WO2011105646A1 - 다이캐스팅용 아연-알루미늄 합금 - Google Patents

다이캐스팅용 아연-알루미늄 합금 Download PDF

Info

Publication number
WO2011105646A1
WO2011105646A1 PCT/KR2010/001257 KR2010001257W WO2011105646A1 WO 2011105646 A1 WO2011105646 A1 WO 2011105646A1 KR 2010001257 W KR2010001257 W KR 2010001257W WO 2011105646 A1 WO2011105646 A1 WO 2011105646A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
weight
aluminum
alloy
less
Prior art date
Application number
PCT/KR2010/001257
Other languages
English (en)
French (fr)
Inventor
이군희
이봉기
Original Assignee
주식회사 인터프랙스퀀텀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인터프랙스퀀텀 filed Critical 주식회사 인터프랙스퀀텀
Publication of WO2011105646A1 publication Critical patent/WO2011105646A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Definitions

  • the present invention relates to an alloy used for die casting, and more particularly to a high strength lightweight die casting alloy mainly composed of zinc (Zn) and aluminum (Al).
  • zinc die casting alloys having higher strength than aluminum die casting alloys have been used.
  • zinc die casting alloys eg, ZA27
  • ZA27 zinc die casting alloys
  • specific gravity about 4.9 g / cm 3
  • components such as exterior materials and hinges of the mobile phone case, a situation in which a lightweight high strength die casting alloy is required.
  • a conventional zinc die casting alloy eg, ZA27
  • silicon (Si) which is 2.0% by weight or less (excluding 0)
  • copper (Cu) that is larger than 1.4% by weight and 9% by weight or less and 70% by weight or more
  • an alloy for zinc-aluminum die casting containing aluminum (Al) which is not more than% by weight, with the balance consisting of zinc (Zn) and unavoidable impurities.
  • Zinc-aluminum die casting comprising at least one selected from aluminum (Al) of up to 70% by weight and beryllium (Be) and titanium (Ti) of up to 0.1% by weight (excluding 0), respectively, with the balance being zinc (Zn) and unavoidable impurities
  • a dragon alloy is provided.
  • copper (Cu) may be greater than 1.4 wt% and less than 5 wt%, and moreover, 2.0 wt% or more and 9 wt%. It may be characterized by a further, characterized in that more than 2.0% by weight or more and 5% by weight or less.
  • silicon (Si) may be characterized by another 0.1 wt% or more and 1.0 wt% or less.
  • aluminum (Al) may be 45% by weight or more and 55% by weight or less.
  • aluminum (Al) may be 47% by weight or more and 51% by weight or less.
  • silicon (Si) of 2.0% by weight or less (excluding 0), copper (Cu) of greater than 1.4% by weight and 9% by weight or less, 27% by weight or more
  • alloys for die casting comprising up to 70% by weight of aluminum (Al) and at least 16% by weight and up to 68.6% by weight of zinc (Zn).
  • copper (Cu) is greater than 1.4 wt% and less than 5 wt%
  • silicon (Si) is at least 0.1 wt% and not more than 1.0 wt%
  • Aluminum (Al) may be 45% by weight or more and 55% by weight or less, in this case further comprises at least one of beryllium (Be) and titanium (Ti) in the range of 0.1% by weight or less (excluding 0), respectively. It can be another feature.
  • beryllium (Be), titanium (Ti), magnesium (Mg), nickel (Ni), vanadium (V), tin (Sn) At least one element selected from iron (Fe), chromium (Cr), zirconium (Zr), strontium (Sr), scandium (Sc) and manganese (Mn) in a range of 3% by weight or less (excluding 0) It may include.
  • the zinc-aluminum die-casting alloy according to the present invention can be utilized for parts requiring light weight and high strength, for example, parts such as exterior materials and hinges of notebook or mobile phone cases.
  • Figure 2 shows the three-point bending test results of the alloy for zinc-aluminum die casting according to the Examples and Comparative Examples of the present invention.
  • the alloy for zinc-aluminum diecasting according to the embodiment of the present invention includes zinc and aluminum, and the zinc-aluminum die casting alloy is not limited to a case where the composition of zinc is higher than that of aluminum, and the composition of any one of zinc or aluminum is different. This includes both cases of higher than one composition and those that do not.
  • the zinc-aluminum alloy may include inevitable impurities in which each alloying element prepared for manufacturing is inevitably included in the smelting or refining process, and in addition, impurities may be inevitable in the alloying process. It may be further contained. Therefore, in the embodiments of the present invention, the unavoidable impurity means impurities other than an alloying element intentionally included for the above reason.
  • Table 1 shows the alloy compositions of Examples 1 to 6 of the present invention and the alloy compositions of Comparative Examples 1 to 6.
  • the alloys of Examples 1 to 6 and Comparative Examples 1 to 6 were prepared with zinc, aluminum, copper, silicon, titanium, and aluminium-beryllium alloys (Al-Be), and then these metals were dissolved in a melting furnace to diecast. Prepared by the method.
  • Comparative Example 1 was ZA27, an alloy for commercial zinc die casting.
