WO2013180338A1 - 저탄성 고강도 베타형 타이타늄 합금 - Google Patents

저탄성 고강도 베타형 타이타늄 합금 Download PDF

Info

Publication number
WO2013180338A1
WO2013180338A1 PCT/KR2012/006941 KR2012006941W WO2013180338A1 WO 2013180338 A1 WO2013180338 A1 WO 2013180338A1 KR 2012006941 W KR2012006941 W KR 2012006941W WO 2013180338 A1 WO2013180338 A1 WO 2013180338A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium alloy
beta
low
present
strength
Prior art date
Application number
PCT/KR2012/006941
Other languages
English (en)
French (fr)
Inventor
이동근
이용태
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to US14/006,966 priority Critical patent/US20150147225A1/en
Priority to CN201280004071.8A priority patent/CN103649350A/zh
Publication of WO2013180338A1 publication Critical patent/WO2013180338A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the present invention relates to a beta-type titanium alloy having a low modulus of elasticity and high strength, and more particularly, to a low-elastic high-strength beta-type titanium alloy having high performance at low cost as compared with the conventional art.
  • Titanium is one of the new metal materials that is expected to be used in the future as it is called a new material of dream because it has high specific strength (strength / weight) and excellent corrosion resistance. Because of its excellent properties, titanium is widely researched and developed in the fields of biomedical, marine, aerospace, sports and leisure.
  • Titanium alloys are largely divided into ⁇ -type (dense hexagonal crystals: hcp), ⁇ -type (centered cubic crystals: bcc), and ⁇ + ⁇ types based on the phase crystal structure of the metal structure at room temperature. .
  • Alloys in which small amounts of industrial pure titanium, aluminum, etc. are added are ⁇ -type, and are well known as high-strength alloys, and Ti-6Al-4V alloys used in aircraft and the like are ⁇ + ⁇ type, and ⁇ type is ⁇ type rather than ⁇ + ⁇ type. It is the alloy which increased the content of the alloying element to stabilize.
  • Titanium alloys have only 56% density and 50% shear modulus under the same strength as steel materials, so the theoretical weight is 28% for springs with the same performance. As a result, it is possible to reduce the weight of steel by 72%.
  • the maximum shear stress can be used up to 839MPa, but the weight is higher than the coil spring made of steel having the same performance. Only 47% of the weight can be achieved with a certain weight reduction.
  • the titanium alloy has a high attenuation ability and a high natural frequency, it is possible to avoid surging phenomena, which is a problem at high speed of engine rotation, and thus has a definite effect on life extension.
  • the natural frequency of the Ti-3Al-8V-6Cr-4Mo-4Zr alloy, which is mainly used for actual springs, is 870 Hz, which is much higher than 483 Hz of springs made of conventional steel.
  • the shear modulus of the titanium alloy spring material is about 50% less than that of the existing spring steel, the number of turns of the spring can be reduced and the contact height of the valve spring can be reduced, thereby miniaturizing and reducing the engine weight.
  • the various properties of the titanium alloy as described above when used in a spring for automobile suspension, it is possible to improve the riding comfort by improving the cushion.
  • the tensile strength should be at least 1300 MPa or more, and in order to sufficiently obtain the effects of the above-mentioned titanium, the elastic modulus is preferably 95 GPa or less.
  • beta-stabilizing elements should be included in a considerable amount. Since the prices of beta-stabilizing elements are generally high, the applications requiring such excellent physical properties are mainly limited to special parts. It is true.
  • titanium alloys are not used to replace parts made of conventional steel materials.
  • the present invention is to solve the above-mentioned problems of the prior art, to solve the problem to provide a titanium alloy that can implement excellent physical properties having a high tensile strength of 1300MPa or more and a low modulus of elasticity of 95GPa or less at low cost.
  • the present invention by weight%, Mo 6 ⁇ 13%, Fe 0.1 ⁇ 3.9%, the remaining Ti and the unavoidable impurities, the tensile strength is 1300MPa or more and the elastic modulus is 95GPa or less A low elastic high strength beta type titanium alloy is provided.
  • the titanium alloy according to the present invention may further comprise up to 3.9% by weight of Al. That is, the present invention is characterized by weight percent, Mo 6 ⁇ 13%, Fe 0.1 ⁇ 3.9%, Al 0.1 ⁇ 3.9%, the remaining Ti and inevitable impurities, tensile strength of 1300MPa or more and elastic modulus of 95GPa or less It provides a low elastic high strength beta-type titanium alloy, the addition of Al such as not only improves the workability, formability, castability, etc. of the titanium alloy, but also can be applied to various heat treatment techniques to obtain a strengthening effect To provide.
  • Al such as not only improves the workability, formability, castability, etc. of the titanium alloy, but also can be applied to various heat treatment techniques to obtain a strengthening effect To provide.
  • the titanium alloy according to the present invention may further comprise B 0.005 to 0.5% by weight.
  • the elongation of the titanium alloy may be 6% or more.
  • the tensile strength of the titanium alloy may be 1400 MPa or more.
  • the microstructure of the titanium alloy may include particles of omega ( ⁇ ) finely dispersed in the beta ( ⁇ ) matrix, and the omega ( ⁇ ) Phases can be removed or produced using heat treatment techniques for the required strength and ductility.
  • Titanium alloy according to the present invention has a tensile strength of 1300MPa or more and an elastic modulus of 95GPa or less, and can be applied to various fields requiring low elastic high strength.
  • the titanium alloy according to the present invention minimizes the use of expensive alloy elements, it is possible to greatly reduce the alloy manufacturing cost.
  • the titanium alloy according to the present invention when manufactured through forging and die rolling, a bar having a tensile strength of 1300 MPa or more, an elastic modulus of 95 GPa or less, an elongation of about 6% or more, without heat treatment such as solution treatment or aging treatment, It is possible to manufacture the shell and plate, so that it is possible to manufacture the spring for transport equipment and parts of various fields having high strength and low elasticity properties at low cost, especially when used as a spring material, about 50 compared to the spring made of steel material Light weight of ⁇ 60% can be realized.
  • 6 and 7 are optical microscopic microstructure photographs of the ball rolled rods prepared according to Examples 2 and 3 of the present invention, respectively.
  • each alloy element of the beta-type titanium alloy according to the present invention is as follows.
  • Mo is an element that stabilizes the beta ( ⁇ ) phase with Fe. It has the effect of lowering the elastic modulus and improving the strength. Mo is more than 6% to obtain high mechanical properties while optimizing expensive Mo content to lower the cost. A content of 13% or less is preferred.
  • Fe is an element that stabilizes the beta ( ⁇ ) phase, but increases the deformation resistance, so the element has been added less if possible in the prior art, the present invention is characterized by using a relatively large amount of cheap Fe compared to other beta stabilizing elements
