partially from the N.
- a wavelength demultiplexer 520 the present embodiment is not limited to this embodiment of the invention.
- the at least one transmitter 570 is specifically configured to transmit at least one basic mode optical signal to the N 3 wavelength multiplexers 550, and correspondingly, the first a wavelength multiplexer for receiving the at least one transmitter and / or the M 1 optical switch 530 based multi-beam transmission mode optical signal.
- the number of the at least one transmitter 570 is plural, then at a certain time, all of the plurality of transmitters 570 may emit a fundamental mode optical signal, or only a part of the transmitters may emit a fundamental optical signal. This embodiment of the present invention does not limit this.
- FIG. 14 shows a schematic diagram of an example of a switching node 600 in accordance with an embodiment of the present invention.
- the switching node 600 includes: a mode demultiplexer 610, a wavelength demultiplexer array including three wavelength demultiplexers 620, and 1 x 2 including nine 1 ⁇ 2 optical switches 630.
- the mode demultiplexer 610 and the mode multiplexer 690 may be specifically any of the mode multiplexing demultiplexers shown in FIG. 3 to FIG.
- the mode demultiplexer 610 can be configured to receive an optical signal from the input fiber, the optical signal comprising three wavelengths ( ⁇ 1 , ⁇ 2 , and ⁇ 3 ) and three modes (TE0, TE1, and TE2); The demultiplexer 610 may perform a mode demultiplexing process on the received optical signal to obtain three basic mode optical signals, wherein the three basic optical signals are respectively derived from three modes (TE0, TE1, and TE2). Optical signal, and each of the three fundamental optical signals includes three wavelength optical signals; then, the mode demultiplexer 610 outputs the three fundamental optical modes including three wavelengths respectively signal.
- the three bundles of fundamental mode optical signals respectively including three wavelengths can be transmitted to the wavelength demultiplexer array 620 through a transmission fiber, wherein each wavelength demultiplexer receives a bundle of fundamental mode optical signals and receives the same
- the fundamental mode optical signal is subjected to wavelength demultiplexing processing to obtain three fundamental optical signals each having a single wavelength, that is, a fundamental mode optical signal having a wavelength of ⁇ 1 , a fundamental optical signal having a wavelength of ⁇ 2 , and a wavelength of The fundamental mode optical signal of ⁇ 3 is then output to the three fundamental optical signals having a single wavelength.
- the three wavelength demultiplexers in the wavelength demultiplexer array 620 obtain nine fundamental optical signals each having a single wavelength, and the nine fundamental optical signals each having a single wavelength can be transmitted through the transmission fiber.
- At least one of the emitter arrays 660 can emit a fundamental mode optical signal having a single wavelength, and the fundamental mode optical signal transmitted by the emitter array 660 is transmitted to the 1x2 optical switch array 630.
- Each 1 ⁇ 2 optical switch of the 1 ⁇ 2 optical switch array 630 can receive the base film optical signal sent by the transmitter array 660 or the wavelength demultiplexer array 620, and transmit the received fundamental optical signal. To the 3 ⁇ 3 optical switch array 650.
- Each of the 3 ⁇ 3 optical switches in the 3 ⁇ 3 optical switch array 650 can receive at least one fundamental optical signal of a specific wavelength, and output the at least one basic mode according to the destination node of the at least one fundamental optical signal.
- Optical signal Specifically, if the destination node of the fundamental optical signal having a single wavelength received by a 3 ⁇ 3 optical switch is the switching node 600, the 3 ⁇ 3 optical switch can be output from the corresponding output array of the receiver array 640.
- the 3 x 3 optical switch can output the fundamental mode optical signal from an output port corresponding to the wavelength multiplexer array 680.
- Each of the wavelength multiplexer arrays 680 can receive three fundamental optical signals from the 3 ⁇ 3 optical switch array 650, wherein the three fundamental optical signals have different wavelengths.
- the wavelength multiplexer can perform wavelength multiplexing processing on the three fundamental optical signals of different wavelengths to obtain a fundamental optical signal including three wavelengths and then output the same.
- the three bundles of fundamental mode optical signals respectively outputted by the wavelength multiplexer array 680, including three wavelengths, are transmitted to the mode multiplexer 680 through a transmission fiber, and the mode multiplexer 680 can respectively receive the received three beams.
- the three-wavelength fundamental mode optical signal is multiplexed into a bundle of optical signals comprising three modes and three wavelengths, the bundle comprising three modes and three wavelengths of optical signals that can be transmitted through the output fiber Lose to other switching nodes.
- FIG. 14 is intended to provide a better understanding of the embodiments of the invention, and is not intended to limit the scope of the embodiments of the invention.
