WO2014117457A1 - 一种用于激光冲击强化叶片的水约束层的喷射方法和装置 - Google Patents

一种用于激光冲击强化叶片的水约束层的喷射方法和装置 Download PDF

Info

Publication number
WO2014117457A1
WO2014117457A1 PCT/CN2013/075954 CN2013075954W WO2014117457A1 WO 2014117457 A1 WO2014117457 A1 WO 2014117457A1 CN 2013075954 W CN2013075954 W CN 2013075954W WO 2014117457 A1 WO2014117457 A1 WO 2014117457A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
point
water
faucet
processed
Prior art date
Application number
PCT/CN2013/075954
Other languages
English (en)
French (fr)
Inventor
张永康
鲁金忠
巩水利
戴峰泽
邹世坤
Original Assignee
中国航空工业集团公司北京航空制造工程研究所
东南大学
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航空工业集团公司北京航空制造工程研究所, 东南大学, 江苏大学 filed Critical 中国航空工业集团公司北京航空制造工程研究所
Priority to US14/765,538 priority Critical patent/US9909195B2/en
Publication of WO2014117457A1 publication Critical patent/WO2014117457A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/122Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to presence or shape of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines

Definitions

  • the invention relates to the technical field of laser shock reinforced, in particular to a spraying method for a water-constrained layer of a laser shock reinforced blade, and a device for realizing the method, which forms a water film with a uniform thickness on the surface of the blade, and is suitable for a structural metal Laser-strengthened water-constrained layer with a small curvature (curvature radius greater than 50 mm) smooth surface.
  • Laser shock peening (LSP: also known as laser peening) is a new material surface strengthening technology with high pressure, high energy, ultra fast and ultra high strain rate. It has the unparalleled advantages of conventional processing methods and has remarkable advantages. The technical advantage can greatly enhance the durability of metal materials, prevent surface cracks, improve the service life of materials and reduce maintenance costs. At the beginning of the 21st century, the United States applied LSP technology to the reinforcement and remanufacturing of F101, F119 and F414 engine blades.
  • a constrained layer must be used in the laser impact process.
  • the constraining layer covers the surface of the workpiece.
  • the thickness and material (component and properties) directly affect the effect of laser shock strengthening.
  • the constrained layer medium used in the film includes K9 optical glass, plexiglass, silica gel, synthetic resin and water.
  • the glass constraining layer has the most obvious effect on the shock wave pressure increase, but it is only suitable for planar processing, and is fragile and difficult to clean;
  • the synthetic resin has little adhesion to the target and is difficult to reuse.
  • the advantage of the water-constrained layer is that it is cheap, clean, and has good repeatability, and can process the curved surface, and the flowing water-constrained layer can take away the solid dust particles after the plasma explosion. , has obvious advantages, the laser impact-strengthened structural metal members in the industry usually use a water-constrained layer.
  • the most typical aerospace components for laser impact-enhanced industrial applications at home and abroad are the laser impact enhancement treatment of engine blades and integral blade discs.
  • the multi-axis table is controlled by the program to move the blades or Rotate to ensure that the laser beam is perpendicular to the tangent plane (machining plane) at the point to be processed;
  • the traditional method and device for processing the plane water confinement layer are used in the country, that is, the angle and position of the effluent of the faucet are unchanged during the processing.
  • the incident laser beam and the blade impact point are to be perpendicular, so that the spray effluent angle of the faucet cannot be changed in real time.
  • the present invention provides a water constrained layer spraying method for laser shock reinforced blades, that is, three points (probing point I and detecting point) on a vertical section of the blade to be processed along the direction of the laser beam
  • the standard curve segment corresponding to II and a point to be machined approximately replaces the actual curve segment on the blade, so that the angle between the water flow direction of the faucet and the tangential plane of the point to be machined is 10° -15°, and the water is from standard.
  • the midpoint of the curve segment (approximating the midpoint of the actual curve segment) flows into the surface to be machined to ensure a stable, uniform thickness of the water confinement layer at the end of the curve segment (the area to be machined).
  • the present invention provides a stable, uniform thickness water confinement layer spray device, including rangefinder platform, bracket, range finder, controller I, controller II, faucet, transition joint, signal line, hose and The water tank; the probe is equipped with a probe I and a probe II, and the connection between the probe I and the probe II is perpendicular to the bottom surface of the rangefinder, and the distance between the probe I and the probe II is adjustable (10) -20 mm), the output of the range finder is connected to the input of controller I via signal line I.
  • the controller I is a total controller for controlling the movement and rotation of the five-axis table, the controller II, the faucet; the input of the five-axis table is connected to the output of the controller I; the rangefinder platform is located at the laser and five Between the axis table; the range finder is fixed on the range finder platform by the bracket so that the laser beam emitted by the laser can pass through the gap between the range finder and the range finder platform without interference, and the signal output of the range finder Connected to the input of controller I via signal line I; controller II is mounted on the transition joint, and its input is connected to the output of controller I; the faucet is located above the five-axis table, higher than the probe 1 10-20 Mm, connected to the hose through the transition joint; the tank is mounted above the faucet and connected to the hose.
  • the faucet of the present invention is composed of a casing and a flat nozzle.
  • the flat nozzle has a cross-sectional dimension of lmm ⁇ 20 mm, and can rotate freely around the axis of the casing according to the instruction of the controller II, and the two ends of the transition joint are respectively connected with the faucet and the soft by the taper pipe thread.
  • the tubes are connected, and a controller II is provided between the hose and the faucet head casing for controlling the water flow rate, the water flow speed and the water flow pressure, and the rotation of the nozzle relative to the outer casing;
  • the hose is composed of 15-30 identical conical tubular structures The angle between the adjacent two cones is less than 30°, so the faucet can be placed at any angle and at any position; the controller II is controlled by the controller I, and the position of the faucet and the direction of the flat nozzle are adjusted according to the processing needs.
  • the long side of the flat nozzle is parallel with the plane of the blade to be machined by the controller I, and the angle between the water flow direction of the faucet and the plane of the plane to be processed is For 10 -15°, ensure a stable and uniform water flow.
  • the range finder on the rangefinder platform through the bracket to ensure that the connection between the probe head I and the probe head II is perpendicular to the bottom surface (reference plane) of the rangefinder, and that the connection between the probe head I and the probe head II is ensured.
  • the line is on the same plane as the laser beam; at the same time, the distance D1 of the probe head ⁇ from the point to be processed is 10-20 mm, the distance L in the horizontal direction is 20-30 mm, and then the position of the probe head I is adjusted.
  • Controller I adjusts the flow rate, flow rate and pressure of the water flow through the command control controller II, so that the thickness of the water confinement layer in the area to be processed is 1-3 mm.
  • the invention can make the faucet automatically move or rotate according to the spatial position of the blade, form a stable and uniform thickness water film as the impact layer in the impact point area of the blade, improve the quality of the laser impact blade, and increase the laser impact strengthening.
  • the long side of the flat nozzle is parallel to the cutting plane of the blade to be machined, which is conducive to the formation of a stable and uniform thickness of the water confinement layer; at the same time, the angle between the direction of the jet flow of the faucet nozzle and the tangential plane of the point to be machined is 10 ° -15 °, can avoid the influence of randomness error, can also avoid the gap formed by the sprayed water film and the surface of the blade formed by the excessive angle and the thick water film formed by the concave surface to affect the impact effect, thereby making the water in the area to be processed
  • the constraining layer is uniform and stable;
  • the controller II is placed between the hose and the faucet head housing to directly control the water flow, water flow rate and water flow pressure, as well as the rotation of the flat nozzle relative to the housing.
  • the transition joint can increase the joint strength between the hose and the faucet, and at the same time, the water flow can be changed from round to flat. Buffering in the process, so it can adapt to higher water flow pressure.
  • Figure 1 is a schematic view showing the structure of a water constraining layer device
  • Figure 2 is a schematic view of the operation of the water confinement layer device
  • FIG. 3 is a schematic structural view of a faucet
  • Figure 4 is a schematic view of the nozzle structure
  • Figure 5 is a schematic view showing the connection of the faucet and the transition joint, the controller II and the hose;
  • a spraying device for a water-constrained layer of a laser shock reinforced blade comprising a range finder platform 2, a bracket 14, a range finder 3, a controller 15, a controller 118, a faucet 4, a transition Connector 7, signal line I 10, signal line II 11, signal line 11128, signal line IV29, hose 12 and water tank 6.
  • the input end of the five-axis table 9 is connected to the output of the controller I 5 through the signal line ; 28; the range finder platform 2 is located between the laser 1 and the five-axis table 9; the range finder 3 is connected to the range finder platform via the bracket 14 2 (the laser beam can pass through the gap between the range finder and the rangefinder platform without interference), between the laser 1 and the 5-axis table 9, and its signal output through the signal line I 10 and the controller I
  • the input end of 5 is connected; the controller I 5 is located above the five-axis table 9, does not interfere with the laser beam 15, and its output end is connected to the input end of the faucet 4 through the signal line II 11; the controller II 8 is located on the transition joint 7, The input end is connected to the output end of the controller I5 through the signal line IV29; the faucet 4 is located above the five-axis table 9, 10-20 mm higher than the probe head I16, and is connected to the hose 12 through the transition joint 7; It is mounted above the faucet 4 and is connected to the transition joint 7.
  • the distance between the two points to be machined 22 and the point to be machined 22 is D1 (10-20 mm) and D2 (D2 is 2 times D1) to the machining plane 25 by the range finder 2 Distance (denoted as L1 and L2), and then input these four values to the controller 1 5; in the controller 15 5, the program is constructed with the point 22 to be processed as the origin, and the incident direction of the laser beam 15 is the horizontal axis, vertical Straight up to the coordinate system of the vertical axis, then the coordinates of the two points input in the coordinate system are (Ll, Dl) and (L2, D2) respectively; the controller I 5 calculates the faucet 4 according to the coordinates of the input point.
  • the target angle and position thereby controlling the movement or rotation of the faucet 4 and controlling the rotation of the nozzle 27 relative to the outer casing 26 by the controller II 8, so that the long side of the nozzle 27 is parallel with the cutting plane of the blade 13 to be machined, and the flow direction is
  • the angle between the cutting plane directions of the points to be processed is 10° -15°;
  • the controller 1 5 adjusts the flow rate, flow rate and pressure parameters of the water flow through the controller ⁇ 8 to make the thickness of the water confinement layer of the area to be processed 1-3 mm, thereby realizing the process of laser shock reinforced blade or integral blade
  • the uniformity of the medium-water constrained layer is uniform and there is no gap with the blade surface.