  • the beta stabilization effect is not sufficient, and when the content of Fe exceeds 3.9% by weight, the deformation resistance becomes excessive and the workability worsens, so 3.9% by weight or less is preferable.
  • the index of whether the beta-type titanium alloy having a low modulus of elasticity can be prepared by stabilizing the beta ( ⁇ ) phase can be expressed by the Mo equivalent of the following [Formula 1], Mo equivalent when calculated with Fe 7.0 About 20.0 is preferable.
  • Mo equivalent [Mo] +1/5 [Ta] + 1 / 3.6 [Nb] + 1 / 2.5 [W] + 1 / 1.5 [V] +1.25 [Cr] +
  • Al is an element added to improve the strength of the ⁇ -type titanium alloy according to the present invention, Al suppresses precipitation of the omega ( ⁇ ) phase to increase the hardness of the titanium alloy in the heat treatment process, embrittlement, strength and ductility Since it is possible to increase and improve workability and castability, the present invention is an element that can be selectively added. If the content of Al exceeds 3.9% by weight, the hardness is too high and the elongation is lowered, so workability is poor, Al is preferably added to 3.9% by weight or less.
  • B is an element that inhibits the growth of large coagulated tissue during dissolution casting. If it is contained in an amount less than 0.01 wt%, it may not effectively suppress the coagulation of coagulated tissue. Since no refinement effect is obtained, 0.005 to 0.5% by weight is preferable.
  • Unavoidable impurity means a raw material of titanium alloy or a component that may be inadvertently incorporated in the manufacturing process. Specifically, since oxygen lowers the deformability of the titanium alloy and causes cracking when cold working of strength, it increases the resistance of deformation, so it is preferable to keep it at 0.3% by weight or less, preferably 0.18% by weight. It is more preferable to keep so that it becomes below. In addition, since hydrogen deteriorates the ductility and toughness of the titanium alloy, it is better to include less, more preferably at least 0.03% by weight or less, and more preferably 0.01% by weight or less.
  • carbon also greatly reduces the deformation ability of a titanium alloy
  • nitrogen also greatly reduces the deformation ability of a titanium alloy, it is so preferable that it contains less, at least 0.02 weight% or less is preferable, and 0.01 weight% or less is more preferable.
  • the alpha ( ⁇ ) phase in the microstructure, may be mixed with the matrix of the beta phase, and the omega ( ⁇ ) phase finely dispersed in the beta ( ⁇ ) phase matrix may be used. It may comprise particles.
  • the method for processing the bar, the square and the plate using the titanium alloy according to the present invention (a) preparing a titanium alloy molten metal having the composition; (b) casting the prepared titanium alloy to make an ingot; (c) hot forging the ingot at 800 ° C. to 1200 ° C .; (d) co-rolling the forged titanium alloy at 25 ° C. to 650 ° C .;
  • the hot forging and the cold rolling temperature is preferably maintained in the above-described temperature range to prevent the occurrence of cracks during processing and to obtain a sufficient reduction ratio.
  • ISM Induction Skull Melting
  • Example 1 Table 1 alloy Composition (% by weight) Mo Fe Al Ti
  • Example 1 9.2 2.2 - Bal.
  • Example 2 12.1 1.0 - Bal.
  • Example 3 9.0 2.2 2.0 Bal.
  • Example 4 9.2 2.3 3.1 Bal.
  • Example 5 11.7 1.3 1.2 Bal. Comparative Example 1 15.0 - - Bal. Comparative Example 2 3.4 4.0 - Bal. Comparative Example 3 0.5 5.0 - Bal.
  • the molten alloy of the alloy dissolved in the composition shown in Table 1 was cast into an ingot having a diameter of 100 mm ⁇ height of 90 mm.
  • the inventors of the present invention after heating the ingot manufactured to 1100 °C to select an alloy that can obtain the mechanical properties that can be applied to the suspension of the transport equipment among the alloys of the table 1 loaded in a hot forging hot Forging was performed to produce a material having dimensions of 120 mm long, 60 mm wide and 40 mm high.
  • Comparative Example 1 is the tensile properties of the previously developed material
  • Comparative Examples 2 and 3 are tensile properties measured using a test piece manufactured in the form of a bar
  • the alloy according to Example 1 of the present invention has a tensile strength exceeding 1200MPa and an elongation of 10%, exhibiting characteristics very close to the desired physical properties of the present invention, thereby achieving the target by further processing. It can be confirmed that.
  • the tensile strength is 1000 MPa or less, but the elongation is excellent, and above all, the elastic modulus has a value of 95 GPa or less, and further strength improvement is possible through the subsequent processing process, so that the spring for transporting equipment suspension Applicable to ashes.
  • Examples 2 and 5 were selected from Examples 2 and 5, Examples 3 and 4 having substantially the same Mo and Fe contents, and a post-processing process was performed to measure tensile and elastic properties.
  • Comparative Example 1 Comparative Example 2 and Comparative Example 3, it is difficult to apply the spring material to the state of completing the post-processing process in the form of rod, or the tensile property is too low or the elastic modulus is high.
  • the microstructure of the rolled rod was analyzed using optical microscope and transmission electron microscope. Specimens for optical microscope analysis were prepared through standard metallurgical preparation process. Etched.
  • the transmission electron microscope specimens were prepared by grinding 60 ⁇ m thick and then twin-jet polishing under a condition of 60 V in a solution composed of butanol 35% -perchloric acid 6% -methanol).
  • FIGS. 1 to 5 are optical microscopic microstructure photographs of hot forging materials prepared by hot forging the ingots having the alloy composition of Examples 1 to 5 of the present invention, respectively.
  • all of the alloy microstructure has a ⁇ -phase matrix structure consisting of equiaxed crystals having an average size of about several hundred micrometers, and consists of a microstructure of a form in which some alpha phases are present.
  • the alloy rod according to an embodiment of the present invention has a tensile strength of 1300MPa or more and elastic modulus of less than 95GPa, including a spring material for transport equipment suspension, high strength, low elasticity, high rebound characteristics It satisfies the required physical properties of its components.
  • the tensile strength is very high at 1501 MPa
  • the elongation is 10%
  • the workability is very good
  • the elastic modulus is also low at 85 GPa, particularly suitable for spring materials such as automotive suspension spring materials. Can be used.
  • the tensile strength of 1498MPa is very high value of about 7%, and the elastic modulus of 76GPa can be used suitably for parts of various fields requiring high strength and low elastic properties.
  • the alloy bar according to the present invention uses low-cost iron (Fe) as a beta stabilization element, and can secure excellent mechanical properties at a lower cost than Ti-15Mo, a commercialized material, compared to the conventional titanium alloy In addition to lowering the manufacturing cost, it is possible to obtain elastic properties together with excellent tensile properties compared to conventional titanium alloys.
  • Fe iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 종래에 비해 탄성계수가 낮고 강도가 높은 베타형 타이타늄 합금을 제공하기 위한 것으로, 본 발명에 따른 타이타늄 합금은 중량%로, Mo 6~13%, Fe 0.1~3.9%, 나머지 Ti 및 불가피한 불순물을 포함하며, 선택적으로 Al 0.1~3.9%를 포함한다. 본 발명에 따른 타이타늄 합금은 저비용으로 1300MPa 이상의 높은 인장강도와 95GPa 이하의 낮은 탄성계수를 구현한다.

