WO2014112213A1 - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2014112213A1
WO2014112213A1 PCT/JP2013/081864 JP2013081864W WO2014112213A1 WO 2014112213 A1 WO2014112213 A1 WO 2014112213A1 JP 2013081864 W JP2013081864 W JP 2013081864W WO 2014112213 A1 WO2014112213 A1 WO 2014112213A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
semiconductor device
range
carbide semiconductor
forming
Prior art date
Application number
PCT/JP2013/081864
Other languages
English (en)
French (fr)
Inventor
増田 健良
和田 圭司
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201380065488.XA priority Critical patent/CN104854702B/zh
Priority to EP13871443.1A priority patent/EP2947690A4/en
Priority to US14/646,666 priority patent/US10211284B2/en
Publication of WO2014112213A1 publication Critical patent/WO2014112213A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/765Making of isolation regions between components by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a silicon carbide (SiC) semiconductor device and a method for manufacturing the same, and more particularly to a silicon carbide semiconductor device having a guard ring region and a method for manufacturing the same.
  • SiC silicon carbide
  • the main determinant of the withstand voltage is the upper limit of the electric field strength that the drift layer forming the withstand voltage holding region can withstand.
  • a drift layer made of Si can be broken at a place where an electric field of about 0.3 MV / cm or more is applied. For this reason, it is necessary to suppress the electric field strength to less than a predetermined value in the entire drift layer of the MOSFET.
  • the simplest method is to reduce the impurity concentration of the drift layer.
  • this method has a disadvantage that the on-resistance of the MOSFET is increased. That is, there is a trade-off relationship between on-resistance and breakdown voltage.
  • a termination structure having a guard ring also referred to as “Field Limiting Ring”.
  • a guard ring is provided at a depth position corresponding to each of the three steps described above. More specifically, a buried guard ring is provided at each of two different depth positions in the n-type base layer at the terminal portion, and a guard ring is also provided on the surface of the n-type base layer. With these three types of guard rings, the maximum electric field at each stage is kept below the limit strength even in the termination structure.
  • the termination structure having a guard ring only on the surface of the n-type base layer without the embedded guard ring as described above is more widely used.
  • SiC is a material that can sufficiently withstand an electric field strength of 0.4 MV / cm or more. That is, under such electric field strength, the Si layer is easily destroyed, but the SiC layer is not destroyed.
  • a high electric field can be applied in this way, breakdown due to electric field concentration at a specific position in the MOSFET structure becomes a problem.
  • the breakdown phenomenon of the gate insulating film due to the electric field concentration in the gate insulating film, not in the SiC layer is the main determinant of the breakdown voltage.
  • the determination factor of the breakdown voltage differs between the Si semiconductor device and the SiC semiconductor device. For this reason, it is not the best measure to simply apply the technique of the above publication, which is considered to be based on the use of Si, in order to improve the breakdown voltage of the SiC semiconductor device. Therefore, it is preferable to use an optimum termination structure for maintaining the breakdown voltage for the SiC semiconductor device.
  • a general guard ring that is, a guard ring on a semiconductor layer
  • electric field concentration occurs near the surface of the semiconductor layer.
  • the electric field tends to concentrate in the element portion at a location adjacent to the guard ring and close to the surface of the semiconductor layer. In this place, a breakdown phenomenon due to electric field concentration may occur.
  • the guard rings are provided both in the semiconductor layer and on the semiconductor layer as described in the above publication, the structure of the semiconductor device is complicated in that it has a plurality of types of guard rings, and the guard ring is formed. The manufacturing method is complicated in that the number of impurity implantation steps increases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a silicon carbide semiconductor device having a high breakdown voltage and a simple structure and a method for manufacturing the same. .
  • the silicon carbide semiconductor device of the present invention has an element part in which a semiconductor element is provided and a terminal part surrounding the element part.
  • the silicon carbide semiconductor device has a silicon carbide film, a first main electrode, and a second main electrode.
  • the silicon carbide film has a first main surface and a second main surface opposite to the first main surface.
