WO2014119167A1 - 形状最適化解析(analysis of shape optimization)方法及び装置 - Google Patents

形状最適化解析(analysis of shape optimization)方法及び装置 Download PDF

Info

Publication number
WO2014119167A1
WO2014119167A1 PCT/JP2013/083936 JP2013083936W WO2014119167A1 WO 2014119167 A1 WO2014119167 A1 WO 2014119167A1 JP 2013083936 W JP2013083936 W JP 2013083936W WO 2014119167 A1 WO2014119167 A1 WO 2014119167A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
block model
optimization
model
collision
Prior art date
Application number
PCT/JP2013/083936
Other languages
English (en)
French (fr)
Inventor
斉藤 孝信
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP13873950.3A priority Critical patent/EP2953040A4/en
Priority to CN201380071921.0A priority patent/CN104956369B/zh
Priority to KR1020157020725A priority patent/KR101612690B1/ko
Priority to US14/760,824 priority patent/US10169497B2/en
Priority to MX2015009792A priority patent/MX345189B/es
Publication of WO2014119167A1 publication Critical patent/WO2014119167A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Definitions

  • the present invention increases the stiffness of a structure such as an automobile and realizes weight reduction of automotive body, improves crashworthiness, and reduces weight.
  • the present invention relates to a shape optimization analysis method and apparatus for a structure.
  • a predetermined shape is assumed in advance, for example, a T shape is assumed, and an optimal shape is not obtained on the assumption of the shape, but a predetermined shape is assumed. This means that the most suitable shape that satisfies the analysis condition is obtained.
  • CAE computer-aided engineering
  • Topology optimization provides a design space of a certain size, incorporates a three-dimensional element into the design space, satisfies a given condition, and leaves a necessary minimum three-dimensional element part. This is a method of obtaining an optimum shape that satisfies the conditions. Therefore, for topology optimization, a method is used in which a direct load is applied by directly constraining the three-dimensional elements forming the design space. As a technique related to such topology optimization, a method for topology optimization of components of complex structures is disclosed in Japanese Patent Application Laid-Open No. 2010-250818.
  • Structures such as automobiles are mainly composed of thin sheets.
  • the parts are made independent as design spaces and designed. It is difficult to reflect the load and restraint state on the space. Therefore, there is a problem that it is difficult to apply the optimization technique to a part of the structure.
  • an optimized shape is obtained by a three-dimensional element, there is a problem of how to appropriately reflect it in a thin plate structure.
  • the present invention has been made to solve the above-described problems, and enables optimization techniques to be applied to a part of a structure that receives external force, particularly collision force, to optimize the structure.
  • the purpose is to provide technology that contributes.
  • the shape optimization analysis method optimizes a part of a structure model using two-dimensional elements or three-dimensional elements.
  • a shape optimization analysis method performed by a computer, and includes a design space setting step for setting a portion to be optimized in the structure model as a design space, and an optimal configuration composed of three-dimensional elements in the set design space
  • An optimization block model generation step for generating an optimization block model for performing an analysis process of the optimization, a combination processing step for combining the generated optimization block model with the structure model, and the optimization block model
  • a collision optimum shaping condition setting step for setting a shaping condition; a collision analysis condition setting step for setting a collision analysis condition for performing a collision analysis on the structure model to which the optimization block model is coupled; and
  • a collision analysis is performed on the optimized block model based on the collision optimization shaping condition and the collision analysis
  • the shape optimization analysis method is a shape optimization analysis method in which a computer optimizes a part of a structure model using a planar element or a three-dimensional element.
  • a design space setting step for setting a portion to be optimized as a design space, and an optimized block model for generating an optimized block model for performing an analysis process of optimization that is composed of three-dimensional elements in the set design space
  • a generating step a combining processing step for combining the generated optimized block model with the structure model, a material property setting step for setting material properties in the optimized block model, and a rigidity related to the optimized block model
  • a stiffness optimum shaping condition setting step for setting a stiffness optimum shaping condition for obtaining an optimum shape
  • a rigidity analysis condition setting step for setting a rigidity analysis condition for performing a rigidity analysis on the structure model to which the block model is coupled, and the optimization based on the set rigidity optimal shaping condition and the rigidity analysis condition
  • a rigidity analysis is performed on the block model to calculate the information regarding the necessity / unneces
  • a stiffness optimum shaping condition setting step for setting a stiffness optimum shaping condition for obtaining an optimum shape related to stiffness in the optimized block model
  • a rigidity analysis condition setting step for setting a rigidity analysis condition for performing rigidity analysis on the structure model to which the optimized block model is coupled, and the set rigidity optimal shaping condition and the rigidity analysis condition
  • a solid element necessity / unnecessity calculation step for performing rigidity analysis on the optimized block model and calculating information on necessity / unnecessity of each solid element in collision and stiffness of the optimization block model
  • the optimum shape determination step the calculation result of the solid element necessity / unnecessity calculation step and the rigidity analysis when the collision analysis is executed are performed. Based on the above calculation result of the three-dimensional elements need-of unnecessary calculation step in the row, and is characterized in that to determine the optimum shapes for the collision and rigidity.
  • the collision analysis condition setting step is characterized in that a load obtained by performing a collision analysis on the structure model in advance is set as a collision load.
  • the material property setting step in a case where a portion where the optimized block model is combined in the structure model is configured by a planar element, the material property setting step is performed in the three-dimensional element of the optimized block model.
  • the Young's modulus is set lower than the Young's modulus of the planar element.
  • the material property setting step in a case where a portion where the optimized block model is combined in the structure model is configured by a planar element, the material property setting step is performed in the three-dimensional element of the optimized block model.
  • the stress of the stress-strain curve is set lower than the stress of the stress-strain curve in the planar element.
  • the three-dimensional element constituting the optimized block model is constituted by a three-dimensional element having at least one pair of two faces that are not less than a pentahedron and not more than an octahedron and are parallel to each other. is there.
  • the optimization block model generation step subdivides the three-dimensional element along the peripheral surface of the structure model where the design space is installed and parallel to the surface having the maximum area of the design space.
  • the optimized block model to be converted is generated.
  • the optimized block model includes a hexahedral solid element as a three-dimensional element constituting the optimized block model by arranging a node at a connecting portion with a planar element or a three-dimensional element constituting the structure model. And the three-dimensional elements are generated so as to be stacked along a plane including the nodes arranged in the coupling portion.
  • the optimized block model is composed of a plurality of block bodies composed of solid elements, and the plurality of block bodies are made of rigid body elements, beam elements, or planar elements. Are connected to each other.
  • the shape optimization analysis method according to the present invention is characterized in that, in the above-described invention, discretization is performed with optimization parameters in optimization calculation by numerical analysis.
  • the shape optimization analysis apparatus performs optimization calculation by numerical analysis (numerical analysis) of the shape of a part of a structure model configured using a planar element or a planar element and a solid element. It is a shape optimization analysis device, and a design space setting unit that sets a part to be optimized as a design space in a part of the structure model, and the set design space is configured by three-dimensional elements and optimal An optimization block model generation unit that generates an optimization block model for performing optimization analysis processing, a combination processing unit that performs processing of combining the generated optimization block model with the structure model, and the optimization A material property setting unit for setting material properties in the block model and an optimum collision shaping condition for obtaining the optimum shape related to the collision are set in the optimized block model.
  • a collision optimum shaping condition setting unit a collision analysis condition setting unit for setting a collision analysis condition for performing a collision analysis on the structure model to which the optimization block model is coupled; and the set collision optimum shaping
  • a collision analysis unit that performs a collision analysis on the optimized block model based on the condition and the collision analysis condition, and necessity / unnecessity of each solid element in the collision of the optimized block model when performing the collision analysis It is characterized by comprising a three-dimensional element necessity / unnecessary calculation unit for calculating information on the information and an optimum shape determination unit for determining an optimum shape related to the collision based on the calculation result.
  • the shape optimization analysis apparatus is a shape optimization analysis in which a computer performs optimization calculation by numerical analysis of the shape of a part of a structure model configured using a planar element or a planar element and a solid element.
  • a design space setting unit configured to set, as a design space, a part to be optimized in a part of the structure model, and an analysis process of optimization configured by a three-dimensional element in the set design space
  • An optimization block model generation unit that generates an optimization block model for performing the processing, a combination processing unit that performs processing for combining the generated optimization block model with the structure model, and a material for the optimization block model
  • a stiffness analysis unit that performs a stiffness analysis on the optimized block model based on a condition, and calculates information on necessity / unnecessity of each solid element in the stiffness of the optimized block model when the stiffness analysis is performed It is characterized by comprising a three-dimensional element necessity / unnecessary computing unit and an optimum shape determining unit that decides an optimum shape related to rigidity based on the calculation result.
  • the shape optimization analysis apparatus provides a stiffness that sets a stiffness optimum shaping condition for obtaining an optimum shape related to rigidity in the optimized block model in the invention of the paragraph (0019) for obtaining an optimum shape related to a collision.
  • An optimum shaping condition setting unit, a stiffness analysis condition setting unit for setting a stiffness analysis condition for performing a stiffness analysis on the structure model combined with the optimization block model, and the set stiffness optimum shaping condition And a stiffness analysis unit that performs a stiffness analysis on the optimized block model based on the stiffness analysis condition, and the three-dimensional element necessity / unnecessary computation unit performs the stiffness analysis in the stiffness analysis unit.
  • a function for calculating information on necessity / unnecessity of each solid element in the collision and rigidity of the optimized block model Based on the information on the necessity / unnecessity of each solid element calculated at the time of analysis and the information on the necessity / unnecessity of each solid element calculated at the time of the rigidity analysis, the optimum shape for collision and rigidity is determined. It is characterized by doing.
  • the collision analysis condition setting unit sets a load obtained by performing a crash analysis on the structure model in advance as a collision load (crashworthiness load). To do.
  • the material property setting unit may be arranged in a three-dimensional element of the optimized block model when a portion where the optimized block model in the structure model is combined with a planar element.
  • the Young's modulus is set lower than the Young's modulus in the planar element.
  • the material property setting unit may be arranged in a three-dimensional element of the optimized block model when a portion where the optimized block model in the structure model is combined with a planar element.
  • the stress of the stress-strain curve is set lower than the stress of the stress-strain curve in the planar element.
  • the three-dimensional element constituting the optimized block model is a solid having at least one set of two faces that are pentahedron or more and octahedron or less and parallel to each other. It is composed of elements.
  • the optimization block model generation unit subdivides the three-dimensional element along the peripheral surface of the structure model where the design space is installed and parallel to the surface having the maximum area of the design space.
  • the optimized block model to be converted is generated.
  • the optimized block model generation unit arranges nodes at a coupling portion with a planar element or a three-dimensional element constituting the structure model, and is a hexahedron as a three-dimensional element constituting the optimized block model.
  • the optimization block model is generated so that the solid elements are stacked along a plane including the nodes arranged at the coupling portion while using the solid elements.
  • the optimized block model generation unit is configured to configure the optimized block model with a plurality of blocks including solid elements, and to convert the plurality of blocks into rigid elements, beam elements, or planar elements. It is characterized by using and connecting.
  • the three-dimensional element necessity / unnecessary arithmetic unit discretizes with an optimization parameter in the optimization calculation by the numerical analysis.
  • the three-dimensional element necessity / unnecessary operation unit performs the optimization calculation by topology optimization.
  • the present invention makes it possible to apply optimization technology to a part of a structure that receives an external force such as a collision force, and to optimize the structure of a structure such as a vehicle body. There is an effect that the weight of the structure can be reduced while improving the rigidity.
  • FIG. 1 is a block diagram of a shape optimization analysis apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram of an example of a structure model according to Embodiment 1 of the present invention.
  • FIG. 3A is an explanatory diagram of a state in which a design space is set in the structure model according to Embodiment 1 of the present invention.
  • FIG. 3B is a diagram of the design space shown in FIG. 3A viewed from different angles.
  • FIG. 4 is an explanatory diagram of a state in which the optimized block model is incorporated in the design space set in the structure model according to Embodiment 1 of the present invention.
  • FIG. 5A is an explanatory diagram illustrating an example of an optimized block model according to Embodiment 1 of the present invention.
  • FIG. 5B is an enlarged view of a portion surrounded by a circle in the optimized block model shown in FIG. 5A.
  • FIG. 6 is an explanatory diagram for explaining the internal state of the optimized block model shown in FIG. 5A.
  • FIG. 7A is an explanatory diagram of a state in which the optimized block model incorporated in the structure model and the structure model are combined in the first embodiment of the present invention.
  • FIG. 7B is a view of the coupling state between the optimized block model and the structure model shown in FIG. 7A viewed from different angles.
  • FIG. 8 is an explanatory diagram for explaining a load constraint condition as a collision analysis condition in the first embodiment of the present invention.
  • FIG. 10A is an explanatory diagram of a single optimized block model as a comparative example with respect to Embodiment 1 of the present invention.
  • FIG. 10B is a view of the single optimized block model shown in FIG. 10A viewed from different angles.
  • FIG. 11A is an explanatory diagram of a constraint condition of a single optimized block model in a comparative example with respect to Embodiment 1 of the present invention.
  • FIG. 11B is a view of the constraint state of the single optimized block model shown in FIG. 11A as seen from different angles.
  • FIG. 11A is an explanatory diagram of a single optimized block model as a comparative example with respect to Embodiment 1 of the present invention.
  • FIG. 12 is a flowchart showing a process flow of the shape optimization analysis apparatus according to Embodiment 1 of the present invention.
  • FIG. 13A is an explanatory diagram illustrating another aspect of the optimized block model according to Embodiment 1 of the present invention.
  • FIG. 13B is an enlarged view of a portion surrounded by a square mark of the optimized block model shown in FIG. 13A.
  • FIG. 14A is an explanatory diagram illustrating an internal state of another aspect of the optimized block model according to Embodiment 1 of the present invention.
  • FIG. 14B is an explanatory diagram illustrating an internal state of still another aspect of the optimized block model according to Embodiment 1 of the present invention.
  • FIG. 13A is an explanatory diagram illustrating another aspect of the optimized block model according to Embodiment 1 of the present invention.
  • FIG. 14B is an explanatory diagram illustrating an internal state of still another aspect of the optimized block model according to Embodiment 1 of the present invention.
  • FIG. 15 is a block diagram showing an example of a shape optimization analysis apparatus according to a modification of the first embodiment of the present invention.
  • FIG. 16 is an explanatory diagram for explaining an example of the stiffness analysis condition set in the modification of the first embodiment of the present invention.
  • FIG. 17 is a flowchart showing the flow of processing of the shape optimization analysis apparatus shown in FIG.
  • FIG. 18 is an explanatory diagram of the design space in the second embodiment of the present invention.
  • FIG. 19 is an explanatory diagram of a method for generating an optimized block model according to Embodiment 2 of the present invention.
  • FIG. 20 is an explanatory diagram for explaining the optimized block model generated in the second embodiment of the present invention.
  • FIG. 21A is an explanatory diagram illustrating a coupling unit of the optimized block model generated in the second embodiment of the present invention.
  • FIG. 21B is a view of the optimized block model shown in FIG. 21A viewed from different angles.
  • FIG. 22 is an explanatory diagram of a state in which an optimized block model is generated by the method of the first embodiment as a comparative example of the method of generating an optimized block model in the second embodiment of the present invention.
  • FIG. 23A is a diagram showing an optimized block model and a state of a coupling unit in a comparative example with respect to Embodiment 2 of the present invention.
  • FIG. 23B is a diagram of the optimized block model of the comparative example shown in FIG. 23A viewed from different angles.
  • FIG. 23A is an explanatory diagram illustrating a coupling unit of the optimized block model generated in the second embodiment of the present invention.
