WO2015027555A1 - 一种飞机叶片榫槽底部平面激光冲击强化方法和装置 - Google Patents

一种飞机叶片榫槽底部平面激光冲击强化方法和装置 Download PDF

Info

Publication number
WO2015027555A1
WO2015027555A1 PCT/CN2013/085743 CN2013085743W WO2015027555A1 WO 2015027555 A1 WO2015027555 A1 WO 2015027555A1 CN 2013085743 W CN2013085743 W CN 2013085743W WO 2015027555 A1 WO2015027555 A1 WO 2015027555A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
laser
clamp
pumping
flow
Prior art date
Application number
PCT/CN2013/085743
Other languages
English (en)
French (fr)
Inventor
薛伟
鲁金忠
罗密
张永康
戴峰泽
Original Assignee
温州大学
江苏大学
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州大学, 江苏大学, 东南大学 filed Critical 温州大学
Priority to US14/914,799 priority Critical patent/US10280480B2/en
Publication of WO2015027555A1 publication Critical patent/WO2015027555A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below

Definitions

  • the present invention relates to the field of laser processing, and particularly relates to a planar laser shock reinforced technology for the bottom of an aircraft blade, which improves the reliability of the connection between the blade and the blade of the aircraft, and prolongs Its service life.
  • An engine is the power of an aircraft and the heart of an aircraft.
  • the blade is a special kind of part. It has a large number, complex shape, high requirements and high processing difficulty. It has always been the key to the production of various engine factories, and is called the "heart of the heart”.
  • the blades of the aircraft are connected to the gutters on the blade discs by the hoes at the bottom of the blades, so the bottom of the gutters of the aircraft blade hoe is a typical stress concentration zone.
  • the fatigue cracks easily sprout and expand on the bottom plane of the gutter, causing the blades to loosen, vibrate or unbalance, thus affecting the safety, reliability and service life of the engine, and increasing the maintenance cost. Therefore, it is important to carry out surface strengthening treatment on the bottom plane of the gutter to reduce wear and suppress the initiation and expansion of fatigue cracks.
  • Laser shock reinforced LSP also known as laser peening
  • laser peening is a new material surface strengthening technology that uses high-laser-induced shock wave mechanical effects to process materials with high pressure, high energy, ultra-fast and ultra-high strain rate.
  • the residual compressive stress layer formed by the invention can effectively eliminate the stress concentration inside the material and inhibit the initiation and expansion of the crack, and can significantly improve the fatigue life and corrosion resistance and wear resistance of the metal parts.
  • laser shock peening technology is an effective means to prolong crack initiation time and reduce crack growth rate to improve material life.
  • the bottom of the groove of the aircraft blade is usually very narrow, only a few millimeters.
  • the laser beam is first irradiated to the sidewall of the bottom of the gutter to generate plasma, thereby forming a "plasma shielding" effect, which hinders the laser beam from being irradiated to the bottom plane of the gutter, and affects the effect of laser shock strengthening.
  • plasma shielding effect
  • Due to the significant wall-attaching effect of the water flow it is difficult to form a uniform and stable water-constrained layer in the bottom of the gutter, which also affects the laser shock strengthening effect.
  • the bottom of the gutter is a part that is prone to failure, and in particular, surface strengthening treatment is required.
  • the object of the present invention is to provide a planar laser shock strengthening method and device for the bottom of an aircraft blade, avoiding the phenomenon of "plasma shielding", and achieving a uniform and stable water constraining layer, thereby improving the laser impact strengthening effect.
  • the present invention converts a circular spot of a laser beam into a strip spot of a high power density by a light path conversion system according to the geometrical characteristics of the bottom of the gutter, and performs laser impact strengthening on the bottom plane of the gutter, and is in the gutter.
  • the two end faces of the bottom are respectively provided with a flow guiding spray device and a water pumping device to realize a uniform and stable water constraining layer.
  • a laser shock strengthening method for the bottom of an aircraft blade groove is characterized in that: according to the geometric characteristics of the bottom of the groove, the optical path conversion system is used to convert the circular spot laser beam into a high power density strip spot laser beam to cover the absorption layer The bottom plane of the gutter is laser-impacted. At the same time, the diversion jet and the pumping device are used to control the water flow parameters at the water inlet end and the water outlet end of the gutter, respectively, and a uniform 1-1.5 mm water confinement layer is formed in the bottom of the gutter. ;
  • the strip laser beam has a width of 0.5-1 mm, a length of 7-14 mm, a pulse energy of 5-12 J, and a pulse width of 10-30 ns.
  • a device for implementing a planar laser shock peening method for the bottom of a groove of an aircraft blade comprising: a laser (10), a laser control device (11), an optical path conversion system (13), a five-axis table (19), Fixture I (23), clamp II (22), clamp 111 (21), water tank (27), flow guiding device (26), water hose (25), nozzle (24), pump head (16) , pumping hose (20), water pump (17) and water tank (18); fixture I (23), clamp 11 (22) and clamp 111 (21) are mounted on the five-axis table (19), fixture II (22) ) is located between the clamps I (23) and 111 (21), the spray head (24) is mounted on the top of the clamp I (23), and the spray head (24) is connected to the flow guiding device (26) through the water delivery hose (25).