Abstract

一种用于激光冲击强化叶片的水约束层的喷射方法及装置。所述装置包括激光器(1)、测距仪平台(2)、支架(14)、测距仪(3)、控制器I(5)、控制器II(8)、水龙头(4)、过渡接头(7)、信号线、软管(12)和水箱(6)。通过叶片(13)上沿激光束方向的竖直截面上三个点(探测点I和探测点II和一个待加工点)所对应的标准曲线段近似代替叶片上的实际曲线段,使水流从近似为实际曲线段中点的标准曲线段中点流入叶片(13),并且根据测距仪返回信息通过控制器I(5)将扁平的喷嘴长边与叶片(13)待加工点切平面保持平行,并使水龙头(4)的水流方向与待加工点切平面方向之间的角度为10°-15°,从而保证在曲线段下端点处区域(待加工区域)形成稳定、厚度均匀的水约束层。

Description

一种用于激光冲击强化叶片的水约束层的喷射方法和装置 技术领域
本发明涉及激光冲击强化技术领域, 特指一种用于激光冲击强化叶片的水约束层的喷射方 法, 以及实现这种方法的装置, 粘附叶片表面形成均匀厚度的水膜, 适用于结构金属小曲率 (曲率半径大于 50 mm)光滑表面的激光冲击强化处理的水约束层。
背景技术
激光冲击强化 (LSP: 又叫激光喷丸)是一种新型的材料表面强化技术, 具有高压、 高能、 超快和超高应变率等特点, 具有常规加工方法无可比拟的优点, 具有显著的技术优势, 能大 幅增强金属材料的耐久性, 防止表面出现裂纹, 提高材料的使用寿命降低维修成本; 21 世 纪初, 美国将 LSP技术应用到 F101、 F119和 F414发动机叶片的强化和再制造上。
要实现激光冲击波的力学强化效果, 必须在激光冲击过程中使用约束层, 约束层覆盖在工 件表面, 其厚度、 材质 (成分和性能)直接影响激光冲击强化的效果; 目前, 国内外文献和试 验中所使用的约束层介质包括 K9光学玻璃、 有机玻璃、 硅胶、 合成树脂和水等, 玻璃类约 束层对冲击波压力提升效果最明显, 但仅适用于平面加工, 且易碎, 难于清理; 硅胶和合成 树脂与靶材结合力小, 且难以重复利用; 水约束层的优点是廉价、 清洁、 重复效果好, 可加 工曲面, 而且流动的水约束层可以带走等离子体爆炸后的固体粉尘颗粒, 具有明显的优势, 工业中激光冲击强化结构金属构件通常使用水约束层。
目前国内外激光冲击强化工业应用最典型的航空构件是发动机叶片和整体叶盘的激光冲击 强化处理, 在对叶片曲面进行激光冲击强化的过程中, 由程序控制多轴工作台使叶片进行移 动或转动, 保证激光束垂直于待加工点处的切平面 (加工平面); 目前国内多采用传统的加工 平面的水约束层的方法和装置, 即水龙头的喷射出水角度和位置在加工过程中不变, 在实际 激光冲击过程中由于要保证入射激光束和叶片冲击点垂直, 而不能够保证水龙头的喷射出水 角度实时变化, 在水流速稍大时, 会在叶片凸面部分曲面和水约束层间形成空隙, 从而入射 激光束烧蚀叶片表面, 形成加工破坏; 在叶片凹面部分曲面形成较厚的水膜影响激光冲击强 化效果; 为了使激光冲击叶片过程中形成稳定、 均匀厚度的水约束层, 国内发明专利 ZL200510094810.9 "基于激光冲击技术的新型水约束层增压的方法和装置" 中提出利用水龙 头随行控制器实现对水约束层的实时控制, 但主要集中在水约束层的控制, 并未涉及水龙头 喷嘴形状和结构设计, 也没有进一步说明水龙头随行控制器的控制方法和实现装置。
发明内容 为解决上述技术问题, 本发明提供了一种用于激光冲击强化叶片的水约束层喷射方法, 即 通过待加工叶片上沿激光束方向的竖直截面上三个点 (探测点 I和探测点 II和一个待加工点) 所对应的标准曲线段近似代替叶片上的实际曲线段, 使水龙头的水流方向与待加工点切平面 方向之间的角度为 10° -15°, 并使水从标准曲线段中点 (近似为实际曲线段中点)流入叶片待 加工表面, 从而保证在曲线段下端点处区域 (待加工区域)形成稳定、 均匀厚度的水约束层。 同时, 本发明提供一种稳定、 均匀厚度的水约束层的喷射装置, 包括测距仪平台, 支架, 测距仪, 控制器 I, 控制器 II, 水龙头, 过渡接头, 信号线, 软管和水箱; 所述的测距仪上 安装有探测头 I和探测头 II, 探测头 I和探测头 II连线与测距仪底面垂直, 探测头 I和探测 头 II之间的距离可调 (10-20 mm), 测距仪的输出端通过信号线 I与控制器 I的输入端相连。 控制器 I为总控制器, 用于控制五轴工作台, 控制器 II, 水龙头的移动和转动; 五轴工作 台的输入端与控制器 I的输出端相连; 测距仪平台位于激光器与五轴工作台之间; 测距仪通 过支架固定在测距仪平台上使得激光器发出的激光束能够通过测距仪与测距仪平台之间的空 隙, 不发生干涉, 测距仪的信号输出端通过信号线 I与控制器 I的输入端相连; 控制器 II安 装在过渡接头上, 其输入端与控制器 I的输出端相连; 水龙头位于五轴工作台上方, 高于探 测头 1 10-20 mm, 通过过渡接头与软管相连; 水箱安装在水龙头上方, 与软管相连。
本发明所述的水龙头由外壳和扁平喷嘴组成, 扁平喷嘴截面尺寸为 lmmX20mm, 能够根 据控制器 II的指令绕外壳的轴线相对于外壳自由转动, 过渡接头两端通过锥管螺纹分别与水 龙头和软管相连, 在软管与水龙头头部外壳之间设置有控制器 II, 用于控制水流量、 水流速 度和水流压力, 以及喷嘴相对于外壳的转动; 软管由 15-30个相同锥管状结构组成, 相邻两 个锥管的轴线夹角小于 30°, 因此水龙头能够实现任意角度和任意位置的摆放; 控制器 II受 控制器 I控制, 根据加工需要调整水龙头的位置和扁平喷嘴的方向; 在激光冲击叶片前, 根 据测距仪返回信息通过控制器 I将扁平的喷嘴长边与叶片待加工点切平面保持平行, 并使水 龙头的水流方向与待加工点切平面方向之间的角度为 10 -15°, 确保水流的稳定和厚度均 匀。
使用该装置的具体步骤为:
(1) 通过支架将测距仪安装在测距仪平台上, 保证探测头 I和探测头 II的连线与测距仪底 面 (基准面)垂直, 并且确保探测头 I和探测头 II的连线与激光束位于同一平面上; 同时, 探 测头 Π与待加工点垂直方向上的距离 D1为 10-20 mm, 水平方向上的距离 L为 20-30 mm, 然后调节探测头 I的位置, 使探测头 I与待加工点垂直方向上的距离为 D2(D2 为 D1 的 2 倍); (2) 将工件装夹在五轴工作台上, 通过五轴工作台的移动使待加工点位于激光束的聚焦焦 点上, 并且待加工点处的切平面与加工平面重合;
