WO2019039743A1 - V-cr-fe-ni계 고강도 고엔트로피 합금 - Google Patents

V-cr-fe-ni계 고강도 고엔트로피 합금 Download PDF

Info

Publication number
WO2019039743A1
WO2019039743A1 PCT/KR2018/008256 KR2018008256W WO2019039743A1 WO 2019039743 A1 WO2019039743 A1 WO 2019039743A1 KR 2018008256 W KR2018008256 W KR 2018008256W WO 2019039743 A1 WO2019039743 A1 WO 2019039743A1
Authority
WO
WIPO (PCT)
Prior art keywords
entropy alloy
high entropy
alloy
content
minutes
Prior art date
Application number
PCT/KR2018/008256
Other languages
English (en)
French (fr)
Inventor
이성학
조용희
김동근
최원미
이병주
손석수
김형섭
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2019039743A1 publication Critical patent/WO2019039743A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Definitions

  • the present invention relates to a novel entropy alloy containing vanadium (V), chromium (Cr), iron (Fe) and nickel (Ni) as main components.
  • High-entropy alloy is a multi-element alloy that is obtained by alloying five or more constituent elements at a similar rate, unlike alloy, which is one of the main constituent elements of alloy such as steel, aluminum alloy, and titanium alloy Alloy has a high entropy of mixing in the alloy and does not form an intermetallic compound or intermediate phase but a single phase structure such as a face-centered cubic (FCC) or a body-centered cubic (BCC) .
  • FCC face-centered cubic
  • BCC body-centered cubic
  • a typical high entropy alloy should consist of at least five major alloying elements. If other elements other than the main alloying constituent are added, the addition amount should be less than 5 at% . In recent years, however, the concept of high entropy alloy has been expanded, and quaternary high entropy alloys have also been reported.
  • High entropy alloys with a face centered cubic (FCC) structure are not only excellent in fracture toughness at a cryogenic temperature but also have excellent corrosion resistance and excellent mechanical properties such as high strength and high ductility, which are being developed as cryogenic materials.
  • Co is a very expensive element, it is widely used in the case of an alloy containing a large amount of Co, and the price may be an obstacle and Mn may cause difficulties in manufacturing. Therefore, it is necessary to develop a high entropy alloy which can realize properties similar to those of Co-Cr-Fe-Mn-Ni series without addition of Mn which minimizes the content of Co and causes manufacturing difficulties.
  • the object of the present invention is to provide a method for producing a single phase structure of face centered cubic (FCC) based on a quaternary alloy containing V, Cr, Fe and Ni as main elements and having a high strength of 1 GPa at a cryogenic temperature, To provide a new composition of high entropy alloy having an ultra high strength of about 1.5 GPa and a manufacturing method thereof.
  • FCC face centered cubic
  • a method of manufacturing a semiconductor device comprising: depositing V: 5-25 at%, Cr: 10-20 at%, Fe: 15-55 at%, Ni: 20-60 at% To provide a high entropy alloy.
  • Another aspect of the present invention to solve the above problems is to provide a method of manufacturing a semiconductor device, which comprises 5 to 25 at% of V, 10 to 20 at% of Cr, 15 to 55 at% of Fe, 20 to 60 at% of Ni and the remaining unavoidable impurities And casting the molten metal to produce a high entropy alloy ingot; Homogenizing and quenching the ingot at 1050 to 1200 ° C for 5 to 48 hours; Cold-rolling the quenched ingot in the form of a plate having a predetermined thickness; And annealing the cold-rolled sheet material at 700 to 1000 ° C for 10 minutes to 24 hours to produce a high entropy alloy.
  • the inventive entropy alloy according to the present invention can obtain a single-phase FCC structure with a quaternary composition including V, Cr, Fe and Ni as major elements, , It shows a high strength of 1 GPa at a very low temperature and an ultra high strength of about 1.5 GPa in the case of further precipitation strengthening treatment.
  • the high entropy alloy according to the present invention has improved tensile strength and elongation at a cryogenic temperature rather than at room temperature, and thus is highly useful as a structural material used in an extreme environment such as a cryogenic environment.
  • the high entropy alloy according to the present invention has high fracture toughness at a cryogenic temperature than that at room temperature, and is excellent in resistance to fracture in a cryogenic environment.
  • FIG. 1 is a graph showing the relationship between the amount of Cr (Cr) fixed at 15 at%, the amount of vanadium (V) in X at%, the content of Fe in Yat% and the content of nickel in Phase equilibrium information at 700 ⁇ ⁇ according to the molar fraction.
  • Fig. 2 shows the equilibrium change with temperature of the alloy having the composition represented by 20V in Fig.
  • FIG. 3 is a process diagram showing a heat treatment condition for producing a high entropy alloy according to a preferred embodiment of the present invention.
  • Figure 5 is an EBSD map of the microstructure of a high entropy alloy annealed at 900 < 0 > C for 10 minutes in accordance with a preferred embodiment of the alloy having the composition indicated at 15V in Fig.
  • FIG. 7 is an EBSD map of the microstructure of a hyperentropic alloy annealed at 1000 < 0 > C for 10 minutes according to a preferred embodiment of an alloy having the composition shown in Fig. 1 at 20V.
  • FIG. 8 shows the results of a tensile test at a room temperature (25 ° C) and a cryogenic temperature (-196 ° C) according to annealing conditions of a high entropy alloy annealed at 900 ° C for 10 minutes according to a preferred embodiment of the present invention.
  • Figure 9 shows the result of a cryogenic temperature (-196 ° C) tensile test according to the annealing conditions and the room temperature (25 ° C) of the entropy alloy annealed for 10 minutes according to the preferred embodiment of the alloy having the composition shown in Figure 1 at 20V .
  • FIG. 10 is a comparative example of the mechanical properties of a high entropy alloy annealed according to a preferred embodiment of the present invention and a conventional entropy alloy and a cryogenic material.
  • FIGS. 11A and 11B show results of measurement of fracture toughness of a specimen annealed at 900.degree. C. and 1000.degree. C. for 10 minutes, respectively, on the alloy having the composition according to Example 3.
  • FIG. 11A and 11B show results of measurement of fracture toughness of a specimen annealed at 900.degree. C. and 1000.degree. C. for 10 minutes, respectively, on the alloy having the composition according to Example 3.
  • FIGS. 11A and 11B show results of measurement of fracture toughness of a specimen annealed at 900.degree. C. and 1000.degree. C. for 10 minutes, respectively, on the alloy having the composition according to Example 3.
  • the inventors of the present invention have found that when an alloy system which is different from the known entropy alloy of Co-Cr-Fe-Mn-Ni series, particularly after FCC single phase annealing, has excellent mechanical properties at 1 GPa or more at a cryogenic temperature, Studies on alloys with high strength of Gpa have shown that quaternary alloys composed of vanadium (V), chromium (Cr), iron (Fe) and nickel (Ni) can form high strength and high entropy alloys And reached the present invention.
  • V vanadium
  • Cr chromium
  • Fe iron
  • Ni nickel
  • FIG. 1 is a graph showing the relationship between the amount of Cr (Cr) fixed at 15 at%, the amount of vanadium (V) in X at%, the content of Fe in Yat% and the content of nickel in Phase equilibrium information at 700 ⁇ ⁇ according to the molar fraction.
  • Figure 1 shows the temperature range for maintaining the FCC single phase, FCC + sigma (sigma), and sigma (sigma) single phase depending on the contents of V, Fe, and Ni.
  • FIG. 1 when V is replaced with Ni in 15Cr-10V-20Fe-55Ni (the numerical value is at%), the FCC + sigma (sigma) Area.
  • ≪ / RTI > 1 means that quaternary alloys containing 15 at% of Cr, 20 at% of Fe, 40 to 60 at% of Ni and 5 to 25 at% of V are changed according to the content of V and Ni
  • the microstructure changes in the dual phase of the FCC + sigma ().
  • Fig. 2 shows the equilibrium phase change of an alloy having a composition (20V-15Cr-20Fe-45Ni, at%) corresponding to vanadium (V) of 20 at% in Fig.
  • the alloy can design an alloy which forms an FCC single phase from 940 DEG C to 1270 DEG C, and sigma (?) Phase is precipitated at a temperature lower than that.
  • the high entropy alloy according to the present invention which is designed in consideration of the above state diagram, has a composition of 5 to 25 at% of V, 10 to 20 at% of Cr, 15 to 55 at% of Fe, 20 to 60 at% of Ni, And the remaining unavoidable impurities.
  • composition range of the alloying elements constituting the alloy is determined as described above is as follows.
  • the V content is less than 5 at%, it is difficult to realize the strength required in the present invention.
  • the V content exceeds 25 at%, it is difficult to obtain the FCC single phase structure. Therefore, the V content is preferably 5 to 25 at% 10 to 20 at%.