  • the inlet pipe of the flow guiding device (26) is connected to the water tank (27), the pumping head (16) is mounted on the top of the clamp 111 (21), and the pumping head (16) is passed through the pumping hose (20) and the water pump (17).
  • the water pump (17) outlet is connected to the water tank (18)
  • the laser (10) is located directly above the five-axis table (19)
  • the optical path conversion system (13) is located at the laser (10) and the five-axis table (19) It between.
  • the diversion injection device (26) is used to control the pressure and flow of the water flow, the control pressure range is between 0.1-0.3 MPa, and the inlet flow rate is between 0.8 X 10-5-2.0X 10-5 m 3 /s.
  • the outlet flow rate of the pump is 0.8 X 10- 5 -2.0x lO- 5 m 3 /s, so that the flow rate of the water confinement layer in the bottom of the gutter is equal, and the water film is uniform.
  • the nozzle (24) is flat, and the end of the nozzle (24) has a water outlet width of 1.5 mm and a length of 10 mm.
  • the pumping head (16) is flat, and the end of the pumping head (16) has a water outlet width of 1.5 mm and a length of 10 mm.
  • the patent innovation of the invention lies in that according to the geometric characteristics of the bottom of the gutter, the optical path conversion system is used to convert the circular spot of the laser beam into a strip spot of high power density, and the laser impact strengthening is performed on the bottom plane of the gutter, thereby avoiding "plasma shielding". "Phenomenon, and also ensure the processing efficiency; the use of the flow-injection device and the pumping device, while controlling the water flow parameters at the bottom and the water outlet of the bottom of the gutter, to ensure the uniform stability of the water-constrained layer in the bottom of the gutter.
  • FIG. 1 is a schematic view of an aircraft blade
  • FIG. 2 is a schematic diagram of "plasma shielding"
  • Figure 3 is a schematic diagram of plane laser shock enhancement at the bottom of the aircraft blade groove
  • Figure 4 is a schematic view of the end face of the nozzle outlet
  • Figure 5 is a schematic view of the end face of the water inlet of the pumping pipe
  • Figure 6 is a schematic diagram of a laser shock reinforced processing path
  • Figure 7 is a schematic diagram of the test points of the plane residual stress at the bottom of the gutter.
  • the outlet height H2 is 1.5 mm and the length / ⁇ is 10 mm. Concrete m ⁇ r
  • the apparatus comprises: a laser 10, a laser control device 11, an optical path conversion system 13, a five-axis table 19, a clamp 1 23, a clamp 1122, a clamp 11121, a water tank 27, a flow guiding device 26, a water delivery hose 25, a showerhead 24 , pumping head 16, pumping hose 20, water pump 17 and sink 18.
  • the water outlet end surface of the nozzle 24 and the water inlet end surface of the water discharge pipe head 16 are respectively shown in Figs. 4 and 5.
  • the jig 1 23, the jig 1122 and the jig 11121 are mounted on the five-axis table 19 and the jig II 22 is located between the jig I 23 and the jig III 21, the head 24 is mounted on the top of the jig I 23, and the head 24 and the flow-injecting device 26 are passed through
  • the water hoses 25 are connected, the water inlet pipe 27 of the flow guiding device 26, the water pipe
  • the head 16 is mounted on the top of the clamp III21, the pumping head 16 is connected to the water pump 17 via a pumping hose 20, the water outlet of the water pump 17 is connected to the water tank 18, the laser 10 is located directly above the five-axis table 19, and the optical path conversion system 13 is located at the laser 10 Between the five-axis workbench 19.
  • the specific procedure for using the device is to apply an absorbing layer of black paint to the bottom plane 2 of the groove of the blade, and then the blade 15 is mounted on the clamp 22 to maintain the level 2 of the bottom of the groove.
  • the spray head 24 is mounted on the top of the clamp I 23 so that the nozzle outlet end face 30 is in close contact with one end of the bottom of the gutter, and the bottom surface of the spout 24 is in the same plane as the bottom plane 2 of the gutter, and both sides are located on each side. Outside the side of the bottom of the trough;
  • the laser 10 has a spot diameter of 3 mm, a pulse energy of 5 J and a pulse width of 10 ns through the laser control unit ;
  • the circular spot laser beam 12 is converted into a high power density strip spot laser beam 14 by the optical path conversion system 13 having a width of 0.5 mm and a length of 14 mm, and ensuring that the strip spot laser beam 14 is perpendicular to the horizontal plane,
  • the focus spot laser beam 14 is located on the bottom plane 2 of the gutter;
  • Example 4 Change the pulse energy in Example 2 to 6 J, change the pulse width to 20 ns, change the width of the strip spot to 1 mm, change the length to 7 mm, and change the pressure of the flow guiding device and the pump to 0.2 MPa. Change traffic 1.5xl0- 5 m 3 /s, other methods and steps are unchanged.
  • Example 4 Change the pulse energy in Example 2 to 6 J, change the pulse width to 20 ns, change the width of the strip spot to 1 mm, change the length to 7 mm, and change the pressure of the flow guiding device and the pump to 0.2 MPa. Change traffic 1.5xl0- 5 m 3 /s, other methods and steps are unchanged.
  • Example 4 Change the pulse energy in Example 2 to 6 J, change the pulse width to 20 ns, change the width of the strip spot to 1 mm, change the length to 7 mm, and change the pressure of the flow guiding device and the pump to 0.2 MPa. Change traffic 1.5xl0- 5 m 3 /s, other methods and steps are unchanged.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种飞机叶片榫槽底部平面激光冲击强化方法和装置。在激光冲击强化过程中,根据榫槽底部的几何特征,将激光束的圆形光斑变为条形光斑,同时在榫槽底部的两个端面分别设置导流喷射装置(26)和抽水装置来保证水约束层的稳定。