  • FIG. 21B is a view of the optimized block model shown in FIG. 21A viewed from different angles.
  • FIG. 24 is an explanatory diagram illustrating setting of the design space in the optimization block model generation method according to Embodiment 3 of the present invention.
  • FIG. 25A is an explanatory diagram for explaining optimization block model generation processing according to Embodiment 3 of the present invention.
  • FIG. 25B is a view of the optimized block model shown in FIG. 25A viewed from different angles.
  • the shape optimization analysis apparatus 1 is a part of a structure model 13 configured using a planar element or a planar element and a three-dimensional element as shown in FIG. 2 as an example. It is a device that performs optimization calculations by numerical analysis of shapes.
  • the shape optimization analysis apparatus 1 is configured by a PC (personal computer), and includes a display device 3, an input device 5, a memory storage 7, and a work data memory. 9 and an arithmetic processing unit 11.
  • the arithmetic processing unit 11 is connected to the display device 3, the input device 5, the storage device 7, and the work data memory 9.
  • the display device 3, the input device 5, the storage device 7, and the work data memory 9 perform functions according to instructions from the arithmetic processing unit 11.
  • the display device 3 is used for displaying calculation results and the like, and includes a liquid crystal monitor or the like.
  • the input device 5 is used for a display instruction of a file of the structure model 13 and an operator's condition input, and is configured by a keyboard, a mouse, and the like.
  • the structure model 13 may be configured by only planar elements, or may be configured by a combination of planar elements and solid elements.
  • a vehicle body (body) as shown in FIG. 2 is taken as an example of the structure model 13
  • the vehicle body is mainly formed of a steel sheet. Composed.
  • the structural body model 13 is a block body formed of a casting such as an engine, for example, the structural body model 13 includes a solid element.
  • the work data memory 9 has a data storage area 9a for storing calculation results and a work area 9b for performing calculation processing.
  • the arithmetic processing unit 11 is constituted by a CPU (central processing unit) of a PC (personal computer). Each unit of the arithmetic processing unit 11 described below is realized by the CPU executing a predetermined program.
  • the arithmetic processing unit 11 includes a design space setting unit 15 that sets, as a design space 25, a portion to be optimized, which is an example of FIGS. 3A and 3B, in a part of the structure model 13, and a set design space 25.
  • the optimization block model generation unit 17 that generates an optimization block model 27 (see, for example, FIG.
  • a combination processing unit 18 that performs processing for combining with the model 13, a material property setting unit 19 that sets material properties in the optimized block model 27, and a condition for obtaining an optimum shape related to collision in the structure model 13 (an optimum collision shape)
  • the collision optimization is performed on the collision optimum shaping condition setting unit 20 for setting the optimization model and the optimization block model 27 (see FIG. 4) to which the structure model 13 is coupled.
  • an optimum shape determining unit 24 for determining an optimum shape.
  • the design space setting unit 15 sets a part to be optimized as a design space 25 in a part of the structure model 13.
  • a portion surrounding the B pillar portion on the right side of the vehicle body is shown.
  • the part is a part to be optimized.
  • the design space setting unit 15 sets the design space 25 in the relevant part of the structure model 13, specifically, in the B pillar part shown in FIG. 2.
  • FIGS. 3A and 3B show a state in which the design space 25 is set as viewed from an angle different from that in FIG. 3A.
  • the design space setting unit 15 sets the design space 25 by deleting a part of the structure model 13.
  • the design space is set in advance.
  • the shape optimization analysis apparatus 1 may be configured to set 25.
  • the design space 25 is set in advance when generating the structure model 13
  • the generation unit itself that generates the structure model 13 also serves as the design space setting unit 15. That is, the design space setting unit 15 of the present invention may have both the design space setting function as described above and the structure model 13 generation function.
  • the optimization block model generation unit 17 generates an optimization block model 27 for performing optimization analysis processing in the design space 25 set by the design space setting unit 15. At this time, the optimization block model generation unit 17 optimizes the block model into an arbitrary shape having a size that falls within the design space 25 set in a part of the structure model 13 as shown in FIGS. 3A and 3B. 27 can be generated.
  • the optimized block model generation unit 17 configures the optimized block model 27 with three-dimensional elements.
  • generation part 17 comprises the said solid element by the solid element which has at least 1 set of 2 planes which are pentahedron or more and octahedron or less and mutually parallel.
  • the reason for this is as follows.
  • the part formed in the design space 25 is formed of a thin plate like a part of the vehicle body, it is reflected in the structure shape of the thin plate by executing optimization calculation using the optimization block model 27. It is desirable to calculate the optimum shape of the optimized block model 27 so that it can be performed.
  • the optimized block model 27 it is easy to satisfy such a requirement by configuring the optimized block model 27 using a solid element having at least one set of two faces which are not less than a pentahedron and not more than an octahedron and are parallel to each other.
  • FIG. 4 shows an optimized block model 27 generated in an I shape as an example of the present invention.
  • the three-dimensional element constituting the optimized block model 27 uses a hexahedron as shown in FIGS. 5A and 5B.
  • FIG. 5B shows an enlargement of the circled portion of the optimized block model 27 shown in FIG. 5A.
  • FIG. 6 shows an internal state at about 1 ⁇ 4 height of the optimized block model 27 shown in FIG. 5A.
  • the element size inside the optimized block model 27 is matched with the element size on the surface of the optimized block model 27.
  • each element size is uniform throughout the optimized block model 27.
  • the optimization block model generation unit 17 subdivides the three-dimensional elements along the surrounding surface where the design space 25 in the structure model 13 is installed and parallel to the surface having the maximum area of the design space.
  • An optimized block model 27 is preferably generated. For example, as shown in FIGS. 3A and 3B, when the B pillar in the vehicle body is set as the design space 25, the optimized block model generation unit 17 performs the I-shaped optimization as shown in FIG. A block model 27 is generated. The outer surface of the optimized block model 27 is the maximum area. The optimization block model generation unit 17 generates the optimization block model 27 so that the surface having the maximum area is parallel to the side surface of the vehicle body.
  • the reason why the optimized block model 27 is generated in this way is as follows. For example, since the B-pillar of the vehicle body is formed by a sheet, when the optimization calculation is executed using the optimization block model 27, the calculation is such that the three-dimensional elements of the optimization block model 27 remain planar. It is desirable to obtain results. This is because by setting the optimized block model 27 to the model configuration as described above, there is a high possibility that this calculation result remains in a planar shape, and thus the utility value for the actual one is increased.
  • the combination processing unit 18 performs a process of combining the generated optimized block model 27 with a portion other than the optimized block model 27 in the structure that is another part of the vehicle body, that is, the structure model 13.
  • the connection processing unit 18 uses a rigid element, a plate element, or a beam element.
  • the connection processing unit 18 accurately transmits the load from the structure model 13 (vehicle body) to the optimized block model 27, so that the original part of the structure model 13 (vehicle body) and the part deleted as the design space 25 is used.
  • the joining process is preferably performed so that the joining portion is reflected in the joining portion between the optimized block model 27 and the structure.
  • FIG. 7B are diagrams showing a state in which the optimization block model and the structure model are combined in Embodiment 1 of the present invention.
  • FIG. 7B is a view of the coupling state between the optimized block model and the structure model shown in FIG. 7A viewed from different angles.
  • a combined portion 29 of the optimized block model 27 and the structure model 13 combined by the combining processing unit 18 is indicated by a white line.
  • the material property setting unit 19 sets material properties such as a stress-strain curve representing Young's modulus, specific gravity, yield strength, and tensile strength in the optimized block model 27.
  • a solid element is less susceptible to deformation than a planar element with respect to a collision. Therefore, when the model to be analyzed is configured by combining a three-dimensional element and a planar element, a portion configured by the planar element may be greatly deformed, resulting in an analysis result different from the actual situation. For example, when the coupling site between the optimization block model 27 and the structure model 13 is configured by a planar element, if a collision load is added to the optimization block model 27, the optimization block model 27 is more effective than the optimization block model 27.
  • the material property setting unit 19 is optimal when the portion to which the optimization block model 27 in the structure model 13 is combined as described above is composed of planar elements.
  • the Young's modulus of the three-dimensional element of the generalized block model 27 is set to be lower (for example, half or less) than the Young's modulus of the planar element of this binding site. By doing so, it is possible to perform a well-balanced analysis without deformation bias.
  • the material property setting unit 19 has a stress-strain curve in the three-dimensional element of the optimization block model 27 when the coupling site between the structural body model 13 and the optimization block model 27 is composed of planar elements as described above. May be set lower than the stress of the stress-strain curve in the plane element of this bonding site. This also makes it possible to perform a well-balanced analysis with no deformation bias.
  • the collision optimum shaping condition setting unit 20 sets the optimum collision shaping condition for obtaining the optimum shape related to the collision in the optimized block model 27.
  • the optimum collision shaping conditions set by the optimum collision shaping condition setting unit 20 that is, an objective condition and a constraint condition.
  • the objective condition is a condition set according to the purpose of the structure model 13. Examples of the objective condition include minimizing strain energy, minimizing generated stress, and maximizing absorbed energy.
  • the collision optimal shaping condition setting unit 20 sets only one target condition for the optimized block model 27.
  • the constraint condition is a constraint imposed when performing optimization analysis.
  • the collision optimal shaping condition setting unit 20 can set a plurality of constraint conditions for the optimized block model 27.
  • the collision analysis condition setting unit 21 sets collision analysis conditions for performing a collision analysis, such as a restraint position of the structure model 13 and a position where a collision load is added, to the structure model 13 to which the optimization block model 27 is coupled. To do. For example, when performing an analysis in which the bumper of another vehicle collides with the B pillar of the vehicle body from the side of the vehicle body, the collision analysis condition setting unit 21 applies the bumper of the other vehicle to the bumper of the other vehicle as shown in FIG. A corresponding bumper model 28 is created. Next, the collision analysis condition setting unit 21 uses the created bumper model 28 in a predetermined position of the optimized block model 27 (B pillar) incorporated in the structure model 13, for example, a white square in FIG.
  • a collision analysis condition setting unit 21 uses the created bumper model 28 in a predetermined position of the optimized block model 27 (B pillar) incorporated in the structure model 13, for example, a white square in FIG.
  • the collision analysis condition setting unit 21 sets the structure model 13 not to be constrained.
  • the collision analysis condition setting unit 21 may be configured to perform a collision analysis on the structural body model 13 in advance and set a load obtained as a result as a collision load.
  • the collision analysis unit 22 performs a collision analysis on the optimized block model 27 based on the optimum collision shaping condition and the collision analysis condition set as described above.
  • the collision analysis unit 22 uses an inertia relief method or a dynamic explicit method.
  • the inertia relief method is a static analysis performed on a structure in which the inertial force and the external load are balanced, such as a structure floating in the air or a structure floating on the water.
  • the dynamic explicit method is a dynamic analysis performed using a method for determining a physical quantity after a predetermined time has elapsed based on a known physical quantity. Therefore, the collision analysis unit 22 can use, for example, commercially available analysis software using a finite element.
  • the three-dimensional element necessity / unnecessary calculation unit 23 calculates information about necessity / unnecessity of each three-dimensional element in the optimized block model 27 when the collision analysis unit 22 performs the collision analysis.
  • the information regarding the necessity / unnecessity of each three-dimensional element includes, for example, the material density of each three-dimensional element.
  • the three-dimensional element necessity / unnecessary calculation unit 23 calculates and sets the material density of each three-dimensional element in the optimized block model 27 in the range of 1.0 to 0.0.
  • the material density is 1.0, it means that the whole of the three-dimensional element is a material (necessary for the target condition), and if the material density is 0.0, this three-dimensional element It means that a part of the element is a hole (unnecessary).
  • the solid element / unnecessary calculation unit 23 executes the above calculation processing, among the three-dimensional elements in the optimization block model 27, the three-dimensional elements satisfying the given collision optimum shaping condition means “necessary”. Information (for example, the material density is 0.6 or more) is calculated.
  • the three-dimensional element necessity / unnecessary calculation unit 23 discretizes optimization parameters in optimization calculation by numerical analysis of the shape of a part of the structure model 13. It is preferable to limit the penalty coefficient in the discretization to 2 or more or 3 to 20 times the size of the standard solid element. By discretizing the optimization parameters, the optimization parameters can be reflected on the structure of the thin plate.
  • the three-dimensional element necessity / unnecessary calculation unit 23 may perform optimization calculation by topology optimization, that is, topology optimization processing, as optimization calculation by numerical analysis of a part of the shape of the structure model 13. You may perform the optimization process by a calculation system. Therefore, as the three-dimensional element necessity / unnecessary calculation unit 23, for example, commercially available analysis software using a finite element can be used.
  • the optimum shape determination unit 24 determines the optimum shape related to the collision based on the calculation result of the three-dimensional element necessity / unnecessity calculation unit 23. Specifically, the optimum shape determination unit 24, for example, among the three-dimensional elements in the optimized block model 27 generated as described above, a three-dimensional element (for example, a material that does not satisfy the given collision optimum shaping condition) 3D elements having a density less than 0.6) are deleted. By doing so, the optimum shape determining unit 24 optimizes the shape of the optimized block model 27 configured only by the three-dimensional elements (for example, the material density is 0.6 or more) satisfying the given collision optimum shaping condition. Leave as shape.
  • the optimum shape determining unit 24 may smooth the optimum shape obtained in this way.
  • the optimal shape determination unit 24 executes the above-described optimization analysis processing, among the three-dimensional elements in the optimization block model 27, the three-dimensional element having the optimal shape that satisfies the given analysis condition remains.
  • the load is transmitted from the structural body model 13 to the optimized block model 27 via the coupling portion 29. That is, when the load is transmitted from the structure model 13 to the optimization block model 27, the optimization block model 27 is deformed and the direction of the load changes in the process of the optimization calculation. It is the point which gives the optimal shape finally reflecting the load conditions.
  • FIG. 10A and 10B illustrate the I-shaped optimized block model 27 shown in FIG. 4 as a single model rather than being incorporated in the design space 25 of the structure model 13.
  • FIG. 10B is a view of the single optimized block model shown in FIG. 10A viewed from different angles.
  • FIG. 11A and FIG. 11B show a constraint in which a constraint condition is set for the same location as the connecting portion 29 shown in FIG. 7A and FIG. 7B for the single optimum block model 27 shown in FIG. 10A and FIG. 10B. Part 31 is illustrated.
  • FIG. 11B is a view of the constraint state of the single optimized block model shown in FIG. 11A as seen from different angles. 11A corresponds to FIG. 10A, and FIG. 11B corresponds to FIG. 10B. 11A and 11B was constrained, and the optimization process analysis was performed under the same analysis conditions as those in the case where the constrained part 31 shown in FIG. 11A and FIG.
  • the computer When the operator instructs the input device 5 to read the file of the structure model 13, the computer reads the structure model 13 from the storage device 7 and displays it on the display device 3 (S1). Next, the operator sets a design space 25 to be optimized in the displayed structure model 13. Specifically, the operator designates the coordinates of the part to be the design space 25 in the structure model 13 and performs an instruction to delete the element of the part by performing an input operation of the input device 5. With this instruction, the design space setting unit 15 of the computer performs a process of deleting the element of the part, and the design space 25 is set (S3).
  • the operator instructs the optimization block model generation unit 17 to generate an optimization block model 27 having a size that can be entered into the design space 25.
  • This instruction includes an instruction as to which plane in the design space 25 should be used as the basis for generating the optimized block model 27. For example, when the optimized block model 27 shown in FIGS. 4 and 5A is generated in the design space 25 of the structure model 13 shown in FIGS. 3A and 3B, the front-rear direction plane in the optimized block model 27 is used as a reference.
  • the optimized block model generating unit 17 of the computer generates the meshed optimized block model 27 by pushing the surface in the longitudinal direction of the vehicle body ( S5).
  • the operator instructs the connection between the optimized block model 27 and the structure model 13.
  • This instruction includes whether to use a rigid element, a plate element, or a beam element as the coupling element.
  • the combination processing unit 18 of the computer performs a combination process between the optimized block model 27 and the structure model 13 (S7).
  • the operator sets the material characteristics of the optimized block model 27 (S8).
  • the operator performs an input operation of the input device 5 and inputs material characteristics such as stress-strain characteristics representing Young's modulus, specific gravity, yield strength, and tensile strength.