Description

저탄성 고강도 베타형 타이타늄 합금
본 발명은 탄성계수가 낮고 강도가 높은 베타형 타이타늄 합금에 관한 것으로, 보다 상세하게는 종래에 비해 저비용으로 고성능을 갖는 저탄성 고강도 베타형 타이타늄 합금에 관한 것이다.
타이타늄은 일반적으로 비강도(강도/무게)가 높고, 내식성 등이 탁월하여 다양한 산업분야의 기초소재로 활용도가 높아 꿈의 신소재라고 불릴 정도로 미래의 활용분야가 기대되는 신금속 소재중 하나이며, 이러한 타이타늄의 여러 우수한 특성들로 인해 생체의료, 해양, 항공우주, 스포츠 및 레저 등의 분야에서 널리 연구개발되고 있다.
타이타늄 합금은, 상온에서 금속조직을 구성하는 상(相)의 결정구조를 기준으로, 크게 α형(조밀육방정: hcp), β형(체심입방정: bcc), 및 α+β형으로 구분된다. 공업용 순 타이타늄이나 알루미늄 등을 소량 첨가한 합금은 α형이며, 고강도 합금으로서 잘 알려져 있어 항공기 등에 사용되고 있는 Ti-6Al-4V 합금은 α+β형이고, β형은 α+β형보다 β상을 안정시키는 합금원소의 함유량을 증가시킨 합금이다.
타이타늄 합금의 경우, 철강 재료와 비교하여 강도가 같은 상태에서 밀도가 56%, 전단 탄성계수가 50% 정도밖에 되지 않기 때문에, 동일한 성능을 가지는 스프링의 경우에 중량이 이론적으로 계산하면 28% 정도가 되므로 철강재료 대비 72%의 경량화가 가능하다.
실제로 Ti-3Al-8V-6Cr-4Mo-4Zr(β-C) 합금을 이용하여 코일 스프링을 만들 경우, 최대 전단응력 839MPa까지 사용 가능하면서도 이와 동일한 성능을 갖는 철강으로 제조된 코일 스프링에 비하여 중량이 47% 정도에 불과하여 확실한 경량화 효과를 얻을 수 있다.
또한, 타이타늄 합금은 감쇄능과 고유진동수가 크므로 엔진의 고속회전 시에 문제가 되는 서징(surging) 현상을 피할 수 있기 때문에 수명 연장에 확실한 효과가 있다. 실제 스프링용으로 주로 사용되고 있는 상기 Ti-3Al-8V-6Cr-4Mo-4Zr 합금의 고유 진동수는 870Hz로 기존의 철강으로 제조된 스프링의 483Hz에 비하여 월등히 높은 수치를 보인다.
또한, 타이타늄 합금 스프링 재료의 전단 탄성계수는 기존의 스프링 강보다 약 50%정도로 적기 때문에, 스프링의 권수를 줄일 수 있고 밸브 스프링의 밀착 높이를 감소시킴으로써, 엔진의 소형화 및 경량화를 도모할 수도 있다. 더욱이, 상기와 같은 타이타늄 합금의 여러 성질에 의해, 자동차 서스펜션용 스프링에 사용될 경우, 쿠션을 좋게 하여 승차감을 개선할 수도 있다.
그런데, 자동차의 하중을 고려할 때, 타이타늄 합금을 서스펜션 스프링용 재료로 사용하기 위해서는 인장강도가 적어도 1300MPa 이상이어야 하고, 전술한 타이타늄의 효과를 충분히 얻기 위해서는 탄성계수가 95GPa 이하가 되는 것이 바람직하다.
한편, β형 타이타늄 합금을 제조하기 위해서는 베타 안정화원소들을 상당량 포함해야 하는데, 베타 안정화원소들의 가격이 일반적으로 높은 편이기 때문에, 상기와 같은 우수한 물성이 요구되는 용도가 특수한 부품에 주로 한정되어 사용되고 있는 실정이다.
이에 따라, 전술한 바와 같이 타이타늄 합금의 우수한 성질에도 불구하고, 저렴한 부품 가격이 요구되는 자동차 업계의 특성상, 타이타늄 합금이 기존의 철강재료로 제조한 부품을 대체하여 사용되지 못하고 있다.
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로서, 저비용으로 1300MPa 이상의 높은 인장강도와 95GPa 이하의 낮은 탄성계수를 갖는 우수한 물성을 구현할 수 있는 타이타늄 합금을 제공하는 것을 해결하고자 하는 과제로 한다.
상기 과제를 해결하기 위한 수단으로 본 발명은, 중량%로, Mo 6~13%, Fe 0.1~3.9%, 나머지 Ti 및 불가피한 불순물을 포함하고, 인장강도가 1300MPa 이상이고 탄성계수가 95GPa 이하인 것을 특징으로 하는 저탄성 고강도 베타형 타이타늄 합금을 제공한다.
또한, 본 발명에 따른 타이타늄 합금의 일 실시형태에 있어서, 추가로 Al 3.9중량% 이하를 포함할 수 있다. 즉, 본 발명은 중량%로, Mo 6~13%, Fe 0.1~3.9%, Al 0.1~3.9%, 나머지 Ti 및 불가피한 불순물을 포함하고, 인장강도가 1300MPa 이상이고 탄성계수가 95GPa 이하인 것을 특징으로 하는 저탄성 고강도 베타형 타이타늄 합금을 제공하는데, 이와 같은 Al의 추가적인 첨가는 타이타늄 합금의 가공성, 성형성, 주조성 등을 향상시킬 뿐 아니라 강화효과를 얻기 위한 다양한 열처리기술을 적용할 수 있게 하는 이점을 제공한다.