- a person skilled in the art will be able to make various modifications or changes in accordance with the example of FIG. 14 which are within the scope of the embodiments of the present invention.
- the switching node includes a mode demultiplexer, a plurality of wavelength demultiplexers, and a plurality of optical switches, and can sequentially perform a mode solution on a beam of optical signals including a plurality of wavelengths and a plurality of modes. Multiplexing and wavelength demultiplexing, obtaining a plurality of fundamental optical signals each having a single wavelength, and routing the plurality of fundamental optical signals each having a single wavelength through a plurality of optical switches, thereby implementing combined wavelength multiplexing technology And mode multiplexing techniques to transmit optical signals.
- association relationship describing the associated object indicates that there may be three relationships.
- a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
- the character / in this paper generally indicates that the contextual object is an OR relationship.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
- a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明公开了一种模式复用解复用器和交换节点,该模式复用解复用器包括多模光波导、第一传输光波导和第二传输光波导,其中,该多模光波导包括第一模式信道和第二模式信道;该第一传输光波导包括第一耦合区域,该第一耦合区域包括第一基模信道,该第一基模信道能够与该多模光波导中的第一模式信道进行光模式耦合;该第二传输光波导包括第二耦合区域,该第二耦合区域包括第二基模信道,该第二基模信道能够与该多模光波导中的第二模式信道进行光模式耦合;其中,基模光信号在该第一耦合区域中的有效折射率不同于基模光信号在该第二耦合区域中的有效折射率。本发明公开的模式复用解复用器,能够实现片上光网络的模式复用和解复用。
Description
本发明实施例涉及通信领域,并且更具体地,涉及模式复用解复用器和交换节点。
片上光网络(Optical Network on Chip)系统是将多个具有不同功能的模块集成到同一芯片中的技术。作为全光交换以及短距离互连的新技术,片上光网络系统具有高可靠性、低功耗和低成本等优点。图1示意性地示出了一种典型的片上光网络系统中一个交换节点100的架构。该交换节点100包括:衬底160,该衬底160上设置有波分解复用器110、N×M光开关120、波分复用器(wavelength division multiplexing,WDM)130、光探测器140和大规模集成器件(very large scale integration,VLSI)150。该VLSI 150用于控制该交换节点中包括的至少一个电驱动器件,例如,光探测器140。该波分解复用器110用于接收输入光纤输入的包括多个波长的一束光信号,将接收的所述一束光信号解复用为分别具有单一波长的多束光信号,并将该多束光信号传输至N×M光开关120,其中,该多束光信号的波长互不相同。该N×M光开关120用于接收波分解复用器110传输的多束光信号,并且根据该多束光信号的目的节点,确定该多束光信号中每束光信号的输出端口并从该多束光信号分别对应的输出端口输出该多束光信号。具体地,对于该多束光信号的一束光信号来说,如果该束光信号的目的节点为本节点,则该N×M光开关120由光探测器140对应的输出端口输出该束光信号;如果该束光信号的目的节点为除本节点之外的其它节点,则该N×M光开关120由该其它节点对应的输出端口输出该束光信号。该WDM 130用于接收该N×M光开关120传输的至少一束光信号,并将接收到的该至少一束光信号复用为一束包括至少一个波长的光信号。该光探测器140用于接收该N×M光开关120传输的至少一束光信号,并将接收到的该至少一束光信号转换为电信号。
模式复用(Mode Division Multiplexing,MDM)技术能够有效提高光网络系统的性能,因此如何将MDM技术应用到片上光网络系统是本领域研究的热点。在MDM技术中,光子集成芯片(Photonic Integrated Circuit,PIC)
中采用平面多模波导代替传统的平面单模波导,并且将不同信息加载于频率相同、相互正交、空间能量分布不同以及模式阶数不同的平面多模波导的本征模(eigenmode)上传输。片上MDM技术的核心在于与平面多模波导对应的模式复用/解复用器,然而,目前还没有能够令人满意的适用于片上光网络系统的模式复用解复用器。
发明内容
本发明实施例提供一种模式复用解复用器和交换节点,能够实现片上光网络系统的模式复用或解复用。
第一方面,本发明实施例提供了一种模式复用解复用器,包括:多模光波导、第一传输光波导和第二传输光波导,其中,该多模光波导包括第一模式信道和第二模式信道,其中,该第一模式信道能够传输第一模式的光信号,该第二模式信道能够传输第二模式的光信号,其中,该第一模式不同于该第二模式;该第一传输光波导包括第一耦合区域和第一输入输出区域,该第一耦合区域和该第一输入输出区域包括第一基模信道,该第一基模信道能够传输基模光信号,并且该第一耦合区域中的第一基模信道能够与该多模光波导中的第一模式信道进行光模式耦合;该第二传输光波导包括第二耦合区域和第二输入输出区域,该第二耦合区域和该第二输入输出区域包括第二基模信道,该第二基模信道能够传输基模光信号,并且该第二耦合区域中的第二基模信道能够与该多模光波导中的第二模式信道进行光模式耦合;其中,基模光信号在该第一耦合区域中的有效折射率不同于基模光信号在该第二耦合区域中的有效折射率。
在第一种可能的实现方式中,该第一耦合区域和该第二耦合区域具有不同的宽度。
结合上述可能的实现方式,在第二种可能的实现方式中,该第一耦合区域的宽度不同于该第一输入输出区域的宽度;该第一传输光波导还包括:第一过渡区域,其中,该第一过渡区域的两端具有不同的宽度,并且该第一过渡区域的两端分别与该第一输入输出区域和该第一耦合区域连接。
结合上述可能的实现方式,在第三种可能的实现方式中,该第一耦合区域中的光信号传输方向和该第一输入输出区域中的光信号传输方向之间存在一个不为零的夹角,该第一过渡区域包括弯曲部分。
结合上述可能的实现方式,在第四种可能的实现方式中,该多模光波导的宽度为恒定值。
结合上述可能的实现方式,在第五种可能的实现方式中,该第一耦合区域和该第二耦合区域均与该多模光波导平行,并且该第一耦合区域和该第二耦合区域与该多模光波导之间的距离均小于1μm。
结合上述可能的实现方式,在第六种可能的实现方式中,当该模式复用解复用器实现模式复用时,该第一输入输出区域用于从第一发送端接收基模光信号,并将接收到的该基模光信号传输至该第一耦合区域;该第一耦合区域用于将该第一输入输出区域传输的该基模光信号耦合至该第一模式信道;该第二输入输出区域用于从第二发送端接收基模光信号,并将接收到的该基模光信号传输至该第二耦合区域;该第二耦合区域用于将该第二输入输出区域传输的该基模光信号耦合至该第二模式信道;该多模光波导用于与该第一耦合区域进行光模式耦合,获得该第一模式信道传输的该第一模式的光信号,与该第二耦合区域进行光模式耦合,获得该第二模式信道传输的该第二模式的光信号,并将耦合获得的该第一模式和该第二模式的光信号传输至第一接收端。
结合上述可能的实现方式,在第七种可能的实现方式中,当该模式复用解复用器实现模式解复用时,该多模光波导用于从第三发送端接收一束光信号,其中,该一束光信号包括第一模式和第二模式的光信号,并将该第一模式的光信号耦合至该第一耦合区域的该第一基模信道,将该第二模式的光信号耦合至该第二耦合区域的该第二基模信道;该第一耦合区域用于通过与该多模光波导进行光模式耦合,获得该第一基模信道传输的基模光信号,并将耦合获得的该基模光信号传输至该第一输入输出区域;该第一输入输出区域用于将该第一耦合区域传输的该基模光信号传输至第二接收端;该第二耦合区域用于与该多模光波导进行光模式耦合,获得该第二基模信道传输的基模光信号,并将耦合获得的该基模光信号传输至该第二输入输出区域;该第二输入输出区域用于将该第二耦合区域传输的该基模光信号传输至第三接收端。
第二方面,本发明实施例提供了一种交换节点,包括:一个模式解复用器、N1个波长解复用器和M1个光开关,其中,该模式解复用器为如权利要求1至8中任一项该的模式复用解复用器,1<N1≤N,M1为大于一的整数,
该模式解复用器用于接收一束光信号,其中,该一束光信号包括N2个模式和M2个波长的光信号,M2≤M1,1<N2≤N1;该模式解复用器还用于将该一束光信号分离为N2束基模光信号,并将该N2束基模光信号传输至该N1个波长解复用器,其中,该N2束基模光信号中的每束基模光信号包括至少一个波长的光信号;该N1个波长解复用器中的第一波长解复用器用于接收该模式解复用器传输的包括M2个波长的一束基模光信号,将接收到的该一束基模光信号分离为M2束基模光信号,并将获得的该M2束基模光信号传输至该M1个光开关,其中,该M2束基模光信号中的每束基模光信号具有单一波长,并且该M2束基模光信号的波长互不相同;该M1个光开关中的第一光开关用于接收该N1个波长解复用器传输的至少一束具有单一波长的基模光信号,并且根据接收到的该至少一束基模光信号的目的节点,路由接收到的该至少一束基模光信号。
在第一种可能的实现方式中,该交换节点还包括:至少一个接收器,其中,该第一光开关具体用于,若接收到的该至少一束基模光信号中的第一基模光信号的目的节点为该交换节点,将该第一基模光信号传输至该至少一个接收器中的一个接收器;该至少一个接收器中的第一接收器用于接收该第一光开关传输的该第一基模光信号。
结合上述可能的实现方式,在第二种可能的实现方式中,该交换节点N3个波长复用器和一个模式复用器,其中,该模式复用器为如权利要求1至8中任一项该的模式复用解复用器,N3为大于一的整数,该第一光开关还用于,若接收到的该至少一束基模光信号中的第二基模光信号的目的节点不为该交换节点,将该第二基模光信号传输至该N3个波长复用器中的一个波长复用器;该N3个波长复用器中的第一波长复用器用于接收该M1个光开关传输的多束基模光信号,将该多束基模光信号复用为一束基模光信号,并将获得的该一束基模光信号传输至该模式复用器,其中,该多束基模光信号的波长互不相同;该模式复用器用于接收该N3个波长复用器传输的多束基模光信号,将该多束基模光信号复用为包括多个不同模式的一束光信号,并且发送获得的该包括多个不同模式的一束光信号。
结合上述可能的实现方式,在第三种可能的实现方式中,该交换节点还包括:至少一个发射器,其中,该至少一个发射器用于向该M1个光开关发射至少一束基模光信号,该至少一束基模光信号中的每束基模光信号具有单
一波长;该M1个光开关中的第二光开关用于接收该至少一个发射器发射的至少一束基模光信号。
