WO2014073017A1 - 形状最適化解析方法及び装置 - Google Patents

形状最適化解析方法及び装置 Download PDF

Info

Publication number
WO2014073017A1
WO2014073017A1 PCT/JP2012/007100 JP2012007100W WO2014073017A1 WO 2014073017 A1 WO2014073017 A1 WO 2014073017A1 JP 2012007100 W JP2012007100 W JP 2012007100W WO 2014073017 A1 WO2014073017 A1 WO 2014073017A1
Authority
WO
WIPO (PCT)
Prior art keywords
optimization
analysis
model
block model
shape
Prior art date
Application number
PCT/JP2012/007100
Other languages
English (en)
French (fr)
Inventor
斉藤 孝信
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280076867.4A priority Critical patent/CN104769592B/zh
Priority to US14/440,502 priority patent/US9858714B2/en
Priority to EP12888094.5A priority patent/EP2919138A4/en
Priority to PCT/JP2012/007100 priority patent/WO2014073017A1/ja
Priority to KR1020157011265A priority patent/KR101669779B1/ko
Publication of WO2014073017A1 publication Critical patent/WO2014073017A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/24Sheet material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2004Aligning objects, relative positioning of parts

Definitions

  • the present invention relates to a shape optimization analysis method and apparatus for a structure.
  • the shape optimization analyzing method and device shape optimization analyzing method and device for increasing the rigidity and reducing the weight of a structure such as an automobile and improving the collision characteristics and reducing the weight. apparatus therefore).
  • a predetermined shape for example, a T-shape is assumed in advance, and an optimum shape is not obtained on the assumption of the shape, and a predetermined shape is not assumed. This means finding the most optimized shape that satisfies the analysis conditions.
  • CAE analysis computer aided engineering
  • This CAE analysis is known to improve rigidity and weight by using optimization techniques such as mathematical optimization, plate thickness optimization, shape optimization, and topology optimization. Often used for structural optimization of castings.
  • optimization techniques attention is particularly focused on topology optimization. Topology optimization provides a design space of a certain size, incorporates three-dimensional elements into the design space, satisfies the given conditions, and leaves the minimum necessary three-dimensional element part to achieve the optimal shape that satisfies the conditions. It is a method.
  • topology optimization uses a method in which a direct load is applied by directly constraining the three-dimensional elements forming the design space.
  • Patent Document 1 discloses a method for topology optimization of components of a complex structure.
  • Structures such as automobiles are mainly composed of steel sheets.
  • the parts are made independent as design spaces and the design is made.
  • Patent Document 1 relates to a mathematical calculation method and a physical system of analysis, and does not provide any means for solving the above-described problems, and is a technique for solving the above problems. Development of was desired.
  • the present invention has been made to solve the above-described problems, and provides a technique that can be applied to a part of a structure subjected to an external force and that contributes to the optimization of the structure.
  • the purpose is to do.
  • the present invention provides the following shape optimization analysis method and shape optimization analysis apparatus.
  • An analysis step for inputting an analysis condition and performing an analysis for obtaining an optimum shape for the optimized block model;
  • a shape optimization analysis method for optimizing a part of a structure model using a planar element or a three-dimensional element, A design space setting step of setting a part to be optimized in the structure model as a design space;
  • An optimization block model generation step for generating an optimization block model configured to include a three-dimensional element in a set design space and performing optimization analysis processing;
  • the optimization is performed by subdividing the three-dimensional element along a peripheral surface where the design space is installed in the structure model and parallel to a surface having the maximum area of the design space.
  • a node is arranged at a connecting portion with a planar element or a three-dimensional element constituting the structure model, and a hexahedral solid element is used as the three-dimensional element constituting the optimization block model.
  • the shape optimization analysis method according to any one of (1) to (3), wherein the shape optimization analysis method is used so as to stack three-dimensional elements along a plane including nodes arranged at the coupling portion.
  • the optimized block model is composed of a plurality of block bodies constituted by solid elements, and the plurality of block bodies are connected by using rigid elements, beam elements, or planar elements.
  • the shape optimization analysis method according to any one of 4).
  • a shape optimization analysis device that performs optimization calculation by numerical analysis of a shape of a part of a structure model configured using a planar element or a planar element and a three-dimensional element, A design space setting unit for setting a part to be optimized as a design space in a part of the structure model; An optimization block model generation unit that generates an optimization block model that is configured with a solid element in the set design space and performs optimization analysis processing; A combination processing unit for performing processing for combining the generated optimized block model with the structure model; An analysis condition input unit for inputting an analysis condition for analysis to a desired portion of the structure model; An optimization analysis unit for performing optimization calculation by numerical analysis in the optimized block model based on the input analysis conditions; A shape optimization analysis apparatus.
  • the optimization block model generation unit subdivides the three-dimensional element along the surrounding surface where the design space is installed in the structure model and parallel to the surface having the maximum area of the design space.
  • the shape optimization analysis apparatus according to (7) or (8), which generates a generalized block model.
  • the optimization block model generation unit arranges nodes at a coupling portion with a planar element or a three-dimensional element constituting the structure model, and uses a hexahedral solid element as the three-dimensional element constituting the optimization block model.
  • the shape optimization analysis apparatus according to any one of (7) to (9), wherein the three-dimensional elements are generated so as to be stacked along a plane including the nodes arranged in the coupling portion.
  • the optimized block model generation unit is configured to configure the optimized block model by a plurality of blocks including solid elements and to connect the plurality of blocks using rigid elements, beam elements, or planar elements.
  • the shape optimization analysis apparatus according to any one of (7) to (10).
  • a design space setting step for setting a part to be optimized in the structure model as a design space, and an optimization block model configured by a three-dimensional element in the set design space and performing optimization analysis processing
  • An optimization block model generation step for generating a model, a coupling step for coupling the generated optimization block model to the structure model, and an analysis for inputting an analysis condition to obtain an optimal shape for the optimization block model Since the analysis step is included, load transmission is appropriately performed from the connection portion between the optimized block model and the structure model, and the optimum shape can be calculated with high accuracy.
  • the vehicle body structure can be optimized, rigidity and collision characteristics can be improved, and weight reduction can be realized while maintaining rigidity and collision performance at predetermined values.
  • FIG. 1 is a block diagram of a shape optimization analysis apparatus according to an embodiment of the present invention. It is explanatory drawing of an example of a structure model. It is explanatory drawing of the state which set the design space to the structure model. It is explanatory drawing of the state which incorporated the optimization block model in the design space set to the structure model. It is explanatory drawing explaining the mode of the cross section of an optimization block model. It is explanatory drawing of the state which combined the optimization block model built in the structure model, and the structure model. It is explanatory drawing explaining the load constraint conditions as analysis conditions. It is explanatory drawing explaining the result of having performed optimization analysis. It is explanatory drawing of the single optimization block model as a comparative example.
  • the shape optimization analysis apparatus 1 As shown in FIG. 1, the shape optimization analysis apparatus 1 according to the present embodiment has a shape of a part of a structure model 13 configured using a planar element or a planar element and a three-dimensional element as an example in FIG. 2. It is a device that performs optimization calculations by numerical analysis.