  • the Cr content is preferably 10 to 20 at%, more preferably 12 to 18 at% %to be.
  • the Fe content is less than 15 at%, the price of the alloy rises.
  • the Fe content exceeds 55 at%, it is difficult to obtain the FCC single phase structure. Therefore, the Fe content is preferably 15 to 55 at% 50 at%.
  • the Ni content is less than 20 at%, it is difficult to obtain the FCC single phase structure.
  • the Ni content exceeds 60 at%, the price of the alloy increases. Therefore, the Ni content is preferably 20 to 60 at% at%.
  • the unavoidable impurities are components other than the alloying elements and are inevitably incorporated into the raw material or the manufacturing process so that the amount is 1 at% or less, preferably 0.1 at% or less, more preferably 0.01 at% or less.
  • the high entropy alloy according to the present invention can have a tensile strength of 1 GPa or more at cryogenic temperature (-196 DEG C).
  • the high entropy alloy according to the present invention can have a tensile strength of 1.3 GPa or more at a cryogenic temperature (-196 DEG C) through precipitation hardening treatment.
  • the high entropy alloy according to the present invention may have a recrystallized face-centered cubic (FCC) structure.
  • FCC face-centered cubic
  • the high entropy alloy according to the present invention may have a microstructure in which a sigma phase precipitate is dispersed in a face centered cubic (FCC) structure.
  • FCC face centered cubic
  • a high entropy alloy according to the present invention is higher than the cryogenic temperature fracture toughness (J Q) at the room temperature fracture toughness (J Q) in the (-196 °C).
  • the hardened entropy alloy subjected to the precipitation hardening treatment is produced by preparing a molten metal containing 5 to 25 at% of V, 10 to 20 at% of Cr, 15 to 55 at% of Fe, 20 to 60 at% of Ni and the remaining unavoidable impurities Casting to produce a high entropy alloy ingot; Homogenizing and quenching the ingot at 1050 to 1200 ° C for 5 to 48 hours; Cold-rolling the quenched ingot in the form of a plate having a predetermined thickness; And annealing the cold-rolled sheet material at 700 to 1000 ° C for 10 minutes to 24 hours.
  • the homogenization treatment is not sufficiently homogenized when performed at less than 1050 DEG C, and the heat treatment cost is excessively increased when the treatment is performed at a temperature higher than 1200 DEG C, the homogenization is not sufficiently performed when the treatment is performed for less than 5 hours, It is preferable to perform the temperature and the time range.
  • V, Cr, Fe, and Ni metals having a purity of 99.9% or more were prepared.
  • the thus prepared metal was weighed so as to have the mixing ratio shown in Table 1 below.
  • the raw metal prepared above was charged into the crucible and dissolved by using a vacuum induction melting apparatus. Using a mold, a rectangular ingot ingot having a thickness of 8 mm, a width of 35 mm and a length of 100 mm As shown in FIG. 3, the cast ingot 8 mm thick was subjected to homogenization heat treatment at a temperature of 1100 ° C. for 6 hours, followed by quenching through water cooling.
  • each alloy sheet was annealed at 700 to 1000 ° C. for 10 minutes or annealed at 1000 ° C. for 24 hours.
  • FIG. 4 shows XRD measurement results of alloys according to Example 1 (10 V), Example 2 (15 V) and Example 3 (20 V) annealed at 700 to 1000 ° C. for 10 minutes and at 1000 ° C. for 24 hours .
  • '1' means the alloy of Example 1
  • '2' means the alloy of Example 2
  • '3' means the alloy of Example 3 and '700, 750, 800, 900, 1000'
  • And '10m' and '24h' mean annealing for 10 minutes and 24 hours, respectively.
  • XRD measurements were carried out after 8% perchloric acid electrolytic etching after grinding in order of sandpaper 600, 800, 1200, and 2000 to minimize phase transformation due to deformation during polishing of the specimen.
  • Example 5 shows an EBSD map of an alloy according to Example 2 annealed at 900 DEG C for 10 minutes.
  • the alloy according to Example 2 which was obtained by annealing at 900 ° C. for 10 minutes, had an FCC structure similar to the result of XRD analysis.
  • the average grain size was about 4.46 ⁇ m
  • the structure deformed by rolling has a completely recrystallized microstructure.
  • Example 6 shows an EBSD map of an alloy according to Example 3 annealed at 800 DEG C for 10 minutes.
  • the alloy according to Example 3 produced by annealing at 800 DEG C for 10 minutes showed FCC + sigma (2) phase structure as in the XRD analysis, and the average grain size Has a size of about 1.9 mu m and has a fine grain size due to grain growth inhibition effect by precipitates.
  • Example 7 shows an EBSD map of the alloy according to Example 3 annealed at 1000 ° C for 10 minutes.
  • the alloy according to Example 3 which was obtained by annealing at 1000 ° C. for 10 minutes, had an FCC structure similar to the result of XRD analysis, and the average grain size was about 14.4 ⁇ m 6, which has a coarse grain size because there is no precipitate unlike the structure annealed at 800 ° C for 10 minutes.
  • Example 1 536 851 60.7 690 1132 72
  • Example 2 567 902 62.7 718 1207 74.2
  • Example 3 715 1047 46.2 890 1397 47.2
  • the tensile strength at room temperature was 536 to 715 MPa, the tensile strength was 851 to 1047 MPa, and the elongation was about 46 to 62% at room temperature in Examples 1 to 3 prepared by annealing at 900 DEG C for 10 minutes.
  • the tensile properties at the cryogenic temperature of the alloys according to Examples 1 to 7 were 584 to 890 MPa in tensile strength, 1018 to 1397 MPa in tensile strength, and 47 to 80% in elongation. Examples 1 to 3 exhibited excellent tensile properties Examples 4 to 7 also show excellent tensile strength and elongation.
  • the entropy alloy according to the present invention is superior in strength and ductility at a cryogenic temperature as compared with a room temperature, like the entropy alloy having a conventional FCC single phase structure.
  • Table 3 show tensile test results at room temperature (25 ⁇ ) and at a cryogenic temperature (-196 ⁇ ) of the alloy according to Example 3 prepared by annealing at various temperatures for 10 minutes.
  • Example 3 (800 < 0 > C) 741 1155 25.2 933 1472 29.1
  • Example 3 (900 < 0 > C) 715 1047 46.2 890 1397 47.2
  • Example 3 (950 < 0 > C) 689 992 52 833 1343 56.4
  • Example 3 (985 < 0 > C) 474 914 70.9 679 1256 79.4
  • Example 3 (1000 < 0 > C) 355 787 85 430 1106 97.8
  • the tensile strength at room temperature was 355 to 741 MPa, the tensile strength was 787 to 1155 MPa, and the elongation was about 25.2 to 85%.
  • the alloy according to Example 3 which was prepared by annealing at various temperatures for 10 minutes, Has a tensile strength of 430 to 933 MPa, a tensile strength of 1106 to 1472 MPa, and an elongation of about 29.1 to 97.8%, showing excellent tensile properties at room temperature.
  • the high entropy alloy according to the present invention exhibited excellent cryogenic mechanical properties in the state of being recrystallized. Like the entropy alloy with the conventional FCC single phase structure, it has excellent strength and ductility at a cryogenic temperature as compared with a room temperature.
  • composition of the comparative example reported in FIG. 10 is shown in Table 4 below.
  • the alloys according to the embodiments of the present invention can realize physical properties equal to or higher than those of conventional CrMnFeCoNi alloys, and can achieve excellent strength and elongation as compared with other known entropy alloys.
  • FIGS. 11A and 11B show results of measurement of fracture toughness of a specimen annealed at 900.degree. C. and 1000.degree. C. for 10 minutes, respectively, on the alloy having the composition according to Example 3.
  • FIG. 11A and 11B show results of measurement of fracture toughness of a specimen annealed at 900.degree. C. and 1000.degree. C. for 10 minutes, respectively, on the alloy having the composition according to Example 3.
  • FIGS. 11A and 11B show results of measurement of fracture toughness of a specimen annealed at 900.degree. C. and 1000.degree. C. for 10 minutes, respectively, on the alloy having the composition according to Example 3.
  • the fracture toughness value is elevated in a cryogenic environment despite the two-phase structure in which the sigmoid phase is formed as a hard phase, and the formation of the sigma phase greatly degrades the fracture toughness characteristics in a cryogenic environment It can be said that it can be an effective means to improve the strength without causing the problem.
  • the present invention is based on the concept of 'MULTI', which is supported by 'Future Creation Science Department' with the assignment number 2016M3D1A1023383 and 'Korea Research Foundation (Research Management Professional Institution) -PHYSICS FULL-SCALE This is the result of the task of "Multifunctional Entropy Alloy Creation (Research Title) for Extreme Environment Based on Integrated Modeling".

