WO2014119068A1 - 高炉ガス用ダストキャッチャ - Google Patents

高炉ガス用ダストキャッチャ Download PDF

Info

Publication number
WO2014119068A1
WO2014119068A1 PCT/JP2013/079527 JP2013079527W WO2014119068A1 WO 2014119068 A1 WO2014119068 A1 WO 2014119068A1 JP 2013079527 W JP2013079527 W JP 2013079527W WO 2014119068 A1 WO2014119068 A1 WO 2014119068A1
Authority
WO
WIPO (PCT)
Prior art keywords
blast furnace
furnace gas
dust
cyclone
dust catcher
Prior art date
Application number
PCT/JP2013/079527
Other languages
English (en)
French (fr)
Inventor
真 冨崎
Original Assignee
新日鉄住金エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Priority to BR112015018143-0A priority Critical patent/BR112015018143B1/pt
Priority to RU2015137055A priority patent/RU2636340C2/ru
Priority to KR1020157019004A priority patent/KR101745983B1/ko
Priority to CN201380070686.5A priority patent/CN104937115B/zh
Publication of WO2014119068A1 publication Critical patent/WO2014119068A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • F27D17/002Details of the installations, e.g. fume conduits or seals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/22Dust arresters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/18Arrangements of dust collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/06Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by reversal of direction of flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces

Definitions

  • the present invention relates to a cleaning method and cleaning equipment for blast furnace gas generated in a blast furnace, and more particularly to a dust catcher for blast furnace gas.
  • the blast furnace gas discharged from the top of the blast furnace is in a high temperature and high pressure state, the energy of the heat and pressure held by the gas is usually recovered by a furnace top pressure recovery power generation device (TRT).
  • TRT furnace top pressure recovery power generation device
  • the blast furnace gas contains dust scattered from the charged raw material, it cannot be used in TRT as it is. Therefore, the exhaust gas is processed and cleaned by a gas cleaning system attached to the blast furnace. Blast furnace gas after passing through TRT is used as fuel gas for heating furnaces, boilers, etc. in steelworks.
  • a blast furnace gas cleaning system uses a dust catcher that is a primary dust collector (a dust remover that decelerates a gas flow in a sedimentation chamber to gravity-precipitate powder) to remove coarse dust to form a rough gas, and then a dry type or A wet secondary dust collector is used to collect medium and fine dust to produce clean gas (see Patent Document 1).
  • a dust catcher as described above, multiple cyclones (dust remover that centrifuges powder by high-speed swirling flow) are installed inside the sedimentation chamber, and after collecting coarse dust in the sedimentation chamber to make rough gas
  • a device that reduces the load on the secondary dust collector has been developed by collecting a medium dust using a cyclone to make a semi-clean gas (see Patent Document 2).
  • the blast furnace gas introduced from the expansion pipe descends in the sedimentation chamber, then reverses at the bottom, rises to the top of the sedimentation chamber, and then is discharged to the outside.
  • the Most of the separation of dust from blast furnace gas by gravity sedimentation is performed while the blast furnace gas rises in the sedimentation chamber.
  • the cyclone intake port is at an intermediate height of the sedimentation chamber (a position slightly higher than the opening of the expansion pipe for introducing the blast furnace gas), and the rising height of the blast furnace gas is sufficiently obtained. Therefore, there is a possibility that sufficient dwell time of the reversal upward flow cannot be obtained, and separation of coarse dust due to gravity sedimentation is not sufficient.
  • Patent Document 2 since the cyclone is installed in the settling chamber, the cross-sectional area of the settling chamber is reduced, the flow rate of the reverse flow of the blast furnace gas is increased, and the flow of the blast furnace gas in the settling chamber is increased. There is a possibility of disturbance. As a result, there is a possibility that the performance of separating coarse particles by gravity settling in the settling chamber may be lowered.
  • Patent Document 2 since the exhaust pipe of the cyclone is installed inside the dust catcher, the intake port of the cyclone becomes the intermediate height of the settling chamber, and the height of the cyclone itself is restricted. Under such restrictions, sufficient dust collection performance as a cyclone may not be obtained.
  • An object of the present invention is to provide a dust catcher for blast furnace gas that can improve the dust collection performance while maintaining the separation performance of coarse particles by improving the cooperation performance between the cyclone and the settling chamber.
  • the dust catcher for blast furnace gas of the present invention is a dust catcher for blast furnace gas that separates dust from blast furnace gas, and includes a settling chamber formed inside a container having an upper opening, and the blast furnace gas inside the settling chamber.
  • the blast furnace gas when blast furnace gas containing dust is sent from the blast furnace, the blast furnace gas is introduced into the settling chamber from the introduction pipe, and coarse dust is separated by gravity settling in the settling chamber.
  • the blast furnace gas is separated into coarse gas by sufficiently separating coarse dust toward the upper part of the settling chamber, and then sent out from the upper opening of the settling chamber to the distribution chamber. It is distributed to the cyclone and the medium dust is separated in each cyclone and becomes a semi-clean gas.
  • a sufficient residence time can be ensured until the blast furnace gas passing through the settling chamber is sent from the upper opening of the settling chamber to the distribution chamber.
  • the distribution chamber is interposed between the cyclone inlet and the settling chamber, even if the blast furnace gas sucked into the cyclone is high speed, the blast furnace gas in the settling chamber is not affected by the flow velocity. It is possible to avoid problems such as sucking powder that is gravity settled in the settling chamber.
  • the exhaust pipe of the cyclone since the exhaust pipe of the cyclone only needs to communicate with a collecting pipe installed independently of the settling chamber, the height of the cyclone itself is not restricted by the height of the settling chamber, and is necessary for the function of the cyclone. A sufficient height can be secured.
  • the distribution chamber is formed by the cover that covers the upper part of the container, necessary functions such as communication with the settling chamber and communication with the intake port of the cyclone can be reliably realized with a simple structure.
  • the cover has a truncated cone shape that extends downward, and the intake port of the cyclone communicates with the distribution chamber below the upper opening.
  • the distribution chamber is formed by the frustoconical cover, the intermediate portion according to the conventional dust catcher has a cylindrical shape and the top and bottom have a conical shape. Remodeling from is easy.
  • an inner flange-like diffuser that protrudes inward from the inner periphery of the upper opening, a cylindrical diffuser that protrudes downward to a region inside the upper opening on the inner surface of the cover, or protrudes upward from the upper opening. It is desirable that at least one of the cylindrical diffusers is installed.
  • the powder in the blast furnace gas traveling from the sedimentation chamber to the cyclone through the distribution chamber can be collided and returned to the sedimentation chamber.
  • the collided powder can be dropped toward the upper opening and reliably returned to the settling chamber. Further, the colliding powder can be reliably returned from the upper opening into the sedimentation chamber by protruding upward from the cylindrical diffuser protruding downward on the inner surface of the cover or the upper opening.
  • a wear-resistant coating be formed on the surface of the diffuser.
  • wear of the diffuser due to powder collision can be suppressed, and durability can be improved.
  • the cyclones are arranged in a circular shape, a collecting pipe is installed above the cyclone, and the exhaust pipes of the cyclones are connected to the collecting pipe, respectively.
  • the semi-clean gas from which the medium dust is separated in each cyclone is collected in the collecting pipe, so that it can be sent to the secondary dust collector at once.
  • the cyclones are arranged in a straight line, a conveyor is installed below the cyclone, and a powder discharge port of the cyclone is connected to the conveyor.
  • the medium dust collected by each cyclone can be collected in a lump by collecting it in a dust hopper by a conveyor, a pug mill or the like.
  • Sectional drawing which shows F3 cross section of the said FIG. Sectional drawing which shows F4 cross section of the said FIG. The longitudinal cross-sectional view equivalent to the said FIG. 2 which shows 2nd Embodiment of this invention.
  • FIG. 1 schematically shows the overall configuration of a blast furnace gas cleaning system 1 according to a first embodiment of the present invention.
  • the blast furnace gas cleaning system 1 is a device that collects dust (powder) from blast furnace gas discharged from the top of the blast furnace 2, and includes a dust catcher 10 according to the present invention, and a dry dust collector such as an electric dust collector. 3.
  • a wet dust collector 4 such as a venturi scrubber, a furnace top pressure recovery power generation turbine (TRT) 5, a gas holder 6, and a pressure reducing valve 7 are provided.
  • TRT furnace top pressure recovery power generation turbine
  • the blast furnace gas discharged from the top of the blast furnace 2 collects coarse and medium dust by the dust catcher 10, is made into semi-clean gas, and is sent to the secondary dust collector.
  • a dry dust collector 3 is usually used to collect fine dust.
  • the fine dust is collected by the wet dust collector 4.
  • the clean gas collected up to the fine dust is used for power generation by driving the TRT 5 and decompressed, and then collected in the gas holder 6 and used as fuel gas in other processes.
  • the clean gas is decompressed by the decompression valve 7 and then collected in the gas holder 6.
  • the dust catcher 10 is a blast furnace gas that separates coarse dust by gravity sedimentation into rough gas, and then separates medium dust by centrifugal separation using a cyclone to make a semi-clean gas.
  • high dust collection performance is ensured by being configured according to the present invention.
  • the configuration other than the dust catcher 10 is the same as that of the existing one.
  • the dust catcher 10 provides high dust collection performance as described above, the number of the dry dust collectors 3 and the wet dust collectors 4 is set. Has been reduced.
  • the dust catcher 10 of this embodiment is shown by FIG.2, FIG3 and FIG.4.
  • the dust catcher 10 has a steel plate container 11 whose middle part is cylindrical and whose top and bottom are conical, and the inside of the container 11 is a settling chamber 12.
  • a dust discharge valve 111 is installed at the lower end of the container 11.
  • An upper opening 112 is formed at the upper end of the container 11.
  • an introduction pipe 13 for introducing blast furnace gas from the top of the blast furnace 2 (see FIG. 1) is installed.
  • the introduction tube 13 is an expansion tube 131 whose tip increases in diameter toward the opening.
  • the expansion pipe 131 is introduced into the settling chamber 12 from the upper opening 112 and is held in a state of opening downward at an intermediate height of the settling chamber 12.
  • the blast furnace gas introduced from the introduction pipe 13 is released into the sedimentation chamber 12 while being decelerated by the expansion pipe 131, flows toward the bottom portion thereof, and then reverses at the bottom portion so as to be an upper opening 112 of the sedimentation chamber 12. It will flow toward.
  • a cover 14 made of a steel plate having a truncated cone shape that extends downward is installed on the top of the container 11.
  • the cover 14 has a two-stage truncated cone shape having different inclinations, and a cylindrical portion 141 is formed at the lower end that is the outermost periphery.
  • An introduction pipe 13 is passed through the upper part of the container 11 where the cover 14 is installed.
  • the cover 14 is arranged coaxially with the introduction pipe 13, and the introduction pipe 13 passes through the center of the cover 14. Yes.
  • a distribution chamber 15 is formed inside the cover 14 by a space between the cover 14 and the upper part of the container 11 covered with the cover 14.