(3) 通过测距仪测出待加工点上方与待加工点垂直距离分别为 Dl(10-20 mm)和 D2(D2 为 Dl的 2倍)的两个点到加工平面 (垂直于激光束并通过激光束焦点的平面)的距离, 记为 L1和 L2, 然后将这四个值输入到控制器 I; 在控制器 I中, 通过程序构建以待加工点为原点, 激 光束入射方向为横轴, 竖直向上为纵轴的坐标系, 则可以得到该坐标系下输入的两个点坐标 分别为 (Ll, Dl)和 (L2, D2); 控制器 I根据输入点的坐标, 计算出水龙头的目标角度和位 置, 其中 tan e =D2/L2; Θ为水流方向与待加工点处的切平面的夹角, 入水点的横坐标 (L2- 2Ll)/2*Cos( Θ ) *Cos( e )+Ll ; 纵坐标 (L2-2L1 ) /2*Cos( Θ )*Sin( Θ )+Dl; 从而控制水龙头移 动或转动以及通过控制器 Π对喷嘴相对于外壳的转动进行控制, 使水龙头喷嘴长边与叶片待 加工点切平面保持平行, 水龙头的水流方向与待加工点切平面方向之间的角度为 10 -15°, 确保水流的稳定和厚度均匀;
(4) 控制器 I通过指令控制控制器 II调节水流的流速、 流量以及压力, 使待加工区水约束 层的厚度为 1-3 mm。
本发明的有益效果如下:
(1) 本发明能够使水龙头自动根据叶片的空间位置作相应的移动或转动, 在叶片待冲击点 区域形成稳定和厚度均匀水膜作为冲击时约束层, 提高激光冲击叶片质量, 增加激光冲击强 化效果;
(2) 通过叶片上沿激光束方向的竖直截面上三个点所对应的微小的标准曲线段近似代替叶 片上的实际曲线段, 简化了对叶片上沿激光束方向的竖直截面复杂信息的处理, 有利于程序 化、 自动化的实现。 在曲线段微小的条件下, 该方法所产生的误差可以忽略;
(3) 水流从标准曲线段中点 (近似为实际曲线段中点) 流入叶片, 既可以避免直接从待加 工点流入产生水膜厚度不均匀, 又有利于程序化、 自动化的实现;
(4) 扁平喷嘴长边与叶片待加工点切平面保持平行, 有利于形成稳定和厚度均匀的水约束 层; 同时, 水龙头喷嘴喷射水流的方向与待加工点切平面方向之间的角度为 10° -15°, 可以 避免随机性误差的影响, 也可避免因角度过大形成的喷射水膜和叶片表面形成的间隙以及凹 面形成较厚的水膜影响冲击效果, 从而使待加工区域的水约束层均匀稳定;
(5) 在软管与水龙头头部外壳之间设置控制器 II, 可以直接控制水流量、 水流速度和水流 压力, 以及扁平喷嘴相对于外壳的转动。
(6) 过渡接头能增加软管与水龙头之间的连接强度, 同时能在水流由圆形转变为扁平状的 过程中起缓冲作用, 因此能适应更高的水流压力。
附图说明
图 1为水约束层装置结构的示意图;
图中: 1. 激光器, 2. 测距仪平台, 3. 测距仪, 4. 水龙头, 5. 控制器 I, 6. 水箱, 7. 过渡 接头, 8. 控制器 II, 9. 五轴工作台, 10. 信号线 I, 11. 信号线 II, 12. 软管, 13.叶片, 14. 支架, 15.激光束, 28. 信号线 III, 29. 信号线 IV;
图 2为水约束层装置工作的示意图;
图中: 15. 激光束, 16. 探测头 I, 17. 探测头 II, 18. 圆弧中点, 19. 探测点 I, 20. 水 流, 21. 探测点 II, 22. 待加工点, 23. 基准面, 24. 叶片截面, 25. 加工平面。
[0013] 图 3为水龙头结构示意图;
图 4为喷嘴结构示意图;
26. 外壳, 27. 喷嘴;
图 5是水龙头与过渡接头、 控制器 II和软管的连接示意图;
图中: 4. 水龙头, 7. 过渡接头, 8. 控制器 II, 12. 软管。
具体实施方式
为了更清楚地说明本申请实施例或现有技术中的技术方案, 下面将对实施例或现有技术描 述中所需要使用的附图作简单地介绍。
一种用于激光冲击强化叶片的水约束层的喷射装置, 如图 1所示, 包括测距仪平台 2, 支 架 14, 测距仪 3, 控制器 1 5, 控制器 118, 水龙头 4, 过渡接头 7, 信号线 I 10, 信号线 II 11, 信号线 11128, 信号线 IV29, 软管 12和水箱 6。
五轴工作台 9输入端通过信号线 ΠΙ28与控制器 I 5输出端相连; 测距仪平台 2位于激光器 1与五轴工作台 9之间; 测距仪 3通过支架 14连接在测距仪平台 2上 (激光束可以通过测距 仪与测距仪平台之间的空隙, 不发生干涉), 位于激光器 1 和五轴工作台 9之间, 其信号输 出端通过信号线 I 10与控制器 I 5的输入端相连; 控制器 I 5位于五轴工作台 9上方, 不与 激光束 15干涉, 其输出端通过信号线 II 11与水龙头 4输入端相连; 控制器 II 8位于过渡接 头 7上, 其输入端通过信号线 IV29与控制器 I 5输出端相连; 水龙头 4位于五轴工作台 9上 方, 比探测头 I 16高出 10-20 mm, 通过过渡接头 7与软管 12相连; 水箱 6安装在水龙头 4 上方, 与过渡接头 7相连。
使用该装置的具体步骤为:
(1) 通过支架 14将测距仪 3安装在测距仪平台 2上, 保证探测头 I 16和探测头 II 17的连线 与基准面 23垂直, 并且与激光束 15位于同一平面上; 同时, 探测头 II 17与待加工点 22垂 直方向上的距离 D1为 10-20 mm,水平方向上的距离 L为 20-30 mm; 然后调节探测头 I 16的 位置, 使探测头 I 16与待加工点 22垂直方向上的距离为 D2(D2为 Dl的 2倍)。
(2) 将叶片 13装夹在五轴工作台 9上, 通过五轴工作台 9的移动使待加工点 22位于激光束 15的聚焦焦点上, 并且待加工点 22处的切平面与加工平面 25重合。
(3) 通过测距仪 2 测出待加工点 22 上方与待加工点 22 垂直距离分别为 Dl(10-20 mm)和 D2(D2为 Dl 的 2倍)的两个点到加工平面 25的距离 (记为 L1和 L2), 然后将这四个值输入 到控制器 1 5 ; 在控制器 1 5 中, 通过程序构建以待加工点 22为原点, 激光束 15 入射方向 为横轴, 竖直向上为纵轴的坐标系, 则可以得到该坐标系下输入的两个点坐标分别为 (Ll, Dl)和 (L2, D2); 控制器 I 5 根据输入点的坐标, 计算出水龙头 4 的目标角度和位置, 从而 控制水龙头 4移动或转动以及通过控制器 II 8对喷嘴 27相对于外壳 26的转动进行控制, 使 喷嘴 27长边与叶片 13待加工点切平面保持平行, 水流方向与待加工点切平面方向之间的角 度为 10° -15°;
(4) 控制器 1 5 通过控制器 Π 8 对水流的流速和流量以及压力等参数进行调节, 使待加工区 水约束层的厚度为 1-3 mm, 从而实现激光冲击强化叶片或整体叶片过程中水约束层的均匀 稳定以及与叶片曲面间无间隙。