Description

一种飞机叶片榫槽底部平面激光冲击强化方法和装置 技术领域 本发明涉及激光加工领域,特指一种飞机叶片榫槽底部平面激光冲击强化技 术, 提高飞机叶片与叶盘连接的可靠性, 延长其使用寿命。 背景技术 发动机是飞机的动力, 也是飞机的心脏。 叶片是一种特殊的零件, 它的数量 多, 形状复杂, 要求高, 加工难度大, 一直以来是各发动机厂的生产的关键,被 称为 "心脏的心脏" 。飞机叶片通过叶片底部的榫头与叶盘上的榫槽连接, 因此 飞机叶片榫头的榫槽底部是典型的应力集中区域。发动机工作时,疲劳裂纹容易 在榫槽底部平面上萌生和扩展, 导致叶片松动、振动或失衡, 从而影响发动机的 安全性、 可靠性和使用寿命大大降低, 增加维护的成本。 因此, 对榫槽底部平面 进行表面强化处理, 降低磨损, 抑制疲劳裂纹的萌生和扩展至关重要。
激光冲击强化 LSP, 又叫激光喷丸, 是一种新型的材料表面强化技术, 利用 强激光诱导的冲击波力学效应对材料进行加工, 具有高压、 高能、超快和超高应 变率等特点。其形成的残余压应力层能有效地消除材料内部的应力集中和抑制裂 纹的萌生和扩展, 能够显著提高金属零件的疲劳寿命以及抗腐蚀和抗磨损能力。 大量的研究证明激光冲击强化技术是延长裂纹萌生时间降低裂纹扩展速度提高 材料寿命的有效手段。
但由于飞机叶片榫头的榫槽底部通常很窄, 只有几毫米。在进行激光冲击强 化时,激光束会首先照射到榫槽底部侧壁产生等离子体, 从而形成 "等离子体屏 蔽"效应, 阻碍激光束照射到榫槽底部平面, 影响激光冲击强化的效果。 同时, 由于水流的附壁效应显著,在榫槽底部内难以形成均匀稳定的水约束层从而也会 对激光冲击强化效果造成影响。而榫槽底部是容易产生失效的部位,尤其需要进 行表面强化处理。 发明内容 本发明的目的在于提供一种飞机叶片榫槽底部平面激光冲击强化方法和装 置, 避免 "等离子体屏蔽"现象, 且实现均匀稳定的水约束层, 提高激光冲击强 化效果。
为解决上述技术问题,本发明根据榫槽底部的几何特征,采用光路变换系统 将激光束的圆形光斑转换为高功率密度的条形光斑对榫槽底部平面进行激光冲 击强化,且在榫槽底部的两个端面分别设置导流喷射装置和抽水装置以实现均匀 稳定的水约束层, 具体技术方案如下:
一种飞机叶片榫槽底部激光冲击强化方法,其特征在于: 根据榫槽底部的几 何特征,采用光路变换系统将圆形光斑激光束转换为高功率密度的条形光斑激光 束对覆盖有吸收层的榫槽底部平面进行激光冲击强化;同时采用导流喷射装置和 抽水装置, 分别控制榫槽底部进水端和出水端的水流参数,在榫槽底部内形成稳 定 1-1.5 mm均匀的水约束层;
所述的条形光斑激光束宽度为 0.5-1 mm,长度为 7-14 mm,脉冲能量为 5-12 J, 脉冲宽度为 10-30 ns。
一种实施所述飞机叶片榫槽底部平面激光冲击强化方法的装置, 其特征在 于: 包括激光器 (10), 激光器控制装置 (11), 光路变换系统 (13), 五轴工作台 (19), 夹具 I (23),夹具 II (22),夹具 111(21),水箱 (27),导流喷射装置 (26),输水软管 (25), 喷头 (24), 抽水管头 (16), 抽水软管 (20), 水泵 (17)和水槽 (18); 夹具 I (23)、 夹具 11 (22)和夹具 111(21)安装在五轴工作台 (19)上,夹具 II (22)位于夹具 I (23)与 111(21) 之间, 喷头 (24)安装在夹具 I (23)顶部, 喷头 (24)与导流喷射装置 (26)通过输水软 管 (25)相连, 导流喷射装置 (26)的进水管与水箱 (27)相接, 抽水管头 (16)安装在夹 具 111(21)顶部, 抽水管头 (16)通过抽水软管 (20) 与水泵 (17)相连, 水泵 (17)出水口 与水槽 (18)相连, 激光器 (10)位于五轴工作台 (19)正上方, 光路变换系统 (13)位于 激光器 (10)与五轴工作台 (19)之间。