  • the second main surface has an element formation surface in the element portion and a termination surface in the termination portion.
  • the silicon carbide film has a first range that forms a first main surface and an intermediate surface opposite to the first main surface, and a second range that is provided on the intermediate surface and forms an element formation surface.
  • the first range includes a first breakdown voltage holding layer having a first conductivity type, and a guard ring region having a second conductivity type partially provided on the intermediate surface within the terminal portion and surrounding the element portion on the intermediate surface.
  • the second range has a second breakdown voltage holding layer having the first conductivity type.
  • the second range has either a structure having only the second breakdown voltage holding layer in the termination portion or a structure arranged only in the element portion among the element portion and the termination portion.
  • the first main electrode faces the first main surface.
  • the second main electrode faces the element forming surface of the second main surface.
  • the second range includes any one of a structure having only the second breakdown voltage holding layer in the termination portion and a structure arranged only in the element portion among the element portion and the termination portion. Have.
  • the second range has only the second breakdown voltage holding layer in the termination portion, it is not necessary to provide a structure other than the second breakdown voltage holding layer in the termination portion in the second range.
  • the second range has a structure that is arranged only in the element portion of the element portion and the termination portion, it is not necessary to provide the second range in the termination portion.
  • the structure of the silicon carbide semiconductor device can be simplified.
  • the portion in the termination portion of the second range consists of only the second breakdown voltage holding layer.
  • terminus surface has a 1st conductivity type. Therefore, no pn junction is provided on the termination surface. Therefore, electric field concentration in the vicinity of the termination surface can be prevented. Therefore, it is possible to prevent a high electric field from being applied in the vicinity of the element formation surface adjacent to the termination surface.
  • the second range has a structure that is arranged only in the element portion of the element portion and the termination portion, the element formation surface is configured by the second range, and the termination surface is not the second range but the first range. Consists of.
  • the position of the element formation surface and the position of the end surface are shifted in the thickness direction. Therefore, the influence of the electric field concentration in the vicinity of the termination surface on the vicinity of the element formation surface can be suppressed. In any case, it is possible to prevent the element portion from being destroyed in the vicinity of the end face.
  • the structure of the silicon carbide semiconductor device can be simplified and the breakdown voltage of the silicon carbide semiconductor device can be increased.
  • the first range may include a charge compensation region partially provided on the intermediate surface in the element portion and having the second conductivity type and having a lower impurity concentration than the impurity concentration of the guard ring region.
  • the element formation surface and the end surface may be arranged on one plane. Thereby, the shape of the surface of the silicon carbide film is simplified. Therefore, the structure of the silicon carbide semiconductor device can be further simplified.
  • the termination surface may be arranged shifted from the virtual plane including the element formation surface toward the first main surface. As a result, the position of the element formation surface and the position of the end surface are shifted in the thickness direction. Therefore, the influence of the electric field concentration in the vicinity of the termination surface on the vicinity of the element formation surface can be suppressed. Therefore, it is possible to more reliably prevent the element portion from being destroyed in the vicinity of the terminal surface.
  • the second range may cover the guard ring area. That is, the second range may remain on the guard ring region.
  • the method for manufacturing the silicon carbide semiconductor device can be simplified as compared with the case where the entire second range on the guard ring region is removed.
  • the guard ring area may be located on the end face.
  • the silicon carbide film does not have a portion covering the guard ring region. Therefore, it is possible to prevent the electric field from wrapping around the guard ring. Therefore, it is possible to more reliably prevent the element portion from being destroyed in the vicinity of the terminal surface.
  • the method for manufacturing a silicon carbide semiconductor device of the present invention is a method for manufacturing a silicon carbide semiconductor device having an element portion in which a semiconductor element is provided and a terminal portion surrounding the element portion.
  • the silicon carbide semiconductor device includes a silicon carbide film having a first main surface and a second main surface opposite to the first main surface. The second main surface has an element formation surface in the element portion and a termination surface in the termination portion.
  • the method for manufacturing a silicon carbide semiconductor device includes the following steps.