Claims

权利要求书
1. 一种用于激光冲击强化叶片的水约束层的喷射装置, 其特征在于: 所述装置包括激光 器、 测距仪平台, 支架, 测距仪, 控制器 I, 控制器 π, 水龙头, 过渡接头, 信号线, 软管 和水箱; 所述的测距仪上安装有探测头 I和探测头 II, 探测头 I和探测头 II连线与测距仪的 水平底面垂直, 探测头 I和探测头 II之间的距离能够调整, 测距仪的输出端通过信号线 I与 控制器 I的输入端相连; 控制器 I为总控制器, 用于控制五轴工作台, 控制器 II; 五轴工作 台的输入端通过信号线 III与控制器 I的输出端相连; 测距仪平台位于激光器与五轴工作台之 间; 测距仪通过支架固定在测距仪平台上使得激光器发出的激光束能够通过测距仪与测距仪 平台之间的空隙, 不发生干涉, 测距仪的信号输出端通过信号线 I与控制器 I的输入端相 连; 控制器 II安装在过渡接头上, 其输入端通过信号线 II与控制器 I的输出端相连; 水龙头 位于五轴工作台上方, 高于探测头 I 10-20 mm, 通过过渡接头与软管相连; 水箱安装在水龙 头上方, 与软管相连; 控制器 II控制水龙头的移动和转动
如权利要求 1所述的一种用于激光冲击强化叶片的水约束层的喷射装置, 其特征在于: 所述 水龙头由外壳和扁平喷嘴组成, 扁平喷嘴能够根据控制器 II的指令绕外壳的轴线相对于外壳 自由转动, 过渡接头两端通过锥管螺纹分别与水龙头和软管相连, 在软管与水龙头头部外壳 之间设置有控制器 II, 用于控制水流量、 水流速度和水流压力以及喷嘴相对于外壳的转动; 所述软管由 15-30个相同锥管状结构组成, 相邻两个锥管的轴线夹角小于 30°。
2. 如权利要求 2所述的一种用于激光冲击强化叶片的水约束层的喷射装置, 其特征在于- 所述扁平喷嘴截面尺寸为 lmm X 20mm。
3. 一种用于激光冲击强化叶片的水约束层的喷射方法, 其特征在于: 通过叶片上沿激光束 方向的竖直截面上探测点 I和探测点 II和一个待加工点所对应的标准曲线段近似代替叶片上 的实际曲线段, 使水龙头喷射的水流从近似为实际曲线段中点的标准曲线段中点流入叶片, 并且水流方向与该点切平面方向之间的角度为 10° -15°, 从而保证待加工区域形成稳定、 平 整的水约束层。
4. 如权利要求 4所述的一种用于激光冲击强化叶片的水约束层的喷射方法, 其特征在于: 通过支架将测距仪安装在测距仪平台上, 保证探测头 I和探测头 II的连线与作为基准面的测 距仪水平底面垂直, 并且确保探测头 I和探测头 Π的连线与激光束位于同一平面上; 同时, 探测头 II与待加工点垂直方向上的距离 D1 为 10-20 mm, 水平方向上的距离 L 为 20-30 mm, 然后调节探测头 I的位置, 使探测头 I与待加工点垂直方向上的距离为 D2, D2为 D1 的 2倍;
将工件装夹在五轴工作台上, 通过五轴工作台的移动使待加工点位于激光束的聚焦焦点上, 并且待加工点处的切平面与加工平面重合; 所述的加工平面为垂直于激光束并通过激光束焦 点的平面;
通过测距仪测出待加工点上方与待加工点垂直距离分别为 D1 和 D2 的两个点到加工平面的 距离, 记为 L1和 L2, 然后将这四个值输入到控制器 I; 在控制器 I中, 通过程序构建以待 加工点为原点, 激光束入射方向为横轴, 竖直向上为纵轴的坐标系, 得到该坐标系下输入的 两个点坐标分别为 (Ll, D1)和 (L2, D2); 控制器 I根据输入点的坐标, 计算出水龙头的目标 角度和位置, 从而控制水龙头移动或转动以及通过控制器 II对喷嘴相对于外壳的转动进行控 制, 使水龙头喷嘴长边与叶片待加工点切平面保持平行, 水龙头的水流方向与待加工点切平 面方向之间的角度为 10° -15°, 确保水流的稳定和厚度均匀;
控制器 I通过指令控制控制器 II调节水流的流速、 流量以及压力, 使待加工区水约束层的厚 度为 1-3 mm。
5. 如权利要求 5 所述的一种用于激光冲击强化叶片的水约束层的喷射方法, 其特征在于: 所述的水龙头的目标角度和位置, 其中 tan e =D2/L2; Θ为水流方向与待加工点处的切平面 的夹角, 入水点的横坐标(L2-2Ll)/2*Cos( Θ ) *Cos( Θ )+Ll; 纵坐标 〔 L2-2L1〕 /2*Cos( Θ )*Sin( Θ )+Dl。
PCT/CN2013/075954 2013-02-04 2013-05-21 一种用于激光冲击强化叶片的水约束层的喷射方法和装置 WO2014117457A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/765,538 US9909195B2 (en) 2013-02-04 2013-05-21 Method and apparatus for injecting water restraint layer of laser shock processing blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310040843.X 2013-02-04
CN201310040843.XA CN103203543B (zh) 2013-02-04 2013-02-04 一种用于激光冲击强化叶片的水约束层的喷射方法和装置