导流喷射装置 (26)用于控制水流的压力和流量, 控制压力值范围在 0.1-0.3 MPa之间, 进口流量范围在 0.8 X 10-5-2.0X 10-5 m3/s之间。
所述的水泵出口流量范围为 0.8 X 10-5-2.0x lO-5 m3/s, 使榫槽底部内水约束层 进出流量相等, 确保水膜均匀。 所述的喷头 (24)为扁平状, 所述喷头 (24)的端面出水口宽度为 1.5mm, 长度 为 10 mm。
所述的抽水管头 (16)为扁平状, 所述抽水管头 (16)的端面出水口宽度为 1.5 mm, 长度为 10 mm。
使用该装置的具体步骤为-
• 在叶片榫槽底部平面涂上黑漆或铝箔吸收层, 然后将叶片安装在夹具 Π上, 使榫槽底部平面保持水平;
• 将喷头安装在夹具 I顶部, 使喷头出水口端面与榫槽底部的一个端面紧贴, 并且喷头出水口底面与榫槽底部平面位于同一平面, 两个侧面均位于榫槽底 部侧面外;
• 用输水软管连接喷头和导流喷射装置, 再将导流喷射装置的进水管接水箱;
• 将抽水管头安装在夹具 III顶部, 使抽水管头进水口端面与榫槽底部的另一个 端面紧贴, 并且抽水管头进水口底面与榫槽底部平面位于同一平面, 两个侧 面均位于榫槽底部侧面外;
• 用抽水软管连接抽水管头和水泵, 再将水泵的出水管接水槽;
• 通过激光器控制装置设定激光器的光斑直径, 脉冲能量和脉冲宽度; • 通过光路变换系统将圆形光斑激光束变为高功率密度的条形光斑激光束, 并 保证条形光斑激光束与水平面垂直, 激光束焦点位于榫槽底部平面上; • 调节导流喷射装置和水泵的参数, 在榫槽底部内形成一定厚度的均匀稳定的 水约束层;
• 打开激光器, 开始对榫槽底部平面进行激光冲击强化, 通过工作台的平移完 成整个榫槽底部平面的强化。 本发明专利工艺创新在于根据榫槽底部的几何特征,采用光路变换系统将激 光束的圆形光斑转换为高功率密度的条形光斑对榫槽底部平面进行激光冲击强 化, 避免了 "等离子体屏蔽"现象, 同时也保证了加工效率; 采用导流喷射装置 和抽水装置, 同时控制榫槽底部进水端和出水端的水流参数,保证榫槽底部内水 约束层的均匀稳定。
本发明具有益效果: 本发明通过对飞机叶片榫头的榫槽底部平面的激光冲击强 化, 能抑制榫槽底部上疲劳裂纹的萌生和扩展, 避免叶片松动、振动或失衡等现 象的出现, 提高发动机的安全性和可靠性。 附图说明 图 1为飞机叶片示意图;
图 2为 "等离子体屏蔽"示意图;
图 3为飞机叶片榫槽底部平面激光冲击强化示意图;
图 4为喷头出水口端面示意图;
图 5为抽水管头进水口端面示意图;
图 6为激光冲击强化加工路径示意图;
图 7为榫槽底部平面残余应力测试采点示意图。
图中: 1. 叶片, 2. 榫槽底部平面, 3. 榫头, 4. 等离子体, 10. 激光器, 11. 激光器控制装置, 12. 圆形光斑激光束, 13. 光路变换系统, 14. 条形光斑激 光束, 15. 叶片, 16. 抽水管头, 17. 水泵, 18. 水槽, 19. 五轴工作台, 20. 抽 水软管, 21. 夹具 III, 22. 夹具 II, 23. 夹具 I, 24. 喷头, 25. 输水软管, 26. 导流喷射装置,27. 水箱, 30. 喷头出水口端面, 31. 抽水管头进水口端面,32. 加 工路径, 41. A点, 42. B点, 43. C点, 44. D点, 45. E点, 46. F点; 出水口高度 H 为 1.5 mm, 长度 为 10 mm。
出水口高度 H2为 1.5 mm, 长度 /^为 10 mm。 具体实 m^r式
下面结合附图进一步详细说明本发明的具体内容。
实施例 1
