WO2014115921A1 - 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금 - Google Patents

고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금 Download PDF

Info

Publication number
WO2014115921A1
WO2014115921A1 PCT/KR2013/001164 KR2013001164W WO2014115921A1 WO 2014115921 A1 WO2014115921 A1 WO 2014115921A1 KR 2013001164 W KR2013001164 W KR 2013001164W WO 2014115921 A1 WO2014115921 A1 WO 2014115921A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
aluminum
oxidation resistance
high temperature
present
Prior art date
Application number
PCT/KR2013/001164
Other languages
English (en)
French (fr)
Inventor
김성웅
김승언
나영상
염종택
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2014115921A1 publication Critical patent/WO2014115921A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the present invention relates to a titanium-aluminum-based alloy, and more specifically, beta by adding inexpensive tungsten (W) and chromium (Cr) instead of molybdenum (Mo) and vanadium (V), which are generally added for beta phase stabilization.
  • the present invention relates to a titanium-aluminum-based alloy that not only enhances phase stabilization effect and reduces manufacturing cost but also improves high temperature strength and oxidation resistance.
  • the present invention improves the mechanical properties by adding carbon (C) and silicon (Si), which are effective for grain refinement and creep resistance, but by reducing the content to suppress precipitate formation, and by adding niobium (Nb) to high temperature oxidation resistance and ductility.
  • the present invention relates to a titanium-aluminum based alloy which can be improved.
  • Titanium-aluminum based alloy is a two-phase alloy containing about 10% of Ti 3 Al as an intermetallic compound that is drawing attention as a next-generation lightweight heat-resistant material.
  • TiAl's layered structure is known to provide useful properties for practical application of TiAl as a lightweight high temperature material because of its excellent fracture toughness, fatigue strength, and creep strength, but lack of ductility at room temperature is known as the biggest obstacle to use as a casting material. have.
  • Coarse grain size also causes low ductility. Therefore, if the grain size can be reduced and the beta and gamma phases, which are relatively softer than the layered structure, can be included, not only excellent high temperature properties but also excellent strength and ductility can be obtained.
  • An object of the present invention is to solve the above problems, and more specifically, inexpensive tungsten (W), chromium (Cr) instead of molybdenum (Mo) and vanadium (V) are generally added for the beta phase stabilization It is to provide a titanium-aluminum-based alloy to increase the beta-phase stabilization effect and reduce the manufacturing cost as well as to improve the high temperature strength and oxidation resistance.
  • An object of the present invention is to provide a titanium-aluminum based alloy capable of improving oxidizing and ductility.
  • the titanium-aluminum-based alloy having improved high temperature strength and oxidation resistance according to the present invention includes 40 to 46 at% aluminum (Al), 3 to 6 at% niobium (Nb), and 0.2 to 0.4 at% creep enhancer; , 1 to 3 at% of the oxidation resistance improver and the balance titanium is prepared by the solidification casting method, characterized in that having an average failure strain of 27.5% or less at a temperature above room temperature.
  • It is characterized by having a tensile strength of 550 MPa or more at a temperature above room temperature.
  • the creep enhancer is characterized in that it comprises at least one of carbon (C) and silicon (Si).
  • the oxidation resistance improver is characterized in that any one of tungsten (W) and chromium (Cr) is adopted.
  • tungsten (W) and chromium (Cr) are added instead of molybdenum (Mo) and vanadium (V), which are generally added to stabilize the beta phase, thereby maximizing the beta phase stabilization effect.
  • carbon (C) and silicon (Si), which are effective in grain refinement and creep resistance, has the advantage of improving mechanical properties, particularly high temperature strength, by lowering the content to suppress precipitate formation.
  • Nb niobium
  • FIG. 1 is a real picture showing the appearance of a titanium-aluminum-based alloy with improved high temperature strength and oxidation resistance according to the present invention.
  • Figure 2 is a table showing the composition of the titanium-aluminum-based alloy with improved high temperature strength and oxidation resistance according to the present invention.
  • Example 3 is a microstructure photograph of Example 1 of a titanium-aluminum based alloy having improved high temperature strength and oxidation resistance according to the present invention.
  • Figure 4 is a microstructure photograph of Example 2 of a titanium-aluminum alloy with improved high temperature strength and oxidation resistance according to the present invention.
  • Example 5 is a microstructure photograph of Example 3 of a titanium-aluminum based alloy having improved high temperature strength and oxidation resistance according to the present invention.