Publications (1)

Publication Number Publication Date
WO2014117457A1 true WO2014117457A1 (zh) 2014-08-07

Family

ID=48751060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075954 WO2014117457A1 (zh) 2013-02-04 2013-05-21 一种用于激光冲击强化叶片的水约束层的喷射方法和装置

Country Status (3)

Country Link
US (1) US9909195B2 (zh)
CN (1) CN103203543B (zh)
WO (1) WO2014117457A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113621788A (zh) * 2021-07-20 2021-11-09 中国科学院上海光学精密机械研究所 适用于激光冲击强化的约束层材料及其制备方法
CN116640471A (zh) * 2023-06-15 2023-08-25 中国人民解放军空军工程大学 激光冲击强化的约束层材料、制备方法及使用方法
CN117020415A (zh) * 2023-10-08 2023-11-10 宁德时代新能源科技股份有限公司 电池焊接系统及其控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203543B (zh) * 2013-02-04 2015-03-11 中国航空工业集团公司北京航空制造工程研究所 一种用于激光冲击强化叶片的水约束层的喷射方法和装置
CN103468925B (zh) * 2013-08-29 2014-11-05 温州大学 一种飞机叶片榫槽底部平面激光冲击强化方法和装置
CN103740894A (zh) * 2013-12-31 2014-04-23 唐山轨道客车有限责任公司 一种激光冲击强化装置及其喷水管
CN107523683A (zh) * 2017-07-31 2017-12-29 江苏大学 一种用于无溶剂复合机刀板的激光冲击强化装置及方法
CN108517400B (zh) * 2018-05-18 2019-11-26 广东工业大学 一种能量补偿等功率密度激光斜冲击方法
CN110257623B (zh) * 2019-07-09 2021-04-20 中国航发北京航空材料研究院 一种轴承外圈的激光冲击强化方法及其装置
CN110732779B (zh) * 2019-10-18 2021-05-04 扬州镭奔激光科技有限公司 一种整体叶盘稳定约束层的定轴旋转激光喷丸方法
CN112210659B (zh) * 2020-10-16 2022-03-15 中国航发北京航空材料研究院 一种激光冲击强化约束水喷管
CN113732514B (zh) * 2021-08-10 2023-08-22 中国航发常州兰翔机械有限责任公司 一种尾喷管底部双曲面焊接区激光冲击强化方法及系统
CN114700627B (zh) * 2022-05-13 2023-06-06 西安交通大学 一种激光冲击液体约束层厚度控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744781A (en) * 1995-08-07 1998-04-28 General Electric Company Method and apparatus for laser shock peening
US6281473B1 (en) * 2000-01-19 2001-08-28 General Electric Company Apparatus and method for controlling confinement media thickness in laser shock peening
CN100335227C (zh) * 2005-03-04 2007-09-05 江苏大学 一种激光冲击复合约束层
CN100409994C (zh) * 2005-10-14 2008-08-13 江苏大学 基于激光冲击技术的水约束层增压的方法和装置
CN101474723A (zh) * 2009-01-21 2009-07-08 西安天瑞达光电技术发展有限公司 一种光隔离激光冲击强化双面对冲装置