  • the material property setting unit 19 of the computer sets the input material property in the optimized block model 27 combined with the structure model 13 as described above. Thereafter, the operator sets the optimum collision shaping condition (S9).
  • the operator performs an input operation of the input device 5 and, as described above, as the optimum collision shaping conditions, the objective conditions such as minimizing strain energy and maximizing absorbed energy as described above, and the material volume ratio Enter constraints such as
  • the collision optimum shaping condition setting unit 20 of the computer sets the inputted collision optimum shaping condition in the optimized block model 27.
  • the operator sets collision analysis conditions such as a collision object to be collided with the optimized block model 27 (for example, a bumper model 28 of another vehicle as shown in FIG. 9) and a position where a collision load is applied ( S10).
  • the operator performs an input operation of the input device 5 and inputs the above-described collision analysis conditions.
  • the collision analysis condition setting unit 21 of the computer sets the input collision analysis condition in the structure model 13 to which the optimization block model 27 is combined as described above.
  • the collision analysis unit 22 and the three-dimensional element necessity / unnecessary calculation unit 23 of the computer execute a collision analysis on the optimized block model 27 based on the set collision optimum shaping condition and collision analysis condition. Then, information about necessity / unnecessity of each solid element in the optimized block model 27 is obtained by calculation (S11). That is, the collision analysis unit 22 of the computer executes the above-described collision analysis for the optimized block model 27.
  • the three-dimensional element necessity / unnecessary calculation unit 23 of the computer calculates information on necessity / unnecessity of each three-dimensional element in the optimized block model 27 at the time of the collision analysis.
  • the optimal shape determination unit 24 of the computer determines the optimal shape related to the collision of the optimized block model 27 based on the information regarding necessity / unnecessity obtained as described above (S13).
  • the operator creates a shape model obtained by optimization calculation, etc., and confirms rigidity by other structural analysis calculation based on the model.
  • the part to be optimized in the structure model 13 is set as the design space 25, and the optimized block model 27 is generated in the set design space 25. Since the optimization block model 27 is coupled to the structure model 13 and the collision analysis is performed, the load transmission is appropriately performed on the optimization block model 27 from the coupling portion 29 with the structure model 13, and the optimization is performed.
  • the optimal shape of the block model 27 can be calculated with high accuracy. As a result, for example, the structure of the vehicle body can be optimized, the collision characteristics can be improved, and the weight of the structure can be reduced while maintaining the collision performance of the structure such as the vehicle body at a predetermined value. .
  • the hexahedron as shown in FIGS. 5A and 5B is taken as an example of the three-dimensional element constituting the optimized block model 27, and the other three-dimensional elements are pentahedron or more and octahedron or less and parallel to each other.
  • the optimized block model 27 is preferably composed of a solid element having at least one set of two surfaces.
  • the present invention does not exclude the case where a tetrahedron as shown in FIGS. 13A and 13B is used as the three-dimensional element constituting the optimized block model 27.
  • FIGS. 13A and 13B are explanatory diagrams illustrating another aspect of the optimized block model according to Embodiment 1 of the present invention.
  • FIG. 13A and 13B are explanatory diagrams illustrating another aspect of the optimized block model according to Embodiment 1 of the present invention.
  • FIG. 13A is a diagram showing an example of another aspect of the optimized block model according to Embodiment 1 of the present invention.
  • FIG. 13B is an enlarged view showing a portion surrounded by a square mark of the optimized block model shown in FIG. 13A in an enlarged manner.
  • the model can be generated by creating only the outer shape of the design space 25 and automatically filling the interior. It becomes possible.
  • FIG. 14A and FIG. 14B show the internal state of the optimized block model 27 composed of tetrahedral elements at a height of about 1 ⁇ 4.
  • FIG. 14A shows the internal state of the optimized block model 27 generated so that the internal element size matches the surface element size so that the entire optimized block model 27 has a uniform element size. In this way, by making the overall element size finer in accordance with the surface element size, a highly accurate analysis can be performed. Note that the sizes of the elements constituting the optimized block model 27 do not have to be uniform as described above.
  • the optimized block model 27 may be generated so that the element size gradually increases from the surface to the inside (gradually).
  • FIG. 15 is a block diagram illustrating the configuration of a shape optimization analysis apparatus according to a modification of the first embodiment of the present invention.
  • the shape optimization analysis apparatus 41 according to the present modification has the configuration of the shape optimization analysis apparatus 1 according to the first embodiment described above, as shown in FIG.
  • a rigidity analyzing unit 47 that executes rigidity analysis is provided.
  • the same components as those in the shape optimization analysis apparatus 1 are denoted by the same reference numerals.
  • examples of the optimum rigidity shaping conditions in the present modification include objective conditions and constraint conditions.
  • Examples of the stiffness analysis condition in this modification include a load constraint condition.
  • the stiffness optimum shaping condition setting unit 43 sets the objective condition and the constraint condition input by the input device 5 in the optimization block model 27 as the stiffness optimum shaping condition.
  • the objective condition include maximizing rigidity, minimizing displacement, and minimizing stress.
  • examples of the constraint condition include a material volume ratio and a displacement of an arbitrary part.
  • the stiffness analysis condition setting unit 45 sets the load constraint condition input by the input device 5 as the stiffness analysis condition in the structure model 13 to which the optimized block model 27 is coupled. For example, when calculating the maximum stiffness of the optimized block model 27 when a torsional load is applied to the structure model 13, the stiffness analysis condition setting unit 45, as shown in FIG. The four conditions a, b, c, and d of the vehicle body, which is an example of the model 13, are set, the condition that the three of these are constrained and the load is applied to the remaining one, The load constraint condition of the body model 13 is used.
  • the rigidity analysis unit 47 performs the rigidity analysis on the optimized block model 27 based on the rigidity optimum shaping condition and the rigidity analysis condition set as described above.
  • the three-dimensional element necessity / unnecessity calculation unit 23 of the shape optimization analysis apparatus 41 according to the present modification requires and does not require each three-dimensional element in the collision and rigidity of the optimization block model 27 when the stiffness analysis unit 47 performs the stiffness analysis. It has a function to calculate information about. Accordingly, the three-dimensional element necessity / unnecessary calculation unit 23 in the present modification example has each of the optimization block models 27 in both the collision analysis performed by the collision analysis unit 22 and the rigidity analysis performed by the stiffness analysis unit 47. Calculates information about the necessity / unnecessity of 3D elements.
  • the optimum shape determining unit 24 has information regarding necessity / unnecessity of each solid element calculated when performing the collision analysis and information regarding necessity / unnecessity of each solid element calculated when performing the rigidity analysis. Based on the above, the optimum shape related to the collision and rigidity is determined comprehensively. For example, when the information about necessity / unnecessity of each solid element is the material density in each solid element, the optimum shape determination unit 24 uses the optimized block model 27 used for the collision analysis and the optimized block used for the rigidity analysis. For each solid element corresponding to the model 27, an average value of the material density is obtained, and an element to be deleted is determined based on the average value. By doing so, the optimum shape determining unit 24 can determine the overall optimum shape of the optimized block model 27 based on the result of the collision analysis and the result of the stiffness analysis.
  • steps S1 to S11 are the same as those described with reference to the flowchart of FIG.
  • material properties are set in the optimized block model 27 in step S8, and then in steps S21 to S23 described later.
  • steps S9 to S11 are separately performed.
  • the computer shape optimization analysis apparatus 41 combines the optimized block model 27 and the structural body model 13 in step S7, and then sets material properties in the optimized block model 27 in step S8.
  • the optimum stiffness shaping condition for obtaining the optimum shape related to the stiffness is set in the block model 27 (S21).
  • the shape optimization analysis apparatus 41 sets a stiffness analysis condition for performing a stiffness analysis on the structure model 13 to which the optimization block model 27 is coupled (S22).
  • the computer shape optimization analysis device 41 performs a stiffness analysis on the optimization block model 27 based on the stiffness optimization shaping condition and the stiffness analysis condition set as described above, and the optimization block model 27 Information on necessity / unnecessity of each solid element in rigidity is calculated (S23). Thereafter, the shape optimization analysis device 41 calculates the calculation result of the three-dimensional element necessity / unnecessary calculation step obtained by performing the collision analysis in step S11 and the three-dimensional element necessity / unnecessary calculation step obtained by performing the rigidity analysis in step S23. Based on the calculation result, the optimum shape related to the collision and rigidity of the optimized block model 27 is determined (S24).
  • the three-dimensional element necessity / unnecessary calculation step when the rigidity analysis that is step S23 is performed is the three-dimensional element necessity / unnecessity calculation step that is performed when the collision analysis that is step S11 is performed, as shown in FIG. It is another calculation processing step.
  • the structure model 13 is added to the optimization block model 27.
  • the point that load transmission is appropriately performed from the connecting portion 29 is the same as in the case of the collision analysis. Therefore, it is possible to accurately calculate information regarding necessity / unnecessity of each solid element of the structure model 13 from both the collision characteristics and the rigidity. Therefore, the accuracy is good even in the optimum shape determined based on this information.
  • the second embodiment relates to another aspect of the optimization block model generation unit 17, and the optimization block model generation is performed at a node (node) at a connection part with a planar element or a three-dimensional element constituting the structure model 13. ) And hexagonal solid elements are used as the solid elements constituting the optimized block model 27, and the solid elements are stacked so as to be along a plane including the nodes arranged in the coupling portion.
  • node node
  • hexagonal solid elements are used as the solid elements constituting the optimized block model 27, and the solid elements are stacked so as to be along a plane including the nodes arranged in the coupling portion.
  • FIG. 18 shows a state in which the design space 25 is set in the rear side member portion of the structural body model 13 showing the vehicle body.
  • FIG. 18 in this example, there is a part that is not parallel to the reference axis plane at the coupling position between the structure model 13 composed of planar elements and the three-dimensional element of the optimization block model 27 shown in FIG. 20 described later. To do.
  • the second embodiment is applied to such a case.
  • the optimization block model generation unit 17 in the second embodiment also has the following optimization block model generation function in addition to the optimization block model generation function in the first embodiment described above. Specifically, as shown in FIG. 19, the optimization block model generation unit 17 connects the nodes existing at the site where the structure model 13 has been deleted on the side surface of the vehicle body with a straight line to obtain the optimization block model 27. A reference surface 33 serving as a reference for creation is created with plate elements. When the optimization block model generation unit 17 generates the reference surface 33, the optimization block model 27 is generated by pushing the reference surface 33 in the vehicle width direction so as to be integrated by sharing the nodes.
  • FIG. 20, FIG. 21A and FIG. 21B show a state where the optimized block model 27 is generated in the second embodiment.
  • FIG. 20 is an enlarged view of the generated optimized block model 27.
  • 21A and FIG. 21B show the coupling unit 29 in the optimized block model 27.
  • FIG. FIG. 21B shows the optimized block model 27 viewed from an angle different from FIG. 21A.
  • the optimization block model generation unit 17 generates the reference plane 33 and generates the optimization block model 27 using the reference plane 33.
  • the inclined portion of the coupling portion 29 between the optimized block model 27 and the structure model 13 becomes a smooth straight line.
  • the coupled state between the optimized block model 27 and the structure model 13 becomes smooth, and as a result, the load transmission between the optimized block model 27 and the structure model 13 is achieved.
  • the effect of being accurate is obtained.
  • FIGS. 22, 23A, and 23B an example in which the optimized block model 27 is generated without generating the reference plane 33 in advance as in the first embodiment is shown in FIGS. 22, 23A, and 23B.
  • FIG. 22 is an enlarged view of the optimized block model 27 generated in the comparative example.
  • FIG. 23A and FIG. 23B illustrate the coupling unit 29 in the optimized block model 27.
  • FIG. 23B shows an optimized block model 27 of a comparative example viewed from a different angle from FIG. 23A.
  • a step 35 is formed in the inclined portion as compared with the optimized block model 27 and the coupling portion 29 of the second embodiment shown in FIG. 20, FIG. 21A and FIG. It can be seen that the optimized block model 27 and the coupling portion 29 of the comparative example are not smooth.
  • the connection state between the optimized block model 27 and the structure model 13 becomes smooth, As a result, the transmission of the load between the optimized block model 27 and the structure model 13 becomes accurate.
  • the optimization block model generation unit 17 generates the optimization block model 27 by configuring a plurality of blocks including solid elements and connecting the plurality of blocks using rigid elements, beam elements, or planar elements. You may do it.
  • the process of generating the optimized block model 27 in the third embodiment will be specifically described.
  • FIG. 24, FIG. 25A, and FIG. 25B are explanatory diagrams of a method for generating an optimized block model according to the third embodiment.
  • FIG. 24 is an explanatory diagram for explaining a reference plane for generating an optimized block model according to Embodiment 3 of the present invention.
  • FIG. 25A is a diagram showing a state in which an optimized block model is generated in Embodiment 3 of the present invention.
  • FIG. 25B is a view of the optimized block model shown in FIG. 25A viewed from different angles.
  • the optimization block model generation unit 17 has the optimization block model generation function of the third embodiment in addition to the optimization block model generation function of the first and second embodiments described above.
  • the optimized block model generation unit 17 uses the method for generating the reference plane 33 shown in the second embodiment and generates the optimized block model 27 with a plurality of blocks.
  • the optimized block model generation unit 17 first generates a plurality of reference planes 33a and 33b independent of the design space 25 shown in FIG. 18 (see FIG. 24). Next, the optimized block model generation unit 17 pushes the upper triangular reference plane 33a shown in FIG. 24 in the front-rear direction of the vehicle, and forms the upper block 27a of the triangular prism portion as shown in the state A1 of FIG. 25A. Generate. Subsequently, the optimized block model generation unit 17 pushes the lower reference surface 33b shown in FIG. 24 in the vehicle width direction, and generates the lower block 27b as shown in the state A2 of FIG. 25A.
  • the optimization block model generation unit 17 connects the generated blocks, the optimization block model 27 which is a combination of the upper block 27a and the lower block 27b, and the structure model 13 (vehicle body) by the connection unit 29. They are sequentially coupled (see state A3 in FIG. 25A and FIG. 25B).
  • the optimization block model 27 is generated by being divided into a plurality of blocks, so that the design space 25 composed of blocks having a simple shape such as a rectangular parallelepiped is of course not a simple shape.
  • the optimized block model 27 can be generated also in the design space 25, for example, the design space 25 including a block having a complicated shape or a block including a slope.
  • the optimized block model 27 can be formed with a smooth surface. Thereby, joining with the optimization block model 27 and the structure model 13 can be made smooth, As a result, the load transmission between the optimization block model 27 and the structure model 13 can be performed correctly.
  • either the upper block 27a or the lower block 27b may be generated first, and the combination of these blocks (the upper block 27a and the lower block 27b) and the upper block 27a or
  • the order of the coupling between the lower block 27b and the vehicle body is not particularly limited in the present invention, and any coupling may be performed first.
  • the block coupling is 20% or less in terms of the coupling area.
  • the present invention is not limited by the above-described first to third embodiments and modified examples or examples, and the present invention includes a combination of the above-described constituent elements as appropriate.
  • the portion of the structure model to be optimized in the present invention is not limited to the B pillar or rear side member of the vehicle body, and may be a desired portion of the vehicle body.
  • the shape optimization analysis method and apparatus according to the present invention does not perform the above-described collision optimum shaping condition setting process, collision analysis condition setting process, and collision analysis, and is shown as a modification of the first embodiment.
  • the shape optimization analysis apparatus may not include the above-described collision optimum shaping condition setting unit, collision analysis condition setting unit, and collision analysis unit.
  • the shape optimization analysis method and apparatus according to the present invention may be a combination of the above-described second and third embodiments and the modification of the first embodiment as appropriate.
  • all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are included in the present invention.
  • the shape optimization analysis method and apparatus according to the present invention are useful for optimizing a structure such as a vehicle body, and in particular, improve the rigidity and collision characteristics of the structure and reduce the weight of the structure. It is suitable for the shape optimization analysis method and apparatus realized together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Body Structure For Vehicles (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