  • the shape optimization analysis apparatus 1 is configured by a PC (personal computer), and includes a display device 3, an input device 5, a storage device 7, a work data memory 9, and an arithmetic processing unit 11.
  • the arithmetic processing unit 11 is connected to the display device 3, the input device 5, the storage device 7, and the work data memory 9, and performs various functions according to instructions from the arithmetic processing unit 11.
  • the display device 3 is used for displaying calculation results, and is composed of a liquid crystal monitor or the like.
  • the input device 5 is used for a display instruction of the structure model 13 file, an operator's condition input, and the like, and includes a keyboard, a mouse, and the like.
  • the structure model 13 may be constituted by only planar elements, or may be constituted by a combination of planar elements and solid elements.
  • a vehicle body (body) as shown in FIG. 2 is taken as an example of the structure model 13, the vehicle body is mainly formed of a thin steel plate, and thus is composed of planar elements.
  • a block body formed of a casting such as an engine is composed of three-dimensional elements.
  • the work data memory 9 has a data storage area 9a for storing calculation results and a work area 9b for performing calculation processing.
  • the arithmetic processing unit 11 is configured by a CPU of a PC, and each unit described below is realized by the CPU executing a predetermined program.
  • the arithmetic processing unit 11 includes a design space setting unit 15, an optimization block model generation unit 17, a combination processing unit 19, an analysis condition input unit 21, and an optimization analysis unit 23.
  • the design space setting unit 15 sets, as a design space 25, a part to be optimized, which is an example of FIG.
  • the optimization block model generation unit 17 generates an optimization block model that is configured with a three-dimensional element in the set design space 25 and performs optimization analysis processing.
  • the combination processing unit 19 performs processing for combining the generated optimized block model with the structure model 13.
  • the analysis condition input unit 21 inputs an analysis condition for analysis to a desired portion of the structure model 13.
  • the optimization analysis unit 23 executes optimization calculation by numerical analysis in the optimization block model based on the input analysis conditions. The configuration of each part will be described in detail.
  • the design space setting unit 15 sets a part to be optimized as a design space 25 in a part of the structure model 13.
  • a part surrounded by a rectangle is shown in a portion below the floor at the center of the vehicle body.
  • the part is a part for setting the design space 25.
  • FIGS. 3A and 3B show a state in which the design space 25 is set as viewed from different angles.
  • the design space setting unit 15 sets the design space 25 by deleting a part of the structure model 13.
  • the design space is set in advance. 25 may be set.
  • the design space 25 is set in advance when generating the structure model 13
  • the structure model 13 generation unit itself also serves as the design space setting unit 15. That is, the design space setting unit 15 of the present invention may have a structure model 13 generation function.
  • the optimization block model generation unit 17 generates an optimization block model 27 for performing optimization analysis processing on the set design space 25.
  • the generated optimization block model 27 can be in any shape with a size that fits into the set design space 25.
  • the optimized block model 27 is preferably composed of a solid element, and the solid element is composed of a solid element having at least one pair of two faces that are not less than a pentahedron and not more than an octahedron and are parallel to each other.
  • the structure shape of the thin plate This is because, when the part formed in the design space 25 is formed of a thin plate like a part of the vehicle body, when the optimization calculation is executed by the optimization block model 27, the structure shape of the thin plate This is because it is desirable to calculate the optimum shape so that it can be reflected in the above. In this respect, it is easy to satisfy such a requirement by using a solid element having at least one pair of two faces that are not less than a pentahedron and not more than an octahedron and are parallel to each other. In addition, it is preferable to increase the accuracy of optimization by arranging three-dimensional elements of a pentahedron or more with uniform sizes.
  • FIGS. 4 (a) and 4 (b) show the generation of a rectangular optimized block model 27, and the solid elements used in this example are hexahedrons as shown in FIG. Is.
  • the optimization block model 27 is preferably generated so as to subdivide the three-dimensional elements along the surrounding surface of the structure where the design space 25 is installed and parallel to the surface having the maximum area of the design space.
  • the optimization block model 27 is preferably generated so as to subdivide the three-dimensional elements along the surrounding surface of the structure where the design space 25 is installed and parallel to the surface having the maximum area of the design space.
  • FIG. 3 when a part of the floor in the vehicle body is set as the design space 25, rectangular optimization blocks are generated as shown in FIG.
  • the upper and lower surfaces having the maximum area are parallel to the floor surface of the vehicle body.
  • the optimized block model 27 is generated in this way. For example, since the floor surface of the vehicle body is formed of a plate material, when the optimization calculation is executed by the optimization block model 27, it is desirable that the calculation result be such that the three-dimensional element remains in a plane shape. By doing so, there is a high possibility that the calculation result remains in a plane, and the utility value becomes high in the actual one.
  • the combination processing unit 19 performs processing for combining the generated optimized block model 27 with a structure that is another part of the vehicle body.
  • a rigid element, a plate element, or a beam element is used for coupling.
  • the joint between the optimized block model 27 and the structure is to accurately transmit the load from the structure model 13 (vehicle body) to the optimized block model 27. Therefore, the part deleted as the design space 25 and the structure model 13 (vehicle body) It is preferable to reflect the original joint location. Further, it is coupled to the optimized block model 27 over the entire cut surface of the structure model 13 (vehicle body). In FIG. 6, the coupling portion 29 is indicated by a white line.
  • the analysis condition input unit 21 inputs analysis conditions for performing optimization calculation.
  • the analysis conditions include, for example, the restraint position of the structure, the position where the load is applied, the material volume ratio, the rigidity is maximized, the displacement is minimized, the stress is minimized, and the like.
  • the analysis conditions include, for example, the restraint position of the structure, the position where the load is applied, the material volume ratio, the rigidity is maximized, the displacement is minimized, the stress is minimized, and the like.
  • the analysis conditions include, for example, the restraint position of the structure, the position where the load is applied, the material volume ratio, the rigidity is maximized, the displacement is minimized, the stress is minimized, and the like.
  • the optimization analysis unit 23 executes optimization calculation by numerical analysis in the optimization block model 27 based on the input analysis conditions. It is preferable that the optimization analysis unit 23 discretizes the optimization parameter. It is preferable to limit the penalty coefficient in discretization to 2 or more or 3 to 20 times the size of the standard solid element. By discretizing the optimization parameter, it is possible to reflect it on the structure of the thin plate.
  • the optimization analysis unit 23 may perform a topology optimization process or may be an optimization process based on another calculation method. Therefore, as the optimization analysis unit, for example, commercially available analysis software using a finite element can be used. By executing the optimization analysis process, as shown in FIG. 8, among the three-dimensional elements in the optimization block model 27, the three-dimensional element having an optimum shape that satisfies the given analysis condition remains.
  • the load is transmitted from the structural body model 13 to the optimized block model 27 via the coupling portion 29. That is, when the load is transmitted from the structure model 13 to the optimization block model 27, the optimization block model 27 is deformed and the direction of the load changes in the process of the optimization calculation. It is the point which gives the optimal shape finally reflecting the load conditions.
  • FIG. 10 shows a restraint section 31 in which a restraint condition is set for the same part as the joint section 29 shown in FIG. 6 with respect to the model shown in FIG.
  • FIG. 11 is a diagram showing a result of performing the optimization process analysis under the same analysis conditions as those in the case where the restraint unit 31 shown in FIG. 10 is restrained and incorporated in the structure model 13 as described above. As shown in FIG.