  • the distribution chamber 15 communicates with the settling chamber 12 inside the container 11 through the upper opening 112 of the container 11.
  • the cyclone 16 includes a main body 160 having a tapered tubular lower end, a dust discharge valve 161 installed at the lower end, an exhaust pipe 162 disposed coaxially from the upper end to the inside of the main body 160, and an upper end of the main body 160. And an intake port 163 formed on the side surface.
  • the intake port 163 is a slit-shaped passage extending along the axial direction of the cyclone 16, is connected to the cylindrical portion 141 on the outermost periphery of the cover 14, and communicates with the distribution chamber 15 inside the cover 14.
  • the air inlet 163 has a nozzle shape in the tangential direction with respect to the outer periphery of the main body 160 on the main body 160 side in order to form a swirling flow necessary for the cyclone 16.
  • the side connected to the cover 14 is greatly expanded, so that even if the gas flow rate on the main body 160 side is increased, the gas flow rate can be kept low inside the distribution chamber 15.
  • An annular collecting pipe 17 is installed above the cyclones 16 arranged in a circle.
  • the collecting pipe 17 is formed by making the steel pipe into an annular shape, and the exhaust pipe 162 of each cyclone 16 is connected thereto.
  • a semi-clean gas pipe 171 is connected to the collecting pipe 17.
  • the semi-clean gas discharged from each cyclone 16 is first collected in the collecting pipe 17 and is collectively sent from the semi-cleaning gas pipe 171 to the secondary dust collector (the dry dust collector 3 or the wet dust collector 4).
  • blast furnace gas containing dust when blast furnace gas containing dust is sent from the blast furnace 2, the blast furnace gas is introduced into the settling chamber 12 from the introduction pipe 13, and coarse dust is separated in the settling chamber 12. Is done.
  • the blast furnace gas is sufficiently separated from coarse dust while flowing through the settling chamber 12, and then sent out from the upper opening 112 of the settling chamber 12 to the distribution chamber 15, and from the distribution chamber 15 to each intake port 163. Then, it is distributed to a plurality of cyclones 16, and medium dust is separated in each cyclone 16.
  • coarse dust is sufficiently separated from the blast furnace gas passing through the settling chamber 12 until the blast furnace gas is sent from the upper portion of the settling chamber 12 to the distribution chamber 15. Further, since the distribution chamber 15 is interposed between the intake port 163 of the cyclone 16 and the settling chamber 12, even if the blast furnace gas sucked into the cyclone 16 is at a high speed, the blast furnace gas in the settling chamber 12 has a flow velocity. It is possible to avoid problems such as sucking in dust that is gravity settled in the settling chamber 12 without being affected.
  • the exhaust pipe 162 of the cyclone 16 only needs to communicate with the collecting pipe 17 installed independently of the settling chamber 12, the height of the cyclone 16 itself is not limited by the height of the settling chamber 12, A sufficient height necessary for the function of the cyclone 16 can be secured.
  • the distribution chamber 15 is formed by the truncated cone-shaped cover 14, necessary functions such as communication with the upper portion of the settling chamber 12 and communication with the intake port 163 of the cyclone 16 are reliably performed with a simple structure. be able to.
  • the intermediate part according to the conventional dust catcher has a good compatibility with the container 11 having a cylindrical shape and a conical shape at the top and bottom, and the existing dust catcher can be easily modified.
  • the cyclone 16 is outside the container 11, the flow of blast furnace gas in the settling chamber 12 is not disturbed.
  • the cyclones 16 are arranged in a circular shape, and the annular collecting pipe 17 is installed above the cyclones 16 and the exhaust pipes 162 from the cyclones 16 are connected. Clean gas can be collected and sent to the secondary dust collector at once.
  • FIG. 5 shows a second embodiment of the present invention.
  • This embodiment has the same configuration as that of the first embodiment shown in FIGS. 1 to 4 except that the diffusers 21 and 22 are installed inside the upper opening 112 and the cover 14. Therefore, overlapping description is omitted, and only different configurations will be described below.
  • a disc-shaped diffuser 21 is installed inside the upper opening 112.
  • the diffuser 21 is formed of an annular steel plate protruding like an inner flange from the inner periphery of the opening edge of the upper opening 112 to the inner side of the opening, and a steel reinforcing plate 211 is welded to the lower surface side of the diffuser 21 at a predetermined interval.
  • a cylindrical diffuser 22 is installed inside the cover 14.
  • the diffuser 22 is formed of a cylindrical steel material protruding downward on the inner surface of the cover 14, and a steel reinforcing plate 221 is welded to the outer peripheral surface thereof at a predetermined interval. At this time, the outer diameter of the diffuser 22 is formed smaller than the inner diameter of the upper opening 112.
  • a wear-resistant coating is formed on the surface of these diffusers 21 and 22, respectively.
  • the diffuser 21 can cause the coarse dust in the blast furnace gas flowing from the settling chamber 12 to the distribution chamber 15 to collide with the diffuser 21 and be separated from the blast furnace gas.
  • the separated coarse dust can be dropped by gravity and returned to the settling chamber 12 from the upper opening 112 directly below.
  • the diffuser 22 can cause the coarse dust in the blast furnace gas to come out of the settling chamber 12 toward the distribution chamber 15 to collide with the diffuser 22 and be separated from the blast furnace gas.
  • the separated dust can be returned into the sedimentation chamber 12.
  • the coarse dust returned to the settling chamber 12 settles in the lower part of the container 11 and is periodically discharged out of the system through the dust discharge valve 111.
  • the coarse dust contained in the blast furnace gas flowing from the settling chamber 12 to the distribution chamber 15 can be separated and recovered with high efficiency by the double diffusers 21 and 22.
  • the cylindrical diffuser 22 is installed so as to stand upward on the upper surface of the annular diffuser 21 as shown in FIG. 6 instead of the one that projects downward on the inner surface of the cover 14 as shown in FIG. May be.
  • the diffusers 21 and 22 are installed in a double manner, but each of the effects can be obtained with either one.
  • FIG. 7 shows a third embodiment of the present invention.
  • This embodiment has the same configuration as the first embodiment of FIGS. 1 to 4 described above, but is different from the first embodiment in the shape of the inlet 163 of the cyclone 16. That is, in the first embodiment, the intake port 163 of the cyclone 16 has a shape in which the distribution chamber 15 side is expanded as shown in FIG. On the other hand, the intake port 163 of the present embodiment is a slit-shaped passage having a constant width, similar to the main body 160 side. Also according to this embodiment, the effects of the first embodiment described above can be obtained.
  • FIG. 8 shows a fourth embodiment of the present invention.
  • the present embodiment has the same configuration as the first embodiment of FIGS. 1 to 4 described above, but is different from the first embodiment in the form of the container 11 and the installation state of the cyclone 16. That is, in the first embodiment, the cyclone 16 is arranged on the outer periphery of the container 11 as shown in FIG. On the other hand, in the present embodiment, a part of the cyclone 16 is installed inside the container 11, and an upper end (side with the exhaust pipe 162) and a lower end (side with the dust container 111) are exposed to the outside of the container 11. Has been.
  • a cylindrical steel plate partition 113 is installed inside the cyclone 16, and the inside of the partition 113 serves as a settling chamber 12.
  • the container 11 has a larger diameter than that of the first embodiment, and the inner diameter of the partition wall 113 of this embodiment is the same as the inner diameter of the container 11 of the first embodiment. Is secured.
  • the effects of the first embodiment described above can be obtained.
  • structural strength can be ensured by connecting the container 11 and the cyclone 16. At this time, a part of the cyclone 16 is disposed in the container 11, but the expansion of the container 11 does not reduce the volume of the settling chamber 12.
  • FIGS. 9 and 10 show a fifth embodiment of the present invention.
  • the configurations of the container 11, the settling chamber 12, the introduction pipe 13, the cover 14, and the distribution chamber 15 are the same as those of the first embodiment shown in FIGS. Therefore, overlapping description is omitted, and only different configurations will be described below.
  • the cyclones 16 are arranged in a circle around the container 11.
  • the cyclones 16 are arranged in a straight line at two locations around the container 11. In each row, the cyclones 16 are arranged in a straight line, but the intervals between them are not uniform.
  • the main body 160, the dust container 161, and the exhaust pipe 162 are the same as those in the first embodiment described above.
  • the shape of the intake port 163 for connecting to the cover 14 and the distribution chamber 15 is changed. While the cyclones 16 are arranged in a straight line in each row, the planar shape of the cover 14 is circular, so that the shape of each intake port 163 gradually narrows from the cover 14 to the cyclone 16. Is set to
  • the annular collecting pipe 17 in the first embodiment, has a U shape. In this embodiment, it has a pair of linear part 172 arrange
  • each exhaust pipe 162 is connected to a straight portion 172 directly above, and the semi-clean gas discharged from each is sent from the straight portion 172 to the curved portion 173, and two rows are merged to be semi-clean. It is sent out from the gas pipe 171 to the secondary dust collector (the dry dust collector 3 or the wet dust collector 4).
  • the conveyor 19 is installed for each row.
  • the conveyor 19 is installed below the cyclone 16 in each row, and is connected to the lower end of the main body 160 of each cyclone 16. That is, in this embodiment, the dust collected by the cyclone 16 is not individually discharged out of the system by the dust discharge valve 111 (see FIG. 2) of the first embodiment, but by the conveyor 19 and the dust hopper 192. And are collectively discharged by the dust discharge valve 191.
  • the effects of the first embodiment described above can be obtained. Furthermore, since the cyclone 16 is arranged linearly, the conveyor 19 can be used for dust collection, and the workability of dust collection can be greatly improved.
  • the present invention is not limited to the above-described embodiments, and modifications and the like within a range in which the object of the present invention can be achieved are included in the present invention.
  • the shapes of the container 11, the introduction pipe 13, the cover 14, and the cyclone 16 in the dust catcher 10 may be changed as appropriate in the implementation, and it is desirable to design according to the situation at the installation site and the required performance. Further, the number, arrangement, arrangement direction, and the like of the cyclones 16 may be appropriately changed.