또한, 본 발명에 따른 타이타늄 합금의 일 실시형태에 있어서, 추가로 B 0.005 ~ 0.5중량%를 포함할 수 있다.
또한, 본 발명에 따른 타이타늄 합금의 일 실시형태에 있어서, 상기 타이타늄 합금의 연신율은 6% 이상일 수 있다.
또한, 본 발명에 따른 타이타늄 합금의 일 실시형태에 있어서, 상기 타이타늄 합금의 인장강도가 1400MPa 이상일 수 있다.
또한, 본 발명에 따른 타이타늄 합금의 일 실시형태에 있어서, 상기 타이타늄 합금의 미세조직은, 베타(β) 기지 내에 미세하게 분산된 오메가(ω) 상의 입자를 포함할 수 있고, 상기 오메가(ω) 상은 열처리기술을 이용하여 요구되는 강도 및 연성 등을 위해 제거되거나 생성시킬 수 있다.
본 발명에 따른 타이타늄 합금은 인장강도가 1300MPa 이상이고 탄성계수가 95GPa 이하로, 저탄성 고강도가 요구되는 다양한 분야에 적용될 수 있다.
또한, 본 발명에 따른 타이타늄 합금은 고가의 합금원소 사용을 최소화하였기 때문에, 합금 제조 비용을 크게 줄일 수 있다.
또한, 본 발명에 따른 타이타늄 합금을 단조 및 공형압연을 통해 제조할 경우, 용체화처리나 시효처리와 같은 열처리 공정 없이, 인장강도 1300MPa 이상, 탄성계수 95GPa 이하, 연신율 약 6%이상 정도의 봉재, 각재 및 판재를 제조할 수 있게 되어, 수송기기용 스프링 및 고강도 저탄성 특성을 갖는 다양한 분야의 부품을 저비용으로 제조할 수 있게 되며, 특히, 스프링재로 사용될 경우 철강 재료로 제조된 스프링에 비해 약 50 ~ 60%의 경량화를 구현할 수 있다.
도 1 내지 5는 각각 본 발명의 실시예 1에서 실시예 5에 따라 제조한 열간단조재의 광학현미경 미세조직 사진이다.
도 6 및 7은 각각 본 발명의 실시예 2 및 3에 따라 제조한 공형압연된 봉재의 광학현미경 미세조직 사진이다.
도 8 및 9는 각각 본 발명의 실시예 2 및 3에 따라 제조한 공형압연된 봉재의 DFI (Dark Field Image) 투과전자현미경 미세조직 사진이다.
이하 본 발명의 바람직한 실시예를 기초로 본 발명을 상세하게 설명하나, 본 발명이 하기 실시예에 제한되는 것은 아니다.
먼저, 본 발명에 따른 베타형 타이타늄 합금의 각 합금원소의 조성 범위를 상기와 같이 한정한 이유는 다음과 같다.
Mo: 6 ~ 13중량%
Mo는 Fe와 함께 베타(β) 상을 안정화시키는 원소로서, 탄성계수를 낮추는 효과와 더불어 강도를 향상시키는 효과를 나타내는데, 고가의 Mo함량을 적정화하여 비용을 낮추면서 기계적 특성을 얻기 위해 6%이상 13%이하의 함량이 바람직하다.
Fe: 0.1 ~ 3.9중량%
Fe는 베타(β) 상을 안정화시키는 원소이나, 변형저항을 크게 하므로 종래에는 될 수 있으면 적게 첨가해온 원소이나, 본 발명에서는 다른 베타 안정화원소에 비해 저렴한 Fe를 상대적으로 많이 사용하는 것을 특징으로 하는데, Fe의 함량이 0.1중량% 미만일 경우 베타 안정화효과가 충분하지 않고, 3.9중량%를 초과할 경우 변형저항이 과도해져 가공성이 나빠지므로, 3.9중량% 이하가 바람직하다.
한편, 베타(β) 상을 안정화시켜 탄성계수가 낮은 베타형 타이타늄합금을 제조할 수 있는지에 대한 지표를 하기 [식 1]의 Mo당량으로 표현할 수 있는데, Fe와 함께 계산했을 때 Mo당량이 7.0~20.0 정도가 바람직하다.
[식 1]
Mo당량 = [Mo]+1/5[Ta]+1/3.6[Nb]+ 1/2.5[W]+1/1.5[V]+1.25[Cr]+
1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe]
Al: 0.1~3.9 중량%
Al은 본 발명에 따른 β형 타이타늄 합금의 강도 향상을 위하여 첨가하는 원소로서, Al은 열처리 과정에서 타이타늄 합금의 경도를 높여 취화(脆化)시키는 오메가(ω) 상의 석출을 억제하여, 강도와 연성을 높일 수 있고, 가공성 및 주조성을 향상시킬 수 있는 원소이므로, 본 발명에서는 선택적으로 첨가될 수 있는 원소이다. Al의 함량이 3.9중량%를 초과할 경우 경도가 지나치게 높아지고 연신율을 낮아져 가공성이 떨어지므로 Al은 3.9중량% 이하로 첨가되는 것이 바람직하다.