  • the step of forming the first range includes the step of forming the first breakdown voltage holding layer having the first main surface and the intermediate surface and having the first conductivity type, and the intermediate surface partly in the terminal portion. Forming a guard ring region surrounding the element portion on the surface and having the second conductivity type.
  • a second range forming an element formation surface is formed on the intermediate surface.
  • the step of forming the second range includes a step of forming a second breakdown voltage holding layer having the first conductivity type on the intermediate surface after the step of forming the guard ring region.
  • the step of forming the second range includes any one of a structure in which the second range has only the second breakdown voltage holding layer in the termination portion and a structure in which only the element portion of the element portion and the termination portion is disposed. To do so. A first main electrode facing the first main surface is formed. A second main electrode facing the element forming surface of the second main surface is formed.
  • the second range has either a structure having only the second breakdown voltage holding layer in the termination portion or a structure arranged only in the element portion among the element portion and the termination portion.
  • the portion in the termination portion of the second range consists only of the second breakdown voltage holding layer.
  • the element formation surface is configured by the second range, and the termination surface is not the second range but the first range. Consists of. As a result, the position of the element formation surface and the position of the end surface are shifted in the thickness direction. Therefore, the influence of the electric field concentration in the vicinity of the termination surface on the vicinity of the element formation surface can be suppressed. In any of the above cases, it is possible to prevent the element portion from being destroyed in the vicinity of the end face.
  • the second range does not need to include a portion having the second conductivity type in the terminal portion. Therefore, the manufacturing method of a silicon carbide semiconductor device can be simplified.
  • the breakdown voltage of the silicon carbide semiconductor device can be increased and the manufacturing method can be simplified.
  • the step of forming the second range is performed by removing at least a part of the second breakdown voltage holding layer in the terminal portion, thereby shifting the terminal surface from the virtual plane including the element formation surface toward the first main surface. May be included. As a result, the position of the element formation surface and the position of the end surface are shifted in the thickness direction. Therefore, the influence of the electric field concentration in the vicinity of the termination surface on the vicinity of the element formation surface can be suppressed. Therefore, it is possible to more reliably prevent the element portion from being destroyed in the vicinity of the terminal surface.
  • the structure of the silicon carbide semiconductor device can be simplified and the breakdown voltage of the silicon carbide semiconductor device can be increased.
  • FIG. 1 is a plan view schematically showing a configuration of a silicon carbide semiconductor device in a first embodiment of the present invention.
  • FIG. 2 is a schematic partial sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic partial cross-sectional perspective view of a silicon carbide film included in the silicon carbide semiconductor device in broken line part III in FIG. 1.
  • FIG. 3 is a partial cross sectional view schematically showing a first step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 11 is a partial cross sectional view schematically showing a second step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 11 is a partial cross sectional view schematically showing a third step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 12 is a partial cross sectional view schematically showing a fourth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 10 is a partial cross sectional view schematically showing a fifth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 12 is a partial cross sectional view schematically showing a sixth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 12 is a partial cross sectional view schematically showing a seventh step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 12 is a partial cross sectional view schematically showing an eighth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 10 is a partial cross sectional view schematically showing a fifth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 12 is a partial cross sectional view schematically showing a sixth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 12 is a partial cross sectional
  • FIG. 12 is a partial cross sectional view schematically showing a ninth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2.
  • FIG. 12 is a partial cross sectional view schematically showing a tenth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 2. It is a fragmentary sectional view which shows schematically the structure of the silicon carbide semiconductor device in Embodiment 2 of this invention.
  • FIG. 15 is a partial cross sectional view schematically showing a step of the method for manufacturing the silicon carbide semiconductor device of FIG. 14. It is a fragmentary sectional view which shows schematically the structure of the silicon carbide semiconductor device in Embodiment 3 of this invention.
  • FIG. 10 is a partial cross sectional view schematically showing a configuration of a silicon carbide semiconductor device in a fourth embodiment of the present invention.