Abstract

 高炉ガス用ダストキャッチャ(10)は、容器(11)の内部に形成された沈降室(12)と、沈降室(12)の内部に高炉ガスを導入する導入管(13)と、沈降室(12)の上方に設置されて沈降室(12)の上部に連通された分配室(15)と、沈降室(12)の周囲に配置されかつ分配室(15)の内部に連通する吸気口(163)を有する複数のサイクロン(16)と、を有する。

Description

高炉ガス用ダストキャッチャ
 本発明は、高炉で発生した高炉ガスの清浄方法及び清浄設備に関し、中でも高炉ガス用ダストキャッチャに関する。
 高炉炉頂から排出される高炉ガスは高温高圧の状態であるため、通常、炉頂圧力回収発電装置(TRT)によってガスの保有する熱および圧力のエネルギーを回収している。しかし、高炉ガスは装入された原料から飛散したダストなどを含んでいるため、そのままではTRTで使用できない。そのため、排ガスは高炉に付帯するガス清浄系統で処理して清浄にしている。TRTを通した後の高炉ガスは製鉄所内の加熱炉、ボイラ等の燃料ガスとして利用されている。
 一般に、高炉ガス清浄系統は、1次集塵機であるダストキャッチャ(沈降室でガス流を減速して粉体を重力沈降させる除塵器)で粗粒ダストを除去して荒ガスとした後、乾式または湿式の2次集塵機を用いて中粒及び微粒ダストを捕集して清浄ガスとしている(特許文献1参照)。
 前述のようなダストキャッチャとして、沈降室の内部に複数のサイクロン(高速旋回流により粉体を遠心分離する除塵器)を設置し、沈降室で粗粒ダストを捕集して荒ガスとした後にサイクロンを使用して中粒ダストを捕集して半清浄ガスとすることで、2次集塵機の負荷軽減を図るものが開発されている(特許文献2参照)。
特開2003-268425号公報 特開2009-90185号公報
 前述した中粒ダストおよび微粒ダストは、高炉操業に有害な亜鉛を多く含むため、高炉用原料として再利用するためには亜鉛を分離する必要がある。他方、粗粒ダストは亜鉛含有量が少ないため、高炉用原料として再利用する際、亜鉛の分離工程が不要である。このため、高炉ダストの効率的な再利用のためには、粗粒ダストとそれ以外のダストは分別して回収する必要がある。
 前述した特許文献2のダストキャッチャは、沈降室による集塵とサイクロンによる集塵との組み合わせにより高い集塵性能が得られるが、以下の事由により重力沈降による粗粒ダストの回収率が下がり、粗粒ダストの一部が中粒ダスト・微粒ダストに混ざって回収されてしまうという問題があることが解った。
 第1に、サイクロンがない従来式のダストキャッチャでは、拡大管から導入された高炉ガスは、沈降室内を下降した後、底部で反転し、沈降室の上端まで上昇した後、外部へと排出される。重力沈降による高炉ガスからのダストの分離は、多くが沈降室内を高炉ガスが上昇する間に行われる。これに対し、特許文献2では、サイクロンの吸気口が、沈降室の中間高さ(高炉ガスを導入する拡大管の開口よりやや高い位置)にあり、高炉ガスの上昇高さが十分に得られず、反転上昇流の充分な滞留時間が得られず、重力沈降による粗粒ダストの分離が十分でなくなる可能性がある。
 第2に、サイクロンでは、旋回流の遠心分離を行う構造上、吸入される高炉ガスの流速が速いことが望ましい。しかし、特許文献2のように、サイクロンの吸気口が沈降室に直接連通していると、サイクロンに吸入される高速の高炉ガスが、吸気口近傍を重力沈降する粉体をも吸い込んでしまい、重力沈降による粗粒ダスト分離の機能を妨げてしまう可能性がある。
 第3に、特許文献2では、サイクロンが沈降室内に設置されることで、沈降室の断面積が小さくなり、高炉ガスの反転上昇流の流速が速くなり、また沈降室内の高炉ガスの流れを乱す可能性がある。その結果、沈降室での重力沈降による粗粒ダスト分離の性能を低下させる可能性もあった。
 さらに、特許文献2では、サイクロンの排気管をダストキャッチャ内部に設置するため、サイクロンの吸気口が沈降室の中間高さとなり、サイクロン自体の高さも制約される。このような制約のもとでは、サイクロンとしての十分な集塵性能が得られない可能性もある。
 本発明の目的は、サイクロンと沈降室との連携性能の向上により粗粒ダストの分離性能を維持したまま、集塵性能の向上が図れる高炉ガス用ダストキャッチャを提供することにある。
 本発明の高炉ガス用ダストキャッチャは、高炉ガスからダストを分離する高炉ガス用ダストキャッチャであって、上部開口を有する容器の内部に形成された沈降室と、前記沈降室の内部に前記高炉ガスを導入する導入管と、前記容器の上部を覆うカバーの内部に形成されて前記上部開口を通して前記沈降室に連通された分配室と、前記沈降室の周囲に配置されかつ前記分配室の内部に連通する吸気口を有する複数のサイクロンと、を有することを特徴とする。
 このような本発明では、高炉からダストを含む高炉ガスが送られると、この高炉ガスは導入管から沈降室の内部へと導入され、沈降室内で粗粒ダストが重力沈降により分離される。高炉ガスは、沈降室の上部に向かって十分に粗粒ダストが分離され荒ガスとなった後、沈降室の上部開口から分配室へと送り出され、分配室から各々の吸気口を経て複数のサイクロンへ分配され、各サイクロンで中粒ダストが分離され、半清浄ガスとなる。
 このような本発明によれば、沈降室を通る高炉ガスは、沈降室の上部開口から分配室に送り出されるまでの間に、十分な滞留時間が確保できる。
 また、サイクロンの吸気口と沈降室との間に分配室が介在することで、サイクロンに吸入される高炉ガスが高速であっても、沈降室内の高炉ガスに流速の影響を及ぼすことがなく、沈降室内で重力沈降する粉体を吸い込む等の問題を回避することができる。
 さらに、サイクロンの排気管は、沈降室と独立して設置された集合管に連通すればよいため、サイクロン自体の高さも沈降室の高さに制約を受けることがなく、サイクロンとして機能上必要な十分な高さを確保することができる。
 そして、本発明では、容器の上部を覆うカバーにより分配室を形成したため、沈降室との連通およびサイクロンの吸気口との連通といった必要な機能を、簡単な構造で確実に実現することができる。
 本発明において、前記カバーは、下向きに拡がる円錐台形状とされ、前記サイクロンの前記吸気口は、前記上部開口よりも下方で前記分配室に連通されていることが望ましい。
 このような本発明では、円錐台形状のカバーにより分配室を形成したため、従来のダストキャッチャに準じた中間部が円筒状で上下が円錐形状となる形状との親和性もよく、既存のダストキャッチャからの改造も容易である。
 本発明において、前記上部開口の内周から内側にせり出す内フランジ状のディフューザ、前記カバーの内面の前記上部開口より内側となる領域に下向きにせり出す円筒状のディフューザまたは前記上部開口部から上向きにせり出す円筒状のディフューザの少なくとも何れかが設置されていることが望ましい。
 このような本発明では、何れかのディフューザあるいはこれらの組み合わせを設けることで、沈降室から分配室を経てサイクロンに向かう高炉ガス中の粉体を衝突させて沈降室へと戻すことができる。
 このうち、上部開口の内周から内側にせり出す内フランジ状のディフューザによれば、衝突した粉体を上部開口に向けて落下させ、沈降室内へと確実に戻すことができる。
 また、カバーの内面に下向きにせり出す円筒状のディフューザあるいは前記上部開口部から上向きにせり出すによっても、衝突した粉体を上部開口から沈降室内へと確実に戻すことができる。
 本発明において、前記ディフューザの表面には耐摩耗性のコーティングが形成されていることが望ましい。
 このような本発明では、粉体の衝突によるディフューザの摩耗を抑制することができ、耐久性を向上させることができる。
 前記サイクロンは円形に配列され、前記サイクロンの上方には集合管が設置され、前記サイクロンの排気管はそれぞれ前記集合管に接続されていることが望ましい。
 このような本発明では、各サイクロンで中粒ダストが分離された半清浄ガスを集合管に集めることで、一括して2次集塵機へと送り出すことができる。
 前記サイクロンは直線上に配列され、前記サイクロンの下方にはコンベアが設置され、前記サイクロンの粉体排出口はそれぞれ前記コンベアに接続されていることが望ましい。