B: 0.005 ~ 0.5중량%
B는 용해주조시 거대한 응고조직의 성장을 억제하는 원소로서, 0.01중량% 미만으로 포함될 경우 응고조직의 거대화를 효과적으로 억제하지 못할 수 있고, 0.5중량%를 초과하여 포함할 경우에는 더 이상의 주조조직의 미세화 효과를 얻지 못하므로, 0.005 ~ 0.5중량%가 바람직하다.
불가피한 불순물
불가피한 불순물은 타이타늄 합금의 원료 또는 제조과정에서 의도하지 않게 혼입될 수 있는 성분을 의미한다. 구체적으로, 산소는 타이타늄 합금의 변형능을 저하시키고, 강도의 냉간가공을 하였을 때에 균열을 발생시키는 원인이 되고 변형저항을 높이는 원인이 되므로, 0.3중량% 이하가 되도록 유지하는 것이 바람직하며, 0.18중량% 이하가 되도록 유지하는 것이 보다 바람직하다. 또한, 수소는 타이타늄 합금의 연성 및 인성을 떨어뜨리므로 적게 포함할수록 좋으며, 적어도 0.03중량% 이하로 포함하는 것이 바람직하고, 0.01중량% 이하로 포함하는 것이 보다 바람직하다. 또한, 탄소도 타이타늄 합금의 변형능을 크게 저하시키므로 적게 포함할수록 좋으며, 적어도 0.05중량% 이하가 바람직하고, 0.01중량% 이하가 보다 바람직하다. 또한, 질소도 타이타늄 합금의 변형능을 크게 저하시키므로 적게 포함할수록 좋으며, 적어도 0.02중량% 이하가 바람직하고, 0.01중량% 이하가 보다 바람직하다.
또한, 본 발명에 따른 타이타늄 합금은 미세조직에 있어서, 베타상의 기지(matrix)에 알파(α) 상이 혼합되어 있을 수 있고, 또한, 베타(β) 상 기지 내에 미세하게 분산된 오메가(ω) 상의 입자들을 포함할 수 있다.
또한, 본 발명에 따른 타이타늄 합금을 이용하여 봉재, 각재 및 판재를 가공하는 방법은, (a) 상기 조성을 갖는 타이타늄 합금 용탕을 제조하는 단계; (b) 제조된 타이타늄 합금을 주조하여 잉곳을 만드는 단계; (c) 잉곳을 800℃ ~ 1200℃에서 열간단조하는 단계; (d) 단조된 타이타늄 합금을 25℃ ~ 650℃에서 공형압연하는 단계;를 포함하는 것을 특징으로 한다.
상기 열간단조 및 공형압연 온도는 가공 과정에서 균열이 발생하는 것을 막고 충분한 압하율을 얻을 수 있도록 상기한 온도범위를 유지하는 것이 바람직하다.
[실시예]
ISM(Induction Skull Melting)을 사용하여 하기 표 1과 같은 조성을 갖는 타이타늄 합금을 제조하였다. 그리고 하기 표 1의 모든 합금에서 산소(O), 질소(N), 탄소(C), 수소(H)와 같은 불순물은 0.5중량% 미만이 되도록 하였다.
표 1
합금 조성(중량%)
Mo Fe Al Ti
실시예 1 9.2 2.2 - Bal.
실시예 2 12.1 1.0 - Bal.
실시예 3 9.0 2.2 2.0 Bal.
실시예 4 9.2 2.3 3.1 Bal.
실시예 5 11.7 1.3 1.2 Bal.
비교예 1 15.0 - - Bal.
비교예 2 3.4 4.0 - Bal.
비교예 3 0.5 5.0 - Bal.
상기 표 1과 같은 조성으로 용해된 합금의 용탕을 직경 100mm× 높이 90mm 크기의 잉곳으로 주조하였다.
본 발명자들은 상기 표 1의 합금 중에서, 수송기기의 서스펜션용에 적용할 수 있을 정도의 기계적 특성을 얻을 수 있는 합금을 선택하기 위하여 제조한 잉곳을 1100℃로 가열한 후 열간단조기에 장입하여 열간단조를 수행하여 길이 120mm, 폭 60mm, 높이 40mm의 치수를 갖는 소재를 만들었다.
이와 같이 열간단조한 소재에 대해 인장특성을 평가하였으며, 그 결과는 하기 표 2와 같았다.
표 2
합금 항복강도(MPa) 인장강도(MPa) 연신율(%)
실시예 1 1198 1204 10
실시예 2 769 887 8.5
실시예 3 772 895 17
실시예 4 809 934 8.0
실시예 5 655 806 16
비교예 1 896 898 18
비교예 2 1088 1192 5.4
비교예 3 780 916 10
* 비교예 1은 기존에 개발된 소재의 인장특성임
* 비교예 2와 3은 봉재형태로 제조된 시험편을 이용하여 측정한 인장특성임
평가결과 상기 표 2와 같이, 본 발명의 실시예 1에 따른 합금은 인장강도가 1200MPa을 초과하고 연신율이 10%에 달해 본 발명에서 목적하는 물성에 매우 근접한 특성을 나타내어 추가 가공공정에 의해 목표가 달성될 수 있음이 확인되었다.