  • Table 1 shows the results for the moldability of each Example and Comparative Example.
  • Examples 1 to 6 all contained 27 wt% or more of aluminum, and were found to have excellent moldability. However, in the case of Comparative Examples 4 to 6 having a high aluminum content, sintering occurred. From this it can be seen that when the content of aluminum is higher than 70% by weight deterioration of the moldability of the alloy due to the occurrence of sintering.
  • Example 3 to 6 the specific gravity was lower because the composition of aluminum in the alloy was higher than that of Comparative Example 1. That is, when comparing the density by calculation as shown in Table 1, it can be seen that the alloys according to Examples 3 to 6 have a density of 4 g / cm 3 or less, the ZA27 alloy of Comparative Example 1 is 4.9 g It can be seen that it has a density of / cm 3 .
  • FIG. 1 shows Examples 3 to 6 and Comparative Examples 1 to 3. Uniaxial tensile test results are shown.
  • the tensile strength of the zinc-aluminum die casting alloys according to Examples 3 to 6 was better than that of ZA27 (Comparative Example 1), which is a commercial zinc die casting alloy. In the case, the tensile strength was lower than that of Comparative Example 1.
  • the superior tensile force of Examples 3 to 6 compared to Comparative Example 1 was determined to be due to the high content of copper and silicon. That is, in the case of Examples 3 to 6, all of the aluminum content was higher than Comparative Example 1, but the composition of copper is in the range of 2.9% by weight to 5.0% by weight, the composition of silicon is 0.1% by weight to 1.0% by weight It had a high composition range compared with the comparative example 1 containing only 2.0 weight% copper as a range.
  • Comparative Example 3 with a higher content of copper and silicon than Comparative Example 2 showed a relatively high tensile force.
  • the copper content should be at least 1.4 wt%. Considering the comparative example 1, it is more preferable to improve the strength when 2% by weight or more. However, if the amount is too large, the brittleness is increased, the mechanical properties are lowered, and since it is a heavy element, it is not effective for reducing specific gravity. Therefore, the content of copper is preferably not more than 9% by weight or more, particularly preferably not more than 5% by weight.
  • the copper content can be greater than 1.4% by weight and up to 9% by weight, in particular greater than 1.4% by weight and up to 5% by weight, furthermore at least 2% by weight and up to 9% by weight, furthermore 2% by weight. Or more than 5% by weight.
  • FIG. 2 shows the results of a three-point bend test at a speed of 60 mm / min to measure the bendability of the Examples and Comparative Examples of the present invention.
  • Example 1 and Example 2 and Comparative Example 1 when compared to Example 1 and Example 2 and Comparative Example 1, the bending force of Example 1 and Example 2 was higher than that of Comparative Example 1, although having a similar composition of aluminum and zinc. This was inferred because, as mentioned above, the content of copper and / or silicon was higher than in Comparative Example 1. Specifically, in Examples 1 and 2, the copper composition was 5% by weight and had a higher content than Comparative Example 1, which is 2% by weight, and in Example 2, silicon not added in Comparative Example 1 0.5 weight% was added.
  • Example 2 containing 0.5% by weight of silicon showed a relatively better bending force than Example 1, from which the mechanical properties of the alloy for zinc-aluminum die casting due to the addition of copper and / or silicon This improvement was found.
  • toughness of the alloy may be improved as titanium (Ti) and beryllium (Be) are further added in an amount of 0.1 wt% or less.
  • Ti titanium
  • Be beryllium
  • Example 6 the composition of zinc, aluminum, copper, and silicon was substantially the same as that of Example 5, but the strength was lowered compared to Example 5 as 0.05 and 0.06 wt% of titanium and beryllium were added. It showed the property that the drawing is improved without.
  • the total weight of zinc, aluminum, copper and silicon occupy 97% or more, and the strength of the alloy can be increased by adding alloying elements to the remaining part.
  • the alloying elements that can be added at this time are titanium (Ti), beryllium (Be), magnesium (Mg), nickel (Ni), vanadium (V), tin (Sn), iron (Fe), chromium (Cr), zirconium ( Zr), strontium (Sr), scandium (Sc) and manganese (Mn) may be one or more alloying elements selected from.
  • an alloy comprising silicon of 1.0 wt% or less (excluding 0), silicon greater than 1.4 wt% and 9 wt% or less, aluminum of 27 wt% or more and 70 wt% or less, and zinc of 16 wt% or more and 68.6 wt% or less.
  • silicon 1.0 wt% or less (excluding 0)
  • silicon greater than 1.4 wt% and 9 wt% or less silicon greater than 1.4 wt% and 9 wt% or less
  • aluminum 27 wt% or more and 70 wt% or less
  • zinc 16 wt% or more and 68.6 wt% or less
  • One or more of the above-described alloying elements may be further included in the range of 3% by weight or less.