 このような本発明では、各サイクロンで捕集された中粒ダストをコンベアやパグミル等でダストホッパに集めることで、一括して回収することができる。
本発明の第1実施形態の高炉ガス清浄系統の全体を示す模式図。 前記第1実施形態のダストキャッチャを示す縦断面図。 前記図2のF3断面を示す断面図。 前記図2のF4断面を示す断面図。 本発明の第2実施形態を示す前記図2相当の縦断面図。 前記第2実施形態の変形例の前記図2相当の縦断面図。 本発明の第3実施形態を示す前記図4相当の断面図。 本発明の第4実施形態を示す前記図2相当の縦断面図。 本発明の第5実施形態を示す平面図。 前記第5実施形態を示す縦断面図。
 以下、本発明の実施形態を図面に基づいて説明する。
〔第1実施形態〕
 図1には、本発明の第1実施形態の高炉ガス清浄系統1の全体構成が模式的に示されている。
 高炉ガス清浄系統1は、高炉2の炉頂から排出される高炉ガスからダスト(粉体)を集塵する装置であり、本発明に係るダストキャッチャ10を備えるとともに、電気式集塵機等の乾式集塵機3、ベンチュリスクラバ等の湿式集塵機4、炉頂圧回収発電用タービン(TRT)5、ガスホルダ6、減圧弁7を備えている。
 この高炉ガス清浄系統1においては、高炉2の炉頂から排出された高炉ガスは、ダストキャッチャ10で粗粒及び中粒ダストを集塵し、半清浄ガスとされ、2次集塵機に送られる。2次集塵機は通常、乾式集塵機3を使用し、微粒ダストの集塵が行われる。高炉ガスの温度が乾式集塵機の使用可能温度域を外れているときなど、乾式集塵機が使用できないときは、微粒ダストの集塵は湿式集塵機4によって行われる。微粒ダストまで集塵された清浄ガスは、TRT5を駆動して発電に利用され減圧された後、ガスホルダ6に回収され、他のプロセスで燃料ガスとして利用される。TRT5が整備などのため、使用できないときは、清浄ガスは減圧弁7で減圧された後、ガスホルダ6に回収される。
 このうち、ダストキャッチャ10は、高炉ガスを、重力沈降により粗粒ダストを分離して荒ガスとした後、サイクロンを用いた遠心分離により中粒ダストを分離して半清浄ガスとするものであり、特に本発明に基づき構成されることで高い集塵性能が確保されている。
 高炉ガス処理系統1において、ダストキャッチャ10以外の構成は既存のものと同様であるが、前述した通りダストキャッチャ10において高い集塵性能が得られるため、乾式集塵機3および湿式集塵機4の設置数が削減されている。
 図2、図3および図4には、本実施形態のダストキャッチャ10が示されている。
 ダストキャッチャ10は、中間部が円筒状で上下が円錐形状とされた鋼板製の容器11を有し、この容器11の内部が沈降室12とされている。
 容器11の下端にはダスト排出弁111が設置されている。容器11の上端には上部開口112が形成されている。
 容器11の上方には、高炉2(図1参照)の炉頂から高炉ガスを導く導入管13が設置されている。
 導入管13は、先端が開口に向かって拡径する拡張管131とされている。拡張管131は、上部開口112から沈降室12内へと導入され、沈降室12の中間高さにおいて下向きに開口した状態で保持されている。
 これにより、導入管13から導入される高炉ガスは、拡張管131により減速しつつ沈降室12内に解放され、その底部に向けて流れた後、底部で反転して沈降室12の上部開口112に向けて流れることになる。
 容器11の上部には、下向きに拡がる円錐台形状の鋼板製のカバー14が設置されている。本実施形態において、カバー14は異なる傾斜を有する二段の円錐台形状とされ、さらに最外周となる下端には円筒部141が形成されている。
 カバー14が設置される容器11の上部には導入管13が通されており、カバー14は導入管13と同軸で配置され、導入管13がカバー14の中心を貫通するような構成とされている。
 カバー14の内側には、カバー14で覆われる容器11の上部との間の空間により、分配室15が形成されている。
 分配室15は、容器11の上部開口112を通して、容器11の内部の沈降室12と連通されている。
 容器11の周囲には、6本のサイクロン16が円形に配列されている。
 本実施形態では、サイクロン16は120度間隔で均等配置されている。なお、サイクロン16の設置数は要求性能に応じて適宜設定すればよい。また、サイクロン16の配列間隔も高炉ガスの容器11内での偏流によって適宜決定すればよい。
 サイクロン16は、下端側がテーパ管状とされた本体160と、その下端に設置されたダスト排出弁161と、本体160の上端から内部へと同軸で配置された排気管162と、本体160の上端の側面に形成された吸気口163とを備えている。
 吸気口163は、サイクロン16の軸方向に沿って延びるスリット状の通路であり、前述したカバー14の最外周の円筒部141に接続され、カバー14の内部の分配室15に連通されている。
 図4にも示すように、吸気口163は、サイクロン16に必要な旋回流を形成するために、本体160側が本体160の外周に対して接線方向のノズル状とされている。一方、カバー14に接続される側は大きく拡げられ、これにより本体160側でのガス流速を速くしても、分配室15内側ではガス流速を低く抑制することができる。
 円形に配列されたサイクロン16の上方には環状の集合管17が設置されている。
 本実施形態において、集合管17は、鋼管を円環状にして形成され、各サイクロン16の排気管162がそれぞれ接続されている。
 集合管17には、半清浄ガス管171が接続されている。これにより、各サイクロン16から排出される半清浄ガスは、先ず集合管17に集められ、半清浄ガス管171から一括して2次集塵機(乾式集塵機3または湿式集塵機4)へと送り出される。
 このような本実施形態においては、高炉2からダストを含む高炉ガスが送られると、この高炉ガスは導入管13から沈降室12の内部へと導入され、沈降室12内で粗粒ダストが分離される。高炉ガスは、沈降室12を上部まで流れる間に粗粒ダストを十分に分離された後、沈降室12の上部開口112から分配室15へと送り出され、分配室15から各々の吸気口163を経て複数のサイクロン16へ分配され、各サイクロン16で中粒ダストが分離される。
 このような本実施形態によれば、沈降室12を通る高炉ガスは、沈降室12の上部から分配室15に送り出されるまでの間に、粗粒ダストが十分に分離される。
 また、サイクロン16の吸気口163と沈降室12との間に分配室15が介在することで、サイクロン16に吸入される高炉ガスが高速であっても、沈降室12内の高炉ガスに流速の影響を及ぼすことがなく、沈降室12内で重力沈降するダストを吸い込む等の問題を回避することができる。
 さらに、サイクロン16の排気管162は、沈降室12と独立して設置された集合管17に連通すればよいため、サイクロン16自体の高さも沈降室12の高さに制約を受けることがなく、サイクロン16として機能上必要な十分な高さを確保することができる。
 本実施形態では、円錐台形状のカバー14により分配室15を形成したため、沈降室12の上部との連通およびサイクロン16の吸気口163との連通といった必要な機能を、簡単な構造で確実に行うことができる。また、従来のダストキャッチャに準じた中間部が円筒状で上下が円錐形状となる形状の容器11との親和性もよく、既存のダストキャッチャの改造も容易である。
 さらに、サイクロン16が容器11の外部にあるため、沈降室12内の高炉ガスの流れを乱すこともない。
 本実施形態では、サイクロン16を円形に配列し、サイクロン16の上方に環状の集合管17を設置して各サイクロン16からの排気管162を接続したため、各サイクロンで中粒ダストが分離された半清浄ガスを集めて、一括して2次集塵機へと送り出すことができる。
〔第2実施形態〕
 図5には、本発明の第2実施形態が示されている。
 本実施形態は、上部開口112およびカバー14の内側にディフューザ21,22が設置されている点を除き、前述した図1~図4の第1実施形態と同じ構成を有する。従って、重複する説明は省略し、以下には異なる構成についてのみ説明する。
 上部開口112の内側には、円盤状のディフューザ21が設置されている。