또한, 실시예 2에서 실시예 5까지 모두 인장강도가 1000MPa이하이나 연신율이 우수한 편이고 무엇보다 탄성계수가 95GPa이하의 값을 가지고 있어, 후속 가공공정을 통해 추가적인 강도향상이 가능하므로 수송기기 서스펜션용 스프링재에 적용할 수 있다.
이를 확인하기 위해 Mo와 Fe 함량이 거의 동일한 실시예 2와 5, 실시예 3과 4로부터 각각 실시예 2와 실시예 3을 선택하여 후가공 공정을 실시하여 인장특성 및 탄성 특성을 측정하였다.
그러나 비교예 1, 비교예 2 및 비교예 3의 경우 봉재형태의 후가공 공정을 마친 상태이거나, 또는 인장특성이 너무 낮거나 탄성계수가 높아 스프링재에 적용하기 어려움을 알 수 있다.
상기의 상온인장특성을 바탕으로 유력한 후보인 실시예 1과 실시예 2, 그리고 실시예 3에 따라 제조된 타이타늄 합금의 잉곳을 상기한 방법으로 단조하여 각형 또는 봉형으로 제조한 타이타늄 합금을 600℃로 가열한 후, 3패스의 공형압연을 통해, 직경 16mm~20mm, 길이 500mm 이상의 치수를 갖는 봉재를 제조하였다.
이러한 과정을 통해 얻은 봉재의 중앙 부위에서 시편을 채취하여 기계적 특성을 평가하였다.
먼저, 공형압연한 봉재의 미세조직을 광학현미경과 투과전자현미경을 사용하여 분석하였으며, 광학현미경 분석용 시편은 표준 금속학적 준비과정을 통해 준비되었는데, 먼저 시편을 경면연마한 후에 크롤 에칭액을 사용하여 에칭하였다.
또한, 투과전자현미경 시편은 60㎛ 두께로 그라인딩한 후, 부탄올 35%-퍼클로릭산 6%-메탄올)로 이루어진 용액에서 60V의 조건으로 트윈-젯 폴리싱을 하여 준비하였다.
도 1 내지 5는 각각 본 발명의 실시예 1 내지 실시예 5의 합금조성을 갖는 잉곳을 열간단조하여 제조한 열간단조재의 광학현미경 미세조직 사진이다. 도 1 내지 5에서 보이는 바와 같이, 상기 합금 모두 미세조직은 평균크기 약 수백㎛의 등축정으로 이루어진 β상을 기지조직으로 하고 있으며, 일부 알파상이 석출되어 존재하는 형태의 미세조직으로 이루어져 있다.
그런데, 공형압연된 봉재의 미세조직을 광학현미경으로 관찰한 도 6 및 7의 경우, 열간단조재에서 뚜렷하게 구별되었던 미세조직의 결정립들이 후속 공형압연 가공과정에 의해 뚜렷한 형상의 결정립계가 사라지고 심한 소성변형을 일으킨 파형(wave) 형상의 미세조직을 가지는 것을 관찰할 수 있다. 한편, 투과전자현미경을 이용하여 DFI (Dark Field Image)로 미세조직을 관찰해 보면 일부 영역에서 미세하게 존재하는 수 나노미터 ~ 수십 나노미터 크기의 미세한 오메가(ω)상이 일부 관찰되었다.
다음으로, 본 발명의 실시예 및 비교예에 따라 제조한 봉재의 인장특성 및 탄성계수를 측정한 결과, 하기 표 3과 같았다.
표 3
시편 조성 항복강도(MPa) 인장강도(MPa) 연신율(%) 탄성계수(GPa)
실시예 1 Ti-9.2Mo-2.2Fe 1330 1352 7.0 88
실시예 2 Ti-12.1Mo-1Fe 1440 1501 10.1 85
실시예 3 Ti-9Mo-2.2Fe-2Al 1386 1498 6.9 76
비교예 2 Ti-3.4Mo-4Fe 1088 1192 5.4 93
비교예 3 Ti-0.5Mo-5Fe 780 916 10 96
상기 표 3에서 확인되는 바와 같이, 본 발명의 실시예에 따른 합금 봉재는 인장강도가 1300MPa 이상이고 탄성계수는 95GPa 미만으로 수송기기 서스펜션용 스프링재를 비롯하여 고강도 저탄성, 고반발 특성을 갖는 다양한 분야의 부품에서 요구되는 물성을 만족한다.
특히 실시예 2에 따른 합금 봉재의 경우, 인장강도가 1501MPa로 매우 높은데도 연신율이 10% 수준으로 가공성도 매우 양호할 뿐 아니라 탄성계수도 85GPa로 낮아, 특히 자동차 서스펜션 스프링재와 같은 스프링재에 적합하게 사용될 수 있다.
실시예 3에 따른 합금 봉재의 경우도 인장강도 1498MPa의 매우 높은 수치에 연신율 약 7%, 그리고 탄성계수가 76GPa로 고강도 저탄성 특성이 요구되는 다양한 분야의 부품에 적합하게 사용될 수 있다.
또한, 본 발명에 따른 합금 봉재는 베타안정화원소로 저가의 철(Fe)을 사용하고, 상용화소재인 Ti-15Mo에 비해 저렴한 비용에 우수한 기계적 특성을 확보할 수 있음으로써, 종래의 타이타늄 합금에 비해 제조비용을 낮출 수 있으면서도, 종래의 타이타늄 합금에 비해 우수한 인장특성과 함께 탄성특성을 얻을 수 있다.