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401477A (en) * 1982-05-17 1983-08-30 Battelle Development Corporation Laser shock processing
US4498917A (en) * 1983-07-26 1985-02-12 Olin Corporation Method and apparatus for laser sizing of optical fibers
FR2641718B1 (fr) * 1989-01-17 1992-03-20 Ardt Procede de nettoyage de la surface de matieres solides et dispositif de mise en oeuvre de ce procede, utilisant un laser impulsionnel de puissance, a impulsions courtes, dont on focalise le faisceau sur la surface a nettoyer
US4982065A (en) * 1989-03-07 1991-01-01 Ngk Insulators, Ltd. Method of producing a core for magnetic head
DK0510124T3 (da) * 1990-01-11 1995-09-18 Battelle Memorial Institute Forbedring af materialeegenskaber
JP3159593B2 (ja) * 1994-02-28 2001-04-23 三菱電機株式会社 レーザ加工方法及びその装置
DE4418845C5 (de) * 1994-05-30 2012-01-05 Synova S.A. Verfahren und Vorrichtung zur Materialbearbeitung mit Hilfe eines Laserstrahls
US5591009A (en) * 1995-01-17 1997-01-07 General Electric Company Laser shock peened gas turbine engine fan blade edges
US5741559A (en) * 1995-10-23 1998-04-21 Lsp Technologies, Inc. Laser peening process and apparatus
DE19613183C1 (de) * 1996-04-02 1997-07-10 Daimler Benz Ag Verfahren und Vorrichtung zum Feindrehen eines Werkstückes aus einem härtbaren Stahl mittels Drehmeißel
US5742028A (en) * 1996-07-24 1998-04-21 General Electric Company Preloaded laser shock peening
JPH1091947A (ja) * 1996-09-18 1998-04-10 Hitachi Electron Eng Co Ltd 磁気ディスクの表面加工装置
US6359257B1 (en) * 1999-02-19 2002-03-19 Lsp Technologies, Inc. Beam path clearing for laser peening
US6852179B1 (en) * 2000-06-09 2005-02-08 Lsp Technologies Inc. Method of modifying a workpiece following laser shock processing
US6894251B2 (en) * 2002-09-03 2005-05-17 General Electric Company Method for welding on stress-sensitive materials
US7223306B2 (en) * 2002-09-17 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, and manufacturing method of semiconductor device
US7180918B2 (en) * 2003-05-16 2007-02-20 Metal Improvement Company, Llc Self-seeded single-frequency solid-state ring laser and system using same
EP1528645B1 (en) * 2003-10-30 2011-02-16 Metal Improvement Company, LLC. Relay telescope, laser amplifier, and laser peening method and system using same
US7273998B2 (en) * 2004-09-15 2007-09-25 General Electric Company System and method for monitoring laser shock processing
US20060065333A1 (en) * 2004-09-28 2006-03-30 The Regents Of The University Of California Generation of high strength metal through formation of nanocrystalline structure by laser peening
US7204677B2 (en) * 2005-06-30 2007-04-17 General Electric Company Countering laser shock peening induced blade twist
US7217102B2 (en) * 2005-06-30 2007-05-15 General Electric Campany Countering laser shock peening induced airfoil twist using shot peening
US20090158797A1 (en) * 2006-01-12 2009-06-25 Lahrman David F Laser shock processed pilger dies
US7897895B2 (en) * 2006-05-01 2011-03-01 General Electric Company System and method for controlling the power level of a laser apparatus in a laser shock peening process
US8330070B2 (en) * 2006-05-11 2012-12-11 Kabushiki Kaisha Toshiba Laser shock hardening method and apparatus
US20080067159A1 (en) * 2006-09-19 2008-03-20 General Electric Company Laser processing system and method for material processing
JP5118324B2 (ja) * 2006-10-02 2013-01-16 富士重工業株式会社 レーザピーニング装置
JP2008216012A (ja) * 2007-03-02 2008-09-18 Toshiba Corp 原子炉内構造物の保全・補修装置
US7816622B2 (en) * 2007-09-28 2010-10-19 General Electric Company System and method for controlling laser shock peening
US8455793B2 (en) * 2008-03-11 2013-06-04 Frank's International, Inc. Laser shock peening
CN101249588B (zh) * 2008-03-14 2011-01-05 江苏大学 一种基于激光冲击波效应的板材双面精密成形方法及装置
CN102341211A (zh) * 2009-03-03 2012-02-01 日立Via机械株式会社 工件的薄膜加工方法及薄膜加工装置
US8987632B2 (en) * 2009-10-09 2015-03-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Modification of surface energy via direct laser ablative surface patterning
CN101705341A (zh) * 2009-10-30 2010-05-12 江苏大学 一种基于激光束阵的冲击强化方法和装置
JP2011115806A (ja) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp レーザ加工装置
JP5071487B2 (ja) * 2010-01-06 2012-11-14 株式会社デンソー レーザー加工装置およびレーザー加工方法
CA2804466A1 (en) * 2010-03-15 2011-09-22 Surface Technology Holdings, Ltd. Metallic components for use in corrosive environments and method of manufacturing
US10072971B2 (en) * 2010-04-16 2018-09-11 Metal Improvement Company, Llc Flexible beam delivery system for high power laser systems
US8222567B2 (en) * 2010-05-12 2012-07-17 General Electric Company System and method for laser shock peening
US20150336219A1 (en) * 2011-01-13 2015-11-26 Siemens Energy, Inc. Composite materials and methods for laser manufacturing and repair of metals
JP5220914B2 (ja) * 2011-05-25 2013-06-26 株式会社スギノマシン レーザー加工装置