 ディフューザ21は、上部開口112の開口縁の内周から開口内側へと内フランジ状にせり出す円環状の鋼板で形成され、ディフューザ21の下面側には所定間隔で鋼製の補強板211が溶接されている。
 カバー14の内側には、円筒状のディフューザ22が設置されている。
 ディフューザ22は、カバー14の内面に下向きにせり出す円筒状の鋼材で形成され、その外周面には所定間隔で鋼製の補強板221が溶接されている。この際、ディフューザ22の外径は、上部開口112の内径よりも小さく形成されている。
 これらのディフューザ21,22の表面には、それぞれ耐摩耗性のコーティングが形成されていること。
 このような本実施形態においては、ディフューザ21により、沈降室12から分配室15へと流れ込んだ高炉ガス中の粗粒ダストをディフューザ21に衝突させて、高炉ガスから分離することができる。分離された粗粒ダストは、重力で落下して直下の上部開口112から沈降室12へと戻すことができる。
 また、ディフューザ22により、分配室15に向けて沈降室12から出ようとする高炉ガス中の粗粒ダストをディフューザ22に衝突させ、高炉ガスから分離することができる。分離されたダストは、沈降室12内に戻すことができる。
 これら沈降室12内に戻された粗粒ダストは、それぞれ容器11の下部に沈降し、定期的にダスト排出弁111を通って系外に排出される。
 従って、本実施形態においては、二重のディフューザ21,22により、沈降室12から分配室15へと流れる高炉ガスに含まれる粗粒ダストを高効率で分離させ、回収することができる。その結果、分配室15からサイクロン16へと送られる高炉ガスに含まれる粗粒ダストを減少させ、高炉のダスト再利用を効率的に行うことができる。
 なお、円筒状のディフューザ22については、図5のようにカバー14の内面に下向きにせり出すものに代えて、図6のように、円環状のディフューザ21の上面に上向きに起立するように設置してもよい。
 また、本実施形態では、ディフューザ21,22を二重に設置したが、何れか一方であってもそれぞれの効果を得ることができる。
 さらに、本実施形態では、ディフューザ21,22の表面にそれぞれ耐摩耗性のコーティングを形成したため、粉体の衝突によるディフューザの摩耗を抑制することができ、耐久性を向上させることができる。
〔第3実施形態〕
 図7には、本発明の第3実施形態が示されている。
 本実施形態は、前述した図1~図4の第1実施形態と同じ構成を有するが、第1実施形態とはサイクロン16の吸気口163の形状が異なる。
 すなわち、第1実施形態では、サイクロン16の吸気口163が、図4に示すように分配室15側が拡がった形状とされていた。これに対し、本実施形態の吸気口163は、本体160側と同様に一定幅のスリット状の通路とされている。
 このような本実施形態によっても、前述した第1実施形態の各効果をそれぞれ得ることができる。
 但し、サイクロン16の吸気口163が分配室15側で拡がっていることによる、分配室15側の流速抑制効果は得られない。しかし、1次集塵を行う沈降室12までの間には分配室15があり、1次集塵に対する影響までは生じることがなく、集塵性能を大きく低下させるものではない。
〔第4実施形態〕
 図8には、本発明の第4実施形態が示されている。
 本実施形態は、前述した図1~図4の第1実施形態と同じ構成を有するが、第1実施形態とは容器11の形態およびサイクロン16の設置状態が異なる。
 すなわち、第1実施形態では、図2に示すようにサイクロン16が容器11の外周に配列されていた。これに対し、本実施形態では、サイクロン16は一部が容器11の内側に設置され、その上端(排気管162がある側)および下端(ダスト容器111がある側)が容器11の外部に露出されている。
 容器11の内部には、サイクロン16の内側に円筒状の鋼板製の隔壁113が設置され、この隔壁113の内側が沈降室12とされている。容器11は、第1実施形態に比べて大径に形成され、本実施形態の隔壁113の内径が第1実施形態の容器11の内径と同様とされており、これにより沈降室12の内部容積が確保されている。
 このような本実施形態によっても、前述した第1実施形態の各効果をそれぞれ得ることができる。
 とくに、本実施形態では、容器11とサイクロン16を接続することで構造的な強度が確保できる。この際、サイクロン16が一部容器11内に配置されるが、容器11の拡張により、沈降室12の容積を減らすことがない。
〔第5実施形態〕
 図9および図10には、本発明の第5実施形態が示されている。
 本実施形態は、容器11、沈降室12、導入管13、カバー14および分配室15の構成については、前述した図1~図4の第1実施形態と同じ構成を有する。従って、重複する説明は省略し、以下には異なる構成についてのみ説明する。
 前述した第1実施形態では、サイクロン16が容器11の周囲に円形に配列されていた。これに対し、本実施形態では、サイクロン16が容器11の周囲の2箇所で直線上に配列されている。なお、各列において、サイクロン16はそれぞれ直線状に並んでいるが、相互の間隔は均等ではない。
 サイクロン16は、本体160、ダスト容器161、排気管162については前述した第1実施形態と同様である。但し、サイクロン16の配置が異なることから、カバー14および分配室15に対する接続を行うための吸気口163の形状が変更されている。
 サイクロン16が各列で直線状に並んでいるのに対し、カバー14の平面形状は円形であるため、各吸気口163の形状はカバー14からサイクロン16に至る間に徐々に幅が狭くなるように設定されている。
 本実施形態では、サイクロン16が直線状に並ぶ配置となったのに伴い、第1実施形態における環状の集合管17(図2および図3参照)を、U字形状にしている。
 本実施形態では、2列のサイクロン16に沿って各々の上方に配置された一対の直線部172と、これらを連結する曲線部173とを有し、曲線部173の中間に半清浄ガス管171が接続されている。
 サイクロン16は、各々の排気管162が直上の直線部172に接続され、各々から排出される半清浄ガスは、直線部172から曲線部173へと送られて2列分が合流され、半清浄ガス管171から2次集塵機(乾式集塵機3または湿式集塵機4)へと送り出される。
 一方、本実施形態では、サイクロン16が直線状に並ぶ配置となったのに伴い、各列ごとにコンベア19が設置されている。
 コンベア19は、各列のサイクロン16の下方に設置され、各サイクロン16の本体160の下端に接続されている。すなわち、本実施形態においては、サイクロン16で捕集されたダストは、第1実施形態のダスト排出弁111(図2参照)で個別に系外に排出されるのではなく、コンベア19でダストホッパ192に集められ、一括してダスト排出弁191で系外に排出される。
 このような本実施形態によっても、前述した第1実施形態の各効果をそれぞれ得ることができる。
 さらには、サイクロン16が直線状配置されることで、ダスト回収にコンベア19を用いることができ、ダスト回収の作業性を大幅に向上することができる。
〔変形例〕
 なお、本発明は前記各実施形態に限定されるものではなく、本発明の目的を達成できる範囲の変形等は本発明に含まれるものである。
 例えば、ダストキャッチャ10における容器11、導入管13、カバー14およびサイクロン16の各形状等は実施にあたって適宜変更してもよく、設置現場の状況および要求性能に応じて設計することが望ましい。
 また、サイクロン16の本数、配置、配列方向なども適宜変更してよい。
1…高炉ガス清浄系統
2…高炉
3…乾式集塵機
4…湿式集塵機
5…TRT
6…ガスホルダー
7…減圧弁
10…ダストキャッチャ
11…容器
111…ダスト排出弁
112…上部開口
12…沈降室
13…導入管
131…拡張管
14…カバー
141…円筒部
15…分配室
16…サイクロン
160…本体
161…ダスト排出弁
162…排気管
163…吸気口
17…集合管
171…半清浄ガス管
172…直線部
173…曲線部
19…コンベア
191…ダストホッパ
192…ダスト排出弁
21,22…ディフューザ
211,221…補強板