Claims (10)

  1. 중량%로, Mo 6~13%, Fe 0.1~3.9%, 나머지 Ti 및 불가피한 불순물을 포함하고, 인장강도가 1300MPa 이상이고 탄성계수가 95GPa 이하인 것을 특징으로 하는 저탄성 고강도 베타형 타이타늄 합금.
  2. 제 1 항에 있어서,
    추가로 Al 0.1~3.9%를 포함하는 것을 특징으로 하는 저탄성 고강도 베타형 타이타늄 합금.
  3. 제 1 항에 있어서,
    상기 베타형 타이타늄 합금의 미세조직은 평균 입자크기가 100nm 이하인 오메가상이 분산되어 있는 것을 특징으로 하는 저탄성 고강도 베타형 타이타늄 합금.
  4. 제 1 항에 있어서,
    하기 [식 1]로 정의되는 Mo 당량이 7.0 ~ 20.0인 것을 특징으로 하는 저탄성 고강도 베타형 타이타늄 합금.
    [식 1]
    Mo당량 = [Mo]+1/5[Ta]+1/3.6[Nb]+ 1/2.5[W]+1/1.5[V]+1.25[Cr]+
    1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe]
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 타이타늄 합금의 연신율은 6% 이상인 것을 특징으로 하는 저탄성 고강도 베타형 타이타늄 합금.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 타이타늄 합금의 인장강도가 1400MPa 이상인 것을 특징으로 하는 저탄성 고강도 베타형 타이타늄 합금.
  7. 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 타이타늄 합금으로 제조된 봉재.
  8. 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 타이타늄 합금으로 제조된 판재.
  9. 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 타이타늄 합금으로 제조된 각재.
  10. 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 타이타늄 합금으로 제조한 스프링재.
PCT/KR2012/006941 2012-05-30 2012-08-30 저탄성 고강도 베타형 타이타늄 합금 WO2013180338A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/006,966 US20150147225A1 (en) 2012-05-30 2012-08-30 Beta-type titanium alloy having low elastic modulus and high strength
CN201280004071.8A CN103649350A (zh) 2012-05-30 2012-08-30 具有低弹性模量和高强度的β型钛合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120057217A KR101418775B1 (ko) 2012-05-30 2012-05-30 저탄성 고강도 베타형 타이타늄 합금
KR10-2012-0057217 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013180338A1 true WO2013180338A1 (ko) 2013-12-05

Family

ID=49673508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006941 WO2013180338A1 (ko) 2012-05-30 2012-08-30 저탄성 고강도 베타형 타이타늄 합금

Country Status (4)