在对图 1所示的飞机叶片榫槽底部平面进行强化时,为了避免出现图 2所示 的 "等离子体屏蔽"效应,采用了如图 3所示的一种飞机叶片榫槽底部平面激光 冲击强化的装置。 该装置包括: 激光器 10, 激光器控制装置 11, 光路变换系统 13, 五轴工作台 19, 夹具 1 23, 夹具 1122, 夹具 11121, 水箱 27, 导流喷射装置 26, 输水软管 25, 喷头 24, 抽水管头 16, 抽水软管 20, 水泵 17和水槽 18。其 中, 喷头 24的出水口端面和抽水管头 16的进水口端面分别如图 4和图 5所示。
夹具 1 23、 夹具 1122和夹具11121安装在五轴工作台 19上并且夹具 II 22位 于夹具 I 23和夹具 III21之间, 喷头 24安装在夹具 I 23顶部, 喷头 24与导流喷 射装置 26通过输水软管 25相连, 导流喷射装置 26的进水管接水箱 27, 抽水管 头 16安装在夹具 III21顶部, 抽水管头 16与水泵 17通过抽水软管 20相连, 水 泵 17出水口与水槽 18相连,激光器 10位于五轴工作台 19正上方,光路变换系 统 13位于激光器 10与五轴工作台 19之间。
实施例 2
使用该装置的具体步骤为- 在叶片的榫槽底部平面 2涂上吸收层黑漆,然后叶片 15安装在夹具 Π 22上, 使榫槽底部平面 2保持水平;
• 将喷头 24安装在夹具 I 23顶部,使喷头出水口端面 30与榫槽底部的一个端 面紧贴, 并且喷头 24的出水口底面与榫槽底部平面 2位于同一平面, 两个 侧面均位于榫槽底部的侧面外;
• 用输水软管 25连接喷头 24和导流喷射装置 26, 再将导流喷射装置 26的进 水管接水箱 27;
• 将抽水管头 16安装在夹具 III21顶部,使抽水管头端面 31与榫槽底部的另一 个端面紧贴, 并且抽水管头 16的进水口底面与榫槽底部平面 2位于同一平 面, 两个侧面均位于榫槽底部的侧面外;
• 用抽水软管 20连接抽水管头 16和水泵 17,再将水泵 17的出水管接水槽 18;
• 通过激光器控制装置设定激光器 10的光斑直径为 3 mm, 脉冲能量为 5 J和 脉冲宽度为 10 ns;
• 通过光路变换系统 13将圆形光斑激光束 12变为高功率密度的条形光斑激光 束 14, 其宽度为 0.5 mm, 长度为 14 mm, 并保证条形光斑激光束 14与水平 面垂直, 条形光斑激光束 14焦点位于榫槽底部平面 2上;
• 调节导流喷射装置 26和水泵 17的参数, 使其压力值为 O. l MPa, 流量均为 0.8 X 10-5 m3/s, 在榫槽底部内形成厚度 1-2 mm的均匀稳定的水约束层;
• 打开激光器 10, 开始对榫槽底部平面 2进行激光冲击强化, 通过控制五轴工 作台 19的平移按照图 6所示的加工路径 32完成整个榫槽底部平面 2的强化。
• 加工结束后根据图 7中所标记的点进行残余应力测试以评估飞机叶片榫槽底 部平面激光冲击强化的效果。
实施例 3
将实施例二中的脉冲能量改为 6 J, 脉冲宽度改为 20 ns, 条形光斑的宽度改 为 1 mm, 长度改为 7 mm,导流喷射装置和水泵的压力值改为 0.2 MPa,流量改为 1.5xl0-5 m3/s, 其它方法和步骤不变。 实施例 4
将实施例二中的脉冲能量改为 12 J, 脉冲宽度改为 30 ns, 条形光斑的宽度 改为 2 mm, 长度改为 3.5 mm,导流喷射装置和水泵的压力值改为 0.3 MPa, 流量 改为 2.0xl0_5 m3/s, 其它方法和步骤不变。 从表 1中可以看出采用本方法能有效 地将 200 多兆帕以上的残余压应力引入飞机叶片榫槽底部平面, 从而有利于提 高飞机叶片的使用寿命。
表 1 实施例中飞机叶片榫槽底部平面残余应力测试的结果
Figure imgf000007_0001
表 1中: 正值表示拉应力, 负值表示压应力。