基于上述技术方案,本发明实施例提供的模式复用解复用器和交换节点,包括多模光波导、第一传输光波导和第二传输光波导,其中,该第一传输光波导和该第二传输光波导分别包括第一耦合区域和第二耦合区域,该第一耦合区域和该第二耦合区域均能够传输基模光信号,并且基模光信号在该第一耦合区域中的有效折射率不同于该基模光信号在该第二耦合区域中的有效折射率。这样,该第一传输光波导和该第二传输光波导可以分别与该多模光波导中的不同模式信道满足模式匹配条件并且进行光模式耦合,能够将该第一传输光波导和该第二传输光波导中传输的基模光信号耦合为该多模光波导中的两个不同模式的光信号,或者将该多模光波导中传输的两个不同模式的光信号分别耦合为该第一传输光波导和该第二传输光波导中的基模光信号,从而实现片上光网络系统的模式复用或解复用。
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是典型的片上光网络系统中一个交换节点的架构示意图。
图2是现有技术的模式复用解复用器的俯视图。
图3是根据本发明实施例的模式复用解复用器的俯视图。
图4是图3所示的模式复用解复用器的剖面图。
图5是根据本发明实施例的不同模式的光信号的有效折射率随波导宽度的变化曲线图。
图6是根据本发明实施例的第一传输光波导的俯视图。
图7是根据本发明实施例的第一传输光波导的另一俯视图。
图8是根据本发明实施例的第一传输光波导的再一俯视图。
图9是根据本发明实施例的另一模式复用解复用器的俯视图。
图10是根据本发明实施例的一个模式复用解复用器示例在实现模式复用时的光能量分布图。
图11是根据本发明实施例的交换节点的示意性框图。
图12是根据本发明实施例的交换节点的另一示意性框图。
图13是根据本发明实施例的交换节点的再一示意性框图。
图14是根据本发明实施例的一个交换节点示例的示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:波分复用(Wavelength Division Multiplexing,WDM)系统,模分复用(Mode Division Multiplexing,MDM)系统,频分复用(Frequency Division Multiplexing,FDM)系统,时分复用(Time Division Multiplexing,TDM)系统和少模光纤(Few mode fiber,FMF)通信系统等。
片上光网络系统中不同模式的转换、分离和合并可以利用有效折射率原理来实现,即相邻两个波导中有效折射率相近或者相等的两个模式可以相互转换。具体地,当空间相邻的两个波导对应的两个模式的有效折射率相近或者相等时,这两个模式就满足模式匹配条件,满足模式匹配条件的两个模式之间可以发生能量耦合和模式转换。例如,若模式1的光信号在波导1中的有效折射率与模式2的光信号在波导2中的有效折射率相等或相近,并且波导1和波导2满足倏逝场耦合条件,即波导1与波导2之间的间距小于或等于光信号在真空中的波长,则波导1中的模式1能够与波导2中的模式2进行光模式耦合,使得波导1中传输的模式1的光能量耦合到波导2的模式2中,或者使得波导2中传输的模式2的光能量耦合到波导1的模式1中。
图2示意性地示出了现有技术中的一种模式复用解复用器200。该模式复用解复用器200包括:N+1个输入光波导、N个锥形光波导(21,22,…,2N)、N个多模光波导(31,32,…,3N)和输出光波导7。该N+1个输入光波导可以具有相同的宽度值并且仅用于传输基模光信号(即0阶模光信号),此时,该基模光信号在该N+1个输入光波导中的有效折射率相等或相近。该N个多模光波导中的每个多模光波导具有多个模式信道,其中,该多
个模式信道分别用于传输不同阶模式的光信号。此外,该N个多模光波导中的任意两个多模光波导具有不同的宽度值,使得同一模式的光信号在两个不同的多模光信号中的有效折射率不同,并且宽度越大的多模光波导支持的模式数量越多。具体地,该N+1个输入光波导包括输入光波导10和其余N个输入光波导,其中,输入光波导10依次与锥形光波导21和该多模光波导31连接,而其余N个输入光波导中的每个输入光波导包括依次连接的第一弯曲部分(41,42,…,4N)、耦合部分(51,52,…,5N)和第二弯曲部分(61,62,…,6N)。其中,该其余N个输入光波导中的第n个输入光波导包括的耦合部分5n与多模光波导3n平行设置,并且该耦合部分5n与该多模光波导3n中的模式信道n满足模式匹配条件,即基模光信号在该耦合部分5n中的有效折射率和n阶模光信号在该多模光波导3n中的有效折射率相近或相等,n=1,2,…,N。这样,该耦合区域5n中传输的基模光信号可以耦合至该多模光波导3n中的n阶模光信号。
具体地,若该模式复用解复用器200实现模式复用,则该N+1个输入光波导中的每个输入光波导从输入端接收一路基模光信号。其中,输入光波导10接收的基模光信号依次经过锥形光波导21、多模光波导31、锥形光波导22、多模光波导32、…、锥形光波导2N以及多模光波导3N被传输至输出光波导7;而其余N个输入光波导中的第n个输入光波导的单模部分1n接收的基模光信号通过第一弯曲部分4n被传输至耦合区域5n,其中,n=1,2,…,N。然后,该基模光信号从耦合区域5n耦合至该多模光波导3n的n阶模光信号,并且依次经过锥形光波导2(n+1)、多模光波导3(n+1)、…、锥形光波导2N以及多模光波导3N被传输至输出光波导7。这样,该输出光波导7接收到N种不同模式的光信号,并且该N种不同模式的光信号分别为基模光信号、1阶模光信号、…、n阶模光信号、…、N阶模光信号。
发明人经过研究发现,在模式复用解复用器200中:1、相邻的两个多模光波导通过额外的锥形光波导连接,导致该模式复用解复用器200的整体长度较长;2、在耦合区域与多模光波导进行光模式耦合时,由于基模光信号在耦合区域中的有效折射率较高,为了提高耦合效率,需要保证该耦合区域和该多模光波导进行耦合区域的长度较长,从而进一步增加该模式复用解复用器200的整体长度;3、该模式复用解复用器200的整体体积较大,不利于较多模式的光信号的复用传输,可拓展性较差。
图3示意性地示出了本发明实施例提供的模式复用解复用器300的俯视图,该模式复用解复用器300主要应用于片上光网络,但也可以应用于其他光网络。该模式复用解复用器300包括:多模光波导310、第一传输光波导320和第二传输光波导330。
该多模光波导310包括第一模式信道和第二模式信道,其中,该第一模式信道能够传输第一模式的光信号,该第二模式信道能够传输第二模式的光信号,其中,该第一模式不同于该第二模式。
该第一传输光波导320包括第一耦合区域321和第一输入输出区域322,该第一耦合区域321和该第一输入输出区域322包括第一基模信道,该第一基模信道能够传输基模光信号,并且该第一耦合区域321中的第一基模信道能够与该多模光波导310中的第一模式信道进行光模式耦合。
该第二传输光波导330包括第二耦合区域331和第二输入输出区域332,该第二耦合区域331和该第二输入输出区域332包括第二基模信道,该第二基模信道能够传输基模光信号,并且该第二耦合区域331中的第二基模信道能够与该多模光波导310中的第二模式信道进行光模式耦合。
其中,基模光信号在该第一耦合区域321中的有效折射率不同于基模光信号在该第二耦合区域331中的有效折射率。
因此,根据本发明实施例的模式复用解复用器300,包括多模光波导、第一传输光波导和第二传输光波导,其中,该第一传输光波导和该第二传输光波导分别包括第一耦合区域和第二耦合区域,该第一耦合区域和该第二耦合区域均能够传输基模光信号,并且基模光信号在该第一耦合区域中的有效折射率不同于该基模光信号在该第二耦合区域中的有效折射率。这样,该第一传输光波导和该第二传输光波导可以分别与该多模光波导中的不同模式信道满足模式匹配条件并且进行光模式耦合,能够将该第一传输光波导和该第二传输光波导中传输的基模光信号耦合为该多模光波导中的两个不同模式的光信号,或者将该多模光波导中传输的两个不同模式的光信号分别耦合为该第一传输光波导和该第二传输光波导中的基模光信号,从而实现片上光网络系统的模式复用或解复用。
在本发明实施例中,该多模光波导310包括第一模式信道和该第二模式信道,分别能够传输第一模式和第二模式的光信号,其中,该第一模式和该第二模式中的一个可以为基模,另一个为高阶模(即非零阶模);或者,该
第一模式和该第二模式可以均为高阶模,本发明实施例对此不做限定。可选地,该多模光波导310还可以包括其它模式信道,该其它模式信道用于传输其它模式的光信号。例如,该多模光波导310包括N个模式信道,该N个模式信道与N种不同模式的光信号一一对应,但本发明实施例对此不做限定。
在本发明实施例中,基模光信号在该第一耦合区域321中的有效折射率与同一基模光信号在该第二耦合区域331中的有效折射率不同。该第一传输光波导320和该第二传输光波导330可以位于该多模光波导310的同一侧;或者该第一传输光波导320和该第二传输光波导330可以分别位于该多模光波导310的两侧,本发明实施例对此不做限定。此外,该第一传输光波导320和该第二传输光波导330可以以任意顺序设置,本发明实施例对此不作限定。
该第一耦合区域321中的第一基模信道与该多模光波导310中的该第一模式信道满足模式匹配条件,即基模光信号在该第一耦合区域321中的有效折射率与第一模式的光信号在该多模光波导310的第一模式信道中的有效折射率相等或相近。此外,该第一耦合区域321与该多模光波导310之间的距离小于或等于光信号在真空中的波长,即第一耦合区域321与该多模光波导310满足倏逝场耦合条件。因此,该第一耦合区域321中的第一基模信道能够与该多模光波导310中的第一模式信道进行光模式耦合,将该第一耦合区域321的第一基模信道中传输的基模光信号耦合到该多模光波导310的第一模式信道,或者将该多模光波导310的第一模式信道中传输的第一模式的光信号耦合到该第一耦合区域321的第一基模信道。
类似地,该第二耦合区域331中的第二基模信道与该多模光波导310中的该第二模式信道满足模式匹配条件,即基模光信号在该第二耦合区域331中的有效折射率与第二模式的光信号在该多模光波导310的第二模式信道中的有效折射率相等或相近。此外,该第二耦合区域331与该多模光波导310之间的距离小于或等于光信号在真空中的波长,即第二耦合区域331与该多模光波导310满足倏逝场耦合条件。因此,该第二耦合区域331中的第二基模信道能够与该多模光波导310中的第二模式信道进行光模式耦合,将该第二耦合区域331的第二基模信道中传输的基模光信号耦合到该多模光波导310的第二模式信道,或者将该多模光波导310的第二模式信道中传输的第二模式的光信号耦合到该第二耦合区域331的第二基模信道。
可选地,该模式复用解复用器300还可以包括其它传输光波导,该其它传输光波导用于与该多模光波导310中的其它模式信道进行光模式耦合。例如,该模式复用解复用器300包括N个传输光波导,每个传输光波导的耦合区域包括一个基模信道,该N个传输光波导中的基模信道能够与该多模光波导310中的N个不同的模式信道一一对应地进行光模式耦合,但本发明实施例对此不做限定。
在本发明实施例中,同一基模光信号在第一耦合区域321和第二耦合区域331中的有效折射率可以不同。此外,如果该第一耦合区域321中传输的第一基模光信号的波长与该第二耦合区域331中传输的第二基模光信号的波长之间的差值小于预设阈值,则该第一基模光信号在该第一耦合区域321中的有效折射率不同于该第二基模光信号在该第二耦合区域331中的有效折射率,并且该第一基模光信号在该第一耦合区域321中的有效折射率与第一模式的光信号在多模光波导310中的有效折射率相等或相近,该第二基模光信号在该第二耦合区域331中的有效折射率与第二模式的光信号在该多模光波导310中的有效折射率相等或相近,但本发明实施例对此不做限定。
可选地,该第一传输光波导320和该第二传输光波导330的配置可以满足预设条件,以使得第一基模光信号在该第一耦合区域321中的有效折射率第二基模光信号在该第二耦合区域331中的有效折射率,其中,该第一基模光信号与该第二基模光信号为相同的基模光信号或者该第一基模光信号与该第二基模光信号的波长相同。其中,该预设条件可以包括下列条件中的至少一种:
该第一耦合区域321和该第二耦合区域331具有不同的宽度;
该第一传输光波导320和该第二传输光波导330具有不同的高度;和
该第一传输光波导320和该第二传输光波导330具有不同的材料。
作为一个可选实施例,该第一耦合区域321和该第二耦合区域331具有不同的宽度。
此时,该第一传输光波导320和该第二传输光波导330可以具有相同的材料和高度,但本发明实施例对此不做限定。