 本発明の一態様である形状最適化解析方法では、コンピュータが、構造体モデルにおける最適化の対象となる部分を設計空間として設定し、設定された設計空間に立体要素で構成され最適化の解析処理を行うための最適化ブロックモデルを生成し、生成された最適化ブロックモデルを構造体モデルに結合し、最適化ブロックモデルに材料特性を設定し、最適化ブロックモデルに衝突に関する最適形状を求めるための衝突最適形状化条件を設定し、最適化ブロックモデルが結合された構造体モデルに衝突解析を行うための衝突解析条件を設定し、設定された衝突最適形状化条件および衝突解析条件に基づいて最適化ブロックモデルに対して衝突解析を実行して、最適化ブロックモデルにおける各立体要素の要・不要に関する情報を演算し、この演算結果に基づいて衝突に関する最適形状を決定する。

Description

形状最適化解析(analysis of shape optimization)方法及び装置
 本発明は、例えば自動車(automobile)等の構造体の剛性(stiffness)を高めると共に軽量化(weight reduction of automotive body)を実現したり、衝突特性(crash worthiness)を向上させると共に軽量化を実現したりするための、構造体の形状最適化解析方法及び装置に関する。なお、本明細書において形状最適化と称する場合には、予め所定の形状を想定し、例えばT字形状を想定し、その形状を前提として最適な形状を求めることではなく、所定の形状を想定することなく、解析条件を満たす最も好適な形状を求めることを意味する。
 近年、特に自動車産業においては環境問題に起因した車体全体(full vehicle)の軽量化が進められており、車体(automotive body)の設計にコンピュータ支援工学による解析(以下、「CAE(computer aided engineering)解析」という)は欠かせない技術となっている。このCAE解析では、数理最適化(mathematical optimization)、板厚最適化、形状最適化(shape optimization)、トポロジー最適化(topology optimization)などの最適化技術を用いることによって剛性の向上や軽量化が図られることが知られている。例えば、CAE解析の最適化技術は、エンジンブロックなどの鋳物の構造最適化によく用いられている。このようなCAE解析の最適化技術の中で、特にトポロジー最適化が着目されつつある。
 トポロジー最適化は、ある程度の大きさの設計空間を設け、当該設計空間に立体要素(three-dimensional element)を組み込み、与えられた条件を満たしかつ必要最小限の立体要素の部分を残すことで、当該条件を満たす最適形状とするという方法である。そのため、トポロジー最適化には、設計空間をなす立体要素に直接拘束を行い、直接荷重を加えるという方法が用いられる。このようなトポロジー最適化に関する技術として、複雑な構造体のコンポーネントのトポロジー最適化のための方法が特開2010-250818号公報に開示されている。
特開2010-250818号公報
 自動車等の構造体は主に薄板(thin sheet)を用いて構成されており、このような薄板で構成される車体の一部分の最適化をする場合、当該部位を設計空間として独立させ、その設計空間に対して荷重や拘束状態を反映させることは困難である。それ故に、構造体の一部に最適化技術を適用することが難しいという課題があった。また、立体要素によって最適化形状を求めたとしても、それを薄板構造に適切に反映させるにはいかにするべきかという課題もあった。
 特開2010-250818号公報に開示の技術は、数学演算上の手法および解析の物理的システムに関するものであり、上記のような課題に対しては何らの解決手段を与えるものではない。近年、上記課題を解決するための技術の開発が望まれていた。
 本発明は、上記のような課題を解決するためになされたものであり、外力、特に衝突力を受ける構造体の一部に最適化技術を適用することを可能にし、構造体の最適化に資する技術を提供することを目的としている。
 上述した課題を解決し、目的を達成するために、本発明に係る形状最適化解析方法は、平面要素(two-dimensional element)または立体要素を使って、構造体モデルを構成する一部分の最適化をコンピュータが行う形状最適化解析方法であって、前記構造体モデルにおける最適化の対象となる部分を設計空間として設定する設計空間設定ステップと、設定された前記設計空間に立体要素で構成され最適化の解析処理を行うための最適化ブロックモデルを生成する最適化ブロックモデル生成ステップと、生成された前記最適化ブロックモデルを前記構造体モデルに結合する結合処理ステップと、前記最適化ブロックモデルに材料特性を設定する材料特性設定ステップと、前記最適化ブロックモデルに衝突に関する最適形状を求めるための衝突最適形状化条件を設定する衝突最適形状化条件設定ステップと、前記最適化ブロックモデルが結合された前記構造体モデルに衝突解析を行うための衝突解析条件を設定する衝突解析条件設定ステップと、設定された前記衝突最適形状化条件および前記衝突解析条件に基づいて前記最適化ブロックモデルに対して衝突解析を実行して、前記最適化ブロックモデルの衝突における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算ステップと、該演算結果に基づいて衝突に関する最適形状を決定する最適形状決定ステップとを含むことを特徴とするものである。
 また、本発明に係る形状最適化解析方法は、平面要素または立体要素を使って構造体モデルを構成する一部分の最適化をコンピュータが行う形状最適化解析方法であって、前記構造体モデルにおける最適化の対象となる部分を設計空間として設定する設計空間設定ステップと、設定された前記設計空間に立体要素で構成され最適化の解析処理を行うための最適化ブロックモデルを生成する最適化ブロックモデル生成ステップと、生成された前記最適化ブロックモデルを前記構造体モデルに結合する結合処理ステップと、前記最適化ブロックモデルに材料特性を設定する材料特性設定ステップと、前記最適化ブロックモデルに剛性に関する最適形状を求めるための剛性最適形状化条件を設定する剛性最適形状化条件設定ステップと、前記最適化ブロックモデルが結合された前記構造体モデルに剛性解析を行うための剛性解析条件を設定する剛性解析条件設定ステップと、設定された前記剛性最適形状化条件および前記剛性解析条件に基づいて前記最適化ブロックモデルに対して剛性解析を実行して、前記最適化ブロックモデルの剛性における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算ステップと、該演算結果に基づいて剛性に関する最適形状を決定する最適形状決定ステップとを含むことを特徴とするものである。
 また、本発明に係る形状最適化解析方法は、上記の発明において、前記最適化ブロックモデルに剛性に関する最適形状を求めるための剛性最適形状化条件を設定する剛性最適形状化条件設定ステップと、前記最適化ブロックモデルが結合された前記構造体モデルに剛性解析を行うための剛性解析条件を設定する剛性解析条件設定ステップと、設定された前記剛性最適形状化条件および前記剛性解析条件に基づいて、前記最適化ブロックモデルに対して剛性解析を実行して、前記最適化ブロックモデルの衝突および剛性における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算ステップと、を含み、前記最適形状決定ステップは、衝突解析を実行した場合の前記立体要素要・不要演算ステップの演算結果と剛性解析を実行した場合の前記立体要素要・不要演算ステップの演算結果とに基づいて、衝突および剛性に関する最適形状を決定することを特徴とするものである。
 また、上記の発明において、前記衝突解析条件設定ステップは、前記構造体モデルに対して予め衝突解析を行って得られた荷重を衝突荷重として設定することを特徴とするものである。
 また、上記の発明において、前記材料特性設定ステップは、前記構造体モデルにおける前記最適化ブロックモデルの結合された部位が平面要素で構成されている場合には、前記最適化ブロックモデルの立体要素におけるヤング率(Young’s modulus)を前記平面要素におけるヤング率よりも低く設定することを特徴とするものである。
 また、上記の発明において、前記材料特性設定ステップは、前記構造体モデルにおける前記最適化ブロックモデルの結合された部位が平面要素で構成されている場合には、前記最適化ブロックモデルの立体要素における応力-歪み曲線(stress-strain curve)の応力を、前記平面要素における応力-歪み曲線の応力よりも低く設定することを特徴とするものである。
 また、上記の発明において、前記最適化ブロックモデルを構成する立体要素として、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成したことを特徴とするものである。
 また、上記の発明において、前記最適化ブロックモデル生成ステップは、前記構造体モデルにおける前記設計空間が設置された周囲の面に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化する前記最適化ブロックモデルを生成することを特徴とするものである。
 また、上記の発明において、前記最適化ブロックモデルは、前記構造体モデルを構成する平面要素または立体要素との結合部に節点を配置し、前記最適化ブロックモデルを構成する立体要素として六面体立体要素を用いると共に、前記結合部に配置された前記節点を含む平面に沿うように立体要素を積み上げるように生成することを特徴とするものである。
 また、上記の発明において、前記最適化ブロックモデルは、立体要素によって構成される複数のブロック体からなり、該複数のブロック体を剛体(rigid body)要素、梁(beam)要素または平面要素を用いて連結してなることを特徴とするものである。
 また、本発明に係る形状最適化解析方法は、上記の発明において、数値解析による最適化計算において最適化パラメータで離散化(discretization)を行うことを特徴とするものである。
 また、本発明に係る形状最適化解析装置は、平面要素または平面要素と立体要素とを使って構成された構造体モデルの一部分の形状の数値解析(numerical analysis)による最適化計算をコンピュータが行う形状最適化解析装置であって、前記構造体モデルの一部に最適化の対象となる部分を設計空間として設定する設計空間設定部と、設定された前記設計空間に立体要素で構成されて最適化の解析処理を行うための最適化ブロックモデルを生成する最適化ブロックモデル生成部と、生成された前記最適化ブロックモデルを前記構造体モデルに結合する処理を行う結合処理部と、前記最適化ブロックモデルに材料特性を設定する材料特性設定部と、前記最適化ブロックモデルに衝突に関する最適形状を求めるための衝突最適形状化条件を設定する衝突最適形状化条件設定部と、前記最適化ブロックモデルが結合された前記構造体モデルに衝突解析を行うための衝突解析条件を設定する衝突解析条件設定部と、設定された前記衝突最適形状化条件および前記衝突解析条件に基づいて前記最適化ブロックモデルに対して衝突解析を実行する衝突解析部と、該衝突解析を行う際に前記最適化ブロックモデルの衝突における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算部と、該演算結果に基づいて衝突に関する最適形状を決定する最適形状決定部と、を備えたことを特徴とするものである。
 また、本発明に係る形状最適化解析装置は、平面要素または平面要素と立体要素とを使って構成された構造体モデルの一部分の形状の数値解析による最適化計算をコンピュータが行う形状最適化解析装置であって、前記構造体モデルの一部に最適化の対象となる部分を設計空間として設定する設計空間設定部と、設定された前記設計空間に立体要素で構成されて最適化の解析処理を行うための最適化ブロックモデルを生成する最適化ブロックモデル生成部と、生成された前記最適化ブロックモデルを前記構造体モデルに結合する処理を行う結合処理部と、前記最適化ブロックモデルに材料特性を設定する材料特性設定部と、前記最適化ブロックモデルに剛性に関する最適形状を求めるための剛性最適形状化条件を設定する剛性最適形状化条件設定部と、前記最適化ブロックモデルが結合された前記構造体モデルに剛性解析を行うための剛性解析条件を設定する剛性解析条件設定部と、設定された前記剛性最適形状化条件および前記剛性解析条件に基づいて前記最適化ブロックモデルに対して剛性解析を実行する剛性解析部と、該剛性解析を行う際に前記最適化ブロックモデルの剛性における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算部と、該演算結果に基づいて剛性に関する最適形状を決定する最適形状決定部と、を備えたことを特徴とするものである。
 また、本発明に係る形状最適化解析装置は、衝突に関する最適形状を求める段落(0019)の発明において、前記最適化ブロックモデルに剛性に関する最適形状を求めるための剛性最適形状化条件を設定する剛性最適形状化条件設定部と、前記最適化ブロックモデルが結合された前記構造体モデルに剛性解析を行うための剛性解析条件を設定する剛性解析条件設定部と、設定された前記剛性最適形状化条件および前記剛性解析条件に基づいて前記最適化ブロックモデルに対して剛性解析を実行する剛性解析部と、を備え、前記立体要素要・不要演算部は、前記剛性解析部で剛性解析を行う際に前記最適化ブロックモデルの衝突および剛性における前記各立体要素の要・不要に関する情報を演算する機能を有し、前記最適形状決定部は、衝突解析を行う際に演算した前記各立体要素の要・不要に関する情報と、剛性解析を行う際に演算した前記各立体要素の要・不要に関する情報とに基づいて、衝突および剛性に関する最適形状を決定することを特徴とするものである。
 また、上記の発明において、前記衝突解析条件設定部は、前記構造体モデルに対して予め衝突解析(crashworthiness analysis)を行って得られた荷重を衝突荷重(crashworthiness load)として設定することを特徴とするものである。
 また、上記の発明において、前記材料特性設定部は、前記構造体モデルにおける前記最適化ブロックモデルの結合された部位が平面要素で構成されている場合には、前記最適化ブロックモデルの立体要素におけるヤング率を前記平面要素におけるヤング率よりも低く設定することを特徴とするものである。
 また、上記の発明において、前記材料特性設定部は、前記構造体モデルにおける前記最適化ブロックモデルの結合された部位が平面要素で構成されている場合には、前記最適化ブロックモデルの立体要素における応力-歪み曲線の応力を、前記平面要素における応力-歪み曲線の応力よりも低く設定することを特徴とするものである。
 また、本発明に係る形状最適化解析装置は、上記の発明において、前記最適化ブロックモデルを構成する立体要素を、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成することを特徴とするものである。
 また、上記の発明において、前記最適化ブロックモデル生成部は、前記構造体モデルにおける前記設計空間が設置された周囲の面に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化する前記最適化ブロックモデルを生成することを特徴とするものである。
 また、上記の発明において、前記最適化ブロックモデル生成部は、前記構造体モデルを構成する平面要素または立体要素との結合部に節点を配置し、前記最適化ブロックモデルを構成する立体要素として六面体立体要素を用いると共に前記結合部に配置された前記節点を含む平面に沿うように立体要素を積み上げるように前記最適化ブロックモデルを生成することを特徴とするものである。
 また、上記の発明において、前記最適化ブロックモデル生成部は、前記最適化ブロックモデルを、立体要素によって構成される複数のブロックで構成すると共に該複数のブロックを剛体要素、梁要素または平面要素を用いて連結して生成することを特徴とするものである。
 また、上記の発明において、前記立体要素要・不要演算部は、前記数値解析による最適化計算において最適化パラメータで離散化を行うことを特徴とするものである。
 また、上記の発明において、前記立体要素要・不要演算部は、トポロジー最適化による前記最適化計算を行うことを特徴とするものである。
 本発明は、衝突力等の外力を受ける構造体の一部に最適化技術を適用することを可能にして、車体等の構造体の構造を最適化でき、これにより、構造体の衝突特性や剛性を向上しつつ構造体の軽量化を実現することができるという効果を奏する。
図1は、本発明の実施の形態1に係る形状最適化解析装置のブロック図である。 図2は、本発明の実施の形態1における構造体モデルの一例の説明図である。 図3Aは、本発明の実施の形態1における構造体モデルに設計空間を設定した状態の説明図である。 図3Bは、図3Aに示す設計空間を異なる角度から見た図である。 図4は、本発明の実施の形態1における構造体モデルに設定した設計空間に最適化ブロックモデルを組み込んだ状態の説明図である。 図5Aは、本発明の実施の形態1における最適化ブロックモデルの一例を説明する説明図である。 図5Bは、図5Aに示す最適化ブロックモデルの丸印によって囲まれた部分の拡大図である。 図6は、図5Aに示した最適化ブロックモデルの内部の様子を説明する説明図である。 図7Aは、本発明の実施の形態1における構造体モデルに組み込んだ最適化ブロックモデルと構造体モデルとの結合を行った状態の説明図である。 図7Bは、図7Aに示す最適化ブロックモデルと構造体モデルとの結合状態を異なる角度から見た図である。 図8は、本発明の実施の形態1における衝突解析条件としての荷重拘束条件を説明する説明図である。 図9は、本発明の実施の形態1における衝突解析条件としての衝突物および衝突箇所を説明する説明図である。 図10Aは、本発明の実施の形態1に対する比較例としての単独の最適化ブロックモデルの説明図である。 図10Bは、図10Aに示す単独の最適化ブロックモデルを異なる角度から見た図である。 図11Aは、本発明の実施の形態1に対する比較例における単独の最適化ブロックモデルの拘束条件の説明図である。 図11Bは、図11Aに示す単独の最適化ブロックモデルの拘束状態を異なる角度から見た図である。 図12は、本発明の実施の形態1における形状最適化解析装置の処理の流れを示すフローチャートである。 図13Aは、本発明の実施の形態1における最適化ブロックモデルの他の態様を説明する説明図である。 図13Bは、図13Aに示す最適化ブロックモデルの四角印によって囲まれた部分の拡大図である。 図14Aは、本発明の実施の形態1における最適化ブロックモデルの他の態様の内部の様子を説明する説明図である。 図14Bは、本発明の実施の形態1における最適化ブロックモデルの更に別の態様の内部の様子を説明する説明図である。 図15は、本発明の実施の形態1の変形例に係る形状最適化解析装置の一例を示すブロック図である。 図16は、本発明の実施の形態1の変形例において設定する剛性解析条件の一例について説明する説明図である。 図17は、図15に示した形状最適化解析装置の処理の流れを示すフローチャートである。 図18は、本発明の実施の形態2における設計空間の説明図である。 図19は、本発明の実施の形態2における最適化ブロックモデルの生成方法の説明図である。 図20は、本発明の実施の形態2において生成された最適化ブロックモデルを説明する説明図である。 図21Aは、本発明の実施の形態2において生成された最適化ブロックモデルの結合部を説明する説明図である。 図21Bは、図21Aに示す最適化ブロックモデルを異なる角度から見た図である。 図22は、本発明の実施の形態2における最適化ブロックモデルの生成方法の比較例として実施の形態1の方法で最適化ブロックモデルを生成した状態の説明図である。 図23Aは、本発明の実施の形態2に対する比較例における最適化ブロックモデルおよび結合部の状態を示す図である。 図23Bは、図23Aに示す比較例の最適化ブロックモデルを異なる角度から見た図である。 図24は、本発明の実施の形態3における最適化ブロックモデルの生成方法のうちの設計空間の設定を説明する説明図である。 図25Aは、本発明の実施の形態3における最適化ブロックモデルの生成処理を説明する説明図である。 図25Bは、図25Aに示す最適化ブロックモデルを異なる角度から見た図である。