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 바나듐, 크롬, 철, 니켈 및 을 주성분으로 하는 4원계의 신규한 고엔트로피 합금에 관한 것이다. 본 발명에 따른 고엔트로피 합금은, V: 5 ~ 25 at%, Cr: 10 ~ 20 at%, Fe: 15 ~ 25 at%, Ni: 40 ~ 60 at%와, 나머지 불가피한 불순물을 포함하는 것을 특징으로 한다.

Description

V-CR-FE-NI계 고강도 고엔트로피 합금
본 발명은 바나듐(V), 크롬(Cr), 철(Fe) 및 니켈(Ni)을 주성분으로 하는 새로운 조성의 고엔트로피 합금에 관한 것이다.
고엔트로피 합금(high-entropy alloy, HEA)은 일반적인 합금인 철강, 알루미늄 합금, 타이타늄 합금 등과 같이 합금을 구성하는 주 원소가 하나인 합금과 달리 다섯 가지 이상의 구성 원소를 비슷한 비율로 합금화하여 얻어지는 다원소 합금으로서, 합금 내의 혼합 엔트로피가 높아 금속간화합물 또는 중간상이 형성되지 않고 면심입방격자(face-centered cubic, FCC) 또는 체심입방격자(body-centered cubic, BCC)와 같은 단상(single phase) 조직을 갖는 금속 소재이다.
특히, Co-Cr-Fe-Mn-Ni 계열의 고엔트로피 합금의 경우, 우수한 극저온 물성, 높은 파괴인성과 내식성을 가지기 때문에 극한환경에 적용할 수 있는 소재로 각광받고 있다.
이러한 고엔트로피 합금을 설계하는 데 있어 중요한 두 가지 요소는 합금을 구성하는 원소들의 조성 비율과 합금계의 구성 엔트로피이다.
상기 고엔트로피 합금의 조성 비율로, 전형적인 고엔트로피 합금은 최소 다섯 가지 이상의 주요 합금 원소들로 구성하고 있어야 하며, 주요 합금 구성 원소 외에 다른 원소를 첨가할 경우, 그 첨가량은 5 at% 미만이여야 한다. 하지만 최근에는 고엔트로피 합금의 개념이 확장되고 있으며, 4원계 고엔트로피 합금도 보고되고 있다.
한편, 기존의 Co-Cr-Fe-Mn-Ni 계열의 고엔트로피 합금의 경우 극저온에서 다량의 변형쌍정 발생을 통해 우수한 극저온 물성을 갖는다고 알려져 있다.
면심입방격자(FCC) 구조를 가지는 고 엔트로피 합금은 극저온에서 파괴인성이 뛰어날 뿐만 아니라 내식성이 우수하고 고강도, 고연성의 우수한 기계적 물성을 지니고 있어 극저온 재료로써 개발이 촉진되고 있다.
그런데 Co는 매우 고가의 원소이기 때문에 Co를 다량 포함하는 합금의 경우 널리 사용되는데 있어 가격이 장애 요소가 될 수 있고, Mn의 경우 제조 상에 많은 어려움을 유발하는 문제점이 있다. 그러므로 Co의 함량을 최소화하고 제조상의 어려움을 유발하는 Mn을 첨가하지 않으면서도 Co-Cr-Fe-Mn-Ni 계열의 고엔트로피 합금과 유사한 물성을 구현할 수 있는 고엔트로피 합금의 개발이 필요하다.
본 발명의 목적은 V, Cr, Fe 및 Ni을 주요 원소로 포함하는 4원계 합금을 기반으로 면심입방(FCC)의 단상조직을 가질 때는 극저온에서 1 GPa의 고강도를 가지며, 추가로 석출강화를 활용하여 약 1.5 GPa의 초고강도를 갖는 새로운 조성의 고엔트로피 합금과 이의 제조방법을 제공하는데 있다.
상기 과제를 해결하기 위한 본 발명의 일 측면은, V: 5 ~ 25 at%, Cr: 10 ~ 20 at%, Fe: 15 ~ 55 at%, Ni: 20 ~ 60 at%와, 나머지 불가피한 불순물을 포함하는 고엔트로피 합금을 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 다른 측면은, V: 5 ~ 25 at%, Cr: 10 ~ 20 at%, Fe: 15 ~ 55 at%, Ni: 20 ~ 60 at%와, 나머지 불가피한 불순물을 포함하는 용탕을 제조하여 주조하여 고엔트로피 합금 잉곳을 제조하는 단계; 상기 잉곳을 1050 ~ 1200 ℃에서 5 ~ 48 시간 동안 균질화처리하고 퀀칭(quenching)하는 단계; 상기 퀀칭된 잉곳을 소정 두께 판재 형태로 냉간 압연하는 단계; 및 상기 냉간 압연된 판재를 700 ~ 1000 ℃에서 10 분 ~ 24 시간 동안 어닐링처리하는 단계;를 포함하는 고엔트로피 합금의 제조방법을 제공하는 것이다.
본 발명에 따른 고엔트로피 합금은, 기존의 5원계 합금과 달리, V, Cr, Fe 및 Ni를 주요 원소로 포함하는 4원계 조성으로 단상의 FCC 조직을 얻을 수 있으며, 이와 같이 면심입방(FCC)의 단상조직을 가질 경우, 극저온에서 1 GPa의 고강도를 나타내며, 추가로 석출강화처리를 할 경우 약 1.5 GPa의 초고강도를 나타낸다.
또한, 본 발명에 따른 고 엔트로피 합금은 상온에서 보다 오히려 극저온에서 인장강도와 연신율이 향상되며 때문에 극저온 환경과 같은 극한환경에 사용되는 구조용 재료로써 활용 가치가 높다.
또한, 본 발명에 따른 고 엔트로피 합금은 상온에서 보다 극저온에서의 파괴인성이 높아, 극저온 환경의 파괴에 대한 저항성이 우수하다.
도 1은 15 at%의 크롬(Cr)을 고정하고, X at%의 바나듐(V)과 Y at%의 철(Fe) 및 (85-X-Y) at%의 니켈(Ni)의 변화에 따른 합금의 몰 분율에 따른, 700 ℃에서의 상평형 정보를 나타낸 것이다.
도 2는 도 1의 20V으로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.
도 3은 본 발명의 바람직한 실시예의 고엔트로피 합금을 제조하기 위한 열처리 조건을 나타내는 공정도이다.
도 4는 본 발명의 바람직한 실시예에 따라 제조한 고엔트로피 합금의 XRD 분석 결과를 나타낸 것이다.
도 5는 도 1의 15V으로 표시된 조성을 가지는 합금의 바람직한 실시예에 따라 900 ℃ 10 분간 어닐링 처리한 고엔트로피 합금의 미세조직의 EBSD 맵이다.