该第一耦合区域和该第二耦合区域的长度可以为10μm-100μm,宽度可以为0.4μm-10μm,例如,该第一输入输出区域和该第二输出区域中的至少一个的宽度可以小于0.5μm,但本发明实施例对此不做限定。
图4示出了图3所示的模式复用解复用器300的多个剖面图。其中,该模式复用解复用器300包括衬底340,该衬底340上设置有多模光波导310、第一传输光波导320和第二传输光波导330,并且该多模光波导310、第一传输光波导320和第二传输光波导330上设置有覆盖层350(图3未示出)。可选地,该覆盖层350和该衬底340可以由相同或不同的材料组成。例如,该衬底340为二氧化硅,该覆盖层350为二氧化硅或聚甲基丙烯酸甲酯PMMA材料。此时,该模式复用解复用器300中包括的多个光波导可以均为硅波导,但本发明实施例对此不做限定。
图5示出了波长为1550nm并且模式为TE0-TE3的光信号的有效折射率随波导宽度变化的曲线。如图5所示,TE2模式的光信号在宽度为1.6μm的波导中的有效折射率与TE0模式的光信号在宽度为0.5μm的波导中的有效折射率相近,而TE1模式的光信号在宽度为1.6μm的波导中的有效折射率与TE0模式的光信号在宽度为0.8μm的波导中的有效折射率相近,因此,可以以图5为依据,设计该多模光波导310、该第一耦合区域321和该第二耦合区域332的宽度,以使得该第一耦合区域321中的第一基模信道与该多模光波导310中的第一模式信道满足模式匹配条件并且该第二耦合区域331中的第二基模信道与该多模光波导310中的第二模式信道满足模式匹配条件,但本发明实施例不限于此。
该第一耦合区域、该第二耦合区域和该多模光波导的长度的配置可以使得该光模式耦合具有较高的耦合效率。由图5可以得知,基模光信号的有效折射率随着波导宽度的增大而增大。因此,与现有技术中各个输入输出区域具有相同的较宽的宽度相比,该第一耦合区域和第二耦合区域具有不同的宽度,能够使得基模光信号在该第一耦合区域和/或第二耦合区域的有效折射率降低,从而在保证所需耦合效率的同时减小该第一耦合区域和/或第二耦合区域的长度,进而减小该模式复用解复用器的整体长度。
在本发明实施例中,该第一耦合区域321和该第一输入输出区域322之间具有传输基模光信号的通道,以使得该第一耦合区域321能够将基模光信号传输至该第一输入输出区域322,并且该第一输入输出区域322能够将基模光信号传输至第一耦合区域321。具体地,该第一耦合区域321和该第一输入输出区域322可以相邻,此时,该第一耦合区域321和该第一输入输出区域322直接连接;或者,该第一耦合区域321和该第一输入输出区域322
也可以不相邻,此时,该第一耦合区域321和该第一输入输出区域322通过其它区域间接连接,本发明实施例对此不作限定。可选地,该第一耦合区域321和该第一输入输出区域322可以只能传输基模光信号,即为单模光波导;或者,该第一耦合区域321和该第一输入输出区域322中的至少一个区域也可以能够传输其它模式的光信号,本发明实施例对此不做限定。
可选地,作为另一实施例,如图6所示,该第一耦合区域321的宽度不同于该第一输入输出区域322的宽度;
该第一传输光波导320还包括:第一过渡区域323,其中,该第一过渡区域的两端具有不同的宽度,并且该第一过渡区域的两端分别与该第一输入输出区域322和该第一耦合区域321连接。
该第一输入输出区域322和该第一耦合区域321可以分别具有恒定的宽度值。该第一过渡区域323在与该第一输入输出区域322连接的一端的宽度可以等于该第一输入输出区域322的宽度,在与该第一耦合区域321连接的一端的宽度可以等于该第一耦合区域321的宽度。具体地,如图6所示,该第一输入输出区域322的宽度可以小于该第一耦合区域321的宽度,此时,该第一过渡区域323在与该第一耦合区域321连接的一端的宽度大于在与该第一输入输出区域322连接的一端的宽度;或者,该第一输入输出区域322的宽度也可以小于第一该耦合区域321的宽度,此时,该第一过渡区域323在与该第一耦合区域321连接的一端的宽度小于在与该第一输入输出区域322连接的一端的宽度,本发明实施例对此不作限定。
可选地,该第一耦合区域321和第一输入输出区域322中的至少一个可以包括弯曲部分。可选地,作为另一实施例,该第一耦合区域321和第一输入输出区域322可以均为直的。此时,如果该第一耦合区域321的光信号传输方向和第一输入输出区域322的光信号传输方向之间具有一个不为零的夹角,例如,90度,则该第一过渡区域323可以包括弯曲部分,该弯曲部分可以具有圆弧形、三角函数曲线、多项式曲线或者渐进曲线,本发明实施例对此不做限定。
可选地,作为另一实施例,如图6所示,该第一耦合区域321中的光信号传输方向和该第一输入输出区域322中的光信号传输方向之间存在一个不为零的夹角,相应地,该第一过渡区域323包括弯曲部分。
可选地,如图6所示,该弯曲部分的两端具有不同的宽度,即该第一过
渡区域323具体为一个宽度渐变的弯曲光波导,并且该弯曲光波导的宽度沿着靠近该第一耦合区域321的方向逐渐增大。或者,如图7和图8所示,该第一过渡区域323包括锥形部分3231和弯曲部分3232,其中,该弯曲部分3232具有恒定的宽度值,而该锥形部分3231是直的,即具有恒定的光信号传输方向。具体地,在图7中,该第一耦合区域321、该弯曲部分3232、锥形部分3231和第一输入输出区域322依次连接,并且沿着远离该多模光波导310的方向依次设置,其中,该锥形部分3231中的光信号传输方向与该第一输入输出区域322中的光信号传输方向平行,并且该锥形部分3231的宽度沿着远离该第一输入输出区域222的方向逐渐增大。此时,由于在本发明实施例提供的模式复用解复用器中,该多模光波导310具有固定的宽度,因此在该多模光波导310的长度方向上无需采用额外的锥形光波导来连接多模光波导的宽度不同的两个部分,从而降低该片上模分复用解复用器300的整体长度。
在图8中,该第一耦合区域321、该锥形部分3231、该弯曲部分3232和第一输入输出区域322依次连接,并且沿着远离该多模光波导310的方向依次设置,其中,该锥形部分3231中的光信号传输方向与该第一耦合区域321中的光信号传输方向平行,并且该锥形部分3231的宽度沿着靠近该第一耦合区域221的方向逐渐增大,本发明实施例对该第一过渡区域323的形状和结构不做限定。
此时,该第二耦合区域331的宽度与该第二输入输出区域332的宽度可以相同或不同,本发明实施例对此不做限定。在该第二耦合区域331与该第二输入输出区域332具有相同宽度的条件下,该第二耦合区域331和该第二输入输出区域332可以直接连接,此时,该第二耦合区域331和该第二输入输出区域332中的至少一个可以包括弯曲部分;如果第二耦合区域331中的光信号传输方向和该第二输入输出区域332均为直的,并且该第二耦合区域331中的光信号传输方向和该第二输入输出区域332中的光信号传输方向之间存在一个不为零的夹角,则该第二耦合区域331和该第二输入输出区域332可以通过一个弯曲区域连接,本发明实施例对此不做限定。
类似地,该第二耦合区域331和该第二输入输出区域332之间具有传输基模光信号的通道,以使得该第二耦合区域331能够将基模光信号传输至该第二输入输出区域332,并且该第二输入输出区域332能够将基模光信号传
输至第二耦合区域331。具体地,该第二耦合区域331和该第二输入输出区域332可以相邻,此时,该第二耦合区域331和该第二输入输出区域332直接连接;或者,该第二耦合区域331和该第二输入输出区域332也可以不相邻,此时,该第二耦合区域331和该第二输入输出区域332通过其它区域间接连接,本发明实施例对此不作限定。可选地,该第二耦合区域331和该第二输入输出区域332可以只能传输基模光信号,即为单模光波导;或者,该第二耦合区域331和该第二输入输出区域332中的至少二个区域也可以能够传输其它模式的光信号,本发明实施例对此不做限定。
如果该第二耦合区域331的宽度不同于该第二输入输出区域332的宽度。此时,该第二传输光波导330还包括:第二过渡区域,其中,该第二过渡区域的两端具有不同的宽度,并且该第二过渡区域的两端分别与该第二输入输出区域332和该第二耦合区域331连接。此时,该第一耦合区域321的宽度与该第一输入输出区域322的宽度可以相同或不同,本发明实施例对此不做限定。
该第二过渡区域在与该第二输入输出区域332连接的一端的宽度可以等于该第二输入输出区域332的宽度,在与该第二耦合区域331连接的一端的宽度可以等于该第二耦合区域331的宽度。具体地,该第二输入输出区域332的宽度可以小于该第二耦合区域331的宽度,此时,该第二过渡区域在与该第二耦合区域331连接的一端的宽度大于在与该第二输入输出区域332连接的一端的宽度;或者,该第二输入输出区域332的宽度也可以小于第二该耦合区域331的宽度,此时,该第二过渡区域在与该第二耦合区域331连接的一端的宽度小于在与该第二输入输出区域332连接的一端的宽度,本发明实施例对此不作限定。
可选地,该第二输入输出区域332和该第二耦合区域331可以分别具有恒定的宽度值。该第二过渡区域在与该第二输入输出区域332连接的一端的宽度可以等于该第二输入输出区域332的宽度,在与该第二耦合区域331连接的一端的宽度可以等于该第二耦合区域331的宽度。具体地,该第二输入输出区域332的宽度可以小于该第二耦合区域331的宽度,此时,该第二过渡区域在与该第二耦合区域331连接的一端的宽度大于在与该第二输入输出区域332连接的一端的宽度;或者,该第二输入输出区域332的宽度也可以小于第一该耦合区域331的宽度,此时,该第二过渡区域在与该第二耦合区
域331连接的一端的宽度小于在与该第二输入输出区域332连接的一端的宽度,本发明实施例对此不作限定。
可选地,该第二耦合区域331和第二输入输出区域332中的至少一个可以包括弯曲部分。可选地,作为另一实施例,该第二耦合区域331和第二输入输出区域332可以均为直的,此时,如果该第二耦合区域331的光信号传输方向和第二输入输出区域332的光信号传输方向之间具有一个不为零的夹角,例如,90度,则该第二过渡区域可以包括弯曲部分,该弯曲部分可以具有圆弧形、三角函数曲线、多项式曲线或者渐进曲线,本发明实施例对此不做限定。
可选地,作为另一实施例,该第二耦合区域331中的光信号传输方向和该第二输入输出区域332中的光信号传输方向之间存在一个不为零的夹角,相应地,该第二过渡区域包括弯曲部分。
可选地,该弯曲部分的两端具有不同的宽度,即该第二过渡区域具体为一个宽度渐变的弯曲光波导,并且该弯曲光波导的宽度沿着靠近该第二耦合区域331的方向逐渐增大。或者,该第二过渡区域包括锥形部分和弯曲部分,其中,该弯曲部分具有恒定的宽度值,而该锥形部分是直的,即具有恒定的光信号传输方向,具体设置方式可以参照上述第一过渡区域323的描述,此处不再赘述。
可选地,作为另一实施例,该多模光波导310可以具有恒定的宽度值。
该多模光波导310的宽度值可以为0.4μm~10μm,但本发明实施例对此不做限定。可选地,作为另一实施例,该多模光波导310的宽度也可以不恒定,例如,该多模光波导310为锥形光波导,但本发明实施例不限于此。
可选地,作为另一实施例,该第一耦合区域321和该第二耦合区域331均与该多模光波导310平行,并且该第一耦合区域321和该第二耦合区域331与该多模光波导310之间的距离均小于1μm。
可选地,作为另一实施例,当该模式复用解复用器300实现模式复用时,该第一输入输出区域322用于从第一发送端接收基模光信号,并将接收到的该基模光信号传输至该第一耦合区域321;该第一耦合区域321用于将该第一输入输出区域322传输的该基模光信号耦合至该第一模式信道;该第二输入输出区域332用于从第二发送端接收基模光信号,并将接收到的该基模光信号传输至该第二耦合区域331;该第二耦合区域331用于将该第二输入输
出区域332传输的该基模光信号耦合至该第二模式信道;该多模光波导310用于与该第一耦合区域321进行光模式耦合,获得该第一模式信道传输的该第一模式的光信号,与该第二耦合区域331进行光模式耦合,获得该第二模式信道传输的该第二模式的光信号,并将耦合获得的该第一模式和该第二模式的光信号传输至第一接收端。
该第一发送端可以与该第二发送端相同或不同,本发明实施例对此不做限定。该第一输入光波导320和第二输入光波导330中传输的两束基模光信号均耦合至该多模光波导310中进行传输,实现光信号的模式复用。