Claims (6)

  1.  高炉ガスからダストを分離する高炉ガス用ダストキャッチャであって、
     上部開口を有する容器の内部に形成された沈降室と、前記沈降室の内部に前記高炉ガスを導入する導入管と、前記容器の上部を覆うカバーの内部に形成されて前記上部開口を通して前記沈降室に連通された分配室と、前記沈降室の周囲に配置されかつ前記分配室の内部に連通する吸気口を有する複数のサイクロンと、を有することを特徴とする高炉ガス用ダストキャッチャ。
  2.  請求項1に記載した高炉ガス用ダストキャッチャにおいて、
     前記カバーは、下向きに拡がる円錐台形状とされ、
     前記サイクロンの前記吸気口は、前記上部開口よりも下方で前記分配室に連通されていることを特徴とする高炉ガス用ダストキャッチャ。
  3.  請求項2に記載した高炉ガス用ダストキャッチャにおいて、
     前記上部開口の内周から内側にせり出す内フランジ状のディフューザ、前記カバーの内面の前記上部開口より内側となる領域に下向きにせり出す円筒状のディフューザまたは前記上部開口から上向きにせり出す円筒状のディフューザの少なくとも何れかが設置されていることを特徴とする高炉ガス用ダストキャッチャ。
  4.  請求項3に記載した高炉ガス用ダストキャッチャにおいて、
     前記ディフューザの表面には耐摩耗性のコーティングが形成されていることを特徴とする高炉ガス用ダストキャッチャ。
  5.  請求項1から請求項4の何れかに記載した高炉ガス用ダストキャッチャにおいて、
     前記サイクロンは円形に配列され、
     前記サイクロンの上方には集合管が設置され、
     前記サイクロンの排気管はそれぞれ前記集合管に接続されていることを特徴とする高炉ガス用ダストキャッチャ。
  6.  請求項1から請求項4の何れかに記載した高炉ガス用ダストキャッチャにおいて、
     前記サイクロンは直線上に配列され、
     前記サイクロンの下方にはコンベアが設置され、
     前記サイクロンの粉体排出口はそれぞれ前記コンベアに接続されていることを特徴とする高炉ガス用ダストキャッチャ。
PCT/JP2013/079527 2013-02-01 2013-10-31 高炉ガス用ダストキャッチャ WO2014119068A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112015018143-0A BR112015018143B1 (pt) 2013-02-01 2013-10-31 Coletor de poeira para gás de alto-forno
RU2015137055A RU2636340C2 (ru) 2013-02-01 2013-10-31 Пылеуловитель для доменного газа
KR1020157019004A KR101745983B1 (ko) 2013-02-01 2013-10-31 고로 가스용 더스트 캐처
CN201380070686.5A CN104937115B (zh) 2013-02-01 2013-10-31 高炉煤气收尘器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-018624 2013-02-01
JP2013018624A JP5320514B1 (ja) 2013-02-01 2013-02-01 高炉ガス用ダストキャッチャ