도 6은 도 1의 20V으로 표시된 조성을 가지는 합금의 바람직한 실시예에 따라 800 ℃ 10 분간 어닐링 처리한 고엔트로피 합금의 미세조직의 EBSD 맵이다.
도 7은 도 1의 20V으로 표시된 조성을 가지는 합금의 바람직한 실시예에 따라 1000 ℃ 10 분간 어닐링 처리한 고엔트로피 합금의 미세조직의 EBSD 맵이다.
도 8은 본 발명의 바람직한 실시예에 따라 900 ℃ 10 분간 어닐링 처리한 고엔트로피 합금의 상온(25 ℃) 및 어닐링 조건 조절에 따른 극저온(-196 ℃) 인장 시험 결과를 나타낸 것이다.
도 9는 도 1의 20V으로 표시된 조성을 가지는 합금의 바람직한 실시예에 따라 온도별로 10 분간 어닐링 처리한 고엔트로피 합금의 상온(25 ℃) 및 어닐링 조건 조절에 따른 극저온(-196 ℃) 인장 시험 결과를 나타낸 것이다.
도 10은 본 발명의 바람직한 실시예에 따라 어닐링 처리한 고엔트로피 합금과 기존의 고엔트로피 합금 및 극저온 재료의 기계적 물성 비교예이다.
도 11a와 도 11b는 실시예 3에 따른 조성을 갖는 합금을, 각각 900 ℃와 1000 ℃에서 10분간 어닐링 처리한 시편의 파괴인성을 측정한 결과를 타나낸 것이다.
이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예에 따른 방법에 대해 상세하게 설명하겠지만 본 발명이 하기의 실시 예들에 제한되는 것은 아니다. 따라서 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양하게 변경할 수 있음은 자명하다.
본 발명자들은 공지의 Co-Cr-Fe-Mn-Ni 계열의 고엔트로피 합금과 상이한 합금계, 특히 어닐링 후 FCC 단상을 이루고 극저온에서 1 GPa 이상의 우수한 기계적 물성을 가지며 석출강화를 이용할 시에, 약 1.5 Gpa의 고강도를 가지는 합금을 연구한 결과, 바나듐(V), 크롬(Cr), 철(Fe), 니켈(Ni)로 이루어진 4원계 합금의 소정 조성 범위가 고강도 고엔트로피 합금을 형성할 수 있음을 밝혀내고 본 발명에 이르게 되었다.
도 1은 15 at%의 크롬(Cr)을 고정하고, X at%의 바나듐(V)과 Y at%의 철(Fe) 및 (85-X-Y) at%의 니켈(Ni)의 변화에 따른 합금의 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸 것이다.
도 1은 V, Fe, Ni의 함량에 따라 FCC 단상과 FCC + 시그마(σ) 및 시그마(σ) 단상을 유지하는 온도 범위를 보여준다. 도 1에 나타난 바와 같이, 15Cr-10V-20Fe-55Ni(수치는 at%임)에 V을 Ni로 대체할 때, V이 증가함에 따라 FCC 단상 영역에서 FCC + 시그마(σ) 이상(dual phase) 영역으로 옮겨지는 것이 확인된다. 도 1이 의미하는 바는 15 at%의 Cr과 20 at%의 Fe, 그리고 40 ~ 60 at%의 Ni, 5 ~ 25 at%의 V을 포함하는 4원계 합금들은 V과 Ni의 함량 변화에 따라 FCC 단상(single phase)에서 FCC + 시그마 (σ)의 2상(dual phase)으로 미세조직이 변한다는 것이다.
도 2는 도 1에서 20 at%의 바나듐(V)에 해당하는 조성(20V-15Cr-20Fe-45Ni, 수치는 at%)을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸 것이다.
도 2로부터, 상기 합금은 940 ℃에서 1270 ℃까지 FCC 단상을 이루는 합금을 설계할 수 있으며, 그 이하의 온도에서는 시그마(σ) 상이 석출된다는 것을 의미한다.
이상과 같은 상태도를 고려하여 설계된 본 발명에 따른 고엔트로피 합금은, V: 5 ~ 25 at%, Cr: 10 ~ 20 at%, Fe: 15 ~ 55 at%, Ni: 20 ~ 60 at%와, 나머지 불가피한 불순물을 포함하는 것을 특징으로 한다.
상기 합금을 구성하는 합금원소의 조성범위를 상기와 같이 정한 이유는 다음과 같다.
상기 V 함량이 5 at% 미만일 경우 본 발명에서 요구하는 강도를 구현하기 어렵고 V 함량이 25 at%를 초과할 경우 FCC 단상 조직을 얻기 어려우므로 5 ~ 25 at%가 바람직하고, 보다 바람직한 V 함량은 10 ~ 20 at%이다.
상기 Cr 함량이 10 at% 미만일 경우 내식성이 감소하고, Cr 함량이 20 at%를 초과할 경우 FCC 단상 조직을 얻기 어려우므로, 10 ~ 20 at%가 바람직하고, 보다 바람직한 Cr 함량은 12 ~ 18 at%이다.
상기 Fe 함량이 15 at% 미만일 경우 합금의 가격이 상승하고, Fe 함량이 55 at%를 초과할 경우 FCC 단상 조직을 얻기 어려우므로, 15 ~ 55 at%가 바람직하고, 보다 바람직한 Fe 함량은 20 ~ 50 at%이다.
상기 Ni 함량이 20 at% 미만일 경우 FCC 단상 조직을 얻기 어렵고, Ni 함량이 60 at%를 초과할 경우 합금의 가격이 상승하므로, 20 ~ 60 at%가 바람직하고, 보다 바람직한 Ni 함량은 25 ~ 55 at%이다.
상기 불가피한 불순물은, 상기 합금원소 이외의 성분으로, 원료 또는 제조과정에 불가피하게 혼입되는 성분으로, 1 at% 이하, 바람직하게는 0.1 at% 이하, 보다 바람직하게는 0.01 at% 이하가 되도록 한다.
본 발명에 따른 고엔트로피 합금은 극저온(-196 ℃)에서 1 GPa 이상의 인장강도를 가질 수 있다.
또한, 본 발명에 따른 고엔트로피 합금은 석출경화처리를 통해, 극저온(-196 ℃)에서 1.3 GPa 이상의 인장강도를 가질 수 있다.
또한, 본 발명에 따른 고엔트로피 합금은, 재결정화된 면심입방(FCC) 조직을 가질 수 있다.
또한, 본 발명에 따른 고엔트로피 합금은, 면심입방(FCC) 조직에 시그마 상의 석출물이 분산되어 있는 미세조직을 가질 수 있다.