  • Figure 7 is a table comparing the tensile strength of the room temperature of Example 2 and Example 3 and Comparative Example of the titanium-aluminum alloy with improved high temperature strength and oxidation resistance according to the present invention.
  • FIG. 9 is a graph showing the tensile test results of Examples 2 and 3 and Comparative Example of the titanium-aluminum-based alloy with improved high temperature strength and oxidation resistance according to the present invention.
  • Example 10 is a table comparing the results of the high temperature tensile test of Example 3 and Comparative Example of the titanium-aluminum-based alloy with improved high temperature strength and oxidation resistance according to the present invention.
  • FIG. 11 is a graph showing the results of an isothermal oxidation test of Examples 2 and 3 and Comparative Example of the titanium-aluminum based alloy having improved high temperature strength and oxidation resistance according to the present invention.
  • Example 12 is a graph showing the results of isothermal oxidation test of Example 3 and Comparative Example of the titanium-aluminum based alloy having improved high temperature strength and oxidation resistance according to the present invention.
  • FIG. 13 is a table comparing the results in FIG. 12.
  • Example 14 is a photograph comparing the results of the non-destructive testing of the test piece made of a material of Example 3 and Comparative Example of the titanium-aluminum alloy with improved high temperature strength and oxidation resistance according to the present invention.
  • FIG. 1 is a real picture showing the appearance of a titanium-aluminum alloy with improved high temperature strength and oxidation resistance according to the present invention
  • Figure 2 is a titanium-aluminum alloy with improved high temperature strength and oxidation resistance according to the present invention
  • a table showing the composition of the comparative example is shown.
  • titanium-aluminum-based alloy (hereinafter referred to as titanium-aluminum-based alloy 10) having improved high temperature strength and oxidation resistance according to the present invention as shown in the drawing is formed by manufacturing the metal component shown in FIG. No subsequent steps such as hot hydrostatic pressure, rolling or forging have been performed.
  • the titanium-aluminum-based alloy 10 is subjected to a subsequent process such as heat treatment, it is obvious that mechanical properties such as hardness, softening resistance, and creep resistance are improved, but in the embodiment of the present invention, the solidification casting method is used. Hardness and tensile tests were carried out based on the examples of the manufactured button shape having a diameter of 60 mm and compared with the comparative examples.
  • the comparative example is prepared based on the TiAl heat-resistant alloy composition disclosed in Japanese Patent Application Laid-open No. Hei 10-220236 and Japanese Patent Application Laid-open No. Hei 10-193087.
  • Embodiments of the present invention can be classified into Examples 1 to 3.
  • Example 1 was prepared by changing the amount of aluminum (Al) and niobium (Nb) while maintaining a constant composition ratio of tungsten (W) and carbon (C),
  • Example 2 changes the amount of niobium (Nb)
  • Example 3 was prepared by changing the amount of aluminum (Al) and niobium (Nb) while maintaining the amount of chromium (Cr) silicon (Si), carbon (C) constant.
  • the composition of the titanium-aluminum-based alloy 10 is summarized based on FIG. 2, wherein 40 to 46 at% aluminum (Al), 3 to 6 at% niobium (Nb), and 0.2 to 0.4 at% creep enhancer; , 1 to 3 at% of oxidation resistance improver and the balance comprises titanium.
  • the creep enhancer comprises at least one of carbon (C) and silicon (Si)
  • the oxidation-resistant enhancer is one of tungsten (W)
  • chromium (Cr) is adopted, and subsequent heat treatment It has an average hardness of at least 335.6 Hv and a Young's modulus of 180 to 220 GPa without any process at all.
  • titanium-aluminum based alloy 10 aluminum (Al) and niobium (Nb) are included within a predetermined weight range to improve oxidation resistance and ductility.
  • Tungsten (W) of the oxidation resistance improver is a relatively inexpensive element that can enhance the beta phase stabilization effect in place of molybdenum (Mo) or vanadium (V) was selected in the preferred embodiment of the present invention.
  • FIG. 3 to 5 are microstructure photographs of Examples 1 to 3 of the titanium-aluminum based alloy having improved high temperature strength and oxidation resistance according to the present invention
  • FIG. 6 is a microstructure photograph of a comparative example.
  • FIG. 3 shows that tungsten (W) is adopted as the oxidation resistance enhancer and carbon (C) is added as the creep enhancer.
  • FIG. 4 shows tungsten (W) as the oxidation enhancer and silicon (C) as the creep enhancer.
  • 5 is prepared by adding chromium (Cr) as an oxidation resistance enhancer and simultaneously adding carbon (C) and silicon (Si) as a creep enhancer.