  • each function of the arithmetic processing unit 11 in the PC executes the process.
  • the structure model 13 is read from the storage device 7 and displayed on the display device 3 (S1).
  • the operator sets the design space 25 to be optimized in the displayed structure model 13. Specifically, the coordinates of the part to be the design space 25 in the structure model 13 are designated, and an instruction to delete the element of the part is given. With this instruction, the total space setting unit 15 performs a process of deleting the element of the part, and the design space 25 is set (S3).
  • the operator instructs the optimization block model generation unit 17 to generate an optimization block model 27 having a size that enters the design space 25.
  • the instruction includes an instruction as to which plane in the design space 25 is used to generate the optimized block model 27. For example, in the case where the rectangular optimization block model 27 shown in FIG. 4 is generated, if an instruction to generate the optimization block model 27 is given based on the rectangular surface on the side surface of the vehicle body, the optimization block model 27 The model generation unit 17 generates an optimized block model 27 meshed by pushing out the rectangular surface in the vehicle width direction (S5).
  • the operator instructs the connection between the optimized block model 27 and the structure model 13.
  • the instruction includes whether to use a rigid element, a plate element, or a beam element as the coupling element.
  • the processing unit 19 combines the optimized block model 27 and the structure (S7).
  • the operator inputs analysis conditions (S9).
  • the analysis conditions include the constraint position of the structure, the position where the load is applied, the material volume ratio, the rigidity is maximized, the displacement is minimized, the stress is minimized, and the like.
  • the optimization analysis unit 23 executes calculation for optimization analysis (S11). A state where necessary elements in the optimized block model 27 remain by the optimization calculation is displayed on the display unit (S13).
  • the operator creates a shape model obtained by the optimization calculation, and confirms the rigidity by another structural analysis calculation based on the model.
  • the design space 25 is set in the structure model for the site to be optimized, the optimized block model 27 is generated in the set design space 25, and the optimization is performed. Since the block model 27 is coupled to the structure model for analysis processing, the optimized block model 27 is appropriately transmitted with a load from the coupling portion 29 with the structure model, and the optimum shape is accurately calculated. can do.
  • the vehicle body structure can be optimized, rigidity and collision characteristics can be improved, and weight reduction can be realized while maintaining rigidity and collision performance at predetermined values.
  • the hexahedron as shown in FIG. 5 is taken as an example of the three-dimensional element constituting the optimized block model 27, and the other three-dimensional elements are pentahedron to octahedron and parallel to each other. It has been explained that it is preferable to configure it with a three-dimensional element having at least one set. However, the present invention does not exclude the case where a tetrahedron as shown in FIG. 13 is used as the three-dimensional element constituting the optimized block model 27. However, when tetrahedral elements are used, it is possible to generate a model by creating only the outer shape of the design space 25 and automatically filling the interior.
  • FIG. 14 shows the result of executing the analysis process for the optimized block model 27 shown in FIG.
  • the shape remaining as the optimum shape is severely uneven, and is difficult to reflect in the shape of the thin plate, and the lid shape (original cross member) is at the center compared to the case of the hexahedron of FIG. I understand that it will disappear.
  • the present embodiment relates to another aspect of the optimization block model generation unit 17, and the optimization block model generation is performed by arranging nodes at a connection unit 29 with a planar element or a solid element constituting the structure model 13. Then, a hexahedral solid element is used as a solid element constituting the optimized block model 27 and the solid elements are stacked along a plane including the nodes arranged in the connecting portion 29.
  • a hexahedral solid element is used as a solid element constituting the optimized block model 27 and the solid elements are stacked along a plane including the nodes arranged in the connecting portion 29.
  • FIG. 15 shows a state in which the design space 25 is set in a part of the rear portion of the structural body model 13 indicating the vehicle body.
  • the optimization block model generation unit 17 connects the nodes existing at the site where the structure model 13 is deleted on the side surface of the vehicle body with a straight line, and creates a standard for creating the optimization block model 27.
  • a reference plane 33 is created with a plate element.
  • the optimized block model 27 is generated by extrusion so that the reference surface 33 is integrated in the vehicle width direction by node sharing.
  • the state in which the optimized block model 27 is generated is shown in FIGS.
  • bonding state of the optimization block model 27 and the structure body model 13 (vehicle body) becomes smooth, As a result, the effect that transmission of a load becomes accurate is acquired.
  • FIGS. 19 and 20 an example in which the optimized block model 27 is generated without generating the reference plane 33 in advance is shown in FIGS.
  • the step 35 is formed in the inclined portion as compared with FIG.
  • the coupling state with the structural body model 13 becomes smooth, and as a result, the load is transmitted. Become accurate.
  • the generation of the optimization block model 27 by the optimization block generation unit shown in the first and second embodiments is an example in which the optimization block model 27 is formed alone, but the optimization block model generation unit 17
  • the structured block model 27 may be composed of a plurality of blocks composed of solid elements and be generated by connecting the plurality of blocks using rigid elements, beam elements or planar elements. This will be specifically described below.
  • FIG. 21 and FIG. 22 are explanatory diagrams of the present embodiment.
  • the method for generating the reference plane 33 shown in the second embodiment is used and the optimized block model 27 is generated with a plurality of blocks.
  • a plurality of independent reference surfaces 33a and 33b are generated in the design space 25 (see FIG. 21).
  • the upper triangular reference surface 33a is pushed in the longitudinal direction of the vehicle to generate an upper block 27a of a triangular prism portion.
  • the lower block 27b is generated by extruding the reference surface 33b below the triangular prism in the vehicle width direction (see FIG. 22 (b)), and the generated blocks and the vehicle body are connected to the connecting portion 29. (See FIG. 22C).
  • the optimized block model 27 By generating the optimized block model 27 by dividing it into a plurality of blocks, the optimized block model 27 is also created in a design space 25 that is not a simple shape such as a rectangular parallelepiped, for example, a block having a complicated shape or a block including a slope. Can be generated. Also, by generating the optimized block model 27 by dividing it into a plurality of blocks, the optimized block model 27 can be formed with a smooth surface, the joint with the structure model 13 can be made smooth, and the load transmission Can be done accurately. It should be noted that either the upper block 27a or the lower block 27b may be generated first, and whichever of the blocks and the vehicle body may be combined first. Since optimization is basically performed on a space where nodes are shared, it is preferable that the block connection is 20% or less in terms of the combined area.
  • the conditions for obtaining the optimum shape are the following three.
  • a hexahedral is used as a three-dimensional element to form one block (Invention Example 1)
  • a plurality of blocks using hexahedrons as solid elements are rigidly coupled
  • a block is formed using a pentahedron and a hexahedron as a three-dimensional element (Invention Example 3).
  • the comparative examples are the following three. A single tetrahedron is used as a three-dimensional element without being connected to the vehicle body shown in FIG.
  • the standard weight is 125 kg, and the average value of torsional rigidity in the original shape is 25.1 (kN * m / deg).
  • the load constraint condition of the stiffness analysis is a torsional mode in which three points of four points (a, b, c, d) are constrained and a load of 0.5 kN is applied to the other point. went.
  • the conditions and results are shown in Table 1.
  • a steel-based material is used as the material of the vehicle body, but there is no problem even if various materials such as aluminum, titanium, magnesium, glass, resin, rubber are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Body Structure For Vehicles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