또한, 본 발명에 따른 고엔트로피 합금은, 극저온(-196 ℃)에서 파괴인성(JQ)이 상온에서의 파괴인성(JQ)에 비해 더 높다.
상기 석출경화처리된 고엔트로피 합금은, V: 5 ~ 25at%, Cr: 10 ~ 20at%, Fe: 15 ~ 55at%, Ni: 20 ~ 60 at%와, 나머지 불가피한 불순물을 포함하는 용탕을 제조하여 주조하여 고엔트로피 합금 잉곳을 제조하는 단계; 상기 잉곳을 1050 ~ 1200 ℃에서 5 ~ 48시간 동안 균질화처리하고 퀀칭(quenching)하는 단계; 상기 퀀칭된 잉곳을 소정 두께 판재 형태로 냉간 압연하는 단계; 및 상기 냉간 압연된 판재를 700 ~ 1000℃에서 10분 ~ 24 시간 동안 어닐링 처리하는 단계;를 포함하는 방법으로 제조될 수 있다.
상기 균질화 처리는 1050 ℃ 미만에서 수행할 경우 충분히 균질화되지 않고 1200 ℃ 초과에서 수행할 경우 열처리 비용이 지나치게 상승하고, 5 시간 미만으로 수행할 경우 충분히 균질화되지 않고 48 시간 초과하여 수행할 경우 열처리 비용이 지나치게 상승하므로, 상기 온도 및 시간 범위로 수행하는 것이 바람직하다.
또한, 상기 어닐링 처리는 700 ℃ 미만에서 수행할 경우 재결정이 일어나지 않고 1000 ℃ 초과에서 수행할 경우 인장강도가 크게 저하되며, 10 분 미만으로 수행할 경우 충분히 재결정이 일어나게 하기 어렵고 24 시간 초과하여 수행할 경우 열처리 비용이 과도하게 상승하므로, 상기 온도 및 시간 범위로 수행하는 것이 바람직하다.
고엔트로피 합금의 제조
먼저, 순도 99.9 % 이상의 V, Cr, Fe, Ni 금속을 준비하였다. 이와 같이 준비한 금속을 아래 표 1과 같은 혼합 비율이 되도록 칭량하였다.
원료 혼합 비율(at%)
V Cr Fe Ni
실시예 1 10 15 20 55
실시예 2 15 15 20 50
실시예 3 20 15 20 45
실시예 4 10 15 30 45
실시예 5 10 15 40 35
실시예 6 10 15 50 25
실시예 7 15 15 25 45
이상과 같은 비율로 준비된 원료 금속을 도가니에 장입한 후, 진공유도용해 장비를 사용하여 용해하고, 주형을 사용하여 두께 8 mm, 폭 35 mm, 길이 100 mm의 직육면체 형상의 합금 잉곳(ingot)을 주조하였다.주조된 두께 8 mm의 잉곳을, 도 3에 도시된 바와 같이, 1100 ℃의 온도에서 6 시간 동안 균질화 열처리를 실시한 후, 수냉을 통해 퀀칭(quenching) 공정을 수행하였다.
균질화된 합금의 표면에 생성된 산화물을 제거하기 위하여, 표면 연마(grinding)을 하였으며, 연마된 잉곳의 두께는 7 mm가 되었고, 두께 7 mm에서 1.5 mmm까지 냉간압연을 진행하였다.
냉간압연 후에 각 합금 판재는 700 ~ 1000 ℃에서 10 분간 어닐링 처리 또는 1000 ℃에서 24 시간 동안 어닐링(annealing) 처리를 각각 실시하였다.
XRD 및 미세조직 분석 결과
도 4는 700 ~ 1000 ℃에서 10 분 그리고 1000 ℃에서 24 시간 어닐링 처리한 실시예 1(10V), 실시예 2(15V), 실시예 3(20V)에 따른 합금의 상온에서의 XRD 측정 결과를 나타낸 것이다.
도 4에서, '1'은 실시예 1 합금, '2'는 실시예 2 합금, '3'은 실시예 3 합금을 각각 의미하고, '700, 750, 800, 900, 1000'은 어닐링 온도를 의미하며, '10m'과 '24h'는 각각 10 분 동안, 24 시간 동안 어닐링을 수행한 것을 의미한다..
XRD 측정은 시편의 연마 시의 변형으로 인한 상변태를 최소화하기 위하여 사포 600번, 800번, 1200번, 2000번 순서로 연마 후, 8 % 과염소산(Perchloric acid)에서 전해 에칭을 수행한 후 진행하였다.
그 결과, 도 4에서 확인되는 바와 같이, 실시예 1과 실시예 2 합금의 경우, XRD 분석 상으로 모두 FCC 단상으로 이루어져 있는 것으로 확인되었다. 그런데, 실시예 3 합금의 경우, 800 ℃ 와 900 ℃에서 10 분간 어닐링한 경우 시그마(σ) 상이 석출되었으며, 1000 ℃에서 어닐링한 경우에는 시그마(σ) 상의 석출 없이 FCC 단상으로 이루어져 있는 것으로 확인되었다.
도 5는 900 ℃에서 10 분간 어닐링 처리한 실시예 2에 따른 합금의 EBSD 맵을 나타낸 것이다.
도 5에 나타난 바와 같이, 900 ℃에서 10 분간 어닐링 처리하여 제조한 실시예 2에 따른 합금은, XRD 분석 결과와 동일하게 FCC 조직을 갖는 것으로 나타났으며, 평균 결정립 크기가 약 4.46 ㎛의 크기를 가지고 압연에 의해 변형된 조직이 완전하게 재결정화된 미세조직을 가진다.
도 6은 800 ℃에서 10 분간 어닐링 처리한 실시예 3에 따른 합금의 EBSD 맵을 나타낸 것이다.
도 6에 나타난 바와 같이, 800 ℃에서 10 분간 어닐링 처리하여 제조한 실시예 3에 따른 합금은, XRD 분석 결과와 동일하게 FCC +시그마(σ) 2상 조직을 갖는 것으로 나타났으며, 평균 결정립 크기가 약 1.9 ㎛의 크기를 가지며 석출물에 의한 결정립 성장 방해효과로 미세한 결정립 크기를 가진다.
도 7은 1000 ℃에서 10 분간 어닐링 처리한 실시예 3에 따른 합금의 EBSD 맵을 나타낸 것이다.
도 7에 나타난 바와 같이, 1000 ℃에서 10 분간 어닐링 처리하여 제조한 실시예 3에 따른 합금은, XRD 분석 결과와 동일하게 FCC 조직을 갖는 것으로 나타났으며, 평균 결정립 크기가 약 14.4 ㎛의 크기를 가지며 도 6의 800 ℃에서 10 분간 어닐링 처리한 조직과 달리 석출물이 없기 때문에 조대한 결정립 크기를 가진다.
인장시험 결과