可选地,作为另一实施例,当该模式复用解复用器300实现模式解复用时,该多模光波导310用于从第三发送端接收一束光信号,其中,该一束光信号包括第一模式和第二模式的光信号,并将该第一模式的光信号耦合至该第一耦合区域321的该第一基模信道,将该第二模式的光信号耦合至该第二耦合区域331的该第二基模信道;该第一耦合区域321用于通过与该多模光波导310进行光模式耦合,获得该第一基模信道传输的基模光信号,并将耦合获得的该基模光信号传输至该第一输入输出区域322;该第一输入输出区域322用于将该第一耦合区域321传输的该基模光信号传输至第二接收端;该第二耦合区域331用于与该多模光波导310进行光模式耦合,获得该第二基模信道传输的基模光信号,并将耦合获得的该基模光信号传输至该第二输入输出区域332;该第二输入输出区域332用于将该第二耦合区域331传输的该基模光信号传输至第三接收端。
此时,该第二接收端可以与该第三接收端相同或不同,本发明实施例对此不做限定。该多模光波导310中传输的第一模式和第二模式的光信号分别耦合至该第一输入光波导220和第二输入光波导230中进行传输,从而实现光信号的模式解复用。
因此,根据本发明实施例的模式复用解复用器300,包括多模光波导、第一传输光波导和第二传输光波导,其中,该第一传输光波导和该第二传输光波导分别包括第一耦合区域和第二耦合区域,该第一耦合区域和该第二耦合区域均能够传输基模光信号,并且基模光信号在该第一耦合区域中的有效折射率不同于该基模光信号在该第二耦合区域中的有效折射率。这样,该第一传输光波导和该第二传输光波导可以分别与该多模光波导中的不同模式信道满足模式匹配条件并且进行光模式耦合,能够将该第一传输光波导和该
第二传输光波导中传输的基模光信号耦合为该多模光波导中的两个不同模式的光信号,或者将该多模光波导中传输的两个不同模式的光信号分别耦合为该第一传输光波导和该第二传输光波导中的基模光信号,从而实现片上光网络系统的模式复用或解复用。
此外,该第一耦合区域和该第二耦合区域具有不同的宽度,以使得该第一传输光波导和该第二传输光波导分别与该多模光波导中的不同模式信道进行光模式耦合,避免现有技术中通过改变多模光波导的宽度而需要引入额外的锥形光波导,从而减小该模式复用解复用器的整体长度。此外,由于与多模光波导中的高阶模进行光模式耦合的传输光波导中的耦合区域较宽,因此基模光信号在耦合区域中具有较小的有效折射率,从而能够减小该多模光波导以及该耦合区域的长度,进而进一步减小该模式复用解复用器的整体长度。本发明实施例提供的模式复用解复用器的整体体积较小,因此能够用于较多模式的光信号的复用传输,具有较好的可拓展性。
下面通过具体例子详细描述根据本发明实施例的模式复用解复用器。图9示意性地示出了本发明另一实施例的模式复用解复用器400。该模式复用解复用器400包括:多模光波导410和N个传输光波导420(传输光波导1、…、传输光波导i、…、传输光波导N),N≥2,其中,
该多模光波导410包括N个模式信道,该N个模式信道与N种不同模式的光信号一一对应;
该N个传输光波导420中的每个传输光波导包括耦合区域421和输入输出区域422,其中,同一个传输光波导的耦合区域421和输入输出区域422之间能够传输基模光信号;
该N个传输光波导420的耦合区域421用于与该多模光波导410中的N个模式信道进行光模式耦合,并且基模光信号在该N个传输光波导420中的任意两个传输光波导的耦合区域中具有不同的有效折射率。
具体地,第i个传输光波导的耦合区域用于与该多模光波导中的第i个模式信道进行光模式耦合,1≤i≤N。
因此,根据本发明实施例的模式复用解复用器400,包括多模光波导和N个传输光波导,每个传输光波导包括输入输出区域以及用于与该多模光波导进行光模式耦合的耦合区域,并且该N个传输光波导的耦合区域的宽度互不相同,使得基模光信号在该N个传输光波导中的有效折射率互不相同。这
样,该N个传输光波导可以分别与该多模光波导中的不同模式信道满足模式匹配条件并且能够进行光模式耦合,从而能够将该N个传输光波导中传输的基模光信号耦合为该多模光波导中的N个不同模式的光信号,或者将该多模光波导中传输的N个不同模式的光信号耦合为该N个传输光波导中的基模光信号,实现片上光网络系统的模式复用或解复用。
该多模光波导可以具有M个模式信道,其中每个模式信道用于传输一种模式的光信号并且各个模式信道传输的光信号的模式互不相同,M≥N。该N个模式信道对应的N种不同模式的光信号可以具体为模式阶数连续的N个光信号,例如,该N种模式的光信号由0阶模(即基模)光信号到N-1阶模光信号组成,或者由1阶模光信号到N阶模光信号组成,等等。或者,该N个不同模式的光信号也可以为模式阶数不连续的N个光信号,本发明实施例对此不作限定。
作为一个可选实施例,该多模光波导和该N个传输光波导可以设置在同一个衬底上,该衬底可以为硅基衬底或其它半导体衬底,本发明实施例对此不做限定。可选地,该多模光波导和该N个传输光波导可以具有相同的高度,或者该N个传输光波导可以具有不同的高度,本发明实施例对此不作限定。
该N个传输光波导中的耦合区域分别与该多模光波导中的N个模式信道进行光模式耦合。具体地,第i个传输光波导中的耦合区域与该多模光波导中的第i个模式信道进行光模式耦合。该N个传输光波导的配置可以满足预设条件,以使得基模光信号在该N个传输光波导的任意两个耦合区域中的有效折射率不同。其中,该预设条件可以包括下列条件中的至少一种:
该N个传输光波导包括的至少两个耦合区域具有不同的宽度;
该N个传输光波导中的至少两个传输光波导具有不同的高度;和
该N个传输光波导中的至少两个传输光波导具有不同的材料。
作为一个可选实施例,该N个传输光波导包括的至少两个耦合区域具有不同的宽度。
可选地,在本发明实施例中,同一个传输光波导中的耦合区域和输入输出区域可以直接或间接连接。具体地,如果一个传输光波导的耦合区域和该传输光波导的输入输出区域具有相同的宽度,则该传输光波导中的耦合区域和输入输出区域可以直接连接,此时,该传输光波导中的输入输出区域在与耦合区域连接的一端可以包括弯曲部分,并且该弯曲部分具有单一宽度值,
但本发明实施例对此不作限定。
可选地,作为另一实施例,如果一个传输光波导的耦合区域和该传输光波导的输入输出区域具有不同的宽度,该传输光波导还可以包括过渡区域,其中,该过渡区域的两端具有不同的宽度,并且该传输光波导中的过渡区域的两端分别与该传输光波导的输入输出区域和耦合区域连接。
可选地,作为另一实施例,该N个传输光波导中的耦合区域可以均与该多模光波导平行,并且该N个传输光波导中的耦合区域与该多模光波导210之间的距离小于或等于光信号在真空中的波长,以满足倏逝场耦合条件。可选地,该N个传输光波导中的耦合区域可以与该多模光波导之间具有相同的距离,但本发明实施例不限于此。
此外,该N个传输光波导中的耦合区域的长度也可以足够长,以使得N个传输光波导与该多模光波导之间的光模式耦合具有较高的耦合效率。例如,该N个传输光波导中的耦合区域的长度可以为10μm-100μm,宽度可以为0.4μm-10μm,但本发明实施例对此不做限定。
在该模式复用解复用器400中,该多模光波导以及该N个传输光波导的设置可以使得该N个传输光波导分别能够与该多模光波导的不同模式信道满足模式匹配条件。具体地,假设该多模光波导的第j个模式信道与该N个不同模式中的第j个模式的光信号相对应,则该N个传输光波导中的第i个传输光波导的耦合区域可以与该多模光波导的第j个模式信道满足模式匹配条件,1≤i,j≤N,即该第j个模式的光信号在该第j个模式信道中的有效折射率与基模光信号在该第i个传输光波导的耦合区域中的有效折射率相等或相近,这样,该第i个传输光波导的耦合区域中传输的基模光信号可以耦合到该多模光波导中的第j个模式信道进行传输,或者该多模光波导中传输的第j个模式的光信号可以耦合到该第i个传输光波导的耦合区域中作为基模光信号进行传输。
该N个传输光波导中的每个传输光波导用于传输基模光信号,并且该每个传输光波导包括耦合区域和输入输出区域。一个传输光波导的耦合区域和输入输出区域可以仅包括基模信道,例如,该传输光波导为单模光波导。或者,耦合区域和输入输出区域中的至少一个也进一步包括用于传输高阶模光信号的高阶模信道,本发明实施例对此不做限定。
可选地,作为另一实施例,当该模式复用解复用器400用作模式复用器
时,
该N个传输光波导中的第i个传输光波导的输入输出区域用于从第一发送端接收基模光信号,并将该基模光信号传输至该第i个传输光波导的耦合区域,1≤i≤N;
该第i个传输光波导的耦合区域用于将接收到的该基模光信号耦合至该多模光波导的第i个模式信道;
该多模光波导用于与该N个传输光波导中的耦合区域进行光模式耦合,获得该N个模式信道对应的该N种不同模式的光信号,并将该N种不同模式的光信号传输至第一接收端。
在上述传输和模式耦合过程中,光信号的偏振态可以保持不变。这样,该模式复用解复用器400可以实现将N个传输光波导中传输的N个基模光信号耦合为该多模光波导中的N个不同模式的光信号,从而实现光信号的模式复用传输。
可选地,作为另一实施例,当该模式复用解复用器400用作模式解复用器时,
该多模光波导用于从第二发送端接收一束光信号,该一束光信号包括与该N个信道模式对应的该N种不同模式的光信号,并将该N种不同模式的光信号耦合至该N个传输光波导的耦合区域;
该N个传输光波导中的第i个传输光波导的耦合区域用于将该多模光波导传输的第i种模式的光信号耦合至基模光信号,并将耦合获得的该基模光信号传输至该第i个传输光波导的输入输出区域,1≤i≤N;
该第i个传输光波导的输入输出区域具体用于将接收到的该基模光信号传输至第二接收端。
在上述传输和模式耦合过程中,光信号的偏振态可以保持不变。这样,该模式复用解复用器可以实现将该多模光波导中传输的N个不同模式的光信号耦合到N个传输光波导中作为基模光信号进行传输,从而实现光信号的模式解复用。
在一个设置在硅基衬底上的模式复用解复用器示例中,该模式复用解复用器包括多模光波导和三个输入光波导,该三个输入光波导中的每个输入光波导包括依次设置的耦合区域、弯曲区域、锥形区域和输入输出区域。具体地,该模式复用解复用器中包括的各个波导具有相同的高度h=220nm,该
多模光波导的宽度Wb=1.6μm,并且该多模光波导和该三个输入光波导的耦合区域之间具有相同的间距D=100nm。该三个输入光波导中的耦合区域的宽度分别是W1=1.6μm,W2=0.8μm,W3=0.5μm,该三个输入光波导中的输入输出区域的宽度均为500nm。图10示出了该模式复用解复用器示例实现模式复用时的光能量分布曲线。其中,该光能量分布图具有黑色背景,并且该光能量分布图包括多个U形(或类U形)能量分布曲线。其中,位于左侧的开口向下的U形曲线表示该多模光波导的一个模式信道对应的光能量分布曲线,位于右侧的开口向上的U形曲线表示一个传输光波导对应的光能量分布曲线;此外,一个单独的U形曲线对应于TE0模式,具有相同开口方向的两个并列U形曲线对应于TE1模式,具有相同开口方向的三个并列U形曲线对应于TE2模式。从图10可以看出,该三个传输光波导分别与该多模光波导中的TE0模式、TE1模式和TE2模式进行光模式耦合。
因此,根据本发明实施例的模式复用解复用器,包括多模光波导和N个传输光波导,每个传输光波导包括输入输出区域以及用于与该多模光波导进行光模式耦合的耦合区域,并且该N个传输光波导的耦合区域的宽度互不相同,使得基模光信号在该N个传输光波导中的有效折射率互不相同,这样,该N个传输光波导可以分别与该多模光波导中的不同模式信道满足模式匹配条件并且能够进行光模式耦合,从而能够将该N个传输光波导中传输的基模光信号耦合为该多模光波导中的N个不同模式的光信号,或者将该多模光波导中传输的N个不同模式的光信号耦合为该N个传输光波导中的基模光信号,实现片上光网络系统的模式复用或解复用。
此外,该N个传输光波导中的耦合区域的宽度互不相同,以使得该N个传输光波导能够与该多模光波导中的不同模式信道进行光模式耦合,避免现有技术中通过改变多模光波导的宽度而需要引入额外的锥形光波导,从而减小该模式复用解复用器的整体长度。此外,由于与多模光波导中的高阶模光信号进行模式耦合的传输光波导中的耦合区域较宽,因此基模光信号在耦合区域中具有较小的有效折射率,从而能够减小该多模光波导以及该耦合区域的长度,进而进一步减小该模式复用解复用器的整体长度。本发明实施例提供的模式复用解复用器的整体体积较小,因此能够用于较多模式的光信号的复用传输,具有较好的可拓展性。
上文结合图3至图10详细描述了根据本发明实施例的模式复用解复用