本発明に係る形状最適化解析方法は、平面要素、または立体要素を使って構造体モデルを構成する一部分の最適化を行う解析方法であって、前記構造体モデルにおける最適化の対象となる部分を設計空間として設定する設計空間設定ステップと、設定された設計空間に立体要素で構成され最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成ステップと、生成された最適化ブロックモデルを前記構造体モデルに結合する結合処理ステップと、解析条件を入力して前記最適化ブロックモデルに対する最適形状を求める解析を行う解析ステップと、を備えている。

Description

形状最適化解析方法及び装置
 本発明は、構造体の形状最適化解析方法及び装置に関する。特に、自動車等の構造体の剛性を高めると共に軽量化を実現したり、衝突特性を向上させると共に軽量化を実現したりするための構造体の形状最適化解析方法及び装置(shape optimization analyzing method and apparatus therefore) に関する。
 なお、本明細書において形状最適化と称する場合には、予め所定形状、例えばT字形状を想定し、その形状を前提として最適な形状を求めることではなく、所定の形状を想定することなく、解析条件を満たす最も最適化な形状を求めることを意味する。
 近年、特に自動車産業においては環境問題に起因した車体の軽量化が進められており、車体の設計にコンピュータ支援工学(computer aided engineering)による解析(以下、「CAE解析」という)は欠かせない技術となっている。
 このCAE解析では数理最適化、板厚最適化、形状最適化、トポロジー最適化などの最適化技術を用いることによって剛性の向上や軽量化が図られることが知られており、例えばエンジンブロックなどの鋳物の構造最適化によく用いられている。
 最適化技術の中で、特にトポロジー最適化(topology optimization)が着目されつつある。トポロジー最適化はある程度の大きさの設計空間を設け、当該設計空間に立体要素を組み込み、与えられた条件を満たしかつ必要最小限の立体要素の部分を残すことで当該条件を満たす最適形状とするという方法である。そのため、トポロジー最適化は、設計空間をなす立体要素に直接拘束を行い、直接荷重を加えるという方法が用いられる。
 このようなトポロジー最適化に関する技術として、複雑な構造体のコンポーネントのトポロジー最適化のための方法が特許文献1に開示されている。
特開2010-250818号公報
 自動車等の構造体は主に薄板(steel sheet)を用いて構成されており、このような薄板で構成される車体の一部分の最適化をする場合、当該部位を設計空間として独立させ、その設計空間に対して荷重や拘束状態を反映させることは困難であり、それ故に構造体の一部に最適化技術を適用することが難しいという課題があった。
 また、立体要素(element)によって最適化形状を求めたとしても、それを薄板構造に適切に反映させるにはいかにするべきかという課題もあった。
 特許文献1に開示の技術は数学演算上の手法および解析の物理的システムに関するものであり上記のような課題に対しては何らの解決手段を与えるものではなく、上記課題を解決するための技術の開発が望まれていた。
 本発明は、上記のような課題を解決するためになされたものであり、外力を受ける構造体の一部に最適化技術を適用することを可能し、構造体の最適化に資する技術を提供することを目的としている。
 上記目的を達成するために、本発明は下記の形状最適化解析方法および形状最適化解析装置を提供する。
(1)平面要素、または立体要素を使って構造体モデルを構成する一部分の最適化を行う解析方法であって、
  前記構造体モデルにおける最適化の対象となる部分を設計空間として設定する設計空間設定ステップと、
設定された設計空間に立体要素で構成され最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成ステップと、
生成された最適化ブロックモデルを前記構造体モデルに結合する結合処理ステップと、
解析条件を入力して前記最適化ブロックモデルに対する最適形状を求める解析を行う解析ステップと、
を有する形状最適化解析方法。
(2)前記最適化ブロックモデルを構成する立体要素が、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成されている、(1)に記載の形状最適化解析方法。
(3)前記最適化ブロックモデル生成ステップは、前記構造体モデルにおける前記設計空間が設置された周囲の面に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化する前記最適化ブロックモデルを生成する、(1)又は(2)に記載の形状最適化解析方法。
(4)前記最適化ブロックモデル生成ステップは、構造体モデルを構成する平面要素または立体要素との結合部に節点(node)を配置し、最適化ブロックモデルを構成する立体要素として六面体立体要素を用いると共に前記結合部に配置された節点(node)を含む平面に沿うように立体要素を積み上げるように生成する、(1)乃至(3)のいずれかに記載の形状最適化解析方法。
(5)前記最適化ブロックモデルは、立体要素によって構成される複数のブロック体からなり、該複数のブロック体は剛体要素、梁要素または平面要素を用いて連結されている、(1)乃至(4)のいずれかに記載の形状最適化解析方法。
(6)数値解析による最適化計算において最適化パラメータで離散化を行う、(1)乃至(5)のいずれかに記載の形状最適化解析方法。
(7)平面要素、または平面要素と立体要素を使って構成された構造体モデルの一部分の形状の数値解析による最適化計算を行う形状最適化解析装置であって、
  前記構造体モデルの一部に最適化の対象となる部分を設計空間として設定する設計空間設定部と、
設定された設計空間に立体要素で構成されて最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成部と、
生成された最適化ブロックモデルを前記構造体モデルに結合する処理を行う結合処理部と、
前記構造体モデルの所望の箇所に解析のための解析条件を入力する解析条件入力部と、
入力された解析条件に基づいて前記最適化ブロックモデルにおいて数値解析による最適化計算を実行する最適化解析部と、
を有する形状最適化解析装置。
(8)前記最適化ブロックモデルを構成する立体要素が、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成されている(7)に記載の形状最適化解析装置。
(9)前記最適化ブロックモデル生成部は、前記構造体モデルにおける前記設計空間が設置された周囲の面に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化する前記最適化ブロックモデルを生成する、(7)又は(8)に記載の形状最適化解析装置。
(10)前記最適化ブロックモデル生成部は、構造体モデルを構成する平面要素または立体要素との結合部に節点を配置し、最適化ブロックモデルを構成する立体要素として六面体立体要素を用いると共に前記結合部に配置された節点を含む平面に沿うように立体要素を積み上げるように生成する、(7)乃至(9)に記載の形状最適化解析装置。
(11)前記最適化ブロックモデル生成部は、前記最適化ブロックモデルを、立体要素によって構成される複数のブロックで構成すると共に該複数のブロックを剛体要素、梁要素または平面要素を用いて連結して生成する、(7)乃至(10)に記載の形状最適化解析装置。
(12)前記最適化解析部は、数値解析による最適化計算において最適化パラメータで離散化を行う、(7)乃至(11)に記載の形状最適化解析装置。
(13)前記最適化解析部は、トポロジー最適化による最適化計算を行う、(7)乃至(12)に記載の形状最適化解析装置。
 本発明においては、構造体モデルにおける最適化の対象となる部分を設計空間として設定する設計空間設定ステップと、設定された設計空間に立体要素で構成され最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成ステップと、生成された最適化ブロックモデルを前記構造体モデルに結合する結合処理ステップと、解析条件を入力して前記最適化ブロックモデルに対する最適形状を求める解析を行う解析ステップとを有するので、最適化ブロックモデルに構造体モデルとの結合部から荷重伝達が適切に行われ、最適の形状を精度よく算出することができる。
 これによって、例えば車体構造の最適化が可能になり、剛性や衝突特性の向上が可能になり、剛性や衝突性能を所定値に保持しつつ軽量化を実現することができる。
本発明の一実施の形態に係る形状最適化解析装置のブロック図である。 構造体モデルの一例の説明図である。 構造体モデルに設計空間を設定した状態の説明図である。 構造体モデルに設定した設計空間に最適化ブロックモデルを組み込んだ状態の説明図である。 最適化ブロックモデルの断面の様子を説明する説明図である。 構造体モデルに組み込んだ最適化ブロックモデルと構造体モデルとの結合を行った状態の説明図である。 解析条件としての荷重拘束条件を説明する説明図である。 最適化解析を実行した結果を説明する説明図である。 比較例としての単独の最適化ブロックモデルの説明図である。 単独の最適化ブロックモデルの拘束条件の説明図である。 単独の最適化ブロックモデルによる解析の結果を説明する説明図である。 本発明の一実施の形態における形状最適化解析装置の処理の流れを示すフローチャートである。 最適化ブロックモデルの他の態様の断面の様子を説明する説明図である。 図13に示した最適化ブロックモデルによる解析の結果を示す説明図である。 本発明の実施の形態2における設計空間の説明図である。 本発明の実施の形態2における最適化ブロックモデルの生成方法の説明図である。 本発明の実施の形態2における最適化ブロックモデルの生成方法の説明図である。 本発明の実施の形態2における最適化ブロックモデルの生成方法の説明図である。 本発明の実施の形態2における最適化ブロックモデルの生成方法のとの比較例として実施の形態1の方法で最適化ブロックモデルを生成した状態の説明図である。 本発明の実施の形態2における最適化ブロックモデルの生成方法のとの比較例として実施の形態1の方法で最適化ブロックモデルを生成した状態の説明図である。 本発明の実施の形態3における最適化ブロックモデルの生成方法の説明図である。 本発明の実施の形態3における最適化ブロックモデルの生成方法の説明図である。