Claims

权 利 要 求 书
1. 一种飞机叶片榫槽底部平面激光冲击强化方法, 其特征在于: 根据榫槽底部的几何特征, 采用光路变换系统将圆形光斑激光束转换为高功率密度的条形光斑激光束对覆盖有吸收层的 榫槽底部平面进行激光冲击强化; 同时采用导流喷射装置和抽水装置, 分别控制榫槽底部进 水端和出水端的水流参数, 在榫槽底部内形成稳定 1-1.5 mm均匀的水约束层;
所述的条形光斑激光束宽度为 0.5-1 mm, 长度为 7-14 mm, 脉冲能量为 5-12 J, 脉冲宽度为
2. —种实施如权利要求 1 所述的飞机叶片榫槽底部平面激光冲击强化方法的装置, 其特征 在于: 包括激光器 (10), 激光器控制装置 (11), 光路变换系统 (13), 五轴工作台 (19), 夹具 I (23) , 夹具 II (22), 夹具 111(21), 水箱 (27), 导流喷射装置 (26), 输水软管 (25), 喷头 (24), 抽 水管头 (16), 抽水软管 (20), 水泵 (17)和水槽 (18) ; 夹具 1 (23)、 夹具 II (22)和夹具 111(21)安装 在五轴工作台 (19)上, 夹具 11 (22)位于夹具 1 (23)与 111(21)之间, 喷头 (24)安装在夹具 I (23)顶 部, 喷头 (24)与导流喷射装置 (26)通过输水软管 (25)相连, 导流喷射装置 (26)的进水管与水箱 (27)相接, 抽水管头 (16)安装在夹具 111(21)顶部, 抽水管头 (16)通过抽水软管 (20) 与水泵 (17) 相连, 水泵 (17)出水口与水槽 (18)相连, 激光器 (10)位于五轴工作台(19)正上方, 光路变换系 统 (13)位于激光器 (10)与五轴工作台 (19)之间。
3. 一种如权利要求 2 所述的实施飞机叶片榫槽底部平面激光冲击强化方法的装置, 其特征 在于: 导流喷射装置 (26)用于控制水流的压力和流量, 控制压力值范围在 0.1-0.3 MPa之间, 进口流量范围在 0.8 X 10-5-2.0 X 10-5 m3/s之间。
4. 一种如权利要求 2 所述的实施飞机叶片榫槽底部平面激光冲击强化方法的装置, 其特征 在于: 所述的水泵 (17)出口流量范围为 0.8 X 10— 5-2.0 X 10— 5 m3/s, 使榫槽底部内水约束层进出 流量相等, 确保水膜均匀。
5. —种实施权利要求 2 所述的一种飞机叶片榫槽底部平面激光冲击强化的装置, 其特征在 于: 所述的喷头 (24)为扁平状, 所述喷头 (24)的端面出水口宽度为 1.5mm, 长度为 10 mm。
6. 一种实施权利要求 2 所述的一种飞机叶片榫槽底部平面激光冲击强化的装置, 其特征在 于: 所述的抽水管头 (16)为扁平状, 所述抽水管头 (16)的端面出水口宽度为 1.5 mm, 长度为 10 mm。
PCT/CN2013/085743 2013-08-29 2013-10-23 一种飞机叶片榫槽底部平面激光冲击强化方法和装置 WO2015027555A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/914,799 US10280480B2 (en) 2013-08-29 2013-10-23 Laser shock peening method and device for bottom surface of tenon groove of aircraft blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310384555.6A CN103468925B (zh) 2013-08-29 2013-08-29 一种飞机叶片榫槽底部平面激光冲击强化方法和装置
CN201310384555.6 2013-08-29