  • the light portion is ⁇ 2 phase
  • the dark portion is ⁇ and ⁇ phase lamellae structure
  • the gray region mainly represents the gamma single phase region, it can be seen that all of the layered steel structure.
  • titanium such as 6-aluminum-based alloy crystal grain size
  • ⁇ 2 (Ti 3 Al) phase distributed along the grain boundaries, and a number the stacking fault within the ⁇ was observed.
  • Examples and comparative examples of the present invention will have a difference in strength as shown in Figure 7 by the difference in the microstructure as described above.
  • Figure 7 is a table comparing the tensile strength of Example 2 and Example 3 and Comparative Example of the titanium-aluminum alloy with improved high temperature strength and oxidation resistance according to the present invention, the embodiment of the present invention is 453.8 MPa at room temperature While having the above tensile strength, the comparative example showed a tensile strength of 384.5 MPa to confirm that the strength of the titanium-aluminum-based alloy according to the present invention is significantly higher.
  • Vickers hardness was measured three times for each sample of Examples 1 to 3 of the present invention, and the average hardness was 335.6 Hv or more.
  • the sample of the comparative example was shown to have a hardness of 268.4 Hv significantly lower than the Example of the present invention.
  • Figure 9 is a graph showing the tensile test results of Example 2 and Example 3 and Comparative Example of the titanium-aluminum-based alloy with improved high temperature strength and oxidation resistance according to the present invention, # 7 of Example 2, Tensile tests were conducted on # 11 of Example 3 and a comparative example, and a Young's modulus of 180 to 220 Hz was obtained.
  • the Young's modulus, hardness, and tensile strength as described above may be further improved by additionally performing subsequent processes, varying the amount of addition within the composition range of FIG. 2, and selectively adding oxidation resistance and creep enhancer. It is obvious that the required physical properties can be obtained by selectively increasing or decreasing the softening resistance and creep resistance.
  • Example 10 is a table comparing the results of the high-temperature tensile test of Example 3 and Comparative Example of the titanium-aluminum-based alloy with improved high temperature strength and oxidation resistance according to the present invention, Example 3 and Comparative Examples are all tensile tests at 900 °C Was carried out.
  • the average tensile strength of 560.3 was shown as 552.8 MPa and 567.7 MPa, whereas the comparative example showed 500.2 MPa and 511.0 MPa, indicating an average tensile strength of 505.5 MPa.
  • the Example had an average failure strain of 27.5% or less, while the Comparative Example showed an average failure strain of 50.7%, indicating that the Example of the present invention was superior to the Comparative Example.
  • Figure 11 is a graph showing the results of isothermal oxidation test of Example 2 and Example 3 and Comparative Example of the titanium-aluminum alloy with improved high temperature strength and oxidation resistance according to the present invention, over time at 900 °C temperature conditions Looking at the change in the mass of oxide produced per unit area (cm 2), Example 2 showed higher oxide production than in comparison, while Example 3 showed low oxide production.
  • the oxidation resistance of the present invention may be mistaken that the oxidation resistance of the present invention is lower than that of the comparative example based on the result of FIG. 11.
  • the oxidation resistance of the embodiment of the present invention is significantly higher than that of the comparative example when exposed to high temperature for a long time. It can be seen that.
  • Example 12 is a graph showing the results of isothermal oxidation test of Example 3 and Comparative Example of the titanium-aluminum alloy with improved high temperature strength and oxidation resistance according to the present invention.
  • the comparative example showed a low amount of oxide production at the beginning of the test, but rapidly increased to a value of 3.55922 mg / cm 2 after 168 hours. Was created.
  • the embodiment of the present invention showed 2.4442 mg / cm 2 and 2.00811 mg / cm 2, indicating that the oxidation resistance was superior to that of the comparative example.
  • 13 is a table comparing the results of FIG. 12.
  • Example 14 is a photograph comparing the results of the non-destructive test of the test piece made of a material of Example 3 and Comparative Example of the titanium-aluminum alloy with improved high temperature strength and oxidation resistance according to the present invention.
  • the present invention adds low-cost tungsten (W) and chromium (Cr) instead of molybdenum (Mo) and vanadium (V), which are generally added to stabilize the beta phase, thereby increasing the beta phase stabilization effect, thereby making the titanium-aluminum-based alloy inexpensive. Can be manufactured.