도 8과 아래 표 2는 900 ℃에서 10 분간 어닐링 처리하여 제조한 실시예 1 ~ 3에 따른 합금의 상온(25 ℃) 및 극저온(-196 ℃)에서의 인장시험 결과를 나타낸 것이다.
시편 상온 극저온
항복강도(MPa) 인장강도(MPa) 연신율(%) 항복강도(MPa) 인장강도(MPa) 연신율(%)
실시예 1 536 851 60.7 690 1132 72
실시예 2 567 902 62.7 718 1207 74.2
실시예 3 715 1047 46.2 890 1397 47.2
실시예 4 - - - 613 1024 73.3
실시예 5 - - - 584 1018 80.8
실시예 6 - - - 688 1074 79.2
실시예 7 - - - 682 1154 77.8
900 ℃에서 10 분간 어닐링 처리하여 제조한 실시예 1 ~ 3에 따른 합금의 상온 인장 특성은, 항복강도 536 ~ 715 MPa, 인장강도 851 ~ 1047 MPa, 연신율 약 46 ~ 62 %를 나타내었다.한편, 실시예 1 ~ 7에 따른 합금의 극저온에서의 인장 특성은 항복강도 584 ~ 890 MPa, 인장강도 1018 ~ 1397 MPa, 연신율 약 47 ~ 80 %로, 실시예 1 ~ 3은 상온에 비해 우수한 인장특성을 나타내며, 실시예 4 ~ 7도 우수한 인장강도와 연신율을 나타낸다.
즉, 본 발명에 따른 고엔트로피 합금은 기존의 FCC 단상 구조를 갖는 고엔트로피 합금과 동일하게, 상온에 비해 극저온에서의 강도 및 연성이 우수하다.
도 9와 아래 표 3은 다양한 온도에서 10 분간 어닐링 처리하여 제조한 실시예 3에 따른 합금의 상온(25 ℃) 및 극저온(-196 ℃)에서의 인장시험 결과를 나타낸 것이다.
시편 상온 극저온
항복강도(MPa) 인장강도(MPa) 연신율(%) 항복강도(MPa) 인장강도(Mpa) 연신율(%)
실시예 3(800 ℃) 741 1155 25.2 933 1472 29.1
실시예 3(900 ℃) 715 1047 46.2 890 1397 47.2
실시예 3(950 ℃) 689 992 52 833 1343 56.4
실시예 3(985 ℃) 474 914 70.9 679 1256 79.4
실시예 3(1000 ℃) 355 787 85 430 1106 97.8
다양한 온도에서 10 분간 어닐링 처리하여 제조한 실시예 3에 따른 합금의 상온 인장 특성은, 항복강도 355 ~ 741 MPa, 인장강도 787 ~ 1155 MPa, 연신율 약 25.2 ~ 85 %를 나타내었다.한편, 극저온에서의 인장 특성은 항복강도 430 ~ 933 MPa, 인장강도 1106 ~ 1472 MPa, 연신율 약 29.1 ~ 97.8%로 상온에 비해 우수한 인장특성을 나타낸다.
특히 실시예 3 합금 중에, 800 ~ 900 ℃에서 어닐링 처리한 합금의 경우, 시그마 상의 석출에 따른 석출강화 및 결정립 미세화 효과에 의하여 인장강도가 1000 ℃에서 어닐링하여 시그마 상이 석출되지 않은 FCC 단상 조직을 갖는 것에 비해 강도를 더욱 더 향상시킬 수 있어 강도 향상의 측면에서는 보다 바람직한 합금이라고 할 수 있다.
이상과 같은 인장시험 결과를 통해, 본 발명에 따른 고엔트로피 합금은 재결정이 된 상태에서 우수한 극저온 기계적 물성을 나타낸 것이 확인된다. 또한 기존의 FCC 단상 구조를 갖는 고엔트로피 합금과 동일하게, 상온에 비해 극저온에서의 강도 및 연성이 우수하다.
도 10은 다양한 온도에서 10 분간 어닐링 처리하여 제조한 실시예 1 ~ 3에 따른 합금의 극저온 인장시험 결과(도면상 보라색 삼각형으로 표시된 것)와 기존에 보고된 고엔트로피 합금의 극저온 기계적 물성을 비교한 것이다.
도 10에 있어서 기존에 보고된 비교예의 조성은 아래 표 4와 같다.
비교예 실제 조성 비율 (at%)
CrMnFeCoNi 1:1:1:1:1
CrFeCoNi 1:1:1:1
CrMnCoNi 1:1:1:1
MnFeCoNi 1:1:1:1
MnCoNi 1:1:1
MnFeNi 1:1:1
FeCoNi 1:1:1
도 10에서 확인되는 바와 같이, 본 발명의 실시예에 따른 합금들은 기존의 CrMnFeCoNi 합금과 동등 이상의 물성을 구현할 수 있으며, 기타 알려진 고엔트로피 합금에 비해 우수한 강도와 연신율을 구현할 수 있다.
파괴인성시험 결과
도 11a와 도 11b는 실시예 3에 따른 조성을 갖는 합금을, 각각 900 ℃와 1000 ℃에서 10분간 어닐링 처리한 시편의 파괴인성을 측정한 결과를 타나낸 것이다.
2가지 시편 모두 J1c 조건을 만족하지 못하여, JQ 값으로 파괴인성을 비교하였는데, 도 11에서 확인되는 바와 같이, 900 ℃에서 어닐링 시편(도 11a)이 1000 ℃에서 어닐링 시편(도 11b)에 비해, 상온 및 극저온의 파괴인성 값이 낮아지는 결과를 나타내는데, 이는 시그마 상의 석출에 기인하는 것으로 보인다.
또한, 상온(RT)과 극저온(CT)의 파괴인성 값을 비교하면, 본 발명의 실시예 3에 따른 합금의 경우, 어닐링 처리 온도에 관계 없이, 상온에 비해 극저온 환경에서의 파괴인성이 현저하게 높은 경향을 나타내어, 본 발명의 실시예 3에 따른 합금이 극저온 환경에서 파괴에 대한 저항성이 매우 우수함을 알 수 있다.
특히, 900 ℃에서 어닐링한 시편의 경우, 경질상인 시그마 상이 형성된 2상 조직임에도 불구하고 극저온 환경에서 파괴인성 값이 상승하는 효과를 나타내고 있어, 시그마상의 형성이 극저온 환경에서의 파괴인성 특성을 크게 저하시키지 않으면서 강도를 향상시킬 수 있는 유효한 수단이 될 수 있음을 알 수 있다.
본 발명은, 과제고유번호 2016M3D1A1023383으로, '미래창조과학부(부처명)'가 지원하며, '재단법인 한국연구재단(연구관리 전문기관)'이 '미래소재 디스커버리 사업(연구 사업명)'으로 진행한 'MULTI-PHYSICS FULL-SCALE 통합형 모델링 기반 극한환경용 다기능 고엔트로피합금 창제(연구과제명)' 과제의 결과물이다.