US20130101761A1 (en) * 2011-10-21 2013-04-25 General Electric Company Components with laser cladding and methods of manufacture
CN102507064B (zh) * 2011-11-25 2013-12-11 江苏大学 一种激光冲击波压力分布的检测装置
GB201204752D0 (en) * 2012-03-19 2012-05-02 Bae Systems Plc Additive layer manufacturing
GB201212629D0 (en) * 2012-07-16 2012-08-29 Prec Engineering Technologies Ltd A machine tool
US9803258B2 (en) * 2012-08-13 2017-10-31 United Technologies Corporation Post processing of components that are laser peened
DE112013004639T5 (de) * 2012-09-21 2015-06-25 Mitsubishi Hitachi Power Systems, Ltd. Verfahren zum Verschweißen von erosionsbeständigem Metallmaterial und Turbinenschaufel
WO2014055538A1 (en) * 2012-10-01 2014-04-10 United Technologies Corporation Methods for testing laser shock peening
JP6255595B2 (ja) * 2012-10-12 2018-01-10 株式会社Ihi 割断装置
CN103203543B (zh) * 2013-02-04 2015-03-11 中国航空工业集团公司北京航空制造工程研究所 一种用于激光冲击强化叶片的水约束层的喷射方法和装置
JP6100037B2 (ja) * 2013-03-13 2017-03-22 三菱重工業株式会社 蒸気タービン翼製造方法
WO2014204535A1 (en) * 2013-03-15 2014-12-24 Foro Energy, Inc. High power laser fluid jets and beam paths using deuterium oxide
EP2786834A1 (de) * 2013-04-03 2014-10-08 Siemens Aktiengesellschaft Düse für das Laser-Pulver-Auftragsschweißen
JP6470737B2 (ja) * 2013-04-19 2019-02-13 ユニヴァーシティ・オブ・ザ・ウィットウォーターズランド・ヨハネスブルグ レーザー光に対して透明な固体媒体とターゲットとの間に挟まれた流体流路を有してターゲット上でレーザーショックピーニングを実施するためのシステム及び方法
US10562132B2 (en) * 2013-04-29 2020-02-18 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US9643877B2 (en) * 2013-12-23 2017-05-09 MHI Health Devices, LLC. Thermal plasma treatment method
WO2015106455A1 (en) * 2014-01-20 2015-07-23 GM Global Technology Operations LLC Welding method and system
WO2015109102A1 (en) * 2014-01-20 2015-07-23 United Technologies Corporation An additive manufacturing system utilizing an epitaxy process and method of operation
US9676058B2 (en) * 2014-01-27 2017-06-13 General Electric Company Method and system for detecting drilling progress in laser drilling
US10213872B2 (en) * 2014-03-04 2019-02-26 Oerlikon Metco Ag, Wohlen Machining head and machining device
US9130030B1 (en) * 2014-03-07 2015-09-08 Applied Materials, Inc. Baking tool for improved wafer coating process
KR102396213B1 (ko) * 2014-03-11 2022-05-10 에체-따르 에세.아. 워크피스 표면을 레이저 경화하는 시스템 및 방법
EP3045258B1 (en) * 2014-03-13 2018-09-12 Panasonic Intellectual Property Management Co., Ltd. Laser machining head
JP6341731B2 (ja) * 2014-04-07 2018-06-13 三菱日立パワーシステムズ株式会社 肉盛溶接装置、エロージョンシールドの形成方法及び動翼製造方法
JP6341730B2 (ja) * 2014-04-07 2018-06-13 三菱日立パワーシステムズ株式会社 パウダ供給ヘッドの管理方法、エロージョンシールドの形成方法、及び装置
EP2957378A1 (de) * 2014-06-16 2015-12-23 Synova SA Bearbeitungskopf zum Einkopplen eines Laserstrahles in einem Flüssigkeitsstrahl mit einer Flüssigkeitschnittstelle
EP2960006B1 (de) * 2014-06-23 2019-02-20 Synova S.A. Verfahren und Vorrichtung zum Bestimmen einer Lage eines Flüssigkeitsstrahls durch eine Änderung einer Konstellation
EP2961012A1 (en) * 2014-06-26 2015-12-30 Light Speed Marker, S.L. Laser system for modifying objects
CN104164538B (zh) * 2014-07-16 2017-02-22 江苏大学 一种获得大面积均匀表面形貌的激光冲击强化方法
EP2993124B1 (en) * 2014-09-08 2019-04-03 Airbus Operations GmbH Preventing cracks at bolted or riveted joints of aircraft structural parts
JP6430219B2 (ja) * 2014-11-17 2018-11-28 株式会社東芝 レーザ加工装置及びレーザ加工方法
US10589385B2 (en) * 2015-01-08 2020-03-17 General Electric Company Method and system for confined laser drilling
US20160199943A1 (en) * 2015-01-08 2016-07-14 General Electric Company Method and system for confined laser drilling
CN104759753B (zh) * 2015-03-30 2016-08-31 江苏大学 多系统自动化协调工作提高激光诱导空化强化的方法
JP6559454B2 (ja) * 2015-04-02 2019-08-14 株式会社東芝 レーザ溶接ヘッド
US10226838B2 (en) * 2015-04-03 2019-03-12 Kabushiki Kaisha Toshiba Laser light irradiation apparatus and laser peening treatment method
CN107580633B (zh) * 2015-05-11 2020-07-14 西屋电气有限责任公司 可应用于激光喷丸操作中的输送装置和相关方法
US10596661B2 (en) * 2015-09-28 2020-03-24 Ecole Polytechnique Federale De Lausanne (Epfl) Method and device for implementing laser shock peening or warm laser shock peening during selective laser melting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744781A (en) * 1995-08-07 1998-04-28 General Electric Company Method and apparatus for laser shock peening
US6281473B1 (en) * 2000-01-19 2001-08-28 General Electric Company Apparatus and method for controlling confinement media thickness in laser shock peening
CN100335227C (zh) * 2005-03-04 2007-09-05 江苏大学 一种激光冲击复合约束层
CN100409994C (zh) * 2005-10-14 2008-08-13 江苏大学 基于激光冲击技术的水约束层增压的方法和装置
CN101474723A (zh) * 2009-01-21 2009-07-08 西安天瑞达光电技术发展有限公司 一种光隔离激光冲击强化双面对冲装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113621788A (zh) * 2021-07-20 2021-11-09 中国科学院上海光学精密机械研究所 适用于激光冲击强化的约束层材料及其制备方法
CN116640471A (zh) * 2023-06-15 2023-08-25 中国人民解放军空军工程大学 激光冲击强化的约束层材料、制备方法及使用方法
CN117020415A (zh) * 2023-10-08 2023-11-10 宁德时代新能源科技股份有限公司 电池焊接系统及其控制方法