Abstract

본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금은, 40 ~ 46at%의 알루미늄(Al)과, 3 ~ 6at%의 니오븀(Nb)과, 0.2 ~ 0.4at%의 크립성향상제와, 1 ~ 3at%의 내산화성향상제 및 잔부인 타이타늄을 포함하고, 응고 주조법으로 제조되며, 상온 이상의 온도에서 27.5% 이하의 평균 파손변형률을 갖는 것을 특징으로 한다.

Description

고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금
본 발명은 타이타늄-알루미늄계 합금에 관한 것으로, 보다 상세하게는 베타상 안정화를 위해 일반적으로 첨가되는 몰리브덴(Mo)과 바나듐(V) 대신 저가인 텅스텐(W), 크롬(Cr)을 첨가하여 베타상 안정화 효과를 높이고 제조 원가가 절감될 뿐만 아니라 고온강도 및 내산화성이 향상되도록 한 타이타늄-알루미늄계 합금에 관한 것이다.
본 발명은, 결정립 미세화 및 크리프 저항성에 효과적인 탄소(C)와 규소(Si))를 첨가하되 함량을 낮추어 석출물 형성을 억제함으로써 기계적 성질을 개선하며, 니오븀(Nb)을 첨가하여 고온내산화성 및 연성이 향상될 수 있도록 한 타이타늄-알루미늄계 합금에 관한 것이다.
타이타늄-알루미늄계 합금은 차세대 경량내열재료로서 주목받고 있는 금속간화합물(intermetallic compound)의 일종으로 Ti3Al을 10% 정도 포함하고 있는 2상(two-phase)합금이다.
통상적인 용해응고법으로 제조하면 TiAl(γ)+Ti3Al(α2)의 2상으로 이루어지는 층상조직(lamellar structure)의 잉고트(ingot)를 얻게 된다.
TiAl의 층상조직은 파괴인성, 피로강도, 크리프강도가 우수해서 TiAl을 경량고온재료로서 실용화하는데 유용한 특성을 제공하는 것으로 알려져 있으나, 상온에서의 연성 부족이 주조재로 사용하는데 가장 큰 장애요소로 알려져 있다.
이러한 연성부족의 가장 큰 원인은 층상경계면(lamellar boundary)에 수직한 방향으로 응력이 작용할 때 경계면에서의 분리현상 (delamination)이 일어나기 때문인 것으로 알려져 있다.
또한, 조대한 결정립사이즈도 낮은 연성의 원인이 된다. 따라서, 결정립 사이즈를 작게 하고 층상조직에 비해 상대적으로 연성이 우수한 베타 및 감마상을 포함시킬 수 있다면, 우수한 고온 특성 뿐만 아니라 뛰어난 강도 및 연성도 얻을 수 있다.
베타 및 감마상을 포함하는 층상조직 TiAl 합금을 제조하기 위해, 기존 연구에서는 Ti-(41~45)Al-(3~5)Nb-(Mo,V)-(B,C) 합금계를 사용하는 것으로 보고되었다 (H. Z. Niu et al, Intermetallics 21 (2012) 97 및 T. Sawatzky, Y. W. Kim et al., Mat. Sci. Forum 654-656 (2010) 500).
본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로, 보다 상세하게는 베타상 안정화를 위해 일반적으로 첨가되는 몰리브덴(Mo)과 바나듐(V) 대신 저가인 텅스텐(W), 크롬(Cr)을 첨가하여 베타상 안정화 효과를 높이고 제조 원가가 절감될 뿐만 아니라 고온강도 및 내산화성이 향상되도록 한 타이타늄-알루미늄계 합금을 제공하는 것에 있다.
본 발명의 다른 목적은, 결정립 미세화 및 크리프 저항성에 효과적인 탄소(C)와 규소(Si))를 첨가하되 함량을 낮추어 석출물 형성을 억제함으로써 기계적 성질을 개선하며, 니오븀(Nb)을 첨가하여 고온내산화성 및 연성이 향상될 수 있도록 한 타이타늄-알루미늄계 합금을 제공하는데 있다.
본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금은, 40 ~ 46at%의 알루미늄(Al)과, 3 ~ 6at%의 니오븀(Nb)과, 0.2 ~ 0.4at%의 크립성향상제와, 1 ~ 3at%의 내산화성향상제 및 잔부인 타이타늄을 포함하고, 응고 주조법으로 제조되며, 상온 이상의 온도에서 27.5% 이하의 평균 파손변형률을 갖는 것을 특징으로 한다.
상온 이상의 온도에서 550㎫ 이상의 인장 강도를 갖는 것을 특징으로 한다.
상기 크립성향상제는 탄소(C)와 규소(Si) 중 하나 이상을 포함하는 것을 특징으로 한다.
상기 내산화성향상제는 텅스텐(W)과, 크롬(Cr) 중 어느 하나가 채택됨을 특징으로 한다.
180 ~ 220㎬의 영률(Young's modulus)을 갖는 것을 특징으로 한다.
상온에서 335.6 Hv 이상의 평균 경도를 갖는 것을 특징으로 한다.
상온에서 453.8 ~ 540 ㎫의 인장 강도를 갖는 것을 특징으로 한다.
본 발명에서는 베타상 안정화를 위해 일반적으로 첨가되는 몰리브덴(Mo)과 바나듐(V) 대신 저가인 텅스텐(W), 크롬(Cr)을 첨가하여 베타상 안정화 효과가 극대화되는 이점이 있다.
또한, 결정립 미세화 및 크리프 저항성에 효과적인 탄소(C)와 규소(Si))를 첨가하되 함량을 낮추어 석출물 형성을 억제함으로써 기계적 성질 특히 고온강도가 개선되는 이점이 있다.
뿐만 아니라, 니오븀(Nb)을 첨가하여 고온내산화성 및 연성이 향상되며 제조 원가가 절감되는 이점이 있다.
도 1 은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 외관을 보인 실물 사진.
도 2 는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금과 비교예의 조성을 나타낸 표.
도 3 은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예1의 미세조직 사진.
도 4 는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예2의 미세조직 사진.