Country Link
US (1) US20150147225A1 (ko)
KR (1) KR101418775B1 (ko)
CN (1) CN103649350A (ko)
WO (1) WO2013180338A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787144A (zh) * 2014-12-26 2016-07-20 北京有色金属研究总院 一种弹性铜合金的材料设计方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649876B2 (ja) 2013-03-14 2020-02-19 マサチューセッツ インスティテュート オブ テクノロジー 焼結されたナノ結晶合金
CN104611611B (zh) * 2015-01-22 2016-12-07 北京科技大学 一种超低弹性模量高强度钛合金材料的制备方法
CN105400990B (zh) * 2015-07-30 2017-10-31 贵州大学 一种低模量高强度生物医用钛合金及其制备方法
US11008639B2 (en) 2015-09-16 2021-05-18 Baoshan Iron & Steel Co., Ltd. Powder metallurgy titanium alloys
US11644288B2 (en) 2015-09-17 2023-05-09 Massachusetts Institute Of Technology Nanocrystalline alloy penetrators
EP3510177A4 (en) * 2016-09-07 2020-06-03 Massachusetts Institute of Technology TITANIUM-CONTAINING ALLOYS AND METHODS OF MAKING SAME
CN106435265B (zh) * 2016-09-14 2018-12-25 沈阳泰恒通用技术有限公司 一种轨道交通弹簧用高强度钛合金
CN108456805A (zh) * 2018-04-20 2018-08-28 温州市赢创新材料技术有限公司 一种用于植入骨骼的β型钛合金及其制造方法
CN110157949A (zh) * 2019-07-10 2019-08-23 山东建筑大学 一种万向圆形等通道挤压制备纳米β钛合金的方法
KR102318721B1 (ko) * 2019-08-08 2021-10-29 한국재료연구원 고강도 고성형성 베타 타이타늄 합금
CN114836650B (zh) * 2022-04-27 2022-11-18 北京航空航天大学 具有完全等轴晶组织和超高屈服强度的钛合金
CN114990382B (zh) * 2022-05-26 2024-01-30 西北工业大学 一种超低间隙相变诱导塑性亚稳β钛合金及其制备方法
CN115449665B (zh) * 2022-07-08 2024-08-27 重庆大学 一种钛合金及其制备方法
KR20240056276A (ko) * 2022-10-21 2024-04-30 국립순천대학교산학협력단 타이타늄 합금 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292429A (ja) * 1992-12-04 1995-11-07 Titanium Metals Corp 準安定βチタン系合金
US20070049418A1 (en) * 2005-08-26 2007-03-01 Jiin-Huey Chern Lin Method of making a golf club head from bismuth-containing titanium alloy and golf club head
JP2010216011A (ja) * 2009-02-19 2010-09-30 Nippon Steel Corp 低ヤング率を有する準安定β型チタン合金およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353038A (ja) * 1989-07-20 1991-03-07 Sumitomo Metal Ind Ltd 高強度チタン合金
FR2676460B1 (fr) * 1991-05-14 1993-07-23 Cezus Co Europ Zirconium Procede de fabrication d'une piece en alliage de titane comprenant un corroyage a chaud modifie et piece obtenue.
CN1156591C (zh) * 2000-06-16 2004-07-07 李阁平 一种高强度高刚性高成型性钛合金振膜
FR2946363B1 (fr) * 2009-06-08 2011-05-27 Messier Dowty Sa Composition d'alliage de titane a caracteristiques mecaniques elevees pour la fabrication de pieces a hautes performances notamment pour l'industrie aeronautique
CN102061408A (zh) * 2011-01-26 2011-05-18 西北有色金属研究院 一种低成本钛合金的制备方法
CN102586639A (zh) * 2012-03-16 2012-07-18 广州有色金属研究院 一种高速压制成形制备钛合金的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292429A (ja) * 1992-12-04 1995-11-07 Titanium Metals Corp 準安定βチタン系合金
US20070049418A1 (en) * 2005-08-26 2007-03-01 Jiin-Huey Chern Lin Method of making a golf club head from bismuth-containing titanium alloy and golf club head
JP2010216011A (ja) * 2009-02-19 2010-09-30 Nippon Steel Corp 低ヤング率を有する準安定β型チタン合金およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN D. J. ET AL.: "Structure and properties ofTi-7.5Mo-xFe alloys", BIOMATERIALS, vol. 23, 2002, pages 1723 - 1730 *
LIN, D. J. ET AL.: "Effect of omega phase on deformation behavior of Ti-7.5Mo-xFe alloys", MATERIALS CHEMISTRY AND PHYSICS, vol. 76, 2002, pages 191 - 197 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787144A (zh) * 2014-12-26 2016-07-20 北京有色金属研究总院 一种弹性铜合金的材料设计方法

Also Published As

Publication number Publication date
KR20130134014A (ko) 2013-12-10
KR101418775B1 (ko) 2014-07-21
US20150147225A1 (en) 2015-05-28
CN103649350A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2013180338A1 (ko) 저탄성 고강도 베타형 타이타늄 합금
EP3015560B1 (en) Spheroidal graphite cast iron
JP5582532B2 (ja) Co基合金
EP1718778B1 (de) Werkstoff auf der basis einer aluminium-legierung, verfahren zu seiner herstellung sowie verwendung hierfür
JP2697400B2 (ja) 鍛造用アルミニウム合金
EP2758557B1 (en) Improved aluminum casting alloys containing vanadium
WO2022139007A1 (ko) 고인성 주조용 알루미늄 합금 및 그 제조방법
EP1736560B1 (en) High-strength alpha+beta-type titanium alloy
US20090074606A1 (en) Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part
JPS63157831A (ja) 耐熱性アルミニウム合金
US20120291926A1 (en) Aluminum alloys
CN111826550B (zh) 一种中等强度耐硝酸腐蚀钛合金
DE102013212439A1 (de) Gegossene Aluminiumlegierung für Strukturkomponenten
WO2018151544A1 (ko) 고강도 알루미늄 합금 및 고강도 알루미늄 합금 주물
JP2004010963A (ja) 高強度Ti合金およびその製造方法
US20210262063A1 (en) High-strength and high-toughness high-magnesium aluminum alloy and preparation method thereof
JP5589861B2 (ja) 高強度、低ヤング率を有するα+β型チタン合金部材およびその製造方法
EP2264200B1 (en) Magnesium alloy and process for producing the same
WO2013172510A1 (ko) 극저온에서 기계적 성능이 우수한 Fe-Mn-C계 TWIP 강 및 그 제조 방법
JPH0794698B2 (ja) 耐応力腐食割れ性に優れた高強度アルミニウム合金
EP1229141A1 (de) Aluminiumgusslegierung
KR20120065780A (ko) 기계적 성질이 개선된 티타늄 합금 및 이의 제조방법
EP0302255B1 (de) Verwendung einer Kupferlegierung als Werkstoff für Stranggiesskokillen
US20140127076A1 (en) 5xxx-lithium aluminum alloys, and methods for producing the same
JPH02194142A (ja) 焼結用Al基合金粉末

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14006966

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877841

Country of ref document: EP

Kind code of ref document: A1