Publications (1)

Publication Number Publication Date
WO2015027555A1 true WO2015027555A1 (zh) 2015-03-05

Family

ID=49793964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085743 WO2015027555A1 (zh) 2013-08-29 2013-10-23 一种飞机叶片榫槽底部平面激光冲击强化方法和装置

Country Status (3)

Country Link
US (1) US10280480B2 (zh)
CN (1) CN103468925B (zh)
WO (1) WO2015027555A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251633A (zh) * 2018-04-12 2018-07-06 佛山市南海区广工大数控装备协同创新研究院 一种斜入射的激光冲击强化方法
US10280480B2 (en) 2013-08-29 2019-05-07 Wenzhou University Laser shock peening method and device for bottom surface of tenon groove of aircraft blade

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898313B (zh) * 2014-04-10 2016-01-13 西安航空动力股份有限公司 一种涡轮盘榫槽结构的激光冲击强化方法
CN104152896B (zh) * 2014-08-19 2017-05-17 大连理工大学 一种纳米修复颗粒和激光冲击强化共同作用下焊角表面改性方法及其改性装置
CN104962723B (zh) * 2015-05-29 2017-03-08 江苏大学 一种修复金属裂纹的方法
CN106755945B (zh) * 2017-01-03 2018-06-08 安徽工业大学 一种基于激光冲击波技术改变裂纹扩展路径的方法及装置
US10610963B2 (en) 2017-05-17 2020-04-07 General Electric Company Surface treatment of turbomachinery
CN109880998B (zh) * 2019-03-01 2020-11-13 广东工业大学 一种叶片表面型面监控的方法及装置
CN110614448B (zh) * 2019-08-29 2021-05-25 江苏大学 一种用于多种叶片激光冲击的变形抑制夹具
US20210340978A1 (en) * 2020-04-30 2021-11-04 Caterpillar Inc. Power end frame with residual compressive stress and methods
CN113310680B (zh) * 2021-07-06 2022-05-13 杭州汽轮动力集团有限公司 一种测量榫头装配结构流量系数的试验装置
CN116160120B (zh) * 2023-04-20 2023-09-08 西北工业大学 一种提高涡轮叶片榫齿榫槽耐磨性的加工方法及加工系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911890A (en) * 1997-02-25 1999-06-15 Lsp Technologies, Inc. Oblique angle laser shock processing
CN1227877A (zh) * 1997-12-18 1999-09-08 通用电气公司 采用低能激光的激光冲击处理
US6333488B1 (en) * 1999-08-30 2001-12-25 General Electric Company Method for setting up and controlling confinement media flow in laser shock peening
CN103203543A (zh) * 2013-02-04 2013-07-17 中国航空工业集团公司北京航空制造工程研究所 一种用于激光冲击强化叶片的水约束层的喷射方法和装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522706A (en) * 1994-10-06 1996-06-04 General Electric Company Laser shock peened disks with loading and locking slots for turbomachinery
US5846054A (en) * 1994-10-06 1998-12-08 General Electric Company Laser shock peened dovetails for disks and blades
JPH0961610A (ja) * 1994-10-31 1997-03-07 Nippon Steel Corp バイナリーオプティクス及びそれを用いた集光光学系並びにレーザ加工装置
US5744781A (en) * 1995-08-07 1998-04-28 General Electric Company Method and apparatus for laser shock peening
US5988982A (en) * 1997-09-09 1999-11-23 Lsp Technologies, Inc. Altering vibration frequencies of workpieces, such as gas turbine engine blades
US5935464A (en) * 1997-09-11 1999-08-10 Lsp Technologies, Inc. Laser shock peening apparatus with a diffractive optic element
US7321105B2 (en) * 2003-02-21 2008-01-22 Lsp Technologies, Inc. Laser peening of dovetail slots by fiber optical and articulate arm beam delivery
US20040226637A1 (en) * 2003-05-13 2004-11-18 Lsp Technologies, Inc. Method, system and article employing laser shock processing of threads and keyways
JP2005000952A (ja) * 2003-06-12 2005-01-06 Nippon Sheet Glass Co Ltd レーザー加工方法及びレーザー加工装置
JP2005261599A (ja) * 2004-03-17 2005-09-29 Japan Science & Technology Agency 衝撃波発生装置及びこれを用いた結石破砕装置
US7750266B2 (en) * 2004-11-17 2010-07-06 Metal Improvement Company Llc Active beam delivery system for laser peening and laser peening method
JP5118324B2 (ja) * 2006-10-02 2013-01-16 富士重工業株式会社 レーザピーニング装置
CN101256287B (zh) 2008-04-16 2010-12-08 中国航空工业第一集团公司北京航空制造工程研究所 一种激光束整形五分透镜
US20100061863A1 (en) * 2008-09-11 2010-03-11 General Electric Company airfoil and methods of laser shock peening of airfoil
US10072971B2 (en) * 2010-04-16 2018-09-11 Metal Improvement Company, Llc Flexible beam delivery system for high power laser systems
US9144861B2 (en) * 2011-06-03 2015-09-29 Lsp Technologies, Inc. Apparatus for laser peening hidden surfaces
CN103205545B (zh) * 2013-02-04 2015-08-19 中国航空工业集团公司北京航空制造工程研究所 一种激光冲击处理发动机叶片的组合方法
CN103233105B (zh) * 2013-05-14 2014-09-17 江苏大学 一种紧固孔水下激光微喷丸强化的方法和装置
CN103468925B (zh) 2013-08-29 2014-11-05 温州大学 一种飞机叶片榫槽底部平面激光冲击强化方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911890A (en) * 1997-02-25 1999-06-15 Lsp Technologies, Inc. Oblique angle laser shock processing
CN1227877A (zh) * 1997-12-18 1999-09-08 通用电气公司 采用低能激光的激光冲击处理
US6333488B1 (en) * 1999-08-30 2001-12-25 General Electric Company Method for setting up and controlling confinement media flow in laser shock peening
CN103203543A (zh) * 2013-02-04 2013-07-17 中国航空工业集团公司北京航空制造工程研究所 一种用于激光冲击强化叶片的水约束层的喷射方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280480B2 (en) 2013-08-29 2019-05-07 Wenzhou University Laser shock peening method and device for bottom surface of tenon groove of aircraft blade
CN108251633A (zh) * 2018-04-12 2018-07-06 佛山市南海区广工大数控装备协同创新研究院 一种斜入射的激光冲击强化方法