도 5 는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예3의 미세조직 사진.
도 6 은 비교예의 미세조직 사진.
도 7 은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예2 및 실시예3과 비교예의 상온 인장강도를 비교한 표.
도 8 은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예1 내지 실시예3과 비교예의 상온 비커스 경도를 비교한 표.
도 9 는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예2 및 실시예3과 비교예의 인장시험 결과를 비교하여 나타낸 그래프.
도 10 은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예3과 비교예의 고온 인장시험 결과를 비교한 표.
도 11 은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄 계 합금의 실시예2 및 실시예3과 비교예의 등온 산화시험 결과를 나타낸 그래프.
도 12 는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예3과 비교예의 등온 산화시험 결과를 나타낸 그래프.
도 13 은 도 12의 결과를 비교한 표.
도 14 는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예3과 비교예를 재료로 제조된 시험편의 비파괴검사 결과를 비교한 사진.
이하 첨부된 도 1 및 도 2 를 참조하여 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금에 대하여 살펴본다.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1에는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 외관을 보인 실물 사진이 도시되어 있고, 도 2에는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금과 비교예의 조성을 나타낸 표가 도시되어 있다.
도면과 같이 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금(이하 타이타늄-알루미늄계 합금(10)이라 칭함)은 도 2에 표시된 금속 성분을 응고 주조법으로 제조하여 형성된 것으로, 열처리, 열간정수압, 롤링, 단조 등의 후속 공정을 전혀 실시하지 않은 상태이다.
보다 구체적으로 살펴보면, 타이타늄-알루미늄계 합금(10)은 열처리 등의 후속 공정을 실시하는 경우 경도, 내연화성, 크립성 등의 기계적 성질이 향상되는 것이 자명하나, 본 발명의 실시예에서는 응고 주조법으로 제조된 지름 60㎜ 크기의 버튼(Botton) 형상의 실시예를 토대로 경도 및 인장 시험을 실시하여 비교예와 비교하였다.
이때 비교예는 일본의 Daido steel에서 출원한 일본공개특허공보 특개평10-220236호와, 특개평10-193087호에 개시된 TiAl 내열합금 조성을 토대로 제조한 것이다.
본 발명의 실시예는 실시예1 내지 실시예3으로 분류할 수 있다.
실시예1은 텅스텐(W)과 탄소(C)의 조성비는 일정하게 유지하되 알루미늄(Al)과 니오븀(Nb)의 양을 변화시켜 제조된 것이고, 실시예2는 니오븀(Nb)의 양을 변화시켜 제조된 것이며, 실시예3은 크롬(Cr) 규소(Si), 탄소(C)의 양은 일정하게 유지하되 알루미늄(Al)과 니오븀(Nb)의 양을 변화시켜 제조한 것이다.
상기 타이타늄-알루미늄계 합금(10)의 조성을 도 2를 토대로 정리해보면, 40 ~ 46at%의 알루미늄(Al)과, 3 ~ 6at%의 니오븀(Nb)과, 0.2 ~ 0.4at%의 크립성향상제와, 1 ~ 3at%의 내산화성향상제 및 잔부인 타이타늄을 포함하여 구성된다.
이때 상기 크립성향상제는 탄소(C)와 규소(Si) 중 하나 이상을 포함하여 구성되고, 상기 내산화성향상제는 텅스텐(W)과, 크롬(Cr) 중 어느 하나가 채택되며, 열처리 등의 후속 공정을 전혀 실시하지 않은 상태에서 335.6 Hv 이상의 평균 경도와 180 ~ 220㎬의 영률(Young's modulus)을 갖는다.
그리고, 상기 타이타늄-알루미늄계 합금(10)에서 알루미늄(Al)과, 니오븀(Nb)은 내산화성 및 연성을 개선하기 위해 일정 중량범위 내에서 포함된다.
상기 내산화성향상제 중 텅스텐(W)은 몰리브덴(Mo) 이나 바나듐(V)을 대신하여 베타상 안정화효과를 높일 수 있도록 하는 구성으로 상대적으로 저가의 원소이므로 본 발명의 바람직한 실시예에 채택되었다.
이하 첨부된 도 3 내지 도 5를 참조하여 본 발명의 실시예1 내지 실시예3과 비교예의 미세 조직을 비교한다.
도 3 내지 도 5는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예1 내지 실시예3의 미세조직 사진이고, 도 6 은 비교예의 미세조직 사진이다.
먼저 도 3은 내산화성향상제로서 텅스텐(W)을 채택하고 크립성향상제로서 탄소(C)를 첨가하여 제조된 것이고, 도 4는 내산화성향상제로서 텅스텐(W)을 채택하고 크립성향상제로서 규소(Si)를 첨가하여 제조된 것이며, 도 5는 내산화성향상제로서 크롬(Cr)을 채택하고, 크립성향상제로서 탄소(C)와 규소(Si)를 동시에 첨가하여 제조한 것이다.
도 3 내지 도 5에서 밝은 부분은 β2 상이고 어두운 부분은 α과 γ상이 라멜라 구조를 이루는 부분이며 회색영역은 주로 감마 단상영역을 나타내며, 모두 층강 구조를 이루는 것을 확인할 수 있다.
그러나, 도 6과 같이 비교예의 타이타늄-알루미늄계 합금은 결정립사이즈는 작으나, 결정립 내의 층상조직이 뚜렷하게 보이지 않고, 결정립계를 따라 취약한 α2 (Ti3Al)상이 분포하며, γ상 내에 적층결함이 다수 관찰되었다.