[実施の形態1]
 図1に示すとおり、本実施の形態に係る形状最適化解析装置1は、図2に一例を示す平面要素または、平面要素と立体要素を使って構成された構造体モデル13の一部分の形状の数値解析による最適化計算を行う装置である。形状最適化解析装置1は、PC(パーソナルコンピュータ)によって構成され、表示装置3と入力装置5と記憶装置7と作業用データメモリ9および演算処理部11を有している。
 また、演算処理部11には、表示装置3と入力装置5と記憶装置7および作業用データメモリ9が接続され、演算処理部11の指令によって各機能を行う。
<表示装置>
 表示装置3は計算結果の表示等に用いられ、液晶モニター等で構成される。
<入力装置>
 入力装置5は構造体モデル13ファイルの表示指示、操作者の条件入力などに用いられ、キーボードやマウス等で構成される。
<記憶装置>
 記憶装置7内には、少なくとも、構造体モデル13のファイルなどの各種の情報が格納される。構造体モデル13は、平面要素のみによって構成されたものでもよいし、あるいは平面要素と立体要素の組合せによって構成されたものでもよい。例えば、構造体モデル13の例として図2に示すような車体(ボディ)を例に挙げると、車体は主に薄鋼板によって形成されることから平面要素によって構成される。ただ、例えばエンジンのような鋳物で形成されるブロック体のようなものは立体要素で構成される。
<作業用データメモリ>
 作業用データメモリ9内には、計算結果を記憶するデータ記憶領域9aと、計算処理を行うための作業領域9bを有している。
<演算処理部>
 演算処理部11はPCのCPUによって構成され、以下に説明する各部はCPUが所定のプログラムを実行することによって実現される。演算処理部11は、設計空間設定部15と、最適化ブロックモデル生成部17と、結合処理部19と、解析条件入力部21と、最適化解析部23とを備えている。
設計空間設定部15は、構造体モデル13の一部に図3に一例を示す最適化の対象となる部分を設計空間25として設定する。
最適化ブロックモデル生成部17は、設定された設計空間25に立体要素で構成されて最適化の解析処理を行う最適化ブロックモデルを生成する。
結合処理部19は、生成された最適化ブロックモデルを構造体モデル13に結合する処理を行う。
解析条件入力部21は、構造体モデル13の所望の箇所に解析のための解析条件を入力する。
最適化解析部23は、入力された解析条件に基づいて最適化ブロックモデルにおいて数値解析による最適化計算を実行する。
 各部の構成を詳細に説明する。
〔設計空間設定部〕
 設計空間設定部15は、構造体モデル13の一部に最適化の対象となる部分を設計空間25として設定する。図2に示した構造体モデル13においては、車体の中央部のフロア以下の部分に矩形で囲んだ部位が示されているが、この例では当該部位が設計空間25を設定する部位である。
 設計空間設定部15よって構造体モデル13の一部に設計空間25が設定されると、図3に示すように、当該部位における構造体モデル13の一部が削除され、削除された部位が設計空間25となる。図3(a)(b)は、設計空間25を設定した状態を異なる角度から見た状態を示している。
 なお、上記の例は、設計空間設定部15が、構造体モデル13における一部を削除することによって設計空間25を設定する場合であるが、構造体モデル13を生成する際に、予め設計空間25を設定するようにしてもよい。構造体モデル13を生成する際に予め設計空間25を設定する場合には、構造体モデル13生成部自体が設計空間設定部15を兼ねることになる。つまり、本発明の設計空間設定部15は、構造体モデル13生成機能を備えたものであってもよい。
〔最適化ブロックモデル生成部〕
 最適化ブロックモデル生成部17は、設定された設計空間25に最適化の解析処理を行うための最適化ブロックモデル27を生成する。
 生成される最適化ブロックモデル27は、設定された設計空間25に入る大きさで任意の形状にすることができる。
 また、最適化ブロックモデル27は、立体要素で構成され、当該立体要素は五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成するのが好ましい。この理由は、設計空間25に形成される部位が車体の一部のように薄板で形成される場合には、最適化ブロックモデル27で最適化の計算を実行した場合に、薄板の構造体形状に反映できるように最適形状が算出されることが望ましいからである。この点、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素を用いることで、このような要求を満たしやすくなるからである。また、五面体以上の立体要素も均一なサイズのものを配置することで、最適化の精度を上げるようにするのが好ましい。
 図4(a)(b)には矩形状の最適化ブロックモデル27を生成したものが示されており、また、本例で用いた立体要素は、図5に示すように、六面体を用いたものである。
 また、最適化ブロックモデル27は、構造体における設計空間25が設置された周囲の面に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化するように生成するのが好ましい。例えば、図3に示すように、車体におけるフロアの一部が設計空間25として設定された場合には、図4に示すように、矩形状の最適化ブロックを生成し、この最適化ブロックの上下の面が最大面積になっているが、この最大面積となっている上下の面が車体のフロア面と平行になるようにする。
 最適化ブロックモデル27をこのように生成する理由は以下の通りである。例えば車体のフロア面は板材によって形成されるので、最適化ブロックモデル27で最適化の計算を実行した場合に、立体要素が面状に残るような計算結果が望ましく、上記のようなモデル構成にすることで、計算結果が面状に残る可能性が高くなり、実際のものに利用価値が高くなるからである。
〔結合処理部〕
 結合処理部19は、生成された最適化ブロックモデル27を、車体の他の部位である構造体に結合する処理を行う。結合には、剛体要素、板要素または梁要素を用いる。
 最適化ブロックモデル27と構造体との接合は、構造体モデル13(車体)から最適化ブロックモデル27に正確に荷重を伝達させるため、設計空間25として削除した部位と構造体モデル13(車体)との元の接合箇所を反映させるようにするのが好ましい。また、構造体モデル13(車体)の切断面全面で最適化ブロックモデル27に結合する。
 図6には、結合部29が白線で示されている。
〔解析条件入力部〕
 解析条件入力部21は最適化計算を行うための解析条件を入力する。解析条件としては、例えば構造体の拘束位置、荷重を付加する位置、材料体積率、剛性を最大にする、変位を最小にする、応力を最小にする等である。
 例えば、車体に捩じるような荷重が作用する場合において、最適化ブロックモデル27について最大剛性を計算するような場合には、図7に示すように、車体の4箇所(a、b、c、d)を設定して、このうちの3カ所を拘束し、残りの1カ所に荷重を付加するような条件とする。
〔最適化解析部〕
 最適化解析部23は、入力された解析条件に基づいて最適化ブロックモデル27において数値解析による最適化計算を実行する。
 最適化解析部23は、最適化パラメータの離散化を行うのが好ましい。離散化におけるペナルティ係数として2以上または基準となる立体要素のサイズの3~20倍を制限にすることが好ましい。
 最適化パラメータの離散化を行うことで、薄板の構造体形状に反映することが可能になる。
 最適化解析部23としては、トポロジー最適化処理を行うものでもよいし、他の計算方式による最適化処理であってもよい。したがって、最適化解析部としては、例えば市販されている有限要素(finite element)を用いた解析ソフトを使用することができる。
 最適化解析処理を実行することで、図8に示すように、最適化ブロックモデル27における立体要素のうち、与えられた解析条件を満たす最適の形状となる立体要素が残る。
 ここで、着目すべき点は、最適化ブロックモデル27には、結合部29を介して構造体モデル13から荷重が伝達されるという点である。つまり、構造体モデル13から荷重が最適化ブロックモデル27に伝達されることで、最適化計算の過程において最適化ブロックモデル27は変形し荷重の向き等が変わるが、その時々の荷重の向き等の荷重条件を反映して、最終的に最適な形状を与える点である。
 この点を、比較例を示して詳細に説明する。
 図9は、図4に示した矩形状の最適化ブロックモデル27を、構造体の設計空間25に組み入れるのではなく、単体のモデルとしたものである。図10は図9に示したモデルに対して、図6に示した結合部29と同一の箇所について拘束条件を設定して拘束部31としたものである。図10に示した拘束部31を拘束して、上述したような構造体モデル13に組み入れた場合と同様の解析条件によって最適化処理解析を行った結果を示す図が図11である。図11に示すように、最適化ブロックモデル27を単体で取出して最適化の処理を行うと、構造体モデル13の中に最適化ブロックを組み入れて処理を行うのとでは全く異なり、車体の左右を接続する形状は全く残らなくなった。そして、このような形状の違いが例えば剛性向上率において異なる結果となる。従って、本発明で構造体モデルに最適化ブロックモデルを結合することは最適化ブロックモデルを単に拘束するだけでなく、荷重を伝達させることで、実用上活用可能な最適形状を求めることを可能にしたわけである。
この点は、後述する実施例で詳細に説明する。
 次に、上記のように構成される形状最適化解析装置1を用いて実際に解析を実行する際の処理の流れを、図12に示すフローチャートに基づいて説明する。なお、以下に説明する処理は、操作者が入力装置5を通じてPCに指示することによって、PCにおける演算処理部11の各機能が処理を実行するものである。
 操作者が、構造体モデル13のファイル読み出しを入力装置5によって指示することで、構造体モデル13が記憶装置7から読みだされ、表示装置3に表示される(S1)。