 以下に、本発明に係る形状最適化解析方法及び装置の好適な実施の形態を図面に基づいて詳細に説明する。なお、本実施の形態により本発明が限定されるものではない。
[実施の形態1]
 本実施の形態1においては、車体のBピラー(pillar)の形状を最適化する場合を例に挙げて説明する。図1に示すとおり、本実施の形態1に係る形状最適化解析装置1は、図2に一例を示す平面要素または、平面要素と立体要素とを使って構成された構造体モデル13の一部分の形状の数値解析による最適化計算を行う装置である。具体的には、形状最適化解析装置1は、PC(パーソナルコンピュータ)によって構成され、表示装置(display device)3と入力装置(input device)5と記憶装置(memory storage)7と作業用データメモリ9と演算処理(arithmetic processing)部11とを有している。また、演算処理部11には、表示装置3と入力装置5と記憶装置7と作業用データメモリ9とが接続される。表示装置3、入力装置5、記憶装置7および作業用データメモリ9は、演算処理部11の指令によって各機能を行う。
<表示装置>
 表示装置3は、計算結果の表示等に用いられ、液晶モニター等で構成される。
<入力装置>
 入力装置5は、構造体モデル13のファイルの表示指示、操作者の条件入力などに用いられ、キーボードやマウス等で構成される。
<記憶装置>
 記憶装置7内には、少なくとも、図2に例示される構造体モデル13のファイルなどの各種の情報が格納される。構造体モデル13は、平面要素のみによって構成されたものでもよいし、あるいは平面要素と立体要素との組合せによって構成されたものでもよい。例えば、構造体モデル13の例として図2に示すような車体(ボディ)を例に挙げると、車体は主に薄鋼板(steel sheet)によって形成されることから、構造体モデル13は平面要素によって構成される。また、構造体モデル13は、例えばエンジンのような鋳物で形成されるブロック体のようなものである場合、立体要素で構成される。
<作業用データメモリ>
 作業用データメモリ9は、その内部に、計算結果を記憶するデータ記憶領域9aと、計算処理を行うための作業領域9bとを有している。
<演算処理部>
 演算処理部11は、PC(personal computer)のCPU(central processing unit)によって構成される。以下に説明する演算処理部11の各部は、CPUが所定のプログラムを実行することによって実現される。演算処理部11は、構造体モデル13の一部に図3Aおよび図3Bに一例を示す最適化の対象となる部分を設計空間25として設定する設計空間設定部15と、設定された設計空間25に立体要素で構成されて最適化の解析処理を行うための最適化ブロックモデル27(例えば図4参照)を生成する最適化ブロックモデル生成部17と、生成された最適化ブロックモデル27を構造体モデル13に結合する処理を行う結合処理部18と、最適化ブロックモデル27に材料特性を設定する材料特性設定部19と、構造体モデル13に衝突に関する最適形状を求めるための条件(衝突最適形状化条件と称する)を設定する衝突最適形状化条件設定部20と、構造体モデル13が結合された最適化ブロックモデル27(図4参照)に衝突解析を行うための条件(衝突解析条件と称する)を設定する衝突解析条件設定部21と、設定された衝突最適形状化条件および衝突解析条件に基づいて最適化ブロックモデル27に対して衝突解析を実行する衝突解析部22と、該衝突解析を行う際に最適化ブロックモデル27の衝突における各立体要素の要・不要に関する情報を演算する立体要素要・不要演算部23と、該演算結果に基づいて衝突に関する最適形状を決定する最適形状決定部24と、を備えたことを特徴とするものである。以下に、演算処理部11の各部の構成を詳細に説明する。
〔設計空間設定部〕
 設計空間設定部15は、構造体モデル13の一部に最適化の対象となる部分を設計空間25として設定する。図2に示した構造体モデル13においては、車体の右側のBピラーの部分を囲む部位が示されている。この例では、当該部位が最適化の対象となる部位である。本実施の形態1において、設計空間設定部15は、構造体モデル13のうちの当該部位、具体的には図2に示すBピラーの部位に設計空間25を設定する。設計空間設定部15によって構造体モデル13の一部に設計空間25が設定されると、図3Aおよび図3Bに示すように、当該部位における構造体モデル13の一部が削除され、削除された部位が設計空間25となる。図3Bは、設計空間25を設定した状態を図3Aと異なる角度から見た状態を示している。
 なお、上記の例は、設計空間設定部15が、構造体モデル13における一部を削除することによって設計空間25を設定する場合であるが、構造体モデル13を生成する際に、予め設計空間25を設定するように、形状最適化解析装置1が構成されてもよい。構造体モデル13を生成する際に予め設計空間25を設定する場合には、構造体モデル13を生成する生成部自体が設計空間設定部15を兼ねることになる。つまり、本発明の設計空間設定部15は、上記したような設計空間設定機能と構造体モデル13の生成機能とを兼ね備えたものであってもよい。
〔最適化ブロックモデル生成部〕
 最適化ブロックモデル生成部17は、設計空間設定部15によって設定された設計空間25に、図4に示すように、最適化の解析処理を行うための最適化ブロックモデル27を生成する。この際、最適化ブロックモデル生成部17は、図3Aおよび図3Bに示したように構造体モデル13の一部に設定された設計空間25に入る大きさで任意の形状に、最適化ブロックモデル27を生成することができる。
 また、最適化ブロックモデル生成部17は、最適化ブロックモデル27を立体要素で構成する。その際、最適化ブロックモデル生成部17は、当該立体要素を、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成するのが好ましい。この理由は、以下の通りである。設計空間25に形成される部位が車体の一部のように薄板で形成される場合には、最適化ブロックモデル27を用いて最適化の計算を実行することにより、薄板の構造体形状に反映できるように最適化ブロックモデル27の最適形状が算出されることが望ましい。この点、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素を用いて最適化ブロックモデル27を構成することにより、このような要求を満たしやすくなるからである。また、最適化ブロックモデル27を構成する五面体以上の立体要素として均一なサイズのものを配置し、これにより、最適化の精度を上げるようにするのが好ましい。
 図4には、本発明の一例としてI字状に生成した最適化ブロックモデル27が示されている。また、本例において最適化ブロックモデル27を構成する立体要素は、図5Aおよび図5Bに示すように、六面体を用いたものである。図5Bは、図5Aに示す最適化ブロックモデル27の丸印部分を拡大して示している。
 図6は、図5Aに示した最適化ブロックモデル27の約1/4の高さにおける内部の様子を表したものである。図6に示すように、最適化ブロックモデル27の内部の要素サイズは、最適化ブロックモデル27の表面の要素サイズに合わせてある。この結果、各要素サイズは、最適化ブロックモデル27全体において均一になっている。このように要素サイズを細かく均一化することにより、精度の高い解析を行うことができる。
 また、最適化ブロックモデル生成部17は、構造体モデル13における設計空間25が設置された周囲の面に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化するように、最適化ブロックモデル27を生成するのが好ましい。例えば、図3Aおよび図3Bに示すように、車体におけるBピラーが設計空間25として設定された場合には、最適化ブロックモデル生成部17は、図4に示すように、I字状の最適化ブロックモデル27を生成する。この最適化ブロックモデル27の車外側の面が最大面積になっている。最適化ブロックモデル生成部17は、この最大面積となっている面が車体の側面と平行になるように最適化ブロックモデル27を生成する。
 最適化ブロックモデル27をこのように生成する理由は以下の通りである。例えば車体のBピラーは板材(sheet)によって形成されるので、最適化ブロックモデル27を用いて最適化の計算を実行した場合に、最適化ブロックモデル27の立体要素が面状に残るような計算結果を得られることが望ましい。最適化ブロックモデル27を上記のようなモデル構成にすることにより、この計算結果が面状に残る可能性が高くなり、このため、実際のものに対する利用価値が高くなるからである。
〔結合処理部〕
 結合処理部18は、生成された最適化ブロックモデル27を、車体の他の部位である構造体すなわち構造体モデル13のうちの最適化ブロックモデル27以外の部分に結合する処理を行う。この最適化ブロックモデル27と構造体との結合処理において、結合処理部18は、剛体要素、板要素または梁要素を用いる。この際、結合処理部18は、構造体モデル13(車体)から最適化ブロックモデル27に正確に荷重を伝達させるため、設計空間25として削除した部位と構造体モデル13(車体)との元の接合箇所を最適化ブロックモデル27と上記構造体との接合箇所に反映させるように結合処理するのが好ましい。図7Aおよび図7Bは、本発明の実施の形態1における最適化ブロックモデルと構造体モデルとの結合処理を行った状態を示す図である。図7Bは、図7Aに示す最適化ブロックモデルと構造体モデルとの結合状態を異なる角度から見た図である。図7には、結合処理部18によって結合された最適化ブロックモデル27と構造体モデル13との結合部29が白線で示されている。
〔材料特性設定部〕
 材料特性設定部19は、最適化ブロックモデル27に、ヤング率や比重、降伏強度や引張強度を表す応力-歪み曲線などの材料特性を設定する。立体要素は、衝突に対して、平面要素よりも変形しにくい。そのため、解析対象となるモデルが立体要素と平面要素とを結合して構成されている場合、平面要素で構成される箇所が大きく変形して、実態と異なる解析結果になる場合がある。例えば、最適化ブロックモデル27と構造体モデル13との結合部位が平面要素で構成されている場合に、最適化ブロックモデル27に衝突荷重が付加されると、最適化ブロックモデル27よりも、この結合部位の箇所が大きく変形して、実態と合わない。このような問題点を解消するために、材料特性設定部19は、上記のように構造体モデル13における最適化ブロックモデル27が結合された部位が平面要素で構成されている場合には、最適化ブロックモデル27の立体要素におけるヤング率を、この結合部位の平面要素におけるヤング率よりも低く(例えば半分以下)設定する。このようにすることで、変形の偏りがなくバランスの良い解析を行うことができる。また、材料特性設定部19は、上記のように構造体モデル13と最適化ブロックモデル27との結合部位が平面要素で構成されている場合、最適化ブロックモデル27の立体要素における応力-歪み曲線の応力を、この結合部位の平面要素における応力-歪み曲線の応力よりも低く設定してもよい。これによっても、変形の偏りがなく、バランスの良い解析を行うことができる。
〔衝突最適形状化条件設定部〕
 衝突最適形状化条件設定部20は、最適化ブロックモデル27に衝突に関する最適形状を求めるための衝突最適形状化条件を設定する。この衝突最適形状化条件設定部20によって設定される衝突最適形状化条件には、目的条件と制約条件との2種類がある。目的条件は、構造体モデル13の目的に応じて設定される条件である。この目的条件として、例えば、歪みエネルギーを最小にする、発生応力を最小にする、吸収エネルギーを最大にする等がある。衝突最適形状化条件設定部20は、最適化ブロックモデル27に対して目的条件を1つだけ設定する。制約条件は、最適化解析を行う上で課す制約である。この制約条件として、例えば、最適化前の最適化ブロックモデル27の体積に対する最適化後の最適化ブロックモデル27の体積比率である材料体積率、任意の部分の変位等がある。衝突最適形状化条件設定部20は、最適化ブロックモデル27に対して制約条件を複数設定可能である。
〔衝突解析条件設定部〕
 衝突解析条件設定部21は、最適化ブロックモデル27が結合された構造体モデル13に、構造体モデル13の拘束位置や衝突荷重を付加する位置等、衝突解析を行うための衝突解析条件を設定する。例えば、車体のBピラーに車体の側方から他の車のバンパーが衝突するような解析を行う場合には、衝突解析条件設定部21は、図9に示すように、他の車のバンパーに相当するバンパーモデル28を作成する。ついで、衝突解析条件設定部21は、この作成したバンパーモデル28を、構造体モデル13に組み込まれた状態の最適化ブロックモデル27(Bピラー)の所定位置、例えば、図8中の白色の四角で示す位置に、図8中の白色の矢印で示す方向に衝突させる条件を設定する(図9参照)。この場合、衝突解析条件設定部21は、構造体モデル13を拘束しない設定とする。なお、衝突解析条件設定部21は、予め構造体モデル13に対して衝突解析を行い、その結果得られた荷重を衝突荷重として設定するように構成してもよい。
〔衝突解析部〕
 衝突解析部22は、上述したように設定された衝突最適形状化条件および衝突解析条件に基づいて最適化ブロックモデル27に対して衝突解析を実行する。この衝突解析において、衝突解析部22は、慣性リリーフ法(inertia relief method)や動的陽解法(dynamic explicit method)を用いる。慣性リリーフ法は、宙に浮いた構造物や水上に浮かんでいる構造物など、慣性力と外荷重とのつり合いが取れているものに対して行う静解析(static analysis)である。動的陽解法は、既知の物理量に基づいて所定時間経過後の物理量を決める手法を用いて行う動解析(dynamic analysis)である。従って、衝突解析部22は、例えば市販されている有限要素(finite element)を用いた解析ソフトを使用することができる。
〔立体要素要・不要演算部〕
 立体要素要・不要演算部23は、衝突解析部22で衝突解析を行う際に最適化ブロックモデル27における各立体要素の要・不要に関する情報を演算する。各立体要素の要・不要に関する情報としては、例えば、各立体要素の材料密度(element densities)がある。立体要素要・不要演算部23は、最適化ブロックモデル27における各立体要素の材料密度を1.0~0.0の範囲で算出して設定する。ある立体要素において、材料密度が仮に1.0であれば、この立体要素の全体が材料(目的条件に対して必要)であることを意味し、材料密度が0.0であれば、この立体要素のある部分は空孔(不要)であることを意味する。立体要素・不要演算部23が上記の演算処理を実行することにより、最適化ブロックモデル27における各立体要素のうち、与えられた衝突最適形状化条件を満たす立体要素については、「要」を意味する情報(例えば、材料密度が0.6以上等)が演算される。
 立体要素要・不要演算部23は、構造体モデル13の一部分の形状の数値解析による最適化計算において最適化パラメータの離散化を行うのが好ましい。この離散化におけるペナルティ係数(penalty coefficient)として2以上または基準となる立体要素のサイズの3~20倍を制限にすることが好ましい。最適化パラメータの離散化を行うことで、最適化パラメータを薄板の構造体形状に反映することが可能になる。また、立体要素要・不要演算部23は、構造体モデル13の一部分の形状の数値解析による最適化計算として、トポロジー最適化による最適化計算すなわちトポロジー最適化処理を行うものでもよいし、他の計算方式による最適化処理を行うものであってもよい。したがって、立体要素要・不要演算部23としては、例えば市販されている有限要素を用いた解析ソフトを使用することができる。
〔最適形状決定部〕
 最適形状決定部24は、立体要素要・不要演算部23の演算結果に基づいて衝突に関する最適形状を決定する。具体的には、最適形状決定部24は、例えば、上述したように生成された最適化ブロックモデル27における各立体要素のうち、与えられた衝突最適形状化条件を満たさない立体要素(例えば、材料密度が0.6未満である立体要素)を削除する。こうすることで、最適形状決定部24は、与えられた衝突最適形状化条件を満たす立体要素(例えば、材料密度が0.6以上)のみで構成される最適化ブロックモデル27の形状をその最適形状として残す。なお、最適形状決定部24は、このようにして得られた最適形状をスムージング化してもよい。最適形状決定部24が上記のような最適化解析処理を実行することにより、最適化ブロックモデル27における立体要素のうち、与えられた解析条件を満たす最適の形状となる立体要素が残る。
 ここで、着目すべき点は、最適化ブロックモデル27には、結合部29を介して構造体モデル13から荷重が伝達されるという点である。つまり、構造体モデル13から荷重が最適化ブロックモデル27に伝達されることで、最適化計算の過程において最適化ブロックモデル27は変形し荷重の向き等が変わるが、その時々の荷重の向き等の荷重条件を反映して、最終的に最適な形状を与える点である。
 この点を、比較例を示して詳細に説明する。図10Aおよび図10Bは、図4に示したI字状の最適化ブロックモデル27を、構造体モデル13の設計空間25に組み入れるのではなく、単体のモデルとしたものを図示している。図10Bは、図10Aに示す単独の最適化ブロックモデルを異なる角度から見た図である。図11Aおよび図11Bは、図10Aおよび図10Bに示した単独の最適ブロックモデル27に対して、図7Aおよび図7Bに示した結合部29と同一の箇所について拘束条件を設定した部分である拘束部31を図示している。図11Bは、図11Aに示す単独の最適化ブロックモデルの拘束状態を異なる角度から見た図である。図11Aは図10Aに対応し、図11Bは図10Bに対応する。図11Aおよび図11Bに示した拘束部31を拘束して、上述したような構造体モデル13に組み入れた場合と同様の解析条件によって最適化処理解析を行った。
 その結果、最適化ブロックモデル27を単体で取出して最適化の処理を行う比較例と、構造体モデル13の中に最適化ブロックモデル27を組み入れて最適化の処理を行う本発明の実施の形態1とでは、最適化ブロックモデル27の最適とされる形状が全く異なっていた。そして、このような形状の違いが、例えば衝突性能向上率において異なる結果となる。従って、本発明で構造体モデル13に最適化ブロックモデル27を結合することは、最適化ブロックモデル27を単に拘束するだけでなく、結合部29を介して構造体モデル13と最適化ブロックモデル27との間で荷重を伝達させることにより、実用上活用可能な最適形状を求めることを可能にしたわけである。この点は、後述する実施例で詳細に説明する。
 次に、上記のように構成される形状最適化解析装置1を用いて実際に解析を実行する際の処理の流れを、図12に示すフローチャートに基づいて説明する。なお、以下に説明する処理は、操作者が入力装置5を通じてコンピュータに指示することによって、コンピュータにおける演算処理部11の各機能部(設計空間設定部15、最適化ブロックモデル生成部17、結合処理部18、材料特性設定部19、衝突最適形状化条件設定部20、衝突解析条件設定部21、衝突解析部22、立体要素要・不要演算部23および最適形状決定部24)が上述した各処理を適宜実行し、これにより、実現される。
 操作者が、構造体モデル13のファイル読み出しを入力装置5によって指示することで、コンピュータは構造体モデル13を記憶装置7から読みだして、表示装置3に表示する(S1)。つぎに、操作者は、表示された構造体モデル13において、最適化処理の対象となる設計空間25を設定する。具体的には、操作者は、入力装置5の入力操作を行うことにより、構造体モデル13において設計空間25とする部位の座標を指定して、当該部位の要素を削除する指示を行う。この指示がなされることで、コンピュータの設計空間設定部15が当該部位の要素を削除する処理を行い、設計空間25が設定される(S3)。
 設計空間25が設定されると、操作者は設計空間25に入る大きさの最適化ブロックモデル27の生成を最適化ブロックモデル生成部17に指示する。この指示としては、設計空間25におけるどの面を基準にして最適化ブロックモデル27を生成するかという指示を含む。例えば、図3Aおよび図3Bに示す構造体モデル13の設計空間25に図4および図5Aに示す最適化ブロックモデル27を生成するような場合では、最適化ブロックモデル27における前後方向の面を基準にして最適化ブロックモデル27を生成するという指示を与えると、コンピュータの最適化ブロックモデル生成部17が前記面を車体の前後方向に押し出すことによってメッシュ化された最適化ブロックモデル27を生成する(S5)。