器,下面结合图11至图14描述根据本发明实施例的交换节点,其中,该交换节点能够同时采用波长复用(Wavelength Division Multiplexing,WDM)技术和模式复用技术对光信号进行传输。应理解,本发明实施例以该交换节点结合波长复用和模式复用技术传输光信号为例进行说明,但该交换节点可以在传输光信号时将该模式复用技术和偏振复用(Polarization Division Multiplexing,PDM)、时分复用(Time Division Multiplexing,TDM)和波长复用技术中的至少一种技术相结合,本发明实施例对此不做限定。
图11示出了根据本发明实施例的交换节点500的示意性框图。其中,该交换节点500能够对模式相同、波长不同的多个光信号进行波长复用,并且对模式不同的多个分别包括多个波长的光信号进行模式复用,但本发明实施例不限于此。如图11所示,该交换节点500包括:
一个模式解复用器510、N1个波长解复用器520和M1个光开关530,其中,该模式解复用器510为如图3至图10中所示的任一模式复用解复用器,1<N1≤N,M1为大于一的整数。
具体地,该模式解复用器510用于接收一束光信号,其中,该一束光信号包括N2个模式和M2个波长的光信号,M2≤M1,1<N2≤N1。
该模式解复用器510还用于将该一束光信号分离为N2束基模光信号,并将该N2束基模光信号传输至该N1个波长解复用器520,其中,该N2束基模光信号中的每束基模光信号包括至少一个波长的光信号。
该N1个波长解复用器520中的第一波长解复用器用于接收该模式解复用器510传输的包括M2个波长的一束基模光信号,将接收到的该一束基模光信号分离为M2束基模光信号,并将获得的该M2束基模光信号传输至该M1个光开关530,其中,该M2束基模光信号中的每束基模光信号具有单一波长,并且该M2束基模光信号的波长互不相同。
该M1个光开关530中的第一光开关用于接收该N1个波长解复用器520传输的至少一束具有单一波长的基模光信号,并且根据接收到的该至少一束基模光信号的目的节点,路由该至少一束基模光信号。
因此,根据本发明实施例的交换节点,包括模式解复用器、多个波长解复用器和多个光开关,能够对包括多个波长和多个模式的一束光信号依次进行模式解复用和波长解复用,获得多束分别具有单一波长的基模光信号,并且通过多个光开关对该多束分别具有单一波长的基模光信号进行路由,从而
实现结合波长复用技术和模式复用技术来传输光信号。
该模式解复用器510能够对N个模式的光信号进行模式解复用处理,其中,该N个模式可以包括该N1个模式,N≥N1。类似地,该波长解复用器520能够对M个波长的光信号进行波长解复用处理,即该波长解复用器520可以具有M个输出端口,其中,该M个波长包括该M2个波长,M≥M2。
该N1束基模光信号中的每束基模光信号可以包括至少一个波长,例如,可以包括一个波长的基模光信号或M2个波长的基模光信号,等等,本发明实施例对此不做限定。
该M2个波长的差值可以小于一定阈值,以使得该M2个波长的基模光信号在同一光波导中的有效折射率相等或相近。
该N1个波长解复用器520中的至少一个波长解复用器接收该模式解复用器510传输的基模光信号,并且该至少一个波长解复用器中的每个波长解复用器接收一束包括一个或多个波长的基模光信号,但本发明实施例对此不做限定。
该M1个光开关530中的至少一个光开关接收该N1个波长解复用器520传输的多束基模光信号。其中,该至少一个光开关中的每个光开关接收至少一束基模光信号,但本发明实施例对此不做限定。
该M1个光开关530中的每个光开关可以根据该接收到的光信号的目的节点,路由该接收到的光信号。具体地,如果一个光开关接收到的光信号的目的节点为本交换节点500,则该光开关可以将接收到的光信号从本交换节点500所对应的输出端口输出,以使得该光信号被传输至该交换节点500本地;如果该光开关接收到的光信号的目的节点为其它交换节点,则该光开关可以将接收到的该光信号从该其它交换节点所对应的输出端口输出,以使得该光信号被传输至该其它交换节点,本发明实施例对此不作限定。
可选地,作为另一实施例,该交换节点500还包括:至少一个接收器540,其中,该至少一个接收器540用于接收至少一束基模光信号。
可选地,如图12所示,该至少一个接收器540可以具体用于接收该M1个光开关传输的基模光信号,此时,该第一光开关具体用于,若接收到的至少一束基模光信号中的第一基模光信号的目的节点为该交换节点300,将该第一基模光信号传输至该至少一个接收器540中的一个接收器;
相应地,该至少一个接收器540中的第一接收器用于接收该第一光开关
传输的该第一基模光信号。
可选地,作为另一实施例,如图13所示,该至少一个接收器540可以具体用于接收该N1个波长解复用器520传输的光信号,此时,该至少一个接收器540可以具体用于接收该N1个波长解复用器520输出的多束基模光信号中的至少一束基模光信号,相应地,该N1个波长解复用器输出的多束基模光信号可以均被传输至M1个光开关530,或者部分被传输至该M1个光开关530,另一部分被传输至该至少一个接收器540,本发明实施例对此不做限定。
若该至少一个接收器540的数量为多个,则在某一时刻,该多个接收器540中的所有接收器可能均接收到基模光信号,或者该只有部分接收器接收到基模光信号,本发明实施例对此不做限定。
可选地,作为另一实施例,如图12所示,该交换节点500还包括:
N3个波长复用器550和一个模式复用器560,其中,该模式复用器560可以为图3至图10所示的任一模式复用解复用器,N3为大于一的整数。
具体地,该第一光开关还用于,若接收到的该至少一束基模光信号中的第二基模光信号的目的节点不为该交换节点,将该第二基模光信号传输至该N3个波长复用器中的一个波长复用器。
该N3个波长复用器550中的第一波长复用器用于接收该M1个光开关530传输的多束基模光信号,将该多束基模光信号复用为一束基模光信号,并将获得的该一束基模光信号传输至该模式复用器560,其中,该多束基模光信号的波长互不相同。
该模式复用器560用于接收该N3个波长复用器550传输的多束基模光信号,将该多束基模光信号复用为包括多个不同模式的一束光信号,并且发送获得的该包括多个不同模式的一束光信号。
该N3个波长复用器550中的一个波长复用器接收的基模光信号可以来自于一个或多个光开关,本发明实施例对此不做限定。
可选地,该N1个波长解复用器520可以组成波长解复用器阵列,该M1个光开关530可以组成光开光阵列,该N3个波长复用器550可以组成波长解复用器阵列。此时,该交换节点500可以包括依次连接的模式解复用器510、波长解复用器阵列520、光开关阵列530、波长复用器阵列550和模式复用器560。
可选地,作为另一实施例,该交换节点500还包括:至少一个发射器570,用于发射至少一束基模光信号,其中,该至少一束基模光信号中的每束基模光信号具有单一波长。
可选地,如图12所示,该至少一个发射器570具体用于向该M1个光开关530发射至少一束基模光信号,该至少一束基模光信号中的每束基模光信号具有单一波长;
相应地,该M1个光开关530中的第二光开关还用于接收该至少一个发射器570发射的至少一束基模光信号。
在某一时刻,一个光开关530接收到的至少一束基模光信号可以全部来自于该N1个波长解复用器520,或者部分来自于该至少一个发射器570,部分来自于该N1个波长解复用器520,本发明实施例对此不做限定。
可选地,作为另一实施例,如图13所示,该至少一个发射器570具体用于向该N3个波长复用器550发射至少一束基模光信号,相应地,该第一波长复用器用于接收来自于该至少一个发射器和/或该M1个光开关530传输的多束基模光信号。
如果该至少一个发射器570的个数为多个,则在某一时刻,该多个发射器570中的所有发射器可以均发射基模光信号,或者只有部分发射器发射基模光信号,本发明实施例对此不做限定。
图14示出了根据本发明实施例的一个交换节点600示例的示意图。如图14所示,该交换节点600包括:一个模式解复用器610、包括三个波长解复用器620的波长解复用器阵列、包括九个1×2光开关630的1×2光开关阵列、包括三个接收器640的接收器阵列、包括三个3×3光开关650组成的3×3光开关阵列、包括三个发射器660的发射器阵列、包括九个2×1光开关670的2×1光开关阵列、包括三个波长复用器680的波长复用器阵列、模式复用器690以及多个光纤。其中,该模式解复用器610和该模式复用器690可以具体为图3至图10所示的任一模式复用解复用器。
该模式解复用器610可以用于从输入光纤接收一束光信号,该光信号包括三个波长(λ1、λ2和λ3)和三个模式(TE0、TE1和TE2);该模式解复用器610可以对接收到的该光信号进行模式解复用处理,获得三束基模光信号,其中,该三束基模光信号分别来自于三个模式(TE0、TE1和TE2)的光信号,并且该三束基模光信号中的每束基模光信号包括三个波长的光信号;然
后,该模式解复用器610输出该三束分别包括三个波长的基模光信号。
该三束分别包括三个波长的基模光信号可以通过传输光纤被传输至该波长解复用器阵列620,其中,每个波长解复用器接收一束基模光信号,并且对接收到的该基模光信号进行波长解复用处理,以获得三束分别具有单一波长的基模光信号,即波长为λ1的基模光信号、波长为λ2的基模光信号和波长为λ3的基模光信号,然后输出该三束分别具有单一波长的基模光信号。这样,该波长解复用器阵列620中的三个波长解复用器获得九束分别具有单一波长的基模光信号,该九束分别具有单一波长的基模光信号可以通过传输光纤被传输至该1×2光开关阵列630。
此外,该发射器阵列660中的至少一个发射器可以发射具有单一波长的基模光信号,该发射器阵列660发射的基模光信号被传输至该1×2光开关阵列630。
该1×2光开关阵列630的每个1×2光开关可以接收该发射器阵列660或该波长解复用器阵列620发送的基膜光信号,并将接收到的该基模光信号传输至该3×3光开关阵列650。
该3×3光开关阵列650中的每个3×3光开关可以接收特定波长的至少一束基模光信号,并根据该至少一束基模光信号的目的节点输出该至少一束基模光信号。具体地,若一个3×3光开关接收到的该具有单一波长的基模光信号的目的节点为本交换节点600,则该3×3光开关可以从与该接收器阵列640对应的输出端口输出该基模光信号,并且该基模光信号通过传输光纤被传输至该接收器阵列640;若接收到的该具有单一波长的基模光信号的目的节点不为本交换节点600,则该3×3光开关可以从与该波长复用器阵列680对应的输出端口输出该基模光信号。
该波长复用器阵列680中的每个波长复用器可以接收来自于该3×3光开关阵列650的三束基模光信号,其中,该三束基模光信号的波长互不相同,这样,该波长复用器可以对该三束波长互不相同的基模光信号进行波长复用处理,获得一束包括三个波长的基模光信号然后将其输出。
该波长复用器阵列680输出的三束分别包括三个波长的基模光信号通过传输光纤被传输至该模式复用器680,该模式复用器680可以将接收到的该三束分别包括三个波长的基模光信号复用为一束包括三个模式和三个波长的光信号,该一束包括三个模式和三个波长的光信号可以通过输出光纤被传
输至其他交换节点。
应理解,图14的这个例子是为了帮助本领域技术人员更好地理解本发明实施例,而非要限制本发明实施例的范围。本领域技术人员根据所给出的图14的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
因此,根据本发明实施例的交换节点,包括模式解复用器、多个波长解复用器和多个光开关,能够对包括多个波长和多个模式的一束光信号依次进行模式解复用和波长解复用,获得多束分别具有单一波长的基模光信号,并且通过多个光开关对该多束分别具有单一波长的基模光信号进行路由,从而实现结合波长复用技术和模式复用技术来传输光信号。
应理解,在本发明实施例中,术语和/或仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符/,一般表示前后关联对象是一种或的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
Claims (12)
- 一种模式复用解复用器,其特征在于,包括:多模光波导、第一传输光波导和第二传输光波导,其中,所述多模光波导包括第一模式信道和第二模式信道,其中,所述第一模式信道能够传输第一模式的光信号,所述第二模式信道能够传输第二模式的光信号,所述第一模式不同于所述第二模式;所述第一传输光波导包括第一耦合区域和第一输入输出区域,所述第一耦合区域和所述第一输入输出区域包括第一基模信道,所述第一基模信道能够传输基模光信号,并且所述第一耦合区域中的第一基模信道能够与所述多模光波导中的第一模式信道进行光模式耦合;所述第二传输光波导包括第二耦合区域和第二输入输出区域,所述第二耦合区域和所述第二输入输出区域包括第二基模信道,所述第二基模信道能够传输基模光信号,并且所述第二耦合区域中的第二基模信道能够与所述多模光波导中的第二模式信道进行光模式耦合;其中,基模光信号在所述第一耦合区域中的有效折射率不同于基模光信号在所述第二耦合区域中的有效折射率。