 操作者は、表示された構造体モデル13において、最適化処理の対象となる設計空間25を設定する。具体的には、構造体モデル13において設計空間25とする部位の座標を指定して、当該部位の要素を削除する指示を行う。この指示がなされることで、計空間設定部15が当該部位の要素を削除する処理を行い、設計空間25が設定される(S3)。
 設計空間25が設定されると、操作者は設計空間25に入る大きさの最適化ブロックモデル27の生成を最適化ブロックモデル生成部17に指示する。
 指示としては、設計空間25におけるどの面を基準にして最適化ブロックモデル27を生成するかという指示を含む。例えば、図4に示す矩形状の最適化ブロックモデル27を生成するような場合では、車体の側面にある矩形面を基準にして最適化ブロックモデル27を生成するという指示を与えると、最適化ブロックモデル生成部17が前記矩形面を車幅方向に押し出すことによってメッシュ化された最適化ブロックモデル27を生成する(S5)。
 最適化ブロックモデル27が生成されると、操作者が最適化ブロックモデル27と構造体モデル13の結合を指示する。指示には、結合要素として、剛体要素、板要素または梁要素のいずれの要素を用いるかを含む。
 処理部19は、指示を受けて、最適化ブロックモデル27と構造体の結合を行う(S7)。
 結合処理が完了すると、操作者は、解析条件を入力する(S9)。解析条件としては、前述したように、構造体の拘束位置、荷重を加える位置、材料体積率、剛性を最大にする、変位を最小にする、応力を最小にする等である。解析条件の入力が完了すると、解析実行を指示する。
 最適化解析部23は、指示を受けて最適化解析の計算を実行する(S11)。最適化計算によって最適化ブロックモデル27における必要な要素が残った状態が表示部に表示される(S13)。
 操作者は、最適化計算によって得られた形状モデルを作成し、当該モデルに基づいて他の構造解析計算により剛性の確認を行う。
 以上のように本実施の形態では、最適化の対象となる部位を構造体モデルの中に設計空間25を設定し、設定された設計空間25に最適化ブロックモデル27を生成し、当該最適化ブロックモデル27を構造体モデルに結合して解析処理をするようにしたので、最適化ブロックモデル27に構造体モデルとの結合部29から荷重伝達が適切に行われ、最適の形状を精度よく算出することができる。
 これによって、例えば車体構造の最適化が可能になり、剛性や衝突特性の向上が可能になり、剛性や衝突性能を所定値に保持しつつ軽量化を実現することができる。
 なお、上記の説明では、最適化ブロックモデル27を構成する立体要素として図5に示すような六面体を例にあげ、その他の立体要素として、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成するのが好ましい旨を説明した。
 しかし、本発明は、最適化ブロックモデル27を構成する立体要素として、図13に示すような四面体を用いる場合を排除するものではない。ただ、四面体要素を用いる場合は、設計空間25の外形のみ作成し内部は自動的に埋めるようにしてモデル生成することが可能になるが、立体要素の形状として三角形からなる3面の先端が隣り合う部位に尖りを有するものになるため薄板の構造体に反映しにくいという問題がある。
 図14は、図13に示した最適化ブロックモデル27について解析処理を実行した結果を示したものである。図14から分かるように最適形状として残存する形状に凹凸が激しく、薄板の形状に反映させにくいこと、および図8の六面体の場合と比較して中央部に蓋形状(もとのクロスメンバ)がなくなることがわかる。
[実施の形態2]
 本実施の形態は、最適化ブロックモデル生成部17の他の態様に関するものであり、最適化ブロックモデル生成を、構造体モデル13を構成する平面要素または立体要素との結合部29に節点を配置し、最適化ブロックモデル27を構成する立体要素として六面体立体要素を用いると共に前記結合部29に配置された節点を含む平面に沿うように立体要素を積み上げるように行うものである。
 以下、図面を参照しながら具体的に説明する。
 図15は、車体を示す構造体モデル13のリア部の一部に設計空間25を設定した状態を示している。図15に示すように、この例では平面要素で構成される構造体モデル13と最適化ブロックモデル27の立体要素の結合位置に基準軸面に平行でないものが存在する。このような場合に適用するのが本実施の形態である。
 最適化ブロックモデル生成部17は、図16に示すように、車体の側面において構造体モデル13を削除した部位に存在する節点を直線で連結して、最適化ブロックモデル27を作成するための基準となる基準面33を板要素で作成する。基準面33を生成すると、当該基準面33を車幅方向に、節点共有により一体化しているように押し出しで最適化ブロックモデル27を生成する。
 最適化ブロックモデル27を生成した状態を図17、図18に示す。
 このように、基準面33を生成し、この基準面33を用いて最適化ブロックモデル27を生成するようにすることで、傾斜部位などが滑らかな直線になるという効果がある。このようにすることで、最適化ブロックモデル27と構造体モデル13(車体)との結合状態が滑らかになり、その結果、荷重の伝達が正確になるという効果が得られる。
 比較例として、実施の形態1と同様に、事前に基準面33を生成することなく最適化ブロックモデル27を生成した例を図19、図20に示す。図19、図20に示す例では、図17に比べて傾斜部に段35が形成されており、滑らかでないことが分かる。
 本実施の形態によれば、最適化ブロックモデル27の形状が斜面を有するような場合であっても、構造体モデル13(車体)との結合状態が滑らかになり、その結果、荷重の伝達が正確になる。
[実施の形態3]
 実施の形態1、2で示した最適化ブロック生成部による最適化ブロックモデル27の生成は、最適化ブロックモデル27を単体で形成した例を示したが、最適化ブロックモデル生成部17は、最適化ブロックモデル27を、立体要素によって構成される複数のブロックで構成すると共に該複数のブロックを剛体要素、梁要素または平面要素を用いて連結して生成するようにしてもよい。
 以下、具体的に説明する。
 図21、図22は本実施の形態の説明図であり、実施の形態2で示した基準面33を生成する方法を用いると共に複数のブロックで最適化ブロックモデル27を生成する例である。
 まず、設計空間25に独立した複数の基準面33a、33bを生成し(図21参照)、まず上部の三角形の基準面33aを車の前後方向に押し出して三角柱の部分の上部ブロック27aを生成し(図22(a)参照)、三角柱の下方の基準面33bを車幅方向に押し出して下部ブロック27bを生成し(図22(b)参照)、生成したブロック同士と、車体とを結合部29によって結合する(図22(c)参照)。
 最適化ブロックモデル27を複数のブロックに分割して生成することで、直方体のような単純形状でない、例えば複雑な形状のブロックや斜面を含むブロックなどからなる設計空間25においても最適化ブロックモデル27を生成することが可能になる。
 また、最適化ブロックモデル27を複数のブロックに分割して生成することで、最適化ブロックモデル27を滑らかな面で形成することができ、構造体モデル13との接合を滑らかにでき、荷重伝達を正確に行うことができる。
 なお、上部ブロック27aと下部ブロック27bはどちらを先に生成してもよく、またブロック同士の結合と車体との結合はどちらが先でも構わない。
 なお、最適化は節点が共有された空間を対象にするのが基本のため、ブロック結合は結合面積にして20%以下にするのが好ましい。
 図4~図6に示した最適化ブロックモデル27による解析で得られた最適形状を作成した車体を用いて剛性向上率を確認する解析を行った。
 最適形状を求める条件は、下記の三つである。
・立体要素として六面体を用いて一つのブロックとした場合(発明例1)、
・立体要素として六面体を用いた複数のブロックを剛体結合とした場合(発明例2)、
・立体要素として五面体及び六面体を用いて一つのブロックとした場合(発明例3)。
 また、比較例は、下記の三つである。
 ・図9に示した車体との連結のない単独で立体要素として四面体を用いたもの(比較例4)、
 ・同様に単独(車体との連結なし)で立体要素として四面体及び五面体を用いたもの(比較例5)、
 ・同様に単独(車体との連結なし)で立体要素として六面体を用いた複数のブロックを剛体結合したもの(比較例6)。
 解析に用いた車体の寸法は、巾1200mm、長さ3350mm、高さ1130mmで、板厚0.8mmから2.0mmの鋼板および鋼材を用いた。基準の重量は125kgであり、元の形状でのねじり剛性の平均値は25.1(kN*m/deg)である。
 剛性解析の荷重拘束条件は図7に示したように、4点(a、b、c、d)の3点を拘束して他の1点に0.5kNの荷重を与えるという車体ねじりのモードで行った。
 条件と結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、比較例4~6では剛性向上率がほとんどアップしていないのに対して、本発明例1~3では剛性向上率(図2に示した元の構造体モデルに対する剛性向上率)が大きく向上している。本発明によるモデルの作成方法および計算方法により最適化が適切であることが実証された。
 この結果から、従来のように形状の最適化を単独で行うのではなく、構造体モデルの一部に構造体モデルとの連結を行うようにする本発明のモデルの作成方法および計算方法によることで適切な最適形状が得られることが実証された。
 なお、上記の例では、車体の材料として鋼ベースの材料を用いたが、アルミニウム、チタニウム、マグネシウム、ガラス、樹脂、ゴム等、種種の材料を用いてもなんら問題はない。
  1 形状最適化解析装置
  3 表示装置
  5 入力装置
  7 記憶装置
  9 作業用データメモリ
  9a データ記憶領域
  9b 作業領域
 11 演算処理部
 13 構造体モデル
 15 設計空間設定部
 17 最適化ブロックモデル
 19 結合処理部
 21 解析条件入力部
 23 最適化解析部
 25 設計空間
 27 最適化ブロックモデル
 27a 上部ブロック
 27b 下部ブロック
 29 結合部
 31 拘束部
 33 基準面
 33a 基準面
 33b 基準面
 35 段