Also Published As

Publication number Publication date
US9909195B2 (en) 2018-03-06
CN103203543B (zh) 2015-03-11
US20150368744A1 (en) 2015-12-24
CN103203543A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
WO2014117457A1 (zh) 一种用于激光冲击强化叶片的水约束层的喷射方法和装置
CN107838550B (zh) 一种水下复合热源增材制造装置及使用方法
CN103170744B (zh) 激光焊接装置及焊接方法
CN100409994C (zh) 基于激光冲击技术的水约束层增压的方法和装置
WO2015027555A1 (zh) 一种飞机叶片榫槽底部平面激光冲击强化方法和装置
CN101947694A (zh) 一种激光除锈装置
WO2015101103A1 (zh) 一种激光冲击强化装置及其喷水管
CN113492270B (zh) 一种飞秒激光加工喷嘴切向孔的装置和方法
CN208390517U (zh) 一种射流激光复合清洗系统
CN103132071A (zh) 一种激光修复用超声振动耦合装置
CN110052710A (zh) 一种铝合金激光焊接方法
CN108251633B (zh) 一种斜入射的激光冲击强化方法
CN102513703A (zh) 激光切割吹气喷头
CN102465195B (zh) 一种光水同轴的激光冲击强化头
CN104990991A (zh) 水浸点聚焦探头
CN106624611A (zh) 一种厚壁三通立体曲面坡口焊接工艺
CN116851870A (zh) 一种水下湿法电弧焊接或增材制造装置及使用方法
CN104708199A (zh) 一种针对不良激光焊缝的激光填丝焊修补工艺
CN116623175A (zh) 一种激光熔覆装置及方法
CN214502564U (zh) 一种用于超声波水表的表管
CN110552005A (zh) 一种阀体多面连续磨损固定装置及激光修复方法
CN213749750U (zh) 一种用于tofd的探头楔块
CN110539073B (zh) 一种半自动辅助激光加工装置
CN208214984U (zh) 一种基于声透镜的球面阵列超声聚焦流体振动抛光系统
CN108531711B (zh) 一种x形管接头相贯线形焊缝激光冲击强化的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765538

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873664

Country of ref document: EP

Kind code of ref document: A1