Also Published As

Publication number Publication date
US20160215362A1 (en) 2016-07-28
CN103468925B (zh) 2014-11-05
US10280480B2 (en) 2019-05-07
CN103468925A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2015027555A1 (zh) 一种飞机叶片榫槽底部平面激光冲击强化方法和装置
CN105627025A (zh) 一种泵站铸铁管裂缝的修补方法
CN103132071B (zh) 一种激光修复用超声振动耦合装置
CN107649901A (zh) 一种可调式建筑钢管切割装置及其安装方法
CN1745955A (zh) 基于激光冲击技术的新型水约束层增压的方法和装置
CN104879316A (zh) 一种不锈钢冲焊式离心泵叶轮及其改进焊接方法
CN106736953A (zh) 一种ppr铝塑复合管打磨机
CN104227316B (zh) 一种修复井下千斤顶的方法
CN207681755U (zh) 一种可同时加工不同型材的激光切割机
WO2020215716A1 (zh) 一种航空发动机叶片气膜孔加工装置及工作方法
CN107009257B (zh) 一种用于磨料流超声复合去除细长杆毛刺的超声复合光整机床
CN110938740B (zh) 一种金属间化合物激光冲击强化寿命提升与变形控制方法
CN205799749U (zh) 一种机械零件切割专用的节水型水刀
WO2020082846A1 (zh) 一种激光冲击强化方法
CN208976714U (zh) 一种建筑工程施工用节能钢筋切割设备
CN105364276A (zh) 一种高强钢钢管塔焊接加工工艺
CN208562505U (zh) 一种低温真空镀膜装置
CN210731204U (zh) 一种多功能切割锯床
CN107866919B (zh) 线切机砂浆喷管装置
CN203048985U (zh) 一种工字型槽轮淬火感应器
CN210587434U (zh) 新型钢管切割机
CN207058307U (zh) 一种高散热性能的铝型材的型材切割机
CN103898281B (zh) 整体叶盘遮蔽部位激光冲击强化用激光头
CN213560191U (zh) 扩压器生产用加工中心精密定位装置
CN204209270U (zh) 一种用于钢板长焊缝焊接的火焰加热温度补偿器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14914799

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892509

Country of ref document: EP

Kind code of ref document: A1