Claims (10)

  1. V: 5 ~ 25 at%, Cr: 10 ~ 20 at%, Fe: 15 ~ 55 at%, Ni: 20 ~ 60 at%와, 나머지 불가피한 불순물을 포함하는 고엔트로피 합금.
  2. 제1항에 있어서,
    상기 고엔트로피 합금은 면심입방(FCC) 격자 구조로 이루어진 고엔트로피 합금.
  3. 제1항에 있어서,
    상기 V 함량이 10 ~ 20 at%인 고엔트로피 합금.
  4. 제1항에 있어서,
    상기 Cr 함량이 12 ~ 18 at%인 고엔트로피 합금.
  5. 제1항에 있어서,
    상기 Fe 함량이 20 ~ 50 at%인 고엔트로피 합금.
  6. 제1항에 있어서,
    상기 Ni 함량이 25 ~ 55 at%인 고엔트로피 합금.
  7. 제1항에 있어서,
    상기 고엔트로피 합금은 극저온(-196 ℃)에서 1 GPa 이상의 인장강도를 갖는 고엔트로피 합금.
  8. 제1항에 있어서,
    상기 고엔트로피 합금은 석출경화처리가 된 것으로, 극저온(-196 ℃)에서 1.3 GPa 이상의 인장강도를 갖는 고엔트로피 합금.
  9. 제8항에 있어서,
    상기 고엔트로피 합금의 미세조직은 면심입방 기지 조직에 시그마 상의 석출물이 분산되어 있는 고엔트로피 합금.
  10. V: 5 ~ 25 at%, Cr: 10 ~ 20 at%, Fe: 15 ~ 55 at%, Ni: 20 ~ 60 at%와, 나머지 불가피한 불순물을 포함하는 용탕을 제조하여 주조하여 고엔트로피 합금 잉곳을 제조하는 단계;
    상기 잉곳을 1050 ~ 1200 ℃에서 5 ~ 48 시간 동안 균질화처리하고 퀀칭(quenching)하는 단계;
    상기 퀀칭된 잉곳을 소정 두께 판재 형태로 냉간 압연하는 단계; 및
    상기 냉간 압연된 판재를 700 ~ 1000 ℃에서 10 분 ~ 24 시간 동안 어닐링 처리하는 단계;
    를 포함하는 고엔트로피 합금의 제조방법.
PCT/KR2018/008256 2017-08-21 2018-07-23 V-cr-fe-ni계 고강도 고엔트로피 합금 WO2019039743A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0105477 2017-08-21
KR1020170105477A KR101915906B1 (ko) 2017-08-21 2017-08-21 V-Cr-Fe-Ni계 고강도 고엔트로피 합금