 最適化ブロックモデル27が生成されると、操作者が最適化ブロックモデル27と構造体モデル13との結合を指示する。この指示には、結合要素として、剛体要素、板要素または梁要素のいずれの要素を用いるかを含む。コンピュータの結合処理部18は、指示を受けて、最適化ブロックモデル27と構造体モデル13との結合処理を行う(S7)。
 上記の結合処理が完了すると、操作者は、最適化ブロックモデル27の材料特性を設定する(S8)。この際、操作者は、入力装置5の入力操作を行い、ヤング率や比重、降伏強度や引張強度を表す応力-歪み特性等の材料特性を入力する。コンピュータの材料特性設定部19は、この入力された材料特性を、上述したように構造体モデル13と結合された最適化ブロックモデル27に設定する。その後、操作者は、衝突最適形状化条件を設定する(S9)。この際、操作者は、入力装置5の入力操作を行い、衝突最適形状化条件として、前述したように、歪みエネルギーを最小にする、吸収エネルギーを最大にする等の目的条件、および材料体積率等の制約条件を入力する。コンピュータの衝突最適形状化条件設定部20は、この入力された衝突最適形状化条件を、最適化ブロックモデル27に設定する。
 操作者は次に、最適化ブロックモデル27に衝突させる衝突物(例えば、図9に示すような他の車のバンパーモデル28等)や、衝突荷重を加える位置などの衝突解析条件を設定する(S10)。この際、操作者は、入力装置5の入力操作を行い、上記の衝突解析条件を入力する。コンピュータの衝突解析条件設定部21は、この入力された衝突解析条件を、上述したように最適化ブロックモデル27が結合された構造体モデル13に設定する。
 次に、コンピュータの衝突解析部22および立体要素要・不要演算部23は、上記設定された衝突最適形状化条件および衝突解析条件に基づいて最適化ブロックモデル27に対して衝突解析を実行して、最適化ブロックモデル27における各立体要素の要・不要に関する情報を演算によって求める(S11)。すなわち、コンピュータの衝突解析部22は、最適化ブロックモデル27に対して上記の衝突解析を実行する。コンピュータの立体要素要・不要演算部23は、この衝突解析の際、最適化ブロックモデル27における各立体要素の要・不要に関する情報を演算する。続いて、コンピュータの最適形状決定部24は、上述したように求められた要・不要に関する情報に基づいて、最適化ブロックモデル27の衝突に関する最適形状を決定する(S13)。
 操作者は、最適化計算等によって得られた形状モデルを作成し、当該モデルに基づいて他の構造解析計算により剛性の確認を行う。
 以上のように本実施の形態1では、構造体モデル13の中の最適化の対象となる部位を設計空間25として設定し、設定された設計空間25に最適化ブロックモデル27を生成し、当該最適化ブロックモデル27を構造体モデル13に結合して衝突解析を実行するようにしたので、最適化ブロックモデル27に構造体モデル13との結合部29から荷重伝達が適切に行われ、最適化ブロックモデル27の最適の形状を精度よく算出することができる。これによって、例えば車体構造の最適化が可能になり、衝突特性の向上が可能になり、車体等の構造体の衝突性能を所定値に保持しつつ同構造体の軽量化を実現することができる。
 なお、上記の説明では、最適化ブロックモデル27を構成する立体要素として図5Aおよび図5Bに示すような六面体を例にあげ、その他の立体要素として、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で最適化ブロックモデル27を構成するのが好ましい旨を説明した。しかし、本発明は、最適化ブロックモデル27を構成する立体要素として、図13Aおよび図13Bに示すような四面体を用いる場合を排除するものではない。図13Aおよび図13Bは、本発明の実施の形態1における最適化ブロックモデルの他の態様を説明する説明図である。図13Aは、本発明の実施の形態1における最適化ブロックモデルの別態様の一例を示す図である。図13Bは、図13Aに示す最適化ブロックモデルの四角印によって囲まれた部分を拡大して示す拡大図である。図13Aおよび図13Bに示すように最適化ブロックモデル27を構成する立体要素として四面体要素を用いる場合は、設計空間25の外形のみ作成し内部は自動的に埋めるようにしてモデル生成することが可能になる。しかし、立体要素の形状として三角形からなる3面の先端が隣り合う部位に尖りを有するものになるため、最適化ブロックモデル27を薄板の構造体に反映しにくいという問題がある。
 図14Aおよび図14Bは、四面体要素で構成した最適化ブロックモデル27の約1/4の高さにおける内部の様子を表したものである。図14Aは、内部の要素サイズを表面の要素サイズに合わせて、最適化ブロックモデル27全体で均一な要素サイズになるように生成した最適化ブロックモデル27の内部の様子を示している。このように全体の要素サイズを表面の要素サイズに合わせて細かくすることにより、精度の高い解析を行うことができる。なお、最適化ブロックモデル27を構成する要素のサイズは上記のように均一なものでなくともよい。例えば、図14Bに示すように、最適化ブロックモデル27は、表面から内部にかけて要素サイズが徐々に大きくなるように(グラデュアルに)生成してもよい。
 なお、上記の説明では、構造体の衝突に関する最適化を行う場合について説明したが、さらに剛性を考慮して、衝突および剛性に関する最適化を構造体に対して行うようにしてもよい。図15は、本発明の実施の形態1の変形例に係る形状最適化解析装置の構成を例示するブロック図である。構造体の衝突および剛性に関する最適化を行う場合、本変形例に係る形状最適化解析装置41は、図15に示すように、上述した実施の形態1に係る形状最適化解析装置1の構成に加えて、最適化ブロックモデル27の剛性に関する最適形状を求めるための条件(剛性最適形状化条件と称する)を設定する剛性最適形状化条件設定部43と、最適化ブロックモデル27が結合された構造体モデル13に剛性解析を行うための条件(剛性解析条件と称する)を設定する剛性解析条件設定部45と、設定された剛性最適形状化条件および剛性解析条件に基づいて最適化ブロックモデル27に対して剛性解析を実行する剛性解析部47とを有するように構成する。なお、図15において、形状最適化解析装置1と同様の構成部には同一の符号を付している。また、本変形例における剛性最適形状化条件として、例えば、目的条件、制約条件等が挙げられる。本変形例における剛性解析条件として、例えば、荷重拘束条件等が挙げられる。
 剛性最適形状化条件設定部43は、衝突最適形状化条件設定部20と同様に、入力装置5によって入力された目的条件と制約条件とを、剛性最適形状化条件として最適化ブロックモデル27に設定する。この目的条件として、例えば、剛性を最大にする、変位を最小にする、応力を最小にする等がある。また、この制約条件として、例えば、材料体積率、任意の部分の変位等がある。
 剛性解析条件設定部45は、入力装置5によって入力された荷重拘束条件を、剛性解析条件として、最適化ブロックモデル27が結合された構造体モデル13に設定する。例えば、構造体モデル13に捩じるような荷重が作用する際における最適化ブロックモデル27の最大剛性を計算するような場合、剛性解析条件設定部45は、図16に示すように、構造体モデル13の一例である車体の4つの箇所a、箇所b、箇所c、箇所dを設定して、このうちの3カ所を拘束し、残りの1カ所に荷重を付加するような条件を、構造体モデル13の荷重拘束条件とする。
 剛性解析部47は、上述したように設定された剛性最適形状化条件および剛性解析条件に基づいて、最適化ブロックモデル27に対して剛性解析を実行する。本変形例に係る形状最適化解析装置41の立体要素要・不要演算部23は、剛性解析部47で剛性解析を行う際に最適化ブロックモデル27の衝突および剛性における各立体要素の要・不要に関する情報を演算する機能を有している。従って、本変形例における立体要素要・不要演算部23は、衝突解析部22で衝突解析を行う際および、剛性解析部47で剛性解析を行う際の両方で、それぞれ最適化ブロックモデル27における各立体要素の要・不要に関する情報を演算する。
 また、本変形例において、最適形状決定部24は、衝突解析を行う際に演算した各立体要素の要・不要に関する情報と、剛性解析を行う際に演算した各立体要素の要・不要に関する情報とに基づいて、衝突および剛性に関する最適形状を総合的に決定するように構成する。例えば、各立体要素の要・不要に関する情報が各立体要素内の材料密度である場合、最適形状決定部24は、衝突解析に用いた最適化ブロックモデル27と、剛性解析に用いた最適化ブロックモデル27との対応する立体要素毎に、材料密度の平均値を求め、該平均値に基づいて削除する要素を決定する。こうすることで、最適形状決定部24は、衝突解析の結果と剛性解析の結果とに基づいて、最適化ブロックモデル27の総合的な最適形状の決定をすることができる。
 次に、上記の構成の形状最適化解析装置41を用いて、本変形例における解析を実行する際の処理の流れを、図17に示すフローチャートに基づいて説明する。図17に示す処理ステップのうち、ステップS1~S11までは、図12のフローチャートを用いて説明したものと同一であるので、その説明を省略する。本変形例では、ステップS7で最適化ブロックモデル27と構造体モデル13との結合を行った後、ステップS8で最適化ブロックモデル27に材料特性を設定し、その後、後述するステップS21~S23の処理と並行して別途、ステップS9~S11の処理を行っている。
 コンピュータの形状最適化解析装置41は、ステップS7で最適化ブロックモデル27と構造体モデル13との結合を行った後、ステップS8で最適化ブロックモデル27に材料特性を設定し、その後、最適化ブロックモデル27に剛性に関する最適形状を求めるための剛性最適形状化条件を設定する(S21)。次に、形状最適化解析装置41は、最適化ブロックモデル27が結合された構造体モデル13に剛性解析を行うための剛性解析条件を設定する(S22)。
 次に、コンピュータの形状最適化解析装置41は、上記設定された剛性最適形状化条件および剛性解析条件に基づいて最適化ブロックモデル27に対して剛性解析を実行して、最適化ブロックモデル27の剛性における各立体要素の要・不要に関する情報を演算する(S23)。その後、形状最適化解析装置41は、ステップS11において衝突解析を行って求めた立体要素要・不要演算ステップの演算結果と、ステップS23において剛性解析を行って求めた立体要素要・不要演算ステップの演算結果とに基づいて、最適化ブロックモデル27の衝突および剛性に関する最適形状を決定する(S24)。本変形例において、ステップS23である剛性解析を実行した場合の立体要素要・不要演算ステップは、図17に示すように、ステップS11である衝突解析を実行した場合の立体要素要・不要演算ステップとは別の演算処理ステップである。
 上述したとおり、本変形例に係る形状最適化解析装置41においては、最適化ブロックモデル27が結合された構造体モデル13に対して剛性解析を行うため、最適化ブロックモデル27に構造体モデル13との結合部29から荷重伝達が適切に行われる点は衝突解析の場合と同様である。そのため、衝突特性および剛性の双方から構造体モデル13の各立体要素の要・不要に関する情報を精度よく演算することができる。従って、この情報に基づいて決定される最適形状においても精度が良い。
[実施の形態2]
 本実施の形態2は、最適化ブロックモデル生成部17の他の態様に関するものであり、最適化ブロックモデル生成を、構造体モデル13を構成する平面要素または立体要素との結合部に節点(node)を配置し、最適化ブロックモデル27を構成する立体要素として六面体立体要素を用いると共に前記結合部に配置された節点を含む平面に沿うように立体要素を積み上げるように行うものである。以下、図面を参照しながら具体的に説明する。
 図18は、車体を示す構造体モデル13のリアサイドメンバの部分に設計空間25を設定した状態を示している。図18に示すように、この例では、平面要素で構成される構造体モデル13と後述する図20に示す最適化ブロックモデル27の立体要素との結合位置に基準軸面に平行でないものが存在する。このような場合に適用するのが本実施の形態2である。
 本実施の形態2における最適化ブロックモデル生成部17は、上述した実施の形態1における最適化ブロックモデル生成機能に加え、以下に示す最適化ブロックモデル生成機能を兼ね備える。具体的には、最適化ブロックモデル生成部17は、図19に示すように、車体の側面において構造体モデル13を削除した部位に存在する節点を直線で連結して、最適化ブロックモデル27を作成するための基準となる基準面33を板要素で作成する。最適化ブロックモデル生成部17は、基準面33を生成すると、当該基準面33を車幅方向に、節点共有により一体化しているように押し出して最適化ブロックモデル27を生成する。
 本実施の形態2において最適化ブロックモデル27を生成した状態を図20、図21Aおよび図21Bに示す。図20は、生成された最適化ブロックモデル27の拡大図である。図21Aおよび図21Bは、最適化ブロックモデル27に結合部29を図示したものである。図21Bは、図21Aと異なる角度から見た最適化ブロックモデル27を示している。このように、最適化ブロックモデル生成部17は、基準面33を生成し、この基準面33を用いて最適化ブロックモデル27を生成する。これにより、最適化ブロックモデル27と構造体モデル13との結合部29の傾斜部位などが滑らかな直線になるという効果がある。このようにすることで、最適化ブロックモデル27と構造体モデル13(車体)との結合状態が滑らかになり、その結果、最適化ブロックモデル27と構造体モデル13との間における荷重の伝達が正確になるという効果が得られる。
 本実施の形態2に対する比較例として、実施の形態1と同様に、事前に基準面33を生成することなく最適化ブロックモデル27を生成した例を図22、図23Aおよび図23Bに示す。図22は、比較例において生成された最適化ブロックモデル27の拡大図である。図23Aおよび図23Bは、最適化ブロックモデル27に結合部29を図示したものである。図23Bは、図23Aと異なる角度から見た比較例の最適化ブロックモデル27を示している。図22、図23Aおよび図23Bに示す比較例では、図20、図21Aおよび図21Bに示す本実施の形態2の最適化ブロックモデル27および結合部29に比べて傾斜部位に段35が形成されており、比較例の最適化ブロックモデル27および結合部29が滑らかでないことが分かる。
 本実施の形態2によれば、最適化ブロックモデル27の形状が斜面を有するような場合であっても、最適化ブロックモデル27と構造体モデル13(車体)との結合状態が滑らかになり、その結果、最適化ブロックモデル27と構造体モデル13との間における荷重の伝達が正確になる。
[実施の形態3]
 上述した実施の形態1、2では、最適化ブロック生成部17による最適化ブロックモデル27の生成処理として、最適化ブロックモデル27を単体で形成した例を示したが、本実施の形態3において、最適化ブロックモデル生成部17は、最適化ブロックモデル27を、立体要素によって構成される複数のブロックで構成すると共に該複数のブロックを剛体要素、梁要素または平面要素を用いて連結して生成するようにしてもよい。以下、本実施の形態3における最適化ブロックモデル27の生成処理を具体的に説明する。
 図24、図25Aおよび図25Bは、本実施の形態3における最適化ブロックモデルの生成方法の説明図である。図24は、本発明の実施の形態3における最適化ブロックモデル生成の基準面を説明する説明図である。図25Aは、本発明の実施の形態3における最適化ブロックモデルを生成する状態を示す図である。図25Bは、図25Aに示す最適化ブロックモデルを異なる角度から見た図である。最適化ブロックモデル生成部17は、上述した実施の形態1、2における最適化ブロックモデル生成機能に加え、本実施の形態3の最適化ブロックモデル生成機能を兼ね備える。本実施の形態3において、最適化ブロックモデル生成部17は、実施の形態2で示した基準面33を生成する方法を用いると共に複数のブロックで最適化ブロックモデル27を生成する。
 具体的には、最適化ブロックモデル生成部17は、まず、図18に示した設計空間25に独立した複数の基準面33a、33bを生成する(図24参照)。つぎに、最適化ブロックモデル生成部17は、図24に示す上部の三角形の基準面33aを車の前後方向に押し出して、図25Aの状態A1に示されるような三角柱の部分の上部ブロック27aを生成する。続いて、最適化ブロックモデル生成部17は、図24に示す下部の基準面33bを車幅方向に押し出して、図25Aの状態A2に示されるような下部ブロック27bを生成する。その後、最適化ブロックモデル生成部17は、生成したブロック同士と、これらの上部ブロック27aおよび下部ブロック27bの結合体である最適化ブロックモデル27と構造体モデル13(車体)とを結合部29によって順次結合する(図25Aの状態A3および図25B参照)。
 上述したように、本実施の形態3では、最適化ブロックモデル27を複数のブロックに分割して生成することで、直方体のような単純形状のブロックからなる設計空間25は勿論、単純形状ではない設計空間25、例えば複雑な形状のブロックや斜面を含むブロックなどからなる設計空間25においても最適化ブロックモデル27を生成することが可能になる。
 また、最適化ブロックモデル27を複数のブロックに分割して生成することで、最適化ブロックモデル27を滑らかな面で形成することができる。これにより、最適化ブロックモデル27と構造体モデル13との接合を滑らかにでき、この結果、最適化ブロックモデル27と構造体モデル13との間における荷重伝達を正確に行うことができる。
 なお、上述した実施の形態3では、上部ブロック27aおよび下部ブロック27bのどちらを先に生成してもよく、また、これらブロック同士(上部ブロック27aおよび下部ブロック27b)の結合と、上部ブロック27aまたは下部ブロック27bと車体との結合との順序は本発明において特に問われず、いずれの結合を先に行ってもよい。
 また、本実施の形態3において、最適化は節点が共有された空間を対象にするのが基本のため、ブロック結合は結合面積にして20%以下にするのが好ましい。
 また、上述した実施の形態1~3および変形例または実施例により、本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。例えば、本発明において最適化の対象となる構造体モデルの部分は、車体のBピラーまたはリアサイドメンバに限定されず、車体の所望部分であってもよい。また、本発明に係る形状最適化解析方法及び装置は、上述した衝突最適形状化条件の設定処理と衝突解析条件の設定処理と衝突解析とを行わず、実施の形態1の変形例に示される剛性最適形状化条件の設定処理と、剛性解析条件の設定処理と、剛性解析処理とを行って、最適化ブロックモデルの剛性における各立体要素の要・不要に関する情報の演算処理と、この演算結果に基づいて剛性に関する最適形状を決定する処理とを行うものであってもよい。この場合、本発明に係る形状最適化解析装置は、上述した衝突最適形状化条件設定部と衝突解析条件設定部と衝突解析部とを備えていなくてもよい。また、本発明に係る形状最適化解析方法及び装置は、上述した実施の形態2,3と実施の形態1の変形例とを適宜組み合わせたものであってもよい。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明に含まれる。
 以上のように、本発明にかかる形状最適化解析方法及び装置は、車体等の構造体の最適化に有用であり、特に、構造体の剛性や衝突特性の向上と構造体の軽量化とをともに実現する形状最適化解析方法及び装置に適している。
  1 形状最適化解析装置
  3 表示装置
  5 入力装置
  7 記憶装置
  9 作業用データメモリ
  9a データ記憶領域
  9b 作業領域
 11 演算処理部
 13 構造体モデル
 15 設計空間設定部
 17 最適化ブロックモデル生成部
 18 結合処理部
 19 材料特性設定部
 20 衝突最適形状化条件設定部
 21 衝突解析条件設定部
 22 衝突解析部
 23 立体要素要・不要演算部
 24 最適形状決定部
 25 設計空間
 27 最適化ブロックモデル
 27a 上部ブロック
 27b 下部ブロック
 28 バンパーモデル
 29 結合部
 31 拘束部
 33 基準面
 33a 基準面
 33b 基準面
 35 段
 41 形状最適化解析装置
 43 剛性最適形状化条件設定部
 45 剛性解析条件設定部
 47 剛性解析部