- 根据权利要求1所述的模式复用解复用器,其特征在于,所述第一耦合区域和所述第二耦合区域具有不同的宽度。
- 根据权利要求1或2所述的模式复用解复用器,其特征在于,所述第一耦合区域的宽度不同于所述第一输入输出区域的宽度;所述第一传输光波导还包括:第一过渡区域,其中,所述第一过渡区域的两端具有不同的宽度,并且所述第一过渡区域的两端分别与所述第一输入输出区域和所述第一耦合区域连接。
- 根据权利要求3所述的模式复用解复用器,其特征在于,所述第一耦合区域中的光信号传输方向和所述第一输入输出区域中的光信号传输方向之间存在一个不为零的夹角,所述第一过渡区域包括弯曲部分。
- 根据权利要求1至4中任一项所述的模式复用解复用器,其特征在于,所述多模光波导的宽度为恒定值。
- 根据权利要求1至5中任一项所述的模式复用解复用器,其特征在于,所述第一耦合区域和所述第二耦合区域均与所述多模光波导平行,并且所述第一耦合区域和所述第二耦合区域与所述多模光波导之间的距离均小 于1μm。
- 根据权利要求1至6中任一项所述的模式复用解复用器,其特征在于,当所述模式复用解复用器实现模式复用时,所述第一输入输出区域用于从第一发送端接收基模光信号,并将接收到的所述基模光信号传输至所述第一耦合区域;所述第一耦合区域用于将所述第一输入输出区域传输的所述基模光信号耦合至所述第一模式信道;所述第二输入输出区域用于从第二发送端接收基模光信号,并将接收到的所述基模光信号传输至所述第二耦合区域;所述第二耦合区域用于将所述第二输入输出区域传输的所述基模光信号耦合至所述第二模式信道;所述多模光波导用于与所述第一耦合区域进行光模式耦合,获得所述第一模式信道传输的所述第一模式的光信号,与所述第二耦合区域进行光模式耦合,获得所述第二模式信道传输的所述第二模式的光信号,并将耦合获得的所述第一模式和所述第二模式的光信号传输至第一接收端。
- 根据权利要求1至7中任一项所述的模式复用解复用器,其特征在于,当所述模式复用解复用器实现模式解复用时,所述多模光波导用于从第三发送端接收一束光信号,其中,所述一束光信号包括第一模式和第二模式的光信号,并将所述第一模式的光信号耦合至所述第一耦合区域的所述第一基模信道,将所述第二模式的光信号耦合至所述第二耦合区域的所述第二基模信道;所述第一耦合区域用于通过与所述多模光波导进行光模式耦合,获得所述第一基模信道传输的基模光信号,并将耦合获得的所述基模光信号传输至所述第一输入输出区域;所述第一输入输出区域用于将所述第一耦合区域传输的所述基模光信号传输至第二接收端;所述第二耦合区域用于与所述多模光波导进行光模式耦合,获得所述第二基模信道传输的基模光信号,并将耦合获得的所述基模光信号传输至所述第二输入输出区域;所述第二输入输出区域用于将所述第二耦合区域传输的所述基模光信号传输至第三接收端。
- 一种交换节点,其特征在于,包括:一个模式解复用器、N1个波长解复用器和M1个光开关,其中,所述模式解复用器为如权利要求1至8中任一项所述的模式复用解复用器,1<N1≤N,M1为大于一的整数,所述模式解复用器用于接收一束光信号,其中,所述一束光信号包括N2个模式和M2个波长的光信号,M2≤M1,1<N2≤N1;所述模式解复用器还用于将所述一束光信号分离为N2束基模光信号,并将所述N2束基模光信号传输至所述N1个波长解复用器,其中,所述N2束基模光信号中的每束基模光信号包括至少一个波长的光信号;所述N1个波长解复用器中的第一波长解复用器用于接收所述模式解复用器传输的包括M2个波长的一束基模光信号,将接收到的所述一束基模光信号分离为M2束基模光信号,并将获得的所述M2束基模光信号传输至所述M1个光开关,其中,所述M2束基模光信号中的每束基模光信号具有单一波长,并且所述M2束基模光信号的波长互不相同;所述M1个光开关中的第一光开关用于接收所述N1个波长解复用器传输的至少一束具有单一波长的基模光信号,并且根据接收到的所述至少一束基模光信号的目的节点,路由接收到的所述至少一束基模光信号。
- 根据权利要求9所述的交换节点,其特征在于,所述交换节点还包括:至少一个接收器,其中,所述第一光开关具体用于,若接收到的所述至少一束基模光信号中的第一基模光信号的目的节点为所述交换节点,将所述第一基模光信号传输至所述至少一个接收器中的一个接收器;所述至少一个接收器中的第一接收器用于接收所述第一光开关传输的所述第一基模光信号。
- 根据权利要求9或10所述的交换节点,其特征在于,还包括:N3个波长复用器和一个模式复用器,其中,所述模式复用器为如权利要求1至8中任一项所述的模式复用解复用器,N3为大于一的整数,所述第一光开关还用于,若接收到的所述至少一束基模光信号中的第二基模光信号的目的节点不为所述交换节点,将所述第二基模光信号传输至所述N3个波长复用器中的一个波长复用器;所述N3个波长复用器中的第一波长复用器用于接收所述M1个光开关传 输的多束基模光信号,将所述多束基模光信号复用为一束基模光信号,并将获得的所述一束基模光信号传输至所述模式复用器,其中,所述多束基模光信号的波长互不相同;所述模式复用器用于接收所述N3个波长复用器传输的多束基模光信号,将所述多束基模光信号复用为包括多个不同模式的一束光信号,并且发送获得的所述包括多个不同模式的一束光信号。
- 根据权利要求9至11中任一项所述的交换节点,其特征在于,所述交换节点还包括:至少一个发射器,其中,所述至少一个发射器用于向所述M1个光开关发射至少一束基模光信号,所述至少一束基模光信号中的每束基模光信号具有单一波长;所述M1个光开关中的第二光开关用于接收所述至少一个发射器发射的至少一束基模光信号。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480070106.7A CN105829930B (zh) | 2014-10-24 | 2014-10-24 | 模式复用解复用器和交换节点 |
EP14904241.8A EP3203281B1 (en) | 2014-10-24 | 2014-10-24 | Mode multiplexer-demultiplexer and switching node |
PCT/CN2014/089487 WO2016061826A1 (zh) | 2014-10-24 | 2014-10-24 | 模式复用解复用器和交换节点 |
US15/495,583 US10222549B2 (en) | 2014-10-24 | 2017-04-24 | Mode multiplexer/demultiplexer and switching node |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/089487 WO2016061826A1 (zh) | 2014-10-24 | 2014-10-24 | 模式复用解复用器和交换节点 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/495,583 Continuation US10222549B2 (en) | 2014-10-24 | 2017-04-24 | Mode multiplexer/demultiplexer and switching node |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016061826A1 true WO2016061826A1 (zh) | 2016-04-28 |
Family
ID=55760107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/089487 WO2016061826A1 (zh) | 2014-10-24 | 2014-10-24 | 模式复用解复用器和交换节点 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10222549B2 (zh) |
EP (1) | EP3203281B1 (zh) |
CN (1) | CN105829930B (zh) |
WO (1) | WO2016061826A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170146744A1 (en) * | 2014-05-09 | 2017-05-25 | National University Corporation University Of Fukui | Multiplexer, image projection apparatus using the multiplexer and image projection system |
WO2018027267A1 (en) * | 2016-08-09 | 2018-02-15 | Macquarie University | A system and a method for detecting the installation of an optical tap and a method of securing an optical signal in an optical fibre |
US10408999B2 (en) | 2014-05-09 | 2019-09-10 | National University Corporation University Of Fukui | Multiplexer |
CN113484952A (zh) * | 2021-07-05 | 2021-10-08 | 浙江大学 | 一种硅基片上的三维混合复用信号全光波长转换装置 |
CN114594554A (zh) * | 2020-12-04 | 2022-06-07 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
US12036257B2 (en) | 2017-10-31 | 2024-07-16 | Kalivir Immunotherapeutics, Inc. | Platform oncolytic vector for systemic delivery |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105874314B (zh) * | 2014-04-15 | 2018-12-07 | 华为技术有限公司 | 光波导群速度延时测量装置及方法 |
GB201803170D0 (en) * | 2018-02-27 | 2018-04-11 | Optoscribe Ltd | Optical apparatus and methods of manufacture thereof |
JP6994220B2 (ja) * | 2018-03-01 | 2022-01-14 | 日本電信電話株式会社 | 波長合波器 |
CN109194439A (zh) * | 2018-09-05 | 2019-01-11 | 华中科技大学 | 一种基于弱导环形结构光纤的模式复用通信系统及方法 |
WO2020245923A1 (ja) * | 2019-06-04 | 2020-12-10 | 日本電信電話株式会社 | 光回路 |
JP7389350B2 (ja) * | 2020-03-19 | 2023-11-30 | 富士通オプティカルコンポーネンツ株式会社 | 90度光ハイブリッド |
US11585981B2 (en) * | 2020-04-15 | 2023-02-21 | Hirose Electric Co., Ltd. | Multi-mode waveguide system and connector for photonic integrated circuit |
US11360268B1 (en) * | 2021-03-17 | 2022-06-14 | Cisco Technology, Inc. | Low-loss and low-crosstalk optical mode multiplexer and optical crossover |