Abstract

본 발명은 고강도 경량 아연-알루미늄 다이캐스팅 합금에 관한 것으로, 더욱 상세하게는 노트북이나 휴대폰 케이스의 외장재 및 경첩(hinge) 등의 부품을 제조하기 위한 다이캐스팅 합금으로 사용되는 아연 합금(예: ZA27)을 대체하기 위해, 합금 원소의 적절한 첨가를 통하여 다이캐스팅이 가능하며, 기존의 아연 합금(예: ZA27)보다 가볍우면서도 강도를 향상시킨 고강도 경량 아연-알루미늄 다이캐스팅 합금에 관한 것이다. 이를 위해 본 발명은 2.0 중량% 이하(0 제외)인 실리콘(Si), 1.4 중량% 보다 크고 9 중량% 이하인 구리(Cu) 및 27 중량% 이상이고 70 중량% 이하인 알루미늄(Al)을 함유하고, 잔부가 아연(Zn) 및 불가피한 불순물로 이루어지는 다이캐스팅용 합금을 제공한다.

Description

다이캐스팅용 아연-알루미늄 합금
본 발명은 다이캐스팅에 사용되는 합금, 더욱 상세하게는 아연(Zn)와 알루미늄(Al)을 주성분으로 하는 고강도 경량 다이캐스팅 합금에 관한 것이다.
오늘날 다이캐스팅 기술은 고품질의 제품을 제조할 수 있을 정도로 개발되었다. 그러나 다이캐스팅의 품질은 기계설비와 선택된 공정뿐만 아니라 사용된 합금의 화학성분 및 구조에 따라서 크게 달라질 수 있다. 후자의 두 파라메타는 가주성(可鑄性), 피드특성(feed behaviour), 기계적인 특성과, 특히 다이캐스팅에서 중요한 주조공구의 수명에 영향을 주는 것으로 알려져 있다.
종래에는 노트북이나 휴대폰 케이스의 외장재 및 경첩(hinge) 등의 부품에 적합한 다이캐스팅용 합금의 개발에 거의 주의를 기울이지 않았다. 그러나 제품의 외형이나 기능적인 면에서 복잡해지므로 좀 더 변형에 견딜 수 있는 다이캐스팅용 합금을 개발할 필요성이 증가하고 있다. 특히, LCD 판넬 부분을 지지해 주는 부품이나, 얇고 복합한 형상의 경첩 등과 같은 부품은 고강도의 합금이 필요하다.
한편, 고강도를 요구하는 부품을 제조할 때에는, 알루미늄 다이캐스팅 합금보다는 고강도의 아연 다이캐스팅 합금을 사용하여왔지만, 아연 다이캐스팅 합금(예: ZA27)의 경우 비중이 약 4.9 g/cm3으로 무겁기 때문에 휴대용 노트북이나 휴대폰 케이스의 외장재 및 경첩(hinge) 등의 부품을 제조하기 위해서는 경량 고강도 다이캐스팅용 합금이 크게 요구되는 실정이다.
본 발명은 앞에서 설명한 것과 같이 종래의 아연 다이캐스팅 합금(예: ZA27)에 비해 유사한 비중을 가지거나 더 낮은 비중을 가지면서도 더 높은 강도를 가지는 고강도 경량 아연-알루미늄 다이캐스팅 합금을 제공하는데 그 목적이 있다. 이러한 본 발명의 과제는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 제 1 양상에 의하면, 2.0 중량% 이하(0 제외)인 실리콘(Si), 1.4 중량% 보다 크고 9 중량% 이하인 구리(Cu) 및 27 중량% 이상이고 70 중량% 이하인 알루미늄(Al)을 함유하고, 잔부가 아연(Zn) 및 불가피한 불순물로 이루어지는 아연-알루미늄 다이캐스팅용 합금이 제공된다.
또한 상술한 과제를 해결하기 위한 본 발명의 제 2 양상에 의하면, 2.0 중량% 이하(0 제외)인 실리콘(Si), 1.4 중량% 보다 크고 9 중량% 이하인 구리(Cu), 27 중량% 이상이고 70 중량% 이하인 알루미늄(Al) 및 각각 0.1 중량%(0 제외) 이하인 베릴륨(Be) 및 티타늄(Ti) 중 선택된 적어도 하나를 포함하고, 잔부가 아연(Zn) 및 불가피한 불순물로 이루어지는 아연-알루미늄 다이캐스팅용 합금이 제공된다.
이러한 본 발명의 제 1 양상 또는 제 2 양상을 따르는 아연-알루미늄 다이캐스팅용 합금의 특징으로 구리(Cu)는 1.4 중량% 보다 크고 5 중량% 이하일 수 있으며, 나아가 2.0 중량% 이상 9 중량% 인 것을 다른 특징으로 할 수 있으며, 더 나아가 2.0 중량% 이상 5 중량% 이하인 것을 또 다른 특징으로 할 수 있다.
이러한 구리(Cu)의 조성 범위에서 실리콘(Si)은 0.1 중량% 이상이고 1.0 중량% 이하인 것을 또 다른 특징으로 할 수 있다.
또한 이러한 본 발명의 제 1 양상 또는 제 2 양상을 따르는 아연-알루미늄 다이캐스팅용 합금의 또 다른 특징으로서, 알루미늄(Al)은 45 중량% 이상이고 55 중량% 이하일 수 있다.
이러한 본 발명의 제 1 양상 또는 제 2 양상을 따른 아연-알루미늄 다이캐스팅용 합금의 또 다른 특징으로서, 알루미늄(Al)은 47 중량% 이상이고 51 중량% 이하일 수 있다.
한편, 상술한 과제를 해결하기 위한 본 발명의 제 3 양상에 의하면, 2.0 중량% 이하(0 제외)인 실리콘(Si), 1.4 중량% 보다 크고 9 중량% 이하인 구리(Cu), 27 중량% 이상이고 70 중량% 이하인 알루미늄(Al) 및 16 중량% 이상이고 68.6 중량% 이하인 아연(Zn)을 포함하는 다이캐스팅용 합금이 제공된다.
이러한 본 발명의 제 3 양상을 따르는 아연-알루미늄 다이캐스팅용 합금의 특징으로, 구리(Cu)는 1.4 중량% 보다 크고 5 중량% 이하이고, 실리콘(Si)은 0.1 중량% 이상이고 1.0 중량% 이하이며, 알루미늄(Al)은 45 중량% 이상이고 55 중량% 이하일 수 있으며, 이러한 경우 베릴륨(Be) 및 티타늄(Ti) 중 어느 하나 이상을 각각 0.1 중량 % 이하(0 제외)의 범위로 더 포함하는 것을 또 다른 특징으로 할 수 있다.
이러한 본 발명의 제 3 양상을 따르는 아연-알루미늄 다이캐스팅용 합금의 또 다른 특징으로, 베릴륨(Be), 티타늄(Ti), 마그네슘(Mg), 니켈(Ni), 바나듐(V), 주석(Sn), 철(Fe), 크롬(Cr), 지르코늄(Zr), 스트론튬(Sr),스칸듐(Sc) 및 망간(Mn) 중에서 선택되는 하나 이상의 원소를 총 3 중량% 이하(0제외)의 범위로 더 포함할 수 있다.
본 발명에 따르면 합금원소의 적절한 첨가로 인해 기존의 아연 다이캐스팅 합금에 비해 약 18% 이상 가볍고, 20% 이상의 강도를 향상시킨 고강도 경량 아연-알루미늄 다이캐스팅 합금을 제공할 수 있다.
따라서, 본 발명에 따른 아연-알루미늄 다이캐스팅 합금은 경량성 및 고강도가 요구되는 부품, 예를 들면 노트북이나 휴대폰 케이스의 외장재 및 경첩(hinge) 등의 부품 등에 활용될 수 있다.
본 발명의 효과는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예 및 비교예에 따른 아연-알루미늄 다이캐스팅용 합금의 일축 인장 시험 결과를 도시한다.
도 2는 본 발명의 실시예 및 비교예에 따른 아연-알루미늄 다이캐스팅용 합금의 3점 굽힘 시험 결과를 도시한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다. 아울러 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
본 발명의 실시예를 따르는 아연-알루미늄 다이캐스팅용 합금은 아연 및 알루미늄을 포함하며, 이때 아연의 조성이 알루미늄의 조성에 비해 높은 경우만을 한정하는 것이 아니며, 아연 또는 알루미늄 중 어느 하나의 조성이 다른 어느 하나의 조성보다 높게 함유되어 있는 경우와 그렇지 않은 경우를 모두 포함한다.
또한 본 발명의 실시예들에 있어서, 아연-알루미늄 합금은 제조를 위해 마련된 각 합금원소가 제련 또는 정련 과정에서 불가피하게 포함될 수 밖에 없는 불가피한 불순물들을 포함할 수 있으며, 또한 합금화 과정에서 불순문들이 불가피하게 더 함유될 수 있다. 따라서, 본 발명의 실시예들에 있어서, 불가피한 불순물이라 함은 상술한 이유에 의해 의도적으로 포함시킨 합금원소 외의 불순물을 의미한다.
표 1에는 본 발명의 실시예 1 내지 실시예 6의 합금조성과 비교예 1 내지 비교예 6의 합금조성을 나타내었다. 이러한 실시예 1 내지 실시예 6과 비교예 1 내지 비교예 6의 합금은 아연, 알루미늄, 구리, 실리콘, 티타늄 및 알루미륨-베릴륨 합금(Al-Be) 준비한 후, 이러한 금속들을 용해로에서 용해하여 다이캐스팅 방법으로 제조되었다.
이때 비교예 1은 상용 아연 다이캐스팅용 합금인 ZA27 이었다. 또한 표 1에는 각 실시예 및 비교예의 성형성에 대한 결과를 같이 나타내었다.
표 1에서 볼 수 있듯이 실시예 1 내지 실시예 6은 모두 알루미늄의 조성이 27 중량% 이상을 함유하고 있었으며, 성형성이 우수한 것으로 나타났다. 그러나 알루미늄의 함량이 높은 비교예 4 내지 비교예 6의 경우에는 소착이 발생하였다. 이로부터 알루미늄의 함량이 70 중량% 보다 높게 함량되는 경우에는 소착발생으로 인해 합금의 성형성이 열화되는 것을 알 수 있다.
표 1
합금 조성 비중(Approx.) 성형성
Zn Al Cu Si 기타 양호
실시예 1 Bal. 27.3 5.0 - - 양호
실시예 2 Bal. 28.3 4.9 0.5 - 양호
실시예 3 Bal. 45.8 5.0 1.0 - 4.0 g/ 양호
실시예 4 Bal. 49.3 3.0 0.1 - 4.0 g/ 양호
실시예 5 Bal. 49.9 2.9 0.5 - 3.9 g/ 양호
실시예 6 Bal. 50.9 2.9 0.5 Ti: 0.05, Be: 0.06 3.9 g/ 양호
비교예 1 Bal. 28.2 2.0 - - 4.9 g/ 양호
비교예 2 Bal. 50.1 1.4 0.1 - 3.9 g/ 양호
비교예 3 Bal. 55.5 3.0 0.5 - 3.7 g/ 양호
비교예 4 Bal. 78.7 3.77 2.0 - - 소착발생
비교예 5 Bal. 78.9 3.95 0.01 - - 소착발생
비교예 6 Bal. 81.73 0.5 0.01 - 4.0 g/ 소착발생
실시예 3 내지 실시예 6의 경우에는 비교예 1에 비해 합금내 알루미늄의 조성이 더 높아 비중은 더 낮은 값을 나타내었다. 즉, 표 1에서 보듯이 계산에 의한 밀도를 비교해보면, 실시예 3 내지 실시예 6 에 따른 합금은 4 g/cm3 이하의 밀도를 갖는 것을 볼 수 있지만, 비교예 1의 ZA27 합금은 4.9 g/cm3의 밀도를 갖는 것을 볼 수 있다.
한편, 앞에서 설명한 방법에 의하여 제조된 제품의 기계적 성질을 확인하기 위해 1.5 mm/min의 속도로 일축 인장 시험을 행하였으며, 도 1에는 실시예 3 내지 실시예 6 및 비교예 1 내지 비교예 3의 일축 인장 시험 결과가 도시되어 있다.
도 1에서 보듯이, 실시예 3 내지 실시예 6에 따른 아연-알루미늄 다이캐스팅용 합금의 인장력이 상용 아연 다이캐스팅용 합금인 ZA27(비교예 1)에 비해 더 우수하였으나, 비교예 2 및 비교예 3의 경우에는 비교예 1에 비해 더 낮은 인장력을 나타내었다.
실시예 3 내지 실시예 6의 인장력이 비교예 1에 비해 우수한 것은 구리 및 실리콘의 함량이 높은 것에 기인한 것으로 판단되었다. 즉, 실시예 3 내지 실시예 6의 경우 알루미늄의 함량이 모두 비교예 1에 비해 높았으나, 구리의 조성이 2.9 중량% ~ 5.0 중량% 범위에 있고, 실리콘의 조성이 0.1 중량% ~1.0 중량% 범위로서 2.0 중량%의 구리만을 포함하는 비교예 1에 비해 높은 조성범위를 가지고 있었다.
이러한 구리와 실리콘의 효과는 비교예 2 및 비교예 3에서 유추할 수 있는바, 비교예 2에 비해 구리 및 실리콘의 함량이 더 높은 비교예 3이 상대적으로 높은 인장력을 나타내었다.
일반적으로 이는 Al-Cu-Zn 3원계 상태도에서 알 수 있듯이, 알루미늄의 첨가량이 많아지게 되면 연한 알루미늄 초정상의 부피 분율이 증가하므로 비중의 감소와 함께 강도가 감소하게 된다. 그러나 표 1 및 도 1로부터 알 수 있듯이 일정 범위의 구리 또는 구리 및 실리콘의 첨가로 인해 알루미늄의 함량이 증가함에도 오히려 강도가 증가되는 현상을 나타내었다.
구리는 아연-알루미늄 합금에서 아연 및 알루미늄과 반응하여 Al4Cu3Zn상의 금속간 화합물을 형성하며, 이러한 금속간 화합물은 합금의 변형 시 전위의 이동을 방해하는 배리어(barrier)로 작용하기 때문에 합금의 강도 향상에 바람직하다. 비교예 2로부터 구리의 함량은 최소한 1.4 중량%을 초과하여야 함을 알 수 있다. 비교예 1을 고려할때, 2 중량% 이상일 경우 강도향상에 더욱 바람직하다. 다만 그 양이 너무 많으면, 취성이 증가하여 기계적 성질이 저하되며, 무거운 원소이므로 비중 감소에 효과적이지 않다. 따라서 구리의 함량은 최대 9 중량% 이상을 초과하지 않는 것이 바람직하며, 특히 5 중량%을 초과하지 않는 것이 바람직하다. 예를들어 구리의 함량은 1.4 중량% 보다 크고 9 중량% 이하일 수 있고, 특히 1.4 중량% 보다 크고 5 중량% 이하 일 수 있고, 나아가 2 중량 % 이상 9 중량% 이하일 수 있고, 더나아가 2 중량% 이상 5 중량% 이하일 수 있다.
또한, 실리콘(Si)의 경우 알루미늄 합금의 흐름성을 증가시켜 주는 원소로서 본 발명의 실시예의 경우에 강도 증가에 기여하나, 2.0 중량%을 초과하여 첨가하는 경우에는 합금의 취성이 증가하여 기계적 성질이 저하되기 때문에 다이캐스팅 과정 중 몰드에서 제품 분리 시, 제품이 파손되어 건전한 제품을 제조하기 어려운 문제가 있다. 따라서 실리콘의 경우, 2.0 중량%을 초과하지 않은 것이 바람직하며, 0.1 ~ 1.0 중량% 범위를 가지는 것이 특히 바람직하다.
이러한 합금원소에 따른 기계적 특성은 도 2에 도시된 3점 굽힘 시험 결과를 통해서도 유추할 수 있다. 도 2에는 본 발명의 실시예와 비교예의 굽힘성을 측정하기 위해 60 mm/min의 속도로 3점 굽힘 시험을 행한 결과가 도시되어 있다.
도 2에서 보듯이, 굽힘 시험에서도 인장 시험 결과 유사하게 실시예 1 내지 실시예 6(실시예 3 제외)의 굽힘력이 비교예 1에 비해 더 크게 나타난 것을 알 수 있었다.
특히 실시예 1 및 실시예 2와 비교예 1를 대비할 시, 유사한 알루미늄 및 아연의 조성을 가지고 있음에도, 실시예 1 및 실시예 2의 굽힘력이 비교예 1에 비해 더 높게 나타났다. 이는 상술한 바와 같이, 구리 및/또는 실리콘의 함량이 비교예 1에 비해 더 높았기 때문으로 유추되었다. 구체적으로 실시예 1 및 실시예 2의 경우 구리의 조성이 5 중량%로서 2 중량%인 비교예 1에 비해 더 높은 함량을 가지고 있었으며, 실시예2의 경우에는 비교예 1에는 첨가되지 않은 실리콘이 0.5 중량% 첨가되어 있었다.
한편, 실리콘이 0.5 중량% 포함된 실시예 2의 경우에는 실시예 1에 비해서도 상대적으로 더 우수한 굽힘력을 나타냈으며, 이로부터 구리 및/또는 실리콘의 첨가로 인해 아연-알루미늄 다이캐스팅용 합금의 기계적 특성이 향상됨을 알 수 있었다.
한편, 알루미늄의 경우 도 1 및 도 2에 도시된 것과 같이, 알루미늄의 함량이 45% 이상인 경우 인장력 또는 굽힘력이 비교예 1에 비해 우수하였으나, 비교예 3으로부터 구리와 실리콘이 각각 3.0 중량%와 1.4 중량%를 가짐에도 알루미늄의 함량이 55 중량%을 초과하면 굽힘력이 감소됨을 알 수 있었다. 이로부터 알루미늄은 45 ~ 55 중량% 범위을 가지는 것이 바람직하였다. 또한 실시예 3과 실시예 4로부터 연신의 측면에서는 알루미늄의 함량이 47 ~ 51 중량% 범위를 가지는 것이 바람직하였다.
한편, 티타늄(Ti) 및 베릴륨(Be)이 각각 0.1 중량% 이하로 더 첨가됨에 따라 합금의 인성이 향상될 수 있었다. 일예로서 실시예 6의 경우 아연, 알루미늄, 구리 및 실리콘의 조성은 실시예 5와 실질적으로 동일하였으나, 티타늄 및 베릴륨이 각각 0.05 중량%, 0.06 중량% 더 첨가됨에 따라 실시예 5에 비해 강도의 저하없이 연신이 향상되는 특성을 나타내었다.
한편, 아연, 알루미늄, 구리 및 실리콘의 총 중량이 97% 이상을 차지하고 나머지 부분을 합금원소를 첨가함으로써 합금의 강도를 높일 수 있다. 이때 첨가될 수 있는 합금원소는 티타늄(Ti), 베릴륨(Be), 마그네슘(Mg), 니켈(Ni), 바나듐(V), 주석(Sn), 철(Fe), 크롬(Cr), 지르코늄(Zr), 스트론튬(Sr),스칸듐(Sc) 및 망간(Mn) 중에서 선택되는 하나 이상의 합금원소일 수 있다.
일예로서 1.0 중량% 이하(0 제외)인 실리콘, 1.4 중량% 보다 크고 9 중량% 이하인 구리, 27 중량% 이상이고 70 중량% 이하인 알루미늄 및 16 중량% 이상이고 68.6 중량% 이하인 아연을 포함하는 합금에 상술한 합금원소 중 하나 이상을 3 중량% 이하의 범위로 더 포함할 수 있다.
이상 언급한 실시예는 본 발명을 한정하는 것이 아니라 예증하는 것이며, 이 분야의 당업자라면 첨부한 청구항에 의해 정의된 본 발명의 범위로부터 벗어나는 일 없이, 많은 다른 실시예를 설계할 수 있다. 이러한 본 발명의 기술이 당업자에 의하여 용이하게 변형 실시될 가능성이 자명하며, 이러한 변형된 실시예들은 본 발명의 특허청구범위에 기재된 기술사상에 포함된다고 하여야 할 것이다.

Claims (12)

  1. 2.0 중량% 이하(0 제외)인 실리콘(Si);
    1.4 중량% 보다 크고 9 중량% 이하인 구리(Cu);
    27 중량% 이상이고 70 중량% 이하인 알루미늄(Al); 및
    잔부가 아연(Zn) 및 불가피한 불순물로 이루어지는 아연-알루미늄 다이캐스팅용 합금.
  2. 2.0 중량% 이하(0 제외)인 실리콘(Si);
    1.4 중량% 보다 크고 9 중량% 이하인 구리(Cu);
    27 중량% 이상이고 70 중량% 이하인 알루미늄(Al);
    각각 0.1 중량%(0 제외) 이하인 티타늄(Ti) 및 베릴륨(Be) 중 선택된 하나 이상; 및
    잔부가 아연(Zn) 및 불가피한 불순물로 이루어지는 아연-알루미늄 다이캐스팅용 합금.
  3. 제 1 항 또는 제 2 항에 있어서, 상기 구리(Cu)는 1.4 중량% 보다 크고 5 중량% 이하인 아연-알루미늄 다이캐스팅용 합금.
  4. 제 1 항 또는 제 2 항에 있어서, 상기 구리(Cu)는 2.0 중량% 이상 9 중량% 이하인 아연-알루미늄 다이캐스팅용 합금.
  5. 제 4 항에 있어서, 상기 구리(Cu)는 2.0 중량% 이상 5 중량% 이하인 아연-알루미늄 다이캐스팅용 합금.
  6. 제 3 항 내지 제 5 항 중 어느 하나의 항에 있어서, 상기 실리콘(Si)은 0.1 중량% 이상이고 1.0 중량% 이하인 아연-알루미늄 다이캐스팅용 합금.
  7. 제 1 항 또는 제 2 항에 있어서, 상기 알루미늄(Al)은 45 중량% 이상이고 55 중량% 이하인 아연-알루미늄 다이캐스팅용 합금.
  8. 제 7 항에 있어서, 상기 알루미늄(Al)은 47 중량% 이상이고 51 중량% 이하인 아연-알루미늄 다이캐스팅용 합금.
  9. 2.0 중량% 이하(0 제외)인 실리콘(Si);
    1.4 중량% 보다 크고 9 중량% 이하인 구리(Cu);
    27 중량% 이상이고 70 중량% 이하인 알루미늄(Al); 및
    16 중량% 이상이고 68.6 중량% 이하인 아연(Zn)을 포함하는 아연-알루미늄 다이캐스팅용 합금.
  10. 제 9 항에 있어서, 상기 구리(Cu)는 1.4 중량% 보다 크고 5 중량% 이하이고, 상기 실리콘(Si)은 0.1 중량% 이상이고 1.0 중량% 이하이며, 상기 알루미늄(Al)은 45 중량% 이상이고 55 중량% 이하인 아연- 알루미늄 다이캐스팅용 합금.
  11. 제 10 항에 있어서, 베릴륨(Be) 및 티타늄(Ti) 중 어느 하나 이상을 각각 0.1 중량 % 이하(0 제외)의 범위로 더 포함하는 아연-알루미늄 다이캐스팅 합금.
  12. 제 9 항에 있어서, 티타늄(Ti), 베릴륨(Be), 마그네슘(Mg), 니켈(Ni), 바나듐(V), 주석(Sn), 철(Fe), 크롬(Cr), 지르코늄(Zr), 스트론튬(Sr),스칸듐(Sc) 및 망간(Mn) 중에서 선택되는 하나 이상의 원소를 총 3 중량% 이하(0 제외)의 범위로 더 포함하는 아연-알루미늄 다이캐스팅 합금.
PCT/KR2010/001257 2010-02-23 2010-02-26 다이캐스팅용 아연-알루미늄 합금 WO2011105646A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0016257 2010-02-23
KR20100016257 2010-02-23

Publications (1)

Publication Number Publication Date
WO2011105646A1 true WO2011105646A1 (ko) 2011-09-01

Family

ID=44507035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001257 WO2011105646A1 (ko) 2010-02-23 2010-02-26 다이캐스팅용 아연-알루미늄 합금

Country Status (2)

Country Link
KR (1) KR20110097547A (ko)
WO (1) WO2011105646A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320651A (zh) * 2013-07-16 2013-09-25 江苏新亚特钢锻造有限公司 一种模具用细晶粒锌基合金及其制备工艺
CN103320652A (zh) * 2013-07-16 2013-09-25 江苏新亚特钢锻造有限公司 一种模具用锌基合金及其制备工艺
CN108517430A (zh) * 2018-04-12 2018-09-11 周凡 一种颗粒增强高铝锌基复合材料的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399221B1 (ko) * 2012-04-27 2014-05-27 김석환 경도와 인장강도가 향상된 아연-마그네슘 합금
KR101526661B1 (ko) 2013-05-07 2015-06-05 현대자동차주식회사 복합 미세조직을 갖는 내마모성 합금
KR101526660B1 (ko) 2013-05-07 2015-06-05 현대자동차주식회사 복합 미세조직을 갖는 내마모성 합금
KR101526656B1 (ko) 2013-05-07 2015-06-05 현대자동차주식회사 복합 미세조직을 갖는 내마모성 합금
KR101974913B1 (ko) * 2017-04-13 2019-05-07 한국기계연구원 알루미늄-아연-구리(Al-Zn-Cu) 합금 및 이의 제조방법
CN109652686B (zh) * 2018-12-14 2020-05-26 珠海市润星泰电器有限公司 高导热率铝合金及其制备方法
KR102346994B1 (ko) * 2019-12-04 2022-01-05 한국재료연구원 고내마모성 알루미늄-아연-구리 합금 및 이를 이용한 물품

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256131A (ja) * 1985-09-06 1987-03-11 三菱マテリアル株式会社 防振特性のすぐれたZn−Al系合金製防振部材
JPH05255822A (ja) * 1991-03-29 1993-10-05 Showa Alum Corp Al−Zn−Si系合金材の製造方法
JPH08109429A (ja) * 1994-08-18 1996-04-30 Nisso Kinzoku Kagaku Kk 機械的強度の優れたダイカスト用アルミニウム合金及びそれを用いたボールジョイント装置
JP2007092113A (ja) * 2005-09-28 2007-04-12 Denso Corp かしめ性、犠牲陽極特性、及び、鋳造性に優れたコネクター用アルミニウム・ダイカスト合金、及び、該合金よりなるコネクターブロックの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256131A (ja) * 1985-09-06 1987-03-11 三菱マテリアル株式会社 防振特性のすぐれたZn−Al系合金製防振部材
JPH05255822A (ja) * 1991-03-29 1993-10-05 Showa Alum Corp Al−Zn−Si系合金材の製造方法
JPH08109429A (ja) * 1994-08-18 1996-04-30 Nisso Kinzoku Kagaku Kk 機械的強度の優れたダイカスト用アルミニウム合金及びそれを用いたボールジョイント装置
JP2007092113A (ja) * 2005-09-28 2007-04-12 Denso Corp かしめ性、犠牲陽極特性、及び、鋳造性に優れたコネクター用アルミニウム・ダイカスト合金、及び、該合金よりなるコネクターブロックの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320651A (zh) * 2013-07-16 2013-09-25 江苏新亚特钢锻造有限公司 一种模具用细晶粒锌基合金及其制备工艺
CN103320652A (zh) * 2013-07-16 2013-09-25 江苏新亚特钢锻造有限公司 一种模具用锌基合金及其制备工艺
CN103320651B (zh) * 2013-07-16 2015-03-11 江苏新亚特钢锻造有限公司 一种模具用细晶粒锌基合金及其制备工艺
CN108517430A (zh) * 2018-04-12 2018-09-11 周凡 一种颗粒增强高铝锌基复合材料的制备方法

Also Published As

Publication number Publication date
KR20110097547A (ko) 2011-08-31

Similar Documents

Publication Publication Date Title
WO2011105646A1 (ko) 다이캐스팅용 아연-알루미늄 합금
WO2011152617A2 (ko) 알루미늄 합금 및 알루미늄 합금 주물
KR101127113B1 (ko) 다이캐스트용 마그네슘 합금 및 이것을 사용한 마그네슘다이캐스트 제품
WO2017191961A1 (ko) 고내식 주물용 알루미늄 합금
KR100961081B1 (ko) 고강도 경량 아연-알루미늄 합금
US20170121793A1 (en) Aluminum alloy for die casting, and aluminum alloy die cast produced using same
WO2014109624A1 (ko) 다이캐스팅용 알루미늄합금 및 이의 제조방법
US9499885B2 (en) Cu—Si—Co alloy for electronic materials, and method for producing same
JP2604670B2 (ja) 高強度マグネシウム合金
US10525528B2 (en) Aluminum alloy for die-casting, having improved corrosion resistance
WO2014030915A1 (ko) 고강도 및 고열전도도를 동시에 나타내는 다이캐스팅용 Al-Zn 합금
US20070269337A1 (en) High strength/ductility magnesium-based alloys for structural applications
EP3216884B1 (en) Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom
EP3954797B1 (en) Die-casting aluminum alloy, preparation method therefor and application thereof
CN102994847B (zh) 一种耐热镁合金
KR100638342B1 (ko) 고강도, 고인성의 기계적 특성이 우수한 마그네슘 합금
EP3640356B1 (en) High thermal conductivity magnesium alloy, inverter housing, inverter and automobile
WO2011037398A2 (ko) 고강도 알루미늄-마그네슘계 합금 제조방법
WO2013055074A2 (ko) 다이캐스팅용 고열전도도 Al-Mg-Fe-Si 합금
EP3995598B1 (en) Aluminum alloy, preparation method therefor and aluminum alloy structural member
KR20120020406A (ko) 고강도 비열처리 주조용 알루미늄-아연 합금
US20230062077A1 (en) Aluminum alloy and preparation method thereof, and aluminum alloy structural member
CN113846255A (zh) 铝合金及其制备方法和铝合金结构件
CN112553508B (zh) 铝合金及其制备方法和铝合金结构件
CN116694967A (zh) 一种压铸铝合金和移动终端结构件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846673

Country of ref document: EP

Kind code of ref document: A1