Claims (23)

  1.  平面要素または立体要素を使って構造体モデルを構成する一部分の最適化をコンピュータが行う形状最適化解析方法であって、
     前記構造体モデルにおける最適化の対象となる部分を設計空間として設定する設計空間設定ステップと、
     設定された前記設計空間に立体要素で構成され最適化の解析処理を行うための最適化ブロックモデルを生成する最適化ブロックモデル生成ステップと、
     生成された前記最適化ブロックモデルを前記構造体モデルに結合する結合処理ステップと、
     前記最適化ブロックモデルに材料特性を設定する材料特性設定ステップと、
     前記最適化ブロックモデルに衝突に関する最適形状を求めるための衝突最適形状化条件を設定する衝突最適形状化条件設定ステップと、
     前記最適化ブロックモデルが結合された前記構造体モデルに衝突解析を行うための衝突解析条件を設定する衝突解析条件設定ステップと、
     設定された前記衝突最適形状化条件および前記衝突解析条件に基づいて前記最適化ブロックモデルに対して衝突解析を実行して、前記最適化ブロックモデルの衝突における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算ステップと、
     該演算結果に基づいて衝突に関する最適形状を決定する最適形状決定ステップと、
     を含むことを特徴とする形状最適化解析方法。
  2.  平面要素または立体要素を使って構造体モデルを構成する一部分の最適化をコンピュータが行う形状最適化解析方法であって、
     前記構造体モデルにおける最適化の対象となる部分を設計空間として設定する設計空間設定ステップと、
     設定された前記設計空間に立体要素で構成され最適化の解析処理を行うための最適化ブロックモデルを生成する最適化ブロックモデル生成ステップと、
     生成された前記最適化ブロックモデルを前記構造体モデルに結合する結合処理ステップと、
     前記最適化ブロックモデルに材料特性を設定する材料特性設定ステップと、
     前記最適化ブロックモデルに剛性に関する最適形状を求めるための剛性最適形状化条件を設定する剛性最適形状化条件設定ステップと、
     前記最適化ブロックモデルが結合された前記構造体モデルに剛性解析を行うための剛性解析条件を設定する剛性解析条件設定ステップと、
     設定された前記剛性最適形状化条件および前記剛性解析条件に基づいて前記最適化ブロックモデルに対して剛性解析を実行して、前記最適化ブロックモデルの剛性における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算ステップと、
     該演算結果に基づいて剛性に関する最適形状を決定する最適形状決定ステップと、
     を含むことを特徴とする形状最適化解析方法。
  3.  前記最適化ブロックモデルに剛性に関する最適形状を求めるための剛性最適形状化条件を設定する剛性最適形状化条件設定ステップと、
     前記最適化ブロックモデルが結合された前記構造体モデルに剛性解析を行うための剛性解析条件を設定する剛性解析条件設定ステップと、
     設定された前記剛性最適形状化条件および前記剛性解析条件に基づいて前記最適化ブロックモデルに対して剛性解析を実行して、前記最適化ブロックモデルの衝突および剛性における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算ステップと、
     を含み、
     前記最適形状決定ステップは、衝突解析を実行した場合の前記立体要素要・不要演算ステップの演算結果と剛性解析を実行した場合の前記立体要素要・不要演算ステップの演算結果とに基づいて、衝突および剛性に関する最適形状を決定することを特徴とする請求項1記載の形状最適化解析方法。
  4.  前記衝突解析条件設定ステップは、前記構造体モデルに対して予め衝突解析を行って得られた荷重を衝突荷重として設定することを特徴とする請求項1又は3記載の形状最適化解析方法。
  5.  前記材料特性設定ステップは、前記構造体モデルにおける前記最適化ブロックモデルの結合された部位が平面要素で構成されている場合には、前記最適化ブロックモデルの立体要素におけるヤング率を前記平面要素におけるヤング率よりも低く設定することを特徴とする請求項1乃至4のいずれか一項に記載の形状最適化解析方法。
  6.  前記材料特性設定ステップは、前記構造体モデルにおける前記最適化ブロックモデルの結合された部位が平面要素で構成されている場合には、前記最適化ブロックモデルの立体要素における応力-歪み曲線の応力を、前記平面要素における応力-歪み曲線の応力よりも低く設定することを特徴とする請求項1乃至5のいずれか一項に記載の形状最適化解析方法。
  7.  前記最適化ブロックモデルを構成する立体要素として、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成したことを特徴とする請求項1乃至6のいずれか一項に記載の形状最適化解析方法。
  8.  前記最適化ブロックモデル生成ステップは、前記構造体モデルにおける前記設計空間が設置された周囲の面に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化する前記最適化ブロックモデルを生成することを特徴とする請求項1乃至7のいずれか一項に記載の形状最適化解析方法。
  9.  前記最適化ブロックモデルは、前記構造体モデルを構成する平面要素または立体要素との結合部に節点を配置し、前記最適化ブロックモデルを構成する立体要素として六面体立体要素を用いると共に前記結合部に配置された前記節点を含む平面に沿うように立体要素を積み上げるように生成することを特徴とする請求項1乃至8のいずれか一項に記載の形状最適化解析方法。
  10.  前記最適化ブロックモデルは、立体要素によって構成される複数のブロック体からなり、該複数のブロック体を剛体要素、梁要素または平面要素を用いて連結してなることを特徴とする請求項1乃至9のいずれか一項に記載の形状最適化解析方法。
  11.  数値解析による最適化計算において最適化パラメータで離散化を行うことを特徴とする請求項1乃至10のいずれか一項に記載の形状最適化解析方法。
  12.  平面要素または平面要素と立体要素とを使って構成された構造体モデルの一部分の形状の数値解析による最適化計算をコンピュータが行う形状最適化解析装置であって、
     前記構造体モデルの一部に最適化の対象となる部分を設計空間として設定する設計空間設定部と、
     設定された前記設計空間に立体要素で構成されて最適化の解析処理を行うための最適化ブロックモデルを生成する最適化ブロックモデル生成部と、
     生成された前記最適化ブロックモデルを前記構造体モデルに結合する処理を行う結合処理部と、
     前記最適化ブロックモデルに材料特性を設定する材料特性設定部と、
     前記最適化ブロックモデルに衝突に関する最適形状を求めるための衝突最適形状化条件を設定する衝突最適形状化条件設定部と、
     前記最適化ブロックモデルが結合された前記構造体モデルに衝突解析を行うための衝突解析条件を設定する衝突解析条件設定部と、
     設定された前記衝突最適形状化条件および前記衝突解析条件に基づいて前記最適化ブロックモデルに対して衝突解析を実行する衝突解析部と、
     該衝突解析を行う際に前記最適化ブロックモデルの衝突における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算部と、
     該演算結果に基づいて衝突に関する最適形状を決定する最適形状決定部と、
     を備えたことを特徴とする形状最適化解析装置。
  13.  平面要素または平面要素と立体要素とを使って構成された構造体モデルの一部分の形状の数値解析による最適化計算をコンピュータが行う形状最適化解析装置であって、
     前記構造体モデルの一部に最適化の対象となる部分を設計空間として設定する設計空間設定部と、
     設定された前記設計空間に立体要素で構成されて最適化の解析処理を行うための最適化ブロックモデルを生成する最適化ブロックモデル生成部と、
     生成された前記最適化ブロックモデルを前記構造体モデルに結合する処理を行う結合処理部と、
     前記最適化ブロックモデルに材料特性を設定する材料特性設定部と、
     前記最適化ブロックモデルに剛性に関する最適形状を求めるための剛性最適形状化条件を設定する剛性最適形状化条件設定部と、
     前記最適化ブロックモデルが結合された前記構造体モデルに剛性解析を行うための剛性解析条件を設定する剛性解析条件設定部と、
     設定された前記剛性最適形状化条件および前記剛性解析条件に基づいて前記最適化ブロックモデルに対して剛性解析を実行する剛性解析部と、
     該剛性解析を行う際に前記最適化ブロックモデルの剛性における前記各立体要素の要・不要に関する情報を演算する立体要素要・不要演算部と、
     該演算結果に基づいて剛性に関する最適形状を決定する最適形状決定部と、
     を備えたことを特徴とする形状最適化解析装置。
  14.  前記最適化ブロックモデルに剛性に関する最適形状を求めるための剛性最適形状化条件を設定する剛性最適形状化条件設定部と、
     前記最適化ブロックモデルが結合された前記構造体モデルに剛性解析を行うための剛性解析条件を設定する剛性解析条件設定部と、
     設定された前記剛性最適形状化条件および前記剛性解析条件に基づいて前記最適化ブロックモデルに対して剛性解析を実行する剛性解析部と、
     を備え、
     前記立体要素要・不要演算部は、前記剛性解析部で剛性解析を行う際に前記最適化ブロックモデルの衝突および剛性における前記各立体要素の要・不要に関する情報を演算する機能を有し、
     前記最適形状決定部は、衝突解析を行う際に演算した前記各立体要素の要・不要に関する情報と、剛性解析を行う際に演算した前記各立体要素の要・不要に関する情報とに基づいて、衝突および剛性に関する最適形状を決定することを特徴とする請求項12記載の形状最適化解析装置。
  15.  前記衝突解析条件設定部は、前記構造体モデルに対して予め衝突解析を行って得られた荷重を衝突荷重として設定することを特徴とする請求項12又は14記載の形状最適化解析装置。
  16.  前記材料特性設定部は、前記構造体モデルにおける前記最適化ブロックモデルの結合された部位が平面要素で構成されている場合には、前記最適化ブロックモデルの立体要素におけるヤング率を前記平面要素におけるヤング率よりも低く設定することを特徴とする請求項12乃至15のいずれか一項に記載の形状最適化解析装置。
  17.  前記材料特性設定部は、前記構造体モデルにおける前記最適化ブロックモデルの結合された部位が平面要素で構成されている場合には、前記最適化ブロックモデルの立体要素における応力-歪み曲線の応力を、前記平面要素における応力-歪み曲線の応力よりも低く設定することを特徴とする請求項12乃至16のいずれか一項に記載の形状最適化解析装置。
  18.  前記最適化ブロックモデルを構成する立体要素を、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成することを特徴とする請求項12乃至17のいずれか一項に記載の形状最適化解析装置。
  19.  前記最適化ブロックモデル生成部は、前記構造体モデルにおける前記設計空間が設置された周囲の面に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化する前記最適化ブロックモデルを生成することを特徴とする請求項12乃至18のいずれか一項に記載の形状最適化解析装置。
  20.  前記最適化ブロックモデル生成部は、前記構造体モデルを構成する平面要素または立体要素との結合部に節点を配置し、前記最適化ブロックモデルを構成する立体要素として六面体立体要素を用いると共に前記結合部に配置された節点を含む平面に沿うように立体要素を積み上げるように前記最適化ブロックモデルを生成することを特徴とする請求項12乃至19のいずれか一項に記載の形状最適化解析装置。
  21.  前記最適化ブロックモデル生成部は、前記最適化ブロックモデルを、立体要素によって構成される複数のブロックで構成すると共に該複数のブロックを剛体要素、梁要素または平面要素を用いて連結して生成することを特徴とする請求項12乃至20のいずれか一項に記載の形状最適化解析装置。
  22.  前記立体要素要・不要演算部は、前記数値解析による最適化計算において最適化パラメータで離散化を行うことを特徴とする請求項12乃至21のいずれか一項に記載の形状最適化解析装置。
  23.  前記立体要素要・不要演算部は、トポロジー最適化による前記最適化計算を行うことを特徴とする請求項12乃至22のいずれか一項に記載の形状最適化解析装置。
PCT/JP2013/083936 2013-02-01 2013-12-18 形状最適化解析(analysis of shape optimization)方法及び装置 WO2014119167A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13873950.3A EP2953040A4 (en) 2013-02-01 2013-12-18 METHOD AND DEVICE FOR ANALYZING FORM OPTIMIZATION
CN201380071921.0A CN104956369B (zh) 2013-02-01 2013-12-18 形状最优化解析方法及装置
KR1020157020725A KR101612690B1 (ko) 2013-02-01 2013-12-18 형상 최적화 해석(analysis of shape optimization) 방법 및 장치
US14/760,824 US10169497B2 (en) 2013-02-01 2013-12-18 Method and apparatus for analysis of shape optimization
MX2015009792A MX345189B (es) 2013-02-01 2013-12-18 Metodo y aparato para el analisis de optimizacion de la forma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-018681 2013-02-01
JP2013018681A JP5585672B2 (ja) 2013-02-01 2013-02-01 形状最適化解析方法及び装置