Publications (1)

Publication Number Publication Date
WO2014119068A1 true WO2014119068A1 (ja) 2014-08-07

Family

ID=49595830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079527 WO2014119068A1 (ja) 2013-02-01 2013-10-31 高炉ガス用ダストキャッチャ

Country Status (6)

Country Link
JP (1) JP5320514B1 (ja)
KR (1) KR101745983B1 (ja)
CN (1) CN104937115B (ja)
BR (1) BR112015018143B1 (ja)
RU (1) RU2636340C2 (ja)
WO (1) WO2014119068A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034626A1 (de) * 2014-09-04 2016-03-10 Dürr Ecoclean GmbH Separator und verfahren zum abtrennen von partikeln aus einem gasstrom
CN114225606A (zh) * 2020-09-09 2022-03-25 财团法人工业技术研究院 微粒捕集系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020135944A (ja) * 2019-02-13 2020-08-31 株式会社東芝 燃料電池水タンク、及び燃料電池発電システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521545A (en) * 1978-08-02 1980-02-15 Nippon Steel Corp Blast furnace gas purifying facility
JPS5955331A (ja) * 1982-09-24 1984-03-30 Sumitomo Metal Ind Ltd 高炉用ガス清浄装置
JPS6111119A (ja) * 1984-06-14 1986-01-18 Nichidoku Jukogyo Kk 除塵装置
JP2010255049A (ja) * 2009-04-24 2010-11-11 Nippon Steel Engineering Co Ltd 高炉ガス用ダストキャッチャ
JP2010537056A (ja) * 2007-08-29 2010-12-02 ポール ヴルス エス.エイ. 溶鉱炉ガスの集塵装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268425A (ja) 2002-01-11 2003-09-25 Jfe Steel Kk 高炉ダストの処理方法
ITGE20040005A1 (it) * 2004-01-23 2004-04-23 Sms Demag S P A Impianto di depurazione dei gas d'altoforno per produzione di ghisa.
UA44391U (ru) * 2005-06-29 2009-10-12 Даниэли Корус Техникал Сервисис Бв Циклонный сепаратор для доменного газа
RU2329307C2 (ru) * 2006-08-02 2008-07-20 Открытое акционерное общество "Новолипецкий металлургический комбинат" (ОАО "НЛМК") Пылеуловитель
JP2009090185A (ja) 2007-10-05 2009-04-30 Nippon Steel Engineering Co Ltd 高炉ガス用ダストキャッチャ
CN202621317U (zh) * 2012-05-23 2012-12-26 济钢集团国际工程技术有限公司 高炉荒煤气旋流式除尘器
CN102758042B (zh) * 2012-08-14 2013-09-25 唐忠库 高炉炉顶荒煤气旋流除尘回收系统及其回收方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521545A (en) * 1978-08-02 1980-02-15 Nippon Steel Corp Blast furnace gas purifying facility
JPS5955331A (ja) * 1982-09-24 1984-03-30 Sumitomo Metal Ind Ltd 高炉用ガス清浄装置
JPS6111119A (ja) * 1984-06-14 1986-01-18 Nichidoku Jukogyo Kk 除塵装置
JP2010537056A (ja) * 2007-08-29 2010-12-02 ポール ヴルス エス.エイ. 溶鉱炉ガスの集塵装置
JP2010255049A (ja) * 2009-04-24 2010-11-11 Nippon Steel Engineering Co Ltd 高炉ガス用ダストキャッチャ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034626A1 (de) * 2014-09-04 2016-03-10 Dürr Ecoclean GmbH Separator und verfahren zum abtrennen von partikeln aus einem gasstrom
CN114225606A (zh) * 2020-09-09 2022-03-25 财团法人工业技术研究院 微粒捕集系统
CN114225606B (zh) * 2020-09-09 2023-05-02 财团法人工业技术研究院 微粒捕集系统

Also Published As

Publication number Publication date
CN104937115B (zh) 2017-04-12
CN104937115A (zh) 2015-09-23
KR101745983B1 (ko) 2017-06-12
BR112015018143A2 (pt) 2017-07-18
BR112015018143B1 (pt) 2019-10-15
RU2015137055A (ru) 2017-03-10
RU2636340C2 (ru) 2017-11-22
KR20150110521A (ko) 2015-10-02
JP5320514B1 (ja) 2013-10-23
JP2014148721A (ja) 2014-08-21

Similar Documents

Publication Publication Date Title
CN101790588B (zh) 用于鼓风炉炉气的除尘装置
CN206064647U (zh) 一种高炉旋风除尘器
JP5320514B1 (ja) 高炉ガス用ダストキャッチャ
CN106714932A (zh) 用于灰尘和其他污染物的过滤装置
JP2009090185A (ja) 高炉ガス用ダストキャッチャ
RU2489194C1 (ru) Вихревой пылеуловитель
US1811597A (en) Apparatus for cleaning gases
CN216677569U (zh) 一种具有喷淋降尘功能的粉末除尘器
CN102525349A (zh) 真空吸尘器
CN210905485U (zh) 复合式旋流除尘器
CN102228872A (zh) 一种旋风式水粉气分离装置
CN205667908U (zh) 旋风分离的新型旋风子
WO2015092149A1 (en) Method and wet scrubber for removing particles from gases
CN212309892U (zh) 一种旋风分离器、分离装置及生产线
CN202823659U (zh) 切流旋风除尘器及包括该除尘器的竖炉煤气净化系统
CN102179319A (zh) 生态油旋风分离器
CN102671778A (zh) 带有螺旋进风管的旋风除尘器
CN105214860A (zh) 气体-固体两相多级旋风分离装置
JP5308224B2 (ja) 高炉ガス用ダストキャッチャ
US2339416A (en) Dust concentrator
CN2164912Y (zh) 斜管式圆筒形多管旋风分离器
CN104328234B (zh) 一种高炉煤气粉尘粗收集装置及方法
CN102319643A (zh) 一种配合正压状态旋风分离器工作的排料锁风装置
CN211394522U (zh) 一种高炉煤气重力除尘器
CN202893537U (zh) 一种新型旋风除沫器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157019004

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015137055

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13874173

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015018143

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015018143

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150729