본원발명의 실시예와 비교예는 상기와 같은 미세 조직의 차이에 의해 도 7과 같이 강도에서 차이를 가지게 된다.
즉, 도 7은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예2 및 실시예3과 비교예의 인장강도를 비교한 표로서, 본원발명의 실시예는 상온에서 453.8㎫ 이상의 인장강도를 갖는 반면, 비교예는 384.5㎫의 인장 강도를 나타내어 본원발명에 따른 타이타늄-알루미늄계 합금의 강도가 월등히 높은 것을 확인하였다.
도 8은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예1 내지 실시예3과 비교예의 비커스 경도를 비교한 표이다.
도 8과 같이 본원발명의 실시예1 내지 실시예3의 각 시료에 대하여 3회씩 비커스 경도를 측정한 결과 335.6 Hv 이상의 평균 경도를 나타내었다.
반면 비교예의 시료는 268.4 Hv의 경도를 나타내어 본원발명의 실시예보다 현저히 낮은 경도를 갖는 것을 확인하였다.
마지막으로 도 9는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예2 및 실시예3과 비교예의 인장시험 결과를 비교하여 나타낸 그래프로서, 실시예2의 #7과, 실시예3의 #11, 그리고 비교예에 대하여 인장시험을 실시한 결과, 180 ~ 220㎬의 영률(Young's modulus)을 나타내었다.
상기의 실험 결과는 도 2와 같은 조성을 포함하는 타이타늄-알루미늄계 합금에 대하여 응고 주조법으로 제조된 실시예1 내지 실시예3에 대한 것으로, 열처리, 소성 가공 등의 후속 공정을 전혀 실시하지 않은 상태로 측정된 것이다.
따라서, 상기와 같은 영률, 경도 및 인장강도는 후속 공정을 추가로 실시한다면 더욱 더 향상시킬 수 있을 것이며, 도 2의 조성 범위 내에서 첨가량을 변화시키고, 내산화성향상제와 크립성향상제를 선택적으로 첨가한다면 내연화성과 크립성을 선택적으로 증감시켜 요구되는 물성을 얻을 수 있음은 자명하다.
이하 첨부된 도 10을 참조하여 실시예와 비교예의 고온 인장 시험 결과에 대하여 설명한다.
도 10은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예3과 비교예의 고온 인장시험 결과를 비교한 표로서, 실시예3과 비교예는 인장 시험은 모두 900℃에서 실시하였다.
도면과 같이 실시예의 경우 552.8㎫, 567.7㎫을 나타내어 560.3의 평균 인장강도를 나타낸 반면, 비교예의 경우 500.2㎫과 511.0㎫을 나타내어 505.5㎫의 평균 인장강도를 나타내었다.
도 7과 도 10을 같이 비교해보면 비교예의 경우 고온에서의 인장강도가 상온에서의 인장강도보다 현격히 상승하긴 하였으나, 실시예의 인장강도보다는 못 미치는 결과를 나타내었다.
그리고, 상온 이상의 온도(900℃)에서 실시예는 27.5% 이하의 평균 파손변형률을 갖는 반면 비교예는 50.7%의 평균 파손변형률을 나타내어 본 발명의 실시예가 비교예보다 뛰어난 것을 확인할 수 있었다.
도 11은 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄 계 합금의 실시예2 및 실시예3과 비교예의 등온 산화시험 결과를 나타낸 그래프로서, 900℃의 온도 조건에서 시간이 경과함에 따라 단위면적(㎠)당 생성되는 산화물의 질량 변화를 살펴보면, 실시예2는 비교에보다 높은 산화물 생성량을 나타낸 반면, 실시예3은 낮은 산화물 생성량을 나타내었다.
도 11의 결과를 토대로 본원발명의 실시예2가 비교예보다 내산화성이 낮은 것으로 오인될 수도 있으나, 도 12를 참조하면 장시간 고온에 노출되는 경우 본 발명의 실시예의 내산화성이 비교예보다 월등히 높은 것을 알 수 있다.
도 12는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예3과 비교예의 등온 산화시험 결과를 나타낸 그래프이다.
도면과 같이 바람직한 실시예의 경우 등온 산화 시험의 시간이 경과하더라도 일정한 산화물 생성량을 나타내었으나, 비교예의 경우에는 시험 초기에 낮은 산화물 생성량을 보였을 뿐 급격하게 증가하여 168시간 경과시에는 3.55922㎎/㎠의 산화물이 생성되었다.
반면 본 발명의 실시예는 2.4442㎎/㎠와 2.00811㎎/㎠를 나타내어 비교예보다 내산화성이 뛰어난 것을 확인할 수 있었다. 도 13은 도 12의 결과를 비교한 표이다.
도 14는 본 발명에 의한 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금의 실시예3과 비교예를 재료로 제조된 시험편의 비파괴검사 결과를 비교한 사진이다.
도면과 같이 유도 용해를 이용하여 시험편을 제조한 후 비파괴검사를 실시한 결과, 비교예의 시편 다수 곳에는 균열이 발생하였으며, 시편의 중앙부(도 14의 좌측 맨 아래 사진)에도 균열이 있음을 확인하였다.
반면, 본원발명의 실시예는 유도용해 방향에 따른 균열이 일부 발생하긴 하였으나, 시편의 중앙부(도 14의 우측 맨 아래 사진)에는 균열이 전혀 발생되지 않은 것을 확인하였다.
이러한 본 발명의 범위는 상기에서 예시한 실시예에 한정되지 않고, 상기와 같은 기술범위 안에서 당업계의 통상의 기술자에게 있어서는 본 발명을 기초로 하는 다른 많은 변형이 가능할 것이다.
본 발명은 베타상 안정화를 위해 일반적으로 첨가되는 몰리브덴(Mo)과 바나듐(V) 대신 저가인 텅스텐(W), 크롬(Cr)을 첨가하여 베타상 안정화 효과를 높임으로써 타이타늄-알루미늄계 합금을 저렴하게 제조할 수 있다.
또한, 결정립 미세화 및 크리프 저항성에 효과적인 탄소(C)와 규소(Si)를 첨가하되 함량을 낮추어 석출물 형성을 억제함으로써 기계적 성질을 개선하며, 니오븀(Nb)을 첨가하여 고온내산화성 및 연성이 향상된 경량내열재료에 적용 가능하다.