Claims (13)

  1.   平面要素、または立体要素を使って構造体モデルを構成する一部分の最適化を行う解析方法であって、
      前記構造体モデルにおける最適化の対象となる部分を設計空間として設定する設計空間設定ステップと、
    設定された設計空間に立体要素で構成され最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成ステップと、
     生成された最適化ブロックモデルを前記構造体モデルに結合する結合処理ステップと、
     解析条件を入力して前記最適化ブロックモデルに対する最適形状を求める解析を行う解析ステップと、
     を有する形状最適化解析方法。
  2.   前記最適化ブロックモデルを構成する立体要素が、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成されている請求項1に記載の形状最適化解析方法。
  3.   前記最適化ブロックモデル生成ステップは、前記構造体モデルにおける前記設計空間が設置された周囲の面に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化する最適化ブロックモデルを生成する、請求項1又は2に記載の形状最適化解析方法。
  4.   前記最適化ブロックモデル生成ステップは、構造体モデルを構成する平面要素または立体要素との結合部に節点を配置し、最適化ブロックモデルを構成する立体要素として六面体立体要素を用いると共に前記結合部に配置された節点を含む平面に沿うように立体要素を積み上げるように生成する、請求項1又は2に記載の形状最適化解析方法。
  5.   前記最適化ブロックモデルは、立体要素によって構成される複数のブロック体からなり、該複数のブロック体は剛体要素、梁要素または平面要素を用いて連結されている、請求項1又は2に記載の形状最適化解析方法。
  6.   数値解析による最適化計算において最適化パラメータで離散化を行う、請求項1又は2に記載の形状最適化解析方法。
  7.   平面要素、または平面要素と立体要素を使って構成された構造体モデルの一部分の形状の数値解析による最適化計算を行う形状最適化解析装置であって、
      前記構造体モデルの一部に最適化の対象となる部分を設計空間として設定する設計空間設定部と、
    設定された設計空間に立体要素で構成されて最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成部と、
    生成された最適化ブロックモデルを前記構造体モデルに結合する処理を行う結合処理部と、
    前記構造体モデルの所望の箇所に解析のための解析条件を入力する解析条件入力部と、
    入力された解析条件に基づいて前記最適化ブロックモデルにおいて数値解析による最適化計算を実行する最適化解析部と、
    を有する形状最適化解析装置。
  8.   前記最適化ブロックモデルを構成する立体要素が、五面体以上八面体以下であって互いに平行な2面を少なくとも一組有する立体要素で構成されている、請求項7記載の形状最適化解析装置。
  9.   前記最適化ブロックモデル生成部は、前記構造体モデルにおける前記設計空間が設置された周囲の面前に沿い、かつ設計空間の最大面積を持つ面に平行に立体要素を細分化する前記最適化ブロックモデルを生成する、請求項7又は8に記載の形状最適化解析装置。
  10.   前記最適化ブロックモデル生成部は、構造体モデルを構成する平面要素または立体要素との結合部に節点を配置し、最適化ブロックモデルを構成する立体要素として六面体立体要素を用いると共に前記結合部に配置された節点を含む平面に沿うように立体要素を積み上げるように生成する、請求項7又は8に記載の形状最適化解析装置。
  11.   前記最適化ブロックモデル生成部は、前記最適化ブロックモデルを、立体要素によって構成される複数のブロックで構成すると共に該複数のブロックを剛体要素、梁要素または平面要素を用いて連結して生成する、請求項7又は8に記載の形状最適化解析装置。
  12.   前記最適化解析部は、数値解析による最適化計算において最適化パラメータで離散化を行う、請求項7又は8に記載の形状最適化解析装置。
  13.   前記最適化解析部は、トポロジー最適化による最適化計算を行う、請求項7又は8に記載の形状最適化解析装置。
PCT/JP2012/007100 2012-11-06 2012-11-06 形状最適化解析方法及び装置 WO2014073017A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280076867.4A CN104769592B (zh) 2012-11-06 2012-11-06 形状优化解析方法及装置
US14/440,502 US9858714B2 (en) 2012-11-06 2012-11-06 Shape optimization analyzing method and apparatus therefor
EP12888094.5A EP2919138A4 (en) 2012-11-06 2012-11-06 SHAPE OPTIMIZATION ANALYSIS METHOD AND APPARATUS THEREOF
PCT/JP2012/007100 WO2014073017A1 (ja) 2012-11-06 2012-11-06 形状最適化解析方法及び装置
KR1020157011265A KR101669779B1 (ko) 2012-11-06 2012-11-06 형상 최적화 해석 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/007100 WO2014073017A1 (ja) 2012-11-06 2012-11-06 形状最適化解析方法及び装置