Publications (1)

Publication Number Publication Date
WO2019039743A1 true WO2019039743A1 (ko) 2019-02-28

Family

ID=64329496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008256 WO2019039743A1 (ko) 2017-08-21 2018-07-23 V-cr-fe-ni계 고강도 고엔트로피 합금

Country Status (2)

Country Link
KR (1) KR101915906B1 (ko)
WO (1) WO2019039743A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111218601A (zh) * 2020-01-07 2020-06-02 北京大学 高强韧低活化FeCrVO多主元合金及其制备方法
CN111334698A (zh) * 2020-03-15 2020-06-26 沈阳工业大学 一种含调控调幅分解组织且生成硬质相的耐磨高熵合金及其制备方法
CN113751722A (zh) * 2021-08-17 2021-12-07 温州大学 一种制备具有高强度高韧性fcc相高熵合金的方法
CN115323238A (zh) * 2022-07-06 2022-11-11 太原理工大学 具有无序面心立方和无序体心立方结构的共晶高熵合金
CN115572882A (zh) * 2022-10-19 2023-01-06 大连理工大学 一种抗辐照低活化高熵合金、其制备方法及用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116618434B (zh) * 2023-05-12 2024-03-26 华中科技大学 一种高熵合金层状复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159914A1 (en) * 2000-11-07 2002-10-31 Jien-Wei Yeh High-entropy multielement alloys
JP2016023352A (ja) * 2014-07-23 2016-02-08 株式会社日立製作所 合金構造体
KR101684856B1 (ko) * 2016-01-29 2016-12-09 서울대학교 산학협력단 하이엔트로피 합금 폼 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159914A1 (en) * 2000-11-07 2002-10-31 Jien-Wei Yeh High-entropy multielement alloys
JP2016023352A (ja) * 2014-07-23 2016-02-08 株式会社日立製作所 合金構造体
KR101684856B1 (ko) * 2016-01-29 2016-12-09 서울대학교 산학협력단 하이엔트로피 합금 폼 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G.A. SALISHCHEV ET AL.: "Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 591, 2014, pages 11 - 21, XP028605350, DOI: doi:10.1016/j.jallcom.2013.12.210 *
N.D. STEPANOV ET AL.: "Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 628, April 2015 (2015-04-01), pages 170 - 185, XP055579263 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111218601A (zh) * 2020-01-07 2020-06-02 北京大学 高强韧低活化FeCrVO多主元合金及其制备方法
CN111218601B (zh) * 2020-01-07 2021-06-01 北京大学 高强韧低活化FeCrVO多主元合金及其制备方法
CN111334698A (zh) * 2020-03-15 2020-06-26 沈阳工业大学 一种含调控调幅分解组织且生成硬质相的耐磨高熵合金及其制备方法
CN111334698B (zh) * 2020-03-15 2021-04-20 沈阳工业大学 一种含调控调幅分解组织且生成硬质相的耐磨高熵合金及其制备方法
CN113751722A (zh) * 2021-08-17 2021-12-07 温州大学 一种制备具有高强度高韧性fcc相高熵合金的方法
CN115323238A (zh) * 2022-07-06 2022-11-11 太原理工大学 具有无序面心立方和无序体心立方结构的共晶高熵合金
CN115572882A (zh) * 2022-10-19 2023-01-06 大连理工大学 一种抗辐照低活化高熵合金、其制备方法及用途
CN115572882B (zh) * 2022-10-19 2023-09-01 大连理工大学 一种抗辐照低活化高熵合金、其制备方法及用途

Also Published As

Publication number Publication date
KR101915906B1 (ko) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2019039743A1 (ko) V-cr-fe-ni계 고강도 고엔트로피 합금
WO2020085697A1 (ko) 고강도 고인성 중엔트로피 합금 및 그 제조방법
WO2019022283A1 (ko) 극저온 특성이 우수한 중엔트로피 합금
CN101871059B (zh) 铜合金板及其制造方法
WO2020013524A1 (en) Lightweight medium-entropy alloys using spinodal decomposition
WO2020080660A1 (ko) 중엔트로피 합금 및 그 제조방법
WO2020209485A1 (ko) 굽힘가공성이 우수한 cu-co-si-fe-p계 구리합금 및 그 제조 방법
WO2017164601A1 (ko) 극저온용 고 엔트로피 합금
WO2022139007A1 (ko) 고인성 주조용 알루미늄 합금 및 그 제조방법
WO2018203601A1 (ko) Al 첨가 고엔트로피 합금의 가공성 향상 방법
WO2020122472A2 (ko) 마그네슘 합금재 및 이의 제조방법
WO2017164602A1 (ko) Cr-fe-mn-ni-v계 고 엔트로피 합금
WO2013022144A1 (en) Copper alloy material for continuous casting mold and process for producing same
WO2018110779A1 (ko) 강도 및 연성이 우수한 저합금 강판
WO2019083103A1 (ko) 변태유기소성 고엔트로피 합금 및 이의 제조방법
KR102179460B1 (ko) 고엔트로피 합금 및 그 제조방법
WO2013172510A1 (ko) 극저온에서 기계적 성능이 우수한 Fe-Mn-C계 TWIP 강 및 그 제조 방법
WO2019059660A1 (ko) 강도 및 연성이 우수한 저합금 강판 및 이의 제조방법
WO2020067702A1 (ko) 내피쉬스케일이 우수한 법랑용 냉연 강판 및 그 제조 방법
WO2020111879A1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법
JPH06220594A (ja) 加工性の良い電気部品用銅合金の製造方法
WO2021020683A1 (ko) 강도와 도전율이 우수한 동합금 판재의 제조 방법 및 이로부터 제조된 동합금 판재
WO2020085586A1 (ko) 융점 1,900℃ 이하 원소로 구성된 고강도 고연성 타이타늄 합금
WO2019039824A1 (ko) 법랑용 냉연강판 및 그 제조방법
KR101952015B1 (ko) Co-Cu-Ni-Mn계 고엔트로피 합금

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848928

Country of ref document: EP

Kind code of ref document: A1