Claims (7)

  1. 40 ~ 46at%의 알루미늄(Al)과, 3 ~ 6at%의 니오븀(Nb)과, 0.2 ~ 0.4at%의 크립성향상제와, 1 ~ 3at%의 내산화성향상제 및 잔부인 타이타늄을 포함하고, 응고 주조법으로 제조되며, 상온 이상의 온도에서 27.5% 이하의 평균 파손변형률을 갖는 것을 특징으로 하는 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금.
  2. 40 ~ 46at%의 알루미늄(Al)과, 3 ~ 6at%의 니오븀(Nb)과, 0.2 ~ 0.4at%의 크립성향상제와, 1 ~ 3at%의 내산화성향상제 및 잔부인 타이타늄을 포함하고, 응고 주조법으로 제조되며, 상온 이상의 온도에서 550㎫ 이상의 인장 강도를 갖는 것을 특징으로 하는 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금.
  3. 제 1 항 또는 제 2 항에 있어서, 상기 크립성향상제는 탄소(C)와 규소(Si) 중 하나 이상을 포함하는 것을 특징으로 하는 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금.
  4. 제 3 항에 있어서, 상기 내산화성향상제는 텅스텐(W)과, 크롬(Cr) 중 어느 하나가 채택됨을 특징으로 하는 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금.
  5. 제 4 항에 있어서, 180 ~ 220㎬의 영률(Young's modulus)을 갖는 것을 특징으로 하는 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금.
  6. 제 5 항에 있어서, 상온에서 335.6 Hv 이상의 평균 경도를 갖는 것을 특징으로 하는 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금.
  7. 제 6 항에 있어서, 상온에서 453.8 ~ 540 ㎫의 인장 강도를 갖는 것을 특징으로 하는 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금.
PCT/KR2013/001164 2013-01-23 2013-02-14 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금 WO2014115921A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0007208 2013-01-23
KR20130007208 2013-01-23

Publications (1)

Publication Number Publication Date
WO2014115921A1 true WO2014115921A1 (ko) 2014-07-31

Family

ID=51227703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001164 WO2014115921A1 (ko) 2013-01-23 2013-02-14 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금

Country Status (1)

Country Link
WO (1) WO2014115921A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916028A (en) * 1989-07-28 1990-04-10 General Electric Company Gamma titanium aluminum alloys modified by carbon, chromium and niobium
JPH0578769A (ja) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd 金属間化合物基耐熱合金
JPH0784633B2 (ja) * 1988-06-03 1995-09-13 ゼネラル・エレクトリック・カンパニイ チタンアルミニウム合金
KR20090063173A (ko) * 2007-12-13 2009-06-17 게카에스에스-포르슝스첸트룸 게스트하흐트 게엠베하 티타늄 알루미나이드 합금
KR20110117397A (ko) * 2010-04-21 2011-10-27 주식회사 엔아이비 티타늄-알루미늄계 금속간화합물 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784633B2 (ja) * 1988-06-03 1995-09-13 ゼネラル・エレクトリック・カンパニイ チタンアルミニウム合金
US4916028A (en) * 1989-07-28 1990-04-10 General Electric Company Gamma titanium aluminum alloys modified by carbon, chromium and niobium
JPH0578769A (ja) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd 金属間化合物基耐熱合金
KR20090063173A (ko) * 2007-12-13 2009-06-17 게카에스에스-포르슝스첸트룸 게스트하흐트 게엠베하 티타늄 알루미나이드 합금
KR20110117397A (ko) * 2010-04-21 2011-10-27 주식회사 엔아이비 티타늄-알루미늄계 금속간화합물 및 이의 제조방법

Similar Documents

Publication Publication Date Title
WO2017209419A1 (ko) 고엔트로피 합금
WO2013180338A1 (ko) 저탄성 고강도 베타형 타이타늄 합금
WO2011152617A2 (ko) 알루미늄 합금 및 알루미늄 합금 주물
EP2252718B1 (en) Method of producing a copper and scandium free aluminium alloy
CN110592444B (zh) 一种700-720MPa强度耐热高抗晶间腐蚀铝合金及其制备方法
CA2870475C (en) 2xxx series aluminum lithium alloys
WO2013022144A1 (en) Copper alloy material for continuous casting mold and process for producing same
EP2761042A1 (en) Leadless free-cutting copper alloy and method for producing the same
WO2014017692A1 (ko) 베타-감마상을 가지는 층상 구조의 타이타늄-알루미늄계 합금
US20120202085A1 (en) Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties
WO2020085755A1 (ko) 하이엔트로피 합금을 포함하는 복합 구리 합금 및 그 제조 방법
KR20160125917A (ko) 구리 합금 및 그 제조 방법
CA2880692A1 (en) 2xxx series aluminum lithium alloys
WO2018110779A1 (ko) 강도 및 연성이 우수한 저합금 강판
WO2017164602A1 (ko) Cr-fe-mn-ni-v계 고 엔트로피 합금
WO2011149290A2 (ko) 치과 도재소부용 금속 합금 및 치과 보철물
WO2011021777A2 (ko) 열전도성이 높은 다이캐스팅용 알루미늄 기초합금
KR101342169B1 (ko) 상온 연성을 갖는 타이타늄-알루미늄계 합금 잉곳
WO2017111251A1 (ko) 내크립 특성 및 인장강도가 향상된 오스테나이트계 스테인리스강 및 이의 제조 방법
JPS60121249A (ja) 耐応力腐食用アルミニウム基合金
WO2022102807A1 (ko) Al-mg-si계 알루미늄 합금 및 그 제조방법
WO2014115921A1 (ko) 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금
WO2020085586A1 (ko) 융점 1,900℃ 이하 원소로 구성된 고강도 고연성 타이타늄 합금
JPH09111366A (ja) 耐熱性白金材料
US11508493B2 (en) Aluminum alloy for cable conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872851

Country of ref document: EP

Kind code of ref document: A1