Publications (1)

Publication Number Publication Date
WO2014119167A1 true WO2014119167A1 (ja) 2014-08-07

Family

ID=51261892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083936 WO2014119167A1 (ja) 2013-02-01 2013-12-18 形状最適化解析(analysis of shape optimization)方法及び装置

Country Status (7)

Country Link
US (1) US10169497B2 (ja)
EP (1) EP2953040A4 (ja)
JP (1) JP5585672B2 (ja)
KR (1) KR101612690B1 (ja)
CN (1) CN104956369B (ja)
MX (1) MX345189B (ja)
WO (1) WO2014119167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154896A1 (ja) * 2017-02-24 2018-08-30 Jfeスチール株式会社 車体の補強部材の形状最適化方法及び形状最適化装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2763058B1 (en) * 2013-01-30 2021-10-20 Honda Research Institute Europe GmbH Optimizing the design of physical structures/objects
JP6544016B2 (ja) * 2015-04-20 2019-07-17 株式会社豊田中央研究所 形状最適化解析装置、形状最適化解析方法、形状最適化解析プログラム
US10482202B2 (en) 2016-06-30 2019-11-19 The Procter & Gamble Company Method for modeling a manufacturing process for a product
JP6222302B1 (ja) * 2016-07-05 2017-11-01 Jfeスチール株式会社 車体の接合位置の最適化解析方法及び装置
JP6278087B1 (ja) * 2016-10-04 2018-02-14 Jfeスチール株式会社 車体の接合位置の最適化解析方法及び装置
JP6497426B1 (ja) * 2017-10-17 2019-04-10 Jfeスチール株式会社 積層複合部材の形状最適化解析方法及び装置
JP6590009B2 (ja) * 2018-02-09 2019-10-16 Jfeスチール株式会社 車体の接着位置の最適化解析方法及び装置
US11281819B2 (en) * 2018-03-02 2022-03-22 Autodesk, Inc. Simplifying designs of mechanical assemblies via generative component consolidation
JP6614301B1 (ja) * 2018-09-14 2019-12-04 Jfeスチール株式会社 車体の振動特性の適正化解析方法及び装置
KR102286756B1 (ko) 2019-02-26 2021-08-06 울산과학기술원 격자구조 생성 알고리즘을 이용한 설계방법
EP3734477B1 (en) * 2019-05-03 2023-03-29 Honda Research Institute Europe GmbH Method for structural optimization of objects using a descriptor for deformation modes
US11604906B2 (en) * 2019-09-17 2023-03-14 Dassault Systemes Simulia Corp. System and method for crashworthiness analytics in design
CN113204822B (zh) 2021-05-17 2022-06-10 广州大学 一种将连续体拓扑优化结果转换为杆系结构的方法
JP7306510B1 (ja) 2022-03-03 2023-07-11 Jfeスチール株式会社 自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラム、自動車の車体骨格部品における荷重伝達部材の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250818A (ja) 2009-04-10 2010-11-04 Livermore Software Technology Corp トポロジー最適化における工業製品の最適設計を得る方法
JP2013025533A (ja) * 2011-07-20 2013-02-04 Jfe Steel Corp 形状最適化解析方法及び装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297118A (ja) 2000-04-14 2001-10-26 Hitachi Ltd 構造最適化方法および構造最適化装置
JPWO2006009026A1 (ja) 2004-07-16 2008-05-01 国立大学法人京都大学 最適設計支援装置、最適設計支援方法及び最適設計支援プログラム
GB0507618D0 (en) * 2005-04-15 2005-05-25 Lms Internat Nv Method and system for dynamic analysis of complex systems
JP2007179456A (ja) 2005-12-28 2007-07-12 Toyota Central Res & Dev Lab Inc 機構構造物の設計装置および設計方法
US8880380B2 (en) * 2007-12-21 2014-11-04 Honda Motor Co., Ltd. Crashworthiness design methodology using a hybrid cellular automata algorithm for the synthesis of topologies for structures subject to nonlinear transient loading
US8355893B2 (en) * 2008-12-12 2013-01-15 Wisconsin Alumni Research Foundation Method and system for analysis and shape optimization of physical structures using a computerized algebraic dual representation implicit dimensional reduction
CN101504682A (zh) 2009-03-20 2009-08-12 江苏申模数字化制造技术有限公司 基于cae结构分析的汽车主模型结构优化设计方法
JP2011257915A (ja) 2010-06-08 2011-12-22 Toyota Motor Corp 設計支援装置および設計支援方法
WO2014073017A1 (ja) 2012-11-06 2014-05-15 Jfeスチール株式会社 形状最適化解析方法及び装置
EP2763058B1 (en) * 2013-01-30 2021-10-20 Honda Research Institute Europe GmbH Optimizing the design of physical structures/objects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250818A (ja) 2009-04-10 2010-11-04 Livermore Software Technology Corp トポロジー最適化における工業製品の最適設計を得る方法
JP2013025533A (ja) * 2011-07-20 2013-02-04 Jfe Steel Corp 形状最適化解析方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOHEI YUGE ET AL.: "Design of Structural Members for Crashworthiness Using Three Dimensional Topology Optimization", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS (SERIES A, vol. 69, no. 687, 25 November 2003 (2003-11-25), pages 93 - 100, XP055270711 *
MULLER, O. ET AL., TOPOLOGY OPTIMIZATION OF LARGE REAL WORLD STRUCTURES, pages 1 - 14, XP055270376, Retrieved from the Internet <URL:http://web.archive.org/web/20070303133506/ http://www.ipek.uni-karlsruhe.de/medien/ veroeffentlichungen/nafems99/nafems paper.pdf> *
See also references of EP2953040A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154896A1 (ja) * 2017-02-24 2018-08-30 Jfeスチール株式会社 車体の補強部材の形状最適化方法及び形状最適化装置
JP2018139029A (ja) * 2017-02-24 2018-09-06 Jfeスチール株式会社 車体の補強部材の形状最適化方法及び装置
CN110226161A (zh) * 2017-02-24 2019-09-10 杰富意钢铁株式会社 车身增强构件的形状优化方法及形状优化装置
CN110226161B (zh) * 2017-02-24 2023-06-06 杰富意钢铁株式会社 车身增强构件的形状优化方法及形状优化装置

Also Published As

Publication number Publication date
KR20150103374A (ko) 2015-09-10
EP2953040A4 (en) 2016-12-21
US20150356237A1 (en) 2015-12-10
EP2953040A1 (en) 2015-12-09
CN104956369B (zh) 2018-07-17
JP5585672B2 (ja) 2014-09-10
JP2014149733A (ja) 2014-08-21
CN104956369A (zh) 2015-09-30
MX2015009792A (es) 2015-10-29
US10169497B2 (en) 2019-01-01
MX345189B (es) 2017-01-20
KR101612690B1 (ko) 2016-04-26

Similar Documents

Publication Publication Date Title
WO2014119167A1 (ja) 形状最適化解析(analysis of shape optimization)方法及び装置
JP5585671B2 (ja) 形状最適化解析方法及び装置
WO2014073017A1 (ja) 形状最適化解析方法及び装置
JP6614301B1 (ja) 車体の振動特性の適正化解析方法及び装置
JP5810702B2 (ja) 形状最適化解析方法及び装置
WO2018154896A1 (ja) 車体の補強部材の形状最適化方法及び形状最適化装置
JP6497426B1 (ja) 積層複合部材の形状最適化解析方法及び装置
JP5445529B2 (ja) 構造体の接合位置の最適化解析方法及び装置
JP2011076240A (ja) 車両の企画支援システム
Wu et al. The development of hybrid ES-FE-SEA method for mid-frequency vibration analysis of complex built-up structure
JP2019128868A (ja) 車体部品の補剛部材の形状最適化解析方法及び装置
JP2020086564A (ja) 形状最適化解析方法及び装置
Shinde et al. Finite Element Method for Stress Analysis of Passenger Car Floor.
Na et al. Body optimization for front loading design process
De Gaetano et al. Innovative methodologies for concept modelling of vehicle body structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013873950

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14760824

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201504626

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/009792

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20157020725

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE