WO2011152617A2 - 알루미늄 합금 및 알루미늄 합금 주물 - Google Patents

알루미늄 합금 및 알루미늄 합금 주물 Download PDF

Info

Publication number
WO2011152617A2
WO2011152617A2 PCT/KR2011/003521 KR2011003521W WO2011152617A2 WO 2011152617 A2 WO2011152617 A2 WO 2011152617A2 KR 2011003521 W KR2011003521 W KR 2011003521W WO 2011152617 A2 WO2011152617 A2 WO 2011152617A2
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
weight
aluminum
content
zinc
Prior art date
Application number
PCT/KR2011/003521
Other languages
English (en)
French (fr)
Other versions
WO2011152617A3 (ko
Inventor
이승진
이형철
Original Assignee
주식회사 인터프랙스퀀텀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인터프랙스퀀텀 filed Critical 주식회사 인터프랙스퀀텀
Priority to DE112011101836T priority Critical patent/DE112011101836T5/de
Priority to US13/700,550 priority patent/US20130209311A1/en
Priority to CN2011800267252A priority patent/CN103069029A/zh
Priority to JP2013512523A priority patent/JP2013529255A/ja
Publication of WO2011152617A2 publication Critical patent/WO2011152617A2/ko
Publication of WO2011152617A3 publication Critical patent/WO2011152617A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead

Definitions

  • the present invention relates to metal alloys and, more particularly, to aluminum alloys used in components such as electrical, electronic, mechanical, and the like, and aluminum alloy castings produced using the same.
  • the present invention has been made to solve the above-mentioned problems, the strength is superior to conventional commercial aluminum alloy even through a conventional die casting method, having a strength similar to that of conventional stainless steel (for example, Stainless Steel 304) more than twice An aluminum alloy having light properties and an aluminum alloy casting made using such an aluminum alloy are provided.
  • conventional stainless steel for example, Stainless Steel 304.
  • the invention contains 4 to 13% by weight of silicon (Si), 1 to 5% by weight of copper (Cu) and 26 or more and less than 40% by weight of zinc (Zn), the remainder is aluminum (Al) ) And an unavoidable impurity is provided.
  • the content of the silicon may be 5 to 10% by weight.
  • the content of the silicon may be 5 to 8% by weight or less, in this case, the content of copper may be 2 to 5% by weight, furthermore the content of zinc 26 to 35% by weight.
  • Si silicon
  • Cu copper
  • Zn zinc
  • strontium Aluminum alloy including Sr
  • Al aluminum
  • the content of the silicon may be 5 to 10% by weight.
  • the content of the silicon may be 5 to 8% by weight or less, wherein the copper content may be 2 to 5% by weight, furthermore zinc content May be 26 to 35% by weight.
  • the strontium may be greater than 0 and less than 0.04% by weight.
  • the strontium may be greater than 0 and less than 0.02% by weight.
  • titanium (Ti), magnesium (Mg), nickel (Ni), vanadium (V), tin (Sn), iron (Fe), chromium (Cr ), Zirconium (Zr), scandium (Sc) and manganese (Mn) may further include any one or more of one or more elements selected from 3 wt% or more (greater than zero).
  • an aluminum alloy casting manufactured using the above-described aluminum alloy is provided.
  • Aluminum alloys and aluminum alloy castings according to embodiments of the present invention exhibited superior strength compared to conventional commercial aluminum alloys by controlling the alloy composition, but also significantly lighter than stainless steels. Therefore, the aluminum alloy and the aluminum alloy casting according to embodiments of the present invention can be stably applied to small / light weight products as well as large products.
  • Figure 1 shows the tensile test results of the experimental example and the ADC12 alloy of a commercial aluminum alloy according to the present invention.
  • 3 and 4 are the results of observing the microstructure of the aluminum alloy according to an embodiment of the present invention.
  • the weight percent (wt%) is expressed as a percentage of the weight of the component in the weight of the total alloy. It can be understood that the range for the weight percent does not include the boundary value when it is above or below, but includes the boundary value when it is simply designated as a range or above or below.
  • unavoidable impurities may refer to impurities that can be introduced unintentionally in the manufacture of aluminum alloys or aluminum castings.
  • the aluminum alloy according to an embodiment of the present invention may be formed by adding silicon (Si), copper (Cu), and zinc (Zn) to aluminum as a main element.
  • the content of aluminum, which is the main element of the aluminum alloy, may occupy the remainder other than the additional element, and thus the content may vary depending on the content of the additional element.
  • the aluminum alloy may contain unavoidable impurities which are inadvertently contained in each element or at the alloying stage.
  • the aluminum alloy contains 4 to 13% by weight of silicon, 1 to 5% by weight of copper and at least 26 to less than 40% by weight of zinc, with the remainder consisting of aluminum and unavoidable impurities.
  • Silicon is highly fluid in the molten aluminum and can be added to improve the injectability during solidification.
  • Al-silicon alloy Al-Si alloy
  • it may exhibit a mixed structure of the primary ⁇ -aluminum phase and the process silicon phase during casting, and the process silicon phase may be improved to be refined from the needle bed to the particulate or fibrous shape. In this case, the mechanical strength can be significantly improved.
  • the silicon content of the present embodiment may be limited to the range of 4 to 13% by weight, may be strictly limited to the range of 5 to 10% by weight, and more strictly 5 to 8% by weight. It may be limited to the following.
  • Copper has a maximum solid solubility of about 5.6% by weight at an eutectic temperature of 548 ° C. for aluminum and may exhibit a solid solution strengthening effect when employed in aluminum.
  • zinc when added to aluminum, it reacts with zinc and aluminum to form an Al-Zn-Cu compound, which acts as an obstacle that prevents the movement of dislocations during deformation of the alloy or inhibits grain growth. It can contribute to improving the strength of the alloy.
  • the copper content in the present embodiment may be limited to the range of 1 to 5% by weight, strictly 2 to 5% by weight, taking all of these effects into consideration.
  • zinc is an element that is heavier than aluminum, and thus is disadvantageous in weight reduction. If the content exceeds 36% by weight, the vacancy of the ⁇ phase is a mixed phase of the ⁇ 'phase and the ⁇ phase as the two phases of vacancy, resulting in low strength and high elongation. The amount can be increased. In addition, when the zinc content is 40% by weight, the process Si phase in the aluminum alloy is present in the primary ⁇ phase, thereby increasing the grain size and decreasing the strength. Therefore, zinc needs to be limited to the range of less than 40% by weight in view of such a point.
  • Aluminum alloy according to another embodiment of the present invention is 4 to 13% by weight of silicon (Si), 1 to 5% by weight of copper (Cu), 26 to more than 40% by weight of zinc (Zn), 0.1% by weight or less It may include strontium (Sr) and 43 to 69% by weight of aluminum (Al).
  • the strength of the aluminum alloy may be improved by miniaturizing the crystal structure of the aluminum alloy. That is, in the case of an aluminum alloy containing silicon, it is possible to exhibit a mixed structure of the primary ⁇ phase and the eutectic Si phase during casting, and by adding strontium, it is possible to contribute to the improvement of strength by miniaturizing the microstructure of the eutectic Si phase.
  • the strontium content of the present embodiment may be limited to the range of 0.1 wt% or less, strictly greater than 0 and less than 0.04 wt%, more strictly greater than 0 and less than 0.02 wt%, taking all these effects into consideration. .
  • the main element aluminum may be added in small amounts of additive elements for improving the strength of the aluminum alloy.
  • additive element titanium (Ti), magnesium (Mg), nickel (Ni), vanadium (V), tin (Sn), iron (Fe), chromium (Cr), zirconium (Zr), scandium (Sc) And manganese (Mn), and one or more selected from these additive elements may be added in a range of 3 wt% or less in total.
  • Aluminum alloy casting according to an embodiment of the present invention can be manufactured using the above-described aluminum alloy.
  • the casting may include a pure casting manufactured through casting and a product obtained by molding a preformed casting into a predetermined shape, such as an extrusion billet, a rolling plate, and the like.
  • pure castings include sand casting, die casting, gravity mold casting, low pressure casting, squeeze casting, lost wax casting, thixo casting, and the like.
  • Gravity casting may refer to a method of injecting a molten alloy into the mold using gravity
  • low pressure casting may refer to a method of injecting molten metal into the mold by applying pressure to the molten surface of the molten alloy using gas.
  • Thixocasting is a casting technique in a semi-melt state that combines the advantages of conventional casting and forging.
  • the aluminum alloy casting according to this embodiment can be manufactured through any of the processes including the above-described process, and can have appropriate strength and workability without performing heat treatment.
  • the aluminum alloy casting may undergo a post-manufacture heat treatment step depending on its use and shape.
  • Table 1 shows the results of tensile strength as the alloy composition and the mechanical properties of the experimental and comparative examples according to the present invention.
  • High purity aluminum (99.8%) and zinc (99.9%) were used to prepare an aluminum alloy according to the present experimental example, and an aluminum mother alloy containing silicon, copper and strontium was added for addition of silicon, copper and strontium, respectively. It was.
  • Each alloying element was dissolved using an electric resistance furnace, and degassing and degassing treatment were performed by blowing argon (Ar) gas into the degassing apparatus for 5 minutes before injection.
  • argon (Ar) gas blowing argon (Ar) gas into the degassing apparatus for 5 minutes before injection.
  • strontium an aluminum mother alloy containing strontium was added and maintained for a predetermined time, followed by tapping to prepare a test piece.
  • Specimens used to measure the mechanical properties of each experimental example were prepared using die casting. Specifically, a tensile test was performed two days after casting to cast a rod-shaped tensile specimen using a TOYO die-casting apparatus having a clamping force of 1,300 KN and to reduce the variation of mechanical properties. Mechanical properties were measured and seven or more specimens were used for the average value.
  • the die casting used in this test was performed under the casting temperature of 963 to 983K and the mold temperature of 463 to 473K.
  • the test piece used for the test was manufactured as No. 14 rod proportional test piece in accordance with KSB0802 standard.
  • ADC12 alloy which is a commercial aluminum alloy, was used as a target for comparing the tensile strength of the aluminum alloy according to the present experimental example, and FIG. 1 shows the tensile test results of the experimental example 19 and the ADC12 alloy.
  • the aluminum alloy according to the experimental example of the present invention shows a very excellent strength characteristics compared to the conventional commercial aluminum alloy.
  • the reason why the aluminum alloy according to the present experimental example exhibits superior characteristics compared to the ADC12 alloy is that the aluminum structure is further refined by adding silicon and zinc to the aluminum.
  • Al-xZn-ySi-zCu an aluminum alloy in which zinc, silicon, and copper are added by weight percent of x, y, and z, respectively, is expressed as Al-xZn-ySi-zCu.
  • FIGS. 2A and 2C show the alloy structure of the Al-30Zn-6Si-2Cu and Al-40Zn-6Si-2Cu alloys, respectively.
  • the aluminum-zinc process phase is uniformly dispersed at the grain boundary due to the excess zinc not dissolved in the primary ⁇ phase.
  • FIG. 3 shows the results of the EDS analysis of the zinc content (% by weight) in each region of the Al-30Zn-6Si-2Cu alloy shown in FIG. 2B together with a table.
  • the eutectic Si phase does not retreat to the grain boundary but is present in the primary ⁇ , resulting in an increase in grain size, resulting in a decrease in strength. It is expected to. Therefore, it is expected that the zinc content of less than 40% by weight is preferable in terms of strength improvement.
  • the aluminum alloy according to the embodiment of the present invention was determined to exhibit a relatively good and stable strength characteristics compared to the region of 6 wt% or less when the silicon content exceeds 6 wt%.
  • Experimental Examples 19-21 are all aluminum alloys which added 0.02 to 0.1 weight% of strontium besides silicon, copper, and zinc as an addition element of an aluminum alloy.
  • 4A and 4B show the results of SEM observation of the alloy structure of the aluminum alloy having the same silicon, copper, and zinc composition as that of Experimental Example 18 without adding strontium and further adding 0.04% by weight of strontium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명은 금속 합금에 관한 것으로서, 특히 전기, 전자, 기계 등의 부품에 사용되는 알루미늄 합금 및 이를 이용하여 제조된 알루미늄 합금 주물에 관한 것이다. 일실시예에 따른 알루미늄 합금은 4 내지 13 중량%의 실리콘(Si), 1 내지 5 중량%의 구리(Cu) 및 26 이상 40 중량% 미만의 아연(Zn)을 함유하고, 나머지가 알루미늄(Al) 및 불가피 불순물로 이루어진다.

Description

알루미늄 합금 및 알루미늄 합금 주물
본 발명은 금속 합금에 관한 것으로서, 특히 전기, 전자, 기계 등의 부품에 사용되는 알루미늄 합금 및 이를 이용하여 제조된 알루미늄 합금 주물에 관한 것이다.
최근 노트북이나 휴대폰 등 전자제품의 외형이나 기능적인 면에서 복잡해지므로 좀 더 변형에 견딜 수 있는 고강도 소재의 필요성이 증가하고 있다. 특히, LCD 판넬 부분을 지지해 주는 부품(Bracket)이나, 얇고 복합한 형상의 경첩(Hinge) 등과 같은 부품은 스테인레스 스틸(예: Stainless Steel 304)과 유사한 고강도에 휴대성을 위한 경량의 소재가 필요하다. 그러나 스테인레스강의 경우 프레스 또는 단조의 공법으로 형상 가공이 가능하나 정밀한 기구 형상 구현 및 대량생산에 한계가 있으며, 비중이 8.00g/cm3으로 무거워 고강도 경량 합금을 개발할 필요성이 증가하고 있다.
이에, 본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 통상적인 다이캐스팅 법을 통해서도 종래의 상용 알루미늄 합금보다 우수한 강도로서, 기존 스테인레스강(예: Stainless Steel 304)과 유사한 강도를 가지고 2배 이상 가벼운 특성을 갖는 알루미늄 합금 및 이러한 알루미늄 합금을 이용하여 제조된 알루미늄 합금 주물을 제공하고자 한다. 전술한 과제는 예시적으로 제시되었고, 본 발명의 범위가 이러한 과제에 의해서 제한되는 것은 아니다.
본 발명의 일측면에 따르면, 4 내지 13 중량%의 실리콘(Si), 1 내지 5 중량%의 구리(Cu) 및 26 이상 40 중량% 미만의 아연(Zn)을 함유하고, 나머지가 알루미늄(Al) 및 불가피 불순물로 이루어진, 알루미늄 합금이 제공된다.
본 발명의 일측면을 따르는 알루미늄 합금의 특징에 의하면, 상기 실리콘의 함유량은 5 내지 10 중량% 일 수 있다.
본 발명의 일측면을 따르는 알루미늄 합금의 다른 특징에 의하면, 상기 실리콘의 함유량은 5 내지 8 중량% 이하일 수 있으며, 이 경우 구리의 함유량은 2 내지 5 중량% 일 수 있으며, 더 나아가 아연의 함유량은 26 내지 35 중량% 일 수 있다.
본 발명의 다른 일측면에 따르면, 4 내지 13 중량%의 실리콘(Si), 1 내지 5 중량%의 구리(Cu), 26 이상 40 중량% 미만의 아연(Zn), 0.1 중량% 이하의 스트론튬(Sr) 및 43 내지 69 중량%의 알루미늄(Al)을 포함하는 알루미늄 합금이 제공될 수 있다.
본 발명의 다른 일측면을 따르는 알루미늄 합금의 특징에 의하면, 상기 실리콘의 함유량은 5 내지 10 중량% 일 수 있다.
본 발명의 다른 일측면을 따르는 알루미늄 합금의 다른 특징에 의하면, 상기 실리콘의 함유량은 5 내지 8 중량% 이하 일 수 있고, 이때 구리의 함유량은 2 내지 5 중량% 일 수 있으며, 더 나아가 아연의 함유량은 26 내지 35 중량% 일 수 있다.
본 발명의 다른 일측면을 따르는 알루미늄 합금의 또 다른 특징에 의하면, 상기 스트론튬은 0 보다 크고 0.04 중량% 이하일 수 있다.
본 발명의 다른 일측면을 따르는 알루미늄 합금의 또 다른 특징에 의하면, 상기 스트론튬은 0 보다 크고 0.02 중량% 이하일 수 있다.
본 발명의 다른 일측면을 따르는 알루미늄 합금의 또 다른 특징에 의하면, 티타늄(Ti), 마그네슘(Mg), 니켈(Ni), 바나듐(V), 주석(Sn), 철(Fe), 크롬(Cr), 지르코늄(Zr), 스칸듐(Sc) 및 망간(Mn) 중에서 선택되는 하나 이상의 원소 중 어느 하나 이상을 총 3 중량%(0 초과) 이하로 더 포함할 수 있다.
본 발명의 또 다른 일측면에 따르면, 전술한 알루미늄 합금을 이용하여 제조된 알루미늄 합금 주물이 제공된다.
본 발명의 실시예들에 따른 알루미늄 합금 및 알루미늄 합금 주물은 합금 조성을 제어하여 종래의 상용 알루미늄 합금에 비해 우수한 강도를 나타내면서도 스테인레스강에 비해 월등히 가벼운 특성을 나타내었다. 따라서 본 발명의 실시예들에 따른 알루미늄 합금 및 알루미늄 합금 주물은 대형 제품뿐만 아니라 소형/경량 제품에도 안정적으로 적용될 수 있다.
본 발명의 효과는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명에 따른 실험예와 상용 알루미늄 합금인 ADC12 합금의 인장시험 결과를 도시한 것이다.
도 2는 상용 알루미늄 합금과 본 발명의 실시예에 따른 알루미늄 합금의 미세조직을 비교한 결과이다.
도 3 및 도 4는 본 발명의 실시예에 따른 알루미늄 합금의 미세조직을 관찰한 결과이다.
이하, 첨부한 도면을 참조하여 본 발명에 따른 바람직한 실시예를 설명함으로써 본 발명을 상세하게 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
본 발명의 실시예들에서, 중량%(wt%)는 전체 합금의 중량에서 해당 성분이 차지하는 중량을 백분율로 표시한 것이다. 중량%에 대한 범위는 초과 또는 미만인 경우에는 그 경계값을 포함하지 않고, 단순히 범위로 지정되거나 이상 또는 이하로 지정된 경우에는 그 경계값을 포함하는 것으로 이해될 수 있다.
본 발명의 실시예들에서, 불가피 불순물은 알루미늄 합금 또는 알루미늄 주물의 제조시에 의도하지 않게 유입될 수 있는 불순물을 지칭할 수 있다.
본 발명의 일실시예에 따른 알루미늄 합금은 주원소인 알루미늄에 실리콘(Si), 구리(Cu) 및 아연(Zn)을 첨가하여 형성할 수 있다. 알루미늄 합금의 주원소인 알루미늄의 함유량은 추가원소 외의 나머지를 차지할 수 있으며, 따라서 그 함유량은 추가원소의 함유량에 따라서 달라질 수 있다. 알루미늄 합금에는 각 원소 자체에 또는 합금 단계에서 의도하지 않게 함유되는 불가피 불순물을 포함할 수 있다.
예를 들어, 알루미늄 합금은 4 내지 13 중량%의 실리콘, 1 내지 5 중량%의 구리 및 26 이상 40 중량% 미만의 아연을 함유하고, 나머지가 알루미늄 및 불가피 불순물로 이루어질 수 있다.
실리콘은 알루미늄 용탕의 유동성이 높으며 응고 중 주입성을 향상시키기 위해 첨가될 수 있다. 또한 알루미늄-실리콘 합금(Al-Si 합금)의 경우에 주조시 초정 α-알루미늄상과 공정 실리콘상의 혼합 조직을 나타낼 수 있으며, 이러한 공정 실리콘상의 조직을 개량 처리하여 침상에서 입자상 또는 섬유상 등으로 미세화 시킬 경우 기계적 강도를 현저하게 향상시킬 수 있다.
다만, 경우에 따라 합금의 취성이 증가하여 기계적 성질이 저하되기 때문에 다이캐스팅 과정 중 몰드에서 제품의 분리될 때 제품이 파손되는 문제를 일으킬 수 있다. 따라서 이러한 효과들을 모두 고려할 때 본 실시예의 실리콘 함유량은 4 내지 13 중량% 의 범위로 제한될 수 있으며, 엄격하게는 5 내지 10 중량% 범위로 제한될 수 있으며, 더욱 엄격하게는 5 내지 8 중량% 이하로 제한될 수 있다.
구리는 알루미늄에 대해 548℃의 공정온도(eutectic temperature)에서 약 5.6 중량%의 최대 고용도를 가지며, 알루미늄에 고용될 경우 고용강화 효과를 나타낼 수 있다. 또한 알루미늄에 아연과 함께 첨가되는 경우, 아연 및 알루미늄과 반응하여 Al-Zn-Cu 화합물을 형성하며, 이러한 화합물은 합금의 변형 시 전위의 이동을 방해하는 장애물로 작용하거나 또는 결정립 성장을 억제하기 때문에 합금의 강도 향상에 기여할 수 있다.
다만, 그 함유량이 너무 많으면, 취성이 증가하여 기계적 성질이 저하되고, 알루미늄에 비해 무거운 원소이므로 비중 감소에 효과적이지 않으며, 알루미늄의 주조성을 열화시킬 수 있다. 따라서 본 실시예에서의 구리 함유량은 이러한 효과들을 모두 고려하여 1 내지 5 중량%의 범위, 엄격하게는 2 내지 5 중량%의 범위로 제한될 수 있다.
아연은 알루미늄에 첨가될 경우, 382℃에서 약 80 중량% 정도 고용되나 온도가 감소함에 고용도가 급격히 감소되어, 본 발명에 따르는 알루미늄 합금의 경우 주조된 알루미늄 합금의 기지 내에는 약 18 중량%의 아연이 고용된 상태가 된다. 이때 고용되지 못한 잉여 아연은 상술한 것과 같이 알루미늄, 구리와 반응하여 Al-Zn-Cu 화합물을 형성하는데 이용될 수 있다. 따라서 이러한 아연의 고용강화 및 화합물 형성의 효과를 모두 얻기 위해서는 26 중량% 이상의 아연을 알루미늄 내에 첨가하는 것이 필요하다.
그러나 아연은 알루미늄에 비해 비중이 무거운 원소이므로 경량화에 불리하며, 36 중량%를 초과할 경우 β상이 β'상 및 α상의 2상의 혼합조직으로 공석변태가 진행함에 따라 강도가 낮고 연신율이 큰 공석조직의 양이 증가 될 수 있다. 또한 아연의 함유량이 40 중량%일 경우 알루미늄 합금 내 공정 Si 상이 초정 α상 내에 존재함으로써 결정립 크기가 증가 되어 강도가 감소할 수 있다. 따라서 아연은 이러한 점 등을 고려하여 40 중량% 미만의 범위로 제한될 필요가 있다.
본 발명의 다른 실시예에 따른 알루미늄 합금은 4 내지 13 중량%의 실리콘(Si), 1 내지 5 중량%의 구리(Cu), 26 이상 40 중량% 미만의 아연(Zn), 0.1 중량% 이하의 스트론튬(Sr) 및 43 내지 69 중량%의 알루미늄(Al)을 포함할 수 있다.
일예로서 스트론튬이 추가적으로 첨가되는 경우, 알루미늄 합금의 결정조직을 미세화 함으로써 알루미늄 합금의 강도를 향상시킬 수 있다. 즉, 실리콘을 포함하는 알루미늄 합금의 경우, 주조시 초정 α상과 공정 Si상의 혼합 조직을 나타낼 수 있으며, 스트론튬이 첨가됨으로써 이러한 공정 Si상의 조직을 미세화 함으로써 강도의 향상에 기여할 수 있다.
다만, 스트론튬의 함유량이 높을 경우에는 스트론튬을 포함하는 화합물의 정출에 의해 오히려 기계적 성질이 저하될 수 있다. 따라서 본 실시예의 스트론튬 함유량은 이러한 효과들을 모두 고려하여 0.1 중량%의 이하, 엄격하게는 0 보다 크고 0.04 중량% 이하의 범위, 더욱 엄격하게는 0 보다 크고 0.02 중량% 이하의 범위로 제한될 수 있다.
또한 주원소인 알루미늄에 실리콘, 구리, 아연, 스트론튬 외에 알루미늄 합금의 강도를 향상시키기 위한 첨가원소를 미량 첨가할 수 있다. 상기 첨가원소로는, 티타늄(Ti), 마그네슘(Mg), 니켈(Ni), 바나듐(V), 주석(Sn), 철(Fe), 크롬(Cr), 지르코늄(Zr), 스칸듐(Sc) 및 망간(Mn)이 될 수 있으며, 이러한 첨가원소 중에서 선택되는 하나 이상을 총합 3 중량% 이하의 범위에서 첨가할 수 있다.
본 발명의 일실시예에 따른 알루미늄 합금 주물은 전술한 알루미늄 합금을 이용하여 제조될 수 있다. 여기에서, 주물(casting)은 주조를 통해서 제조되는 순수 주물과 예비 성형된 주물을 소정 형상으로 성형한 제품, 예컨대 압출용 빌렛, 압연용 판재 등을 포함할 수 있다. 순수 주물의 예로, 사형주조, 다이캐스팅(die casting), 중력금형주조, 저압주조, 스퀴즈캐스팅, 로스트왁스주조(lost wax casting), 틱소캐스팅(thixo casting) 등을 들 수 있다.
중력주조는 용융상태의 합금을 중력을 이용하여 주형에 주입하는 방법을 지칭하고, 저압주조는 용융된 합금의 용탕면에 가스를 이용하여 압력을 가하여 주형 내에 용탕을 주입하는 방식을 지칭할 수 있다. 틱소캐스팅은 반용융 상태에서의 주조 기술로서, 통상적인 주조와 단조의 장점을 융합한 방식이다.
이 실시예에 따른 알루미늄 합금 주물은 전술한 공정을 포함하는 여하의 공정을 통해서 제조될 수 있고, 열처리를 행하지 않고도 적절한 강도와 가공성을 가질 수 있다. 선택적으로, 알루미늄 합금 주물은 그 용도와 형상에 따라서 제조 후 열처리 단계를 거칠 수도 있다.
이하, 본 발명의 이해를 돕기 위해서 실험예들을 제공한다. 다만, 하기의 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실험예들에 의해서 한정되는 것은 아니다.
표 1은 본 발명에 따른 실험예들과 비교예의 합금 조성 및 그에 따른 기계적 특성으로서 인장강도의 결과를 나타낸 것이다.
표 1
  Si Cu Zn Al Sr 인장강도(Mpa)
실험예 1 5.0 2.0 26.0 66.7 0.0 433.4
실험예 2 6.0 2.0 26.0 65.7 0.0 441.6
실험예 3 6.0 3.5 30.0 60.2 0.0 451.8
실험예 4 6.0 5.0 30.0 58.7 0.0 439.4
실험예 5 7.0 2.0 26.0 64.7 0.0 444.6
실험예 6 7.0 2.0 30.0 60.7 0.0 440.9
실험예 7 6.0 5.0 30.0 58.7 0.0 436.2
실험예 8 6.0 3.5 31.0 59.2 0.0 443.1
실험예 9 6.0 2.0 32.0 59.7 0.0 419.7
실험예10 6.0 2.0 32.0 59.7 0.0 416.8
실험예11 6.0 2.0 35.0 56.7 0.0 443.2
실험예12 6.0 3.5 35.0 55.2 0.0 444.0
실험예13 6.0 5.0 35.0 53.7 0.0 440.6
실험예14 8.0 2.0 26.0 63.7 0.0 441.7
실험예15 8.0 2.0 27.0 62.4 0.0 441.9
실험예16 8.0 3.5 28.0 60.2 0.0 436.7
실험예17 8.0 2.0 30.0 59.7 0.0 430.2
실험예18 6.0 2.0 30.0 61.5 0.0 420.2
실험예19 6.0 2.0 30.0 61.7 0.02 488.8
실험예20 6.0 2.0 28.0 63.6 0.02 465.1
실험예21 6.0 2.0 30.0 61.6 0.1 438.0
비교예1 0.0 2.1 30.1 67.4 0.0 321.1
본 실험예에 따른 알루미늄 합금을 제조하기 위하여 고순도 알루미늄(99.8%) 및 아연(99.9%)을 이용하였으며, 실리콘, 구리 및 스트론튬의 첨가를 위해 각각 실리콘, 구리 및 스트론튬이 첨가된 알루미늄 모합금을 이용하였다.
각 합금원소들은 전기저항로를 사용하여 용해하였으며, 주입 전 탈가스장치로 아르곤(Ar) 가스를 5분간 취입하여 탈가스 및 탈재처리를 하였다.
스트론튬의 경우에는 스트론튬을 포함하는 알루미늄 모합금을 첨가하고 일정시간 유지한 후 출탕하여 시험편을 제조하였다.
각 실험예의 기계적 특성 측정에 사용한 시편은 다이캐스팅을 이용하여 제조하였다. 구체적으로 형체력 1,300KN의 TOYO 다이캐스팅 장비를 사용하여 봉상의 인장시편을 주조하고 기계적 특성의 편차를 감소시키기 위해 주조 후 2일 이후에 인장시험을 수행하였다. 기계적 특성 측정에는 7개 이상의 시험편을 사용하여 그 평균치를 결과로 나타내었다.
본 시험에 사용한 다이캐스팅은 주조온도 963 내지 983K, 금형온도 463 내지 473K 조건하에서 실시하였다. 시험에 사용된 시험편은 KSB0802규격에 의거 14호 봉상 비례시험편으로 제작하였다.
또한 광학현미경(OM)에 의한 미세조직 관찰을 위하여 인장 시험편 중앙부위에서 시편을 채취하였으며 채취된 시험편은 연마지 및 연마천를 이용하여 연마한 후 알코올을 이용하여 20분간 세척한 다음 부식을 행하였다. 또한 아연의 α-알루미늄상 기지 내 고용도와 생성된 공정상의 종류 및 형상을 분석하기 위하여 SEM(scanning electron microscope) 및 EDS(energy dispersive spectrometer)를 이용한 분석을 수행하였다.
한편, 본 실험예에 따른 알루미늄 합금의 인장강도를 비교하기 위한 대상으로 상용 알루미늄 합금인 ADC12 합금을 사용하였으며, 도 1에는 실험예 19 및 ADC12 합금의 인장시험 결과가 도시되어 있다.
표 1을 참조하면, 동일한 구리, 아연 조성을 가지는 실험예 21 및 비교예 1을 대비할 때, 실리콘이 첨가되지 않은 비교예 1에 비해 실리콘이 첨가된 실험예 21의 인장강도가 약 110 MPa 정도 증가되었음을 알 수 있다. 이로부터 본 발명의 실험예를 따르는 알루미늄 합금의 경우 실리콘의 첨가에 따라 인장강도의 값이 현저하게 향상되었음을 알 수 있다.
또한, 도 1을 참조하면, 상용 알루미늄 합금으로서 아연과 구리를 중요 합금원소로 하는 ADC12 합금의 인장강도에 비해서도 본 실험예 19에 따른 합금의 인장강도가 더 높은 우수한 결과를 나타냄을 알 수 있다.
이로부터 본 발명의 실험예에 따른 알루미늄 합금은 종래의 상용 알루미늄 합금에 비해 매우 우수한 강도특성을 보임을 알 수 있다.
본 실험예에 따른 알루미늄 합금이 ADC12 합금에 비해 우수한 특성을 나타내는 이유는 알루미늄에 아연, 구리와 함께 실리콘이 첨가되어 합금조직을 미세화하였기 때문으로 판단된다.
이하 편의상 알루미늄에 아연, 실리콘, 구리를 각각 x, y, z의 중량% 만큼 첨가한 알루미늄 합금을 Al-xZn-ySi-zCu로 표현한다.
도 2a에는 Al-30Zn 합금의 합금조직을, 도 2b 및 도 2c에는 각각 Al-30Zn-6Si-2Cu, Al-40Zn-6Si-2Cu 합금의 합금조직을 SEM으로 관찰한 결과가 나타나 있다.
도 2a를 참조하면, Al-30Zn 합금의 경우 초정 α상내에 고용되지 못한 잉여 아연으로 인하여 알루미늄-아연 공정상이 결정립계에 고르게 분산되어 있음을 알 수 있다.
이에 비해 도 2b를 참조하면, Al-30Zn-6Si-2Cu 합금에서는 초정 α상의 성장이 억제되어 결정립의 크기가 수 ㎛ 내지 20 ㎛의 범위로 현저하게 감소되었음을 알 수 있다.
도 3에는 도 2b에 나타난 Al-30Zn-6Si-2Cu 합금의 각 영역에서의 아연의 함유량(중량%)을 EDS 분석한 결과를 표와 함께 나타내었다.
도 3에 나타낸 바와 같이, α-Al상내에 약 18 중량%까지 아연이 고용됨을 알 수 있고(제 1 영역) 공정 Si상의 주위에도 아연이 안정적으로 18%까지 존재함을 알 수 있다(제 2 영역). 이때 고용되지 않은 잉여의 아연은 알루미늄 및 구리와 반응하여 Al-Zn-Cu 화합물을 형성하는 것을 판단되며(영역 3 및 4), 이러한 Al-Zn-Cu 화합물은 결정립의 이동을 억제하여 결정립의 미세화에 기여하는 것으로 추측된다. 따라서 이러한 Al-Zn-Cu 화합물의 정출은 공정 Si상과 함께 알루미늄 합금의 강도향상에 기여하게 될 것으로 판단된다.
그러나 도 2c에 나타낸 것과 같이, Al-40Zn-6Si-2Cu 합금에서는 공정 Si상이 결정입계로 퇴출되지 못하고 초정 α내에 존재하게 됨으로써 결과적으로 결정립의 크기가 증가하는 결과를 나타내었으며, 이로 인해 강도는 감소할 것으로 예상된다. 따라서 아연의 함유량이 40 중량% 미만으로 조절하는 것이 강도 향상의 측면에서 바람직할 것으로 예측된다.
이하에서는 표 1 에 나타낸 합금조성에 따른 실험결과를 보다 구체적으로 살펴본다.
표 1을 참조하면, 실리콘의 함유량이 6 초과 8 중량% 이하이고, 구리의 함유량이 2 내지 3.5 중량%인 실험예 5, 6, 14, 15, 16, 17에서는 모든 아연의 함유량에서 약 430 내지 445 MPa 범위의 상대적으로 우수한 인장강도 결과를 나타내었다.
이로부터 본 발명의 실시예를 따르는 알루미늄 합금은 실리콘의 함유량이 6 중량%을 초과하는 경우에는 6 중량% 이하인 영역에서 비해 상대적으로 우수하고 안정된 강도특성을 나타내는 것으로 판단되었다.
실험예 19 내지 21은 모두 알루미늄 합금의 첨가원소로서 실리콘, 구리, 아연 외에 스트론튬 0.02 내지 0.1 중량%를 더 추가한 알루미늄 합금이다.
실험예 19 및 20을 실험예 18 및 2와 각각 대비할 때, 0.02 중량%의 스트론튬이 더 첨가됨으로써 인장강도가 20 내지 60 MPa 이상 증가됨을 알 수 있다. 이러한 현저한 인장강도의 증가는 스트론튬 첨가에 따른 공정 Si상의 미세화가 이루어 졌기 때문으로 판단된다.
도 4a 및 도 4b에는 스트론튬을 첨가하지 않은 실험예 18과 동일한 실리콘, 구리 및 아연 조성을 가지고 스트론튬이 0.04 중량% 더 첨가된 알루미늄 합금의 합금조직을 SEM으로 관찰한 결과가 나타나 있다.
도 4a 및 도 4b의 공정 Si상의 조직(화살표)을 대비할 때, 스트론튬이 첨가된 경우에 더 미세한 공정 Si상을 가짐을 확인할 수 있다.
한편, 실험예 19 및 21을 비교할 때 스트론튬의 함유량이 0.02 중량%인 경우에 0.1 중량% 일때에 비해 상대적으로 더 우수한 인장강도 결과를 나타내었으며, 이로부터 스트론튬의 함유량은 0.1 중량% 미만으로 유지할 필요가 있다는 것을 알 수 있다.
발명의 특정 실시예들에 대한 이상의 설명은 예시 및 설명을 목적으로 제공되었다. 따라서, 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 해당 분야에서 통상의 지식을 가진 자에 의하여 상기 실시예들을 조합하여 실시하는 등 여러 가지 많은 수정 및 변경이 가능함은 명백하다.

Claims (14)

  1. 4 내지 13 중량%의 실리콘(Si), 1 내지 5 중량%의 구리(Cu) 및 26 이상 40 중량% 미만의 아연(Zn)을 함유하고, 나머지가 알루미늄(Al) 및 불가피 불순물로 이루어진, 알루미늄 합금.
  2. 제 1 항에 있어서, 상기 실리콘(Si)의 함유량은 5 내지 10 중량%인, 알루미늄 합금.
  3. 제 2 항에 있어서, 상기 실리콘(Si)의 함유량은 5 내지 8 중량% 이하인, 알루미늄 합금.
  4. 제 3 항에 있어서, 상기 구리(Cu)의 함유량은 2 내지 5 중량%인, 알루미늄 합금.
  5. 제 4 항에 있어서, 상기 아연(Zn)의 함유량은 26 내지 35 중량%인, 알루미늄 합금.
  6. 4 내지 13 중량%의 실리콘(Si);
    1 내지 5 중량%의 구리(Cu);
    26 이상 40 중량% 미만의 아연(Zn);
    0.1 중량% 이하의 스트론튬(Sr); 및
    43 내지 69 중량%의 알루미늄(Al)을 포함하는, 알루미늄 합금.
  7. 제 6 항에 있어서, 상기 실리콘(Si)의 함유량은 5 내지 10 중량%인, 알루미늄 합금.
  8. 제 7 항에 있어서, 상기 실리콘(Si)의 함유량은 5 내지 8 중량% 인, 알루미늄 합금.
  9. 제 8 항에 있어서, 구리(Cu)의 함유량은 2 내지 5 중량%인, 알루미늄 합금.
  10. 제 9 항에 있어서, 상기 아연(Zn)의 함유량은 26 내지 35 중량%인, 알루미늄 합금.
  11. 제 6 항에 있어서, 상기 스트론튬(Sr)의 함유량은 0.04 중량%(0 제외) 이하인, 알루미늄 합금.
  12. 제 11 항에 있어서, 상기 스트론튬(Sr)의 함유량은 0.02 중량%(0 제외) 이하인, 알루미늄 합금.
  13. 제 6 항에 있어서, 티타늄(Ti), 마그네슘(Mg), 니켈(Ni), 바나듐(V), 주석(Sn), 철(Fe), 크롬(Cr), 지르코늄(Zr), 스칸듐(Sc) 및 망간(Mn) 중에서 선택되는 하나 이상의 원소 중 어느 하나 이상을 총 3 중량%(0 초과) 이하로 더 포함하는, 알루미늄 합금.
  14. 제 1 내지 제 13 항의 어느 한 항에 따른 알루미늄 합금을 이용하여 제조된 알루미늄 합금 주물.
PCT/KR2011/003521 2010-05-29 2011-05-12 알루미늄 합금 및 알루미늄 합금 주물 WO2011152617A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112011101836T DE112011101836T5 (de) 2010-05-29 2011-05-12 Aluminiumlegierung und Aluminiumlegierungsgussteil
US13/700,550 US20130209311A1 (en) 2010-05-29 2011-05-12 Aluminum alloy, and aluminum alloy casting
CN2011800267252A CN103069029A (zh) 2010-05-29 2011-05-12 铝合金及铝合金铸件
JP2013512523A JP2013529255A (ja) 2010-05-29 2011-05-12 アルミニウム合金およびアルミニウム合金鋳造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0050693 2010-05-29
KR1020100050693A KR101124235B1 (ko) 2010-05-29 2010-05-29 알루미늄 합금 및 알루미늄 합금 주물

Publications (2)

Publication Number Publication Date
WO2011152617A2 true WO2011152617A2 (ko) 2011-12-08
WO2011152617A3 WO2011152617A3 (ko) 2012-04-19

Family

ID=45067164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003521 WO2011152617A2 (ko) 2010-05-29 2011-05-12 알루미늄 합금 및 알루미늄 합금 주물

Country Status (6)

Country Link
US (1) US20130209311A1 (ko)
JP (1) JP2013529255A (ko)
KR (1) KR101124235B1 (ko)
CN (1) CN103069029A (ko)
DE (1) DE112011101836T5 (ko)
WO (1) WO2011152617A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409673A (zh) * 2013-08-26 2013-11-27 深圳市天合兴五金塑胶有限公司 高强性压铸铝钛合金

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014015600A1 (zh) * 2012-07-23 2014-01-30 刘欣明 一种高强度铝合金及其生产方法
KR101526657B1 (ko) 2013-05-07 2015-06-05 현대자동차주식회사 복합 미세조직을 갖는 내마모성 합금
KR101526658B1 (ko) 2013-05-07 2015-06-05 현대자동차주식회사 복합 미세조직을 갖는 내마모성 합금
CN103614596B (zh) * 2013-07-16 2016-03-02 深圳市欣茂鑫精密五金制品有限公司 一种用于电子产品结构件的高强度铝合金及其制备方法
CN103526088B (zh) * 2013-09-29 2016-03-09 苏州利达铸造有限公司 一种数码电子产品用压铸铝合金
CN103695732B (zh) * 2013-11-26 2015-11-18 宁波瑞铭机械有限公司 一种缝纫机连杆及其制备方法
CN106563919B (zh) * 2014-06-13 2019-06-07 广东长盈精密技术有限公司 一种手机中框、后盖的制备方法
CN104259752B (zh) * 2014-08-07 2016-08-31 兰宝琴 一种烤漆铝合金板的制造方法
CN104264020B (zh) * 2014-10-17 2016-10-26 苏州凯宥电子科技有限公司 一种高强度压铸铝合金及其制备方法
CN107923004B (zh) * 2015-08-13 2021-12-14 美铝美国公司 改善的3xx铝铸造合金及其制备方法
KR101974913B1 (ko) * 2017-04-13 2019-05-07 한국기계연구원 알루미늄-아연-구리(Al-Zn-Cu) 합금 및 이의 제조방법
CN107686923A (zh) * 2017-09-18 2018-02-13 太仓天润新材料科技有限公司 一种超合金环保电子新材料
CN109972003B (zh) * 2019-04-03 2020-05-22 上海交通大学 适于重力铸造的高延伸率耐热铝合金及其制备方法
CN112143949B (zh) * 2019-06-27 2021-12-07 比亚迪股份有限公司 一种压铸铝合金及其制备方法和应用
CN113046607B (zh) * 2021-03-16 2022-03-04 郑州大学 一种高硬高导热多元合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925315A (en) * 1995-02-14 1999-07-20 Caterpillar Inc. Aluminum alloy with improved tribological characteristics
JP2008291364A (ja) * 2007-05-24 2008-12-04 Aluminium Rheinfelden Gmbh 耐熱性アルミニウム合金
KR100961081B1 (ko) * 2009-03-03 2010-06-08 임현규 고강도 경량 아연-알루미늄 합금

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607014B2 (ja) * 1982-12-20 1985-02-21 三菱マテリアル株式会社 常温および高温強度のすぐれた鋳造用防振性Zn合金
US4808243A (en) * 1982-12-20 1989-02-28 Mitsubishi Metal Corporation High damping zinc alloy with good intergranular corrosion resistance and high strength at both room and elevated temperatures
JPH0228465B2 (ja) * 1985-09-06 1990-06-25 Mitsubishi Metal Corp Boshintokuseinosuguretaznnalkeigokinseiboshinbuzai
JPH036345A (ja) * 1989-06-02 1991-01-11 Daido Metal Co Ltd 耐疲労性と非焼付性にすぐれた摺動用アルミニウム基合金
JPH03230890A (ja) * 1990-02-07 1991-10-14 Showa Alum Corp アルミニウム合金ろう材
JP4055177B2 (ja) * 1994-08-18 2008-03-05 日曹金属化学株式会社 機械的強度の優れたダイカスト用アルミニウム合金及びそれを用いたボールジョイント装置
JP2005281798A (ja) * 2004-03-30 2005-10-13 Denso Corp ガソリン−エタノール混合燃料用のアルミダイキャスト合金部品
JP2006176851A (ja) * 2004-12-24 2006-07-06 Mitsubishi Alum Co Ltd 耐エロージョン性に優れた熱交換器用の高強度アルミニウム合金板材および熱交換器並びに高強度アルミニウム合金板材の製造方法
US20090263273A1 (en) * 2008-04-18 2009-10-22 United Technologies Corporation High strength L12 aluminum alloys
KR20100050693A (ko) 2008-11-06 2010-05-14 이인근 웹 기반 온톨로지 협업 구축 시스템에서 온톨로지 추론 엔진을 이용한 온톨로지의 논리기반 검색 및 논리기반 추론방법 및 그 시스템
KR20100102301A (ko) * 2009-03-11 2010-09-24 현대자동차주식회사 차량용 내마모성 알루미늄 합금
KR20100134361A (ko) * 2009-06-15 2010-12-23 현대자동차주식회사 저 실리콘계 알루미늄 합금

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925315A (en) * 1995-02-14 1999-07-20 Caterpillar Inc. Aluminum alloy with improved tribological characteristics
JP2008291364A (ja) * 2007-05-24 2008-12-04 Aluminium Rheinfelden Gmbh 耐熱性アルミニウム合金
KR100961081B1 (ko) * 2009-03-03 2010-06-08 임현규 고강도 경량 아연-알루미늄 합금

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409673A (zh) * 2013-08-26 2013-11-27 深圳市天合兴五金塑胶有限公司 高强性压铸铝钛合金

Also Published As

Publication number Publication date
KR101124235B1 (ko) 2012-03-27
WO2011152617A3 (ko) 2012-04-19
DE112011101836T5 (de) 2013-03-07
KR20110131327A (ko) 2011-12-07
CN103069029A (zh) 2013-04-24
JP2013529255A (ja) 2013-07-18
US20130209311A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
WO2011152617A2 (ko) 알루미늄 합금 및 알루미늄 합금 주물
US20200102631A1 (en) Mg-gd-y-zn-zr alloy and process for preparing the same
CN110714148A (zh) 一种高性能半固态压铸铝合金及其制备方法
WO2020237837A1 (zh) 一种高强韧薄壁结构件铸造铝合金及其制备方法
CN108977702B (zh) 一种铝合金及铝合金铸件制备方法
CN110592444B (zh) 一种700-720MPa强度耐热高抗晶间腐蚀铝合金及其制备方法
WO2014030915A1 (ko) 고강도 및 고열전도도를 동시에 나타내는 다이캐스팅용 Al-Zn 합금
CN1851019A (zh) Er、Zr复合强化的Al-Mg-Mn合金
CN110592445B (zh) 720-740MPa冷挤压Al-Zn-Mg-Cu-Ti铝合金及制备方法
CN117568671B (zh) 一种免热处理的压铸铝合金材料及其制备方法、汽车结构件
CN115537613B (zh) 一种新能源汽车电机壳体铝合金及其成形方法
CN115198150B (zh) 铝硅合金及其制备方法和应用
CN117026023A (zh) 一种免热处理高强高韧压铸铝合金及其制备方法
WO2013055074A2 (ko) 다이캐스팅용 고열전도도 Al-Mg-Fe-Si 합금
EP3550046A1 (en) Semisolid die-casting aluminum alloy and method for preparing semisolid die-casting aluminum alloy castings
CN115418535B (zh) 铝合金材料及其制备方法和应用、铝合金制品
KR101274089B1 (ko) 주조성이 우수한 다이캐스팅용 고강도 알루미늄 합금
KR100916194B1 (ko) 고강도 고인성 마그네슘 합금
WO2021128619A1 (zh) 铝合金及其制备方法和铝合金结构件
KR101311915B1 (ko) 알루미늄 합금 및 알루미늄 합금 주물
CN111118358A (zh) 一种含Er的可铸造的变形Al-Cu合金
CN116716523B (zh) 免热处理压铸铝合金及其制备方法和应用
CN112921219B (zh) 一种铝合金及其制备方法和铝合金结构件
CN110079714B (zh) 一种非热处理强化高强高韧压铸铝镁铜合金及其制备方法
CN115125422B (zh) 一种耐蚀高强韧Al-Li-Cu-Zr-Er合金板材及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026725.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789975

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2013512523

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10360/DELNP/2012

Country of ref document: IN

Ref document number: 112011101836

Country of ref document: DE

Ref document number: 1120111018363

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13700550

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11789975

Country of ref document: EP

Kind code of ref document: A2