CN113281843B (zh) * | 2021-05-25 | 2022-07-12 | 华中科技大学 | 一种基于聚合物的四模模式循环转换器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2234294A1 (en) * | 2007-12-13 | 2010-09-29 | Huawei Technologies Co., Ltd. | Aggregation node device of passive optical network and the system thereof |
CN103023600A (zh) * | 2012-10-17 | 2013-04-03 | 浙江大学 | 一种多通道集成光波导模式复用-解复用器 |
CN103095373A (zh) * | 2013-01-31 | 2013-05-08 | 华中科技大学 | 基于模分复用的自相干光纤通信系统 |
CN103345022A (zh) * | 2013-07-03 | 2013-10-09 | 吉林大学 | 一种基于少模光纤的非对称平面光波导模式复用/解复用器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3286972B2 (ja) * | 1992-12-25 | 2002-05-27 | キヤノン株式会社 | 波長分波装置及びそれを用いた波長多重通信システム |
US6628859B2 (en) * | 2001-03-22 | 2003-09-30 | Triquint Technology Holding Co. | Broadband mode converter |
EP1426799A3 (en) * | 2002-11-29 | 2005-05-18 | Matsushita Electric Industrial Co., Ltd. | Optical demultiplexer, optical multi-/demultiplexer, and optical device |
EP2645609B1 (en) | 2012-03-30 | 2014-10-29 | Alcatel Lucent | Method of optical data transmission using mode division multiplexing |
WO2013188592A1 (en) * | 2012-06-12 | 2013-12-19 | Cornell University | Optical mode-division multiplexing using selected mode coupling between an optical resonator and a signal transmission line |
JP5988100B2 (ja) * | 2012-12-14 | 2016-09-07 | 日本電信電話株式会社 | モード合分波器 |
EP3208960B1 (en) * | 2014-11-07 | 2019-09-11 | Huawei Technologies Co., Ltd. | Mode converter |
-
2014
- 2014-10-24 CN CN201480070106.7A patent/CN105829930B/zh active Active
- 2014-10-24 WO PCT/CN2014/089487 patent/WO2016061826A1/zh active Application Filing
- 2014-10-24 EP EP14904241.8A patent/EP3203281B1/en active Active
-
2017
- 2017-04-24 US US15/495,583 patent/US10222549B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2234294A1 (en) * | 2007-12-13 | 2010-09-29 | Huawei Technologies Co., Ltd. | Aggregation node device of passive optical network and the system thereof |
CN103023600A (zh) * | 2012-10-17 | 2013-04-03 | 浙江大学 | 一种多通道集成光波导模式复用-解复用器 |
CN103095373A (zh) * | 2013-01-31 | 2013-05-08 | 华中科技大学 | 基于模分复用的自相干光纤通信系统 |
CN103345022A (zh) * | 2013-07-03 | 2013-10-09 | 吉林大学 | 一种基于少模光纤的非对称平面光波导模式复用/解复用器 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170146744A1 (en) * | 2014-05-09 | 2017-05-25 | National University Corporation University Of Fukui | Multiplexer, image projection apparatus using the multiplexer and image projection system |
US9952389B2 (en) * | 2014-05-09 | 2018-04-24 | National University Corporation University Of Fukui | Multiplexer, image projection apparatus using the multiplexer and image projection system |
US10185091B2 (en) | 2014-05-09 | 2019-01-22 | National University Corporation University Of Fukui | Multiplexer, image projection apparatus using the multiplexer and image projection system |
US10408999B2 (en) | 2014-05-09 | 2019-09-10 | National University Corporation University Of Fukui | Multiplexer |
US11287571B2 (en) | 2014-05-09 | 2022-03-29 | National University Corporation University Of Fukui | Multiplexer |
WO2018027267A1 (en) * | 2016-08-09 | 2018-02-15 | Macquarie University | A system and a method for detecting the installation of an optical tap and a method of securing an optical signal in an optical fibre |
US12036257B2 (en) | 2017-10-31 | 2024-07-16 | Kalivir Immunotherapeutics, Inc. | Platform oncolytic vector for systemic delivery |
CN114594554A (zh) * | 2020-12-04 | 2022-06-07 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN113484952A (zh) * | 2021-07-05 | 2021-10-08 | 浙江大学 | 一种硅基片上的三维混合复用信号全光波长转换装置 |
CN113484952B (zh) * | 2021-07-05 | 2022-03-25 | 浙江大学 | 一种硅基片上的三维混合复用信号全光波长转换装置 |
Also Published As
Publication number | Publication date |
---|---|
US10222549B2 (en) | 2019-03-05 |
CN105829930A (zh) | 2016-08-03 |
EP3203281B1 (en) | 2020-12-09 |
EP3203281A4 (en) | 2017-10-04 |
EP3203281A1 (en) | 2017-08-09 |
US20170227711A1 (en) | 2017-08-10 |
CN105829930B (zh) | 2019-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016061826A1 (zh) | 模式复用解复用器和交换节点 | |
US20120170933A1 (en) | Core-selective optical switches | |
Dai | Silicon mode-(de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light | |
US8320761B2 (en) | Broadband and wavelength-selective bidirectional 3-way optical splitter | |
JP2003500689A (ja) | M×nの光クロスコネクト | |
WO2018054075A1 (zh) | 波长选择性光开关 | |
WO2014121443A1 (zh) | 光模块装置 | |
US11516562B2 (en) | Core selective switch and optical node device | |
CN108519642B (zh) | 一种兼容波分复用与模分复用功能的集成化光模式开关 | |
CN104918145A (zh) | 单片集成式多波长偏振复用/解复用器 | |
JP2004093787A (ja) | 光スイッチ、光通信用装置及び光通信システム | |
CN105474656A (zh) | 光交叉连接装置 | |
CN102147634A (zh) | 基于单波导耦合微环谐振腔的光学向量-矩阵乘法器 | |
CN105388564A (zh) | 基于MMI耦合器的InP基少模光子集成发射芯片 | |
CN104503039B (zh) | 一种直调式InP基单片集成少模光通信发射器芯片 | |
CN104317000B (zh) | 模块化可扩展的波长和空间全光路由器 | |
US10989878B2 (en) | Multi-wavelength optical signal splitting | |
Wu et al. | Large scale silicon photonics switches based on MEMS technology | |
JP4916489B2 (ja) | 光回路 | |
WO2019165947A1 (zh) | 光波导装置 | |
CN104297853B (zh) | 模块化的波长和空间全光路由器 | |
CN115980926A (zh) | 一种混合集成的多模波导耦合器 | |
CN104317137B (zh) | 模块化可扩展的n2×n2波长和空间全光路由器 | |
JP3042664B2 (ja) | 光周波数選択スイッチ | |
Ueda et al. | Optimum power-budget allocation for large-scale optical switches utilizing cyclic arrayed waveguide gratings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14904241 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014904241 Country of ref document: EP |