Publications (1)

Publication Number Publication Date
WO2014073017A1 true WO2014073017A1 (ja) 2014-05-15

Family

ID=50684162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007100 WO2014073017A1 (ja) 2012-11-06 2012-11-06 形状最適化解析方法及び装置

Country Status (5)

Country Link
US (1) US9858714B2 (ja)
EP (1) EP2919138A4 (ja)
KR (1) KR101669779B1 (ja)
CN (1) CN104769592B (ja)
WO (1) WO2014073017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112800496A (zh) * 2020-11-06 2021-05-14 大唐环境产业集团股份有限公司 一种烟风道结构设计智能计算模块和方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585672B2 (ja) * 2013-02-01 2014-09-10 Jfeスチール株式会社 形状最適化解析方法及び装置
TWI519987B (zh) * 2014-11-14 2016-02-01 財團法人工業技術研究院 結構拓樸最佳化設計方法
CN106296807A (zh) * 2016-08-09 2017-01-04 张燕丽 一种基于3d技术的工艺美术品快速设计系统
CN106384384B (zh) * 2016-09-18 2020-05-05 上海理工大学 一种三维产品模型的形状优化方法
JP6278087B1 (ja) * 2016-10-04 2018-02-14 Jfeスチール株式会社 車体の接合位置の最適化解析方法及び装置
EP3379434B1 (en) * 2017-03-22 2022-09-28 Tata Consultancy Services Limited A system and method for design of additively manufactured products
JP6497426B1 (ja) * 2017-10-17 2019-04-10 Jfeスチール株式会社 積層複合部材の形状最適化解析方法及び装置
CN114429536B (zh) * 2022-01-04 2024-06-25 华侨大学 一种血管支架多孔结构优化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009026A1 (ja) * 2004-07-16 2006-01-26 Kyoto University 最適設計支援装置、最適設計支援方法及び最適設計支援プログラム
JP2011257915A (ja) * 2010-06-08 2011-12-22 Toyota Motor Corp 設計支援装置および設計支援方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297118A (ja) 2000-04-14 2001-10-26 Hitachi Ltd 構造最適化方法および構造最適化装置
JP2007179456A (ja) 2005-12-28 2007-07-12 Toyota Central Res & Dev Lab Inc 機構構造物の設計装置および設計方法
US8126684B2 (en) 2009-04-10 2012-02-28 Livermore Software Technology Corporation Topology optimization for designing engineering product
US8755923B2 (en) * 2009-12-07 2014-06-17 Engineering Technology Associates, Inc. Optimization system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009026A1 (ja) * 2004-07-16 2006-01-26 Kyoto University 最適設計支援装置、最適設計支援方法及び最適設計支援プログラム
JP2011257915A (ja) * 2010-06-08 2011-12-22 Toyota Motor Corp 設計支援装置および設計支援方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2919138A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112800496A (zh) * 2020-11-06 2021-05-14 大唐环境产业集团股份有限公司 一种烟风道结构设计智能计算模块和方法

Also Published As

Publication number Publication date
EP2919138A4 (en) 2016-01-06
EP2919138A1 (en) 2015-09-16
CN104769592B (zh) 2019-03-22
US9858714B2 (en) 2018-01-02
KR101669779B1 (ko) 2016-10-27
US20150302641A1 (en) 2015-10-22
KR20150065796A (ko) 2015-06-15
CN104769592A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2014073017A1 (ja) 形状最適化解析方法及び装置
JP5585672B2 (ja) 形状最適化解析方法及び装置
JP5810702B2 (ja) 形状最適化解析方法及び装置
JP5585671B2 (ja) 形状最適化解析方法及び装置
JP6497426B1 (ja) 積層複合部材の形状最適化解析方法及び装置
JP6614301B1 (ja) 車体の振動特性の適正化解析方法及び装置
JP5445529B2 (ja) 構造体の接合位置の最適化解析方法及び装置
JP5942872B2 (ja) 構造体の接合位置の最適化解析方法及び装置
WO2014073018A1 (ja) 構造体の接合位置の最適化解析方法及び装置
WO2018154896A1 (ja) 車体の補強部材の形状最適化方法及び形状最適化装置
JP2019128868A (ja) 車体部品の補剛部材の形状最適化解析方法及び装置
JP2021149887A (ja) 相対変位算出方法及び相対変位算出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011265

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14440502

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012888094

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201503363

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: JP