  • FIG. 10 is a partial cross sectional view schematically showing a configuration of a silicon carbide semiconductor device in a fifth embodiment of the present invention. It is a fragmentary sectional view showing roughly the fine structure of the surface of a silicon carbide film which a silicon carbide semiconductor device has.
  • FIG. 3 is a diagram showing a crystal structure of a (000-1) plane in polytype 4H hexagonal crystal.
  • FIG. 21 is a diagram showing a crystal structure of a (11-20) plane along line XXI-XXI in FIG.
  • FIG. 20 is a view showing a crystal structure in the vicinity of the surface of the composite surface in FIG.
  • FIG. 19 in the (11-20) plane.
  • FIG. 20 is a view of the composite surface of FIG. 19 viewed from the (01-10) plane.
  • FIG. 5 is a graph showing an example of a relationship between a channel surface and a (000-1) plane viewed macroscopically and channel mobility when a thermal etching is performed and when it is not performed. It is. It is a graph which shows an example of the relationship between the angle between a channel direction and the ⁇ 0-11-2> direction, and channel mobility. It is a figure which shows the modification of FIG.
  • MOSFET 201 silicon carbide semiconductor device
  • MOSFET 201 has an element portion CL provided with a transistor element (semiconductor element) and a termination portion TM surrounding the element portion CL.
  • the MOSFET 201 includes a single crystal substrate 80, an epitaxial film 90 (silicon carbide film), a gate oxide film 91 (gate insulating film), a gate electrode 92, and a drain electrode 98 (first main electrode). Electrode), a source electrode 94 (second main electrode), an interlayer insulating film 93, and a source wiring layer 95.
  • Single crystal substrate 80 is made of n-type (first conductivity type) silicon carbide.
  • Single crystal substrate 80 preferably has a hexagonal crystal structure, and more preferably has polytype 4H.
  • Epitaxial film 90 (FIG. 3) is a silicon carbide film formed epitaxially on single crystal substrate 80.
  • Epitaxial film 90 has lower surface P1 (first main surface) in contact with single crystal substrate 80 and upper surface P2 (second main surface opposite to the first main surface).
  • the upper surface P2 has an element formation surface PE in the element portion CL and a termination surface PT in the termination portion TM.
  • Epitaxial film 90 has a lower range RA (first range) and an upper range RB (second range).
  • the lower range RA has a lower surface P1 and an intermediate surface PM opposite to the lower surface P1.
  • the lower range RA includes an n-type lower drift layer 81A (first breakdown voltage holding layer), a p-type (second conductivity type different from the first conductivity type), a charge compensation region 71, p A JTE (Junction Termination Extension) region 72 having a type and a guard ring region 73 having a p type are included.
  • Lower drift layer 81A preferably has a lower impurity concentration than that of single crystal substrate 80.
  • the impurity concentration of lower drift layer 81A is preferably 1 ⁇ 10 15 cm ⁇ 3 or more and 5 ⁇ 10 16 cm ⁇ 3 or less, for example, 8 ⁇ 10 15 cm ⁇ 3 .
  • the charge compensation region 71 is partially provided on the intermediate surface PM in the element portion CL.
  • the charge compensation region 71 preferably has an impurity concentration of about 2.5 ⁇ 10 13 cm ⁇ 3 or more.
  • the JTE region 72 is partially provided on the intermediate surface PM in the termination portion TM, is in contact with the charge compensation region 71, and surrounds the element portion CL. JTE region 72 has a lower impurity concentration than the impurity concentration of charge compensation region 71.
  • the guard ring region 73 is partially provided on the intermediate surface PM in the terminal end TM.
  • the guard ring region 73 surrounds the element portion CL on the intermediate plane PM and is separated from the JTE region 72.
  • Guard ring region 73 preferably has a lower impurity concentration than that of charge compensation region 71 and may have an impurity concentration similar to that of JTE region 72.
  • the upper range RB is provided on the intermediate surface PM and forms an element formation surface PE and a termination surface PT.
  • the element formation surface PE and the termination surface PT are arranged on one plane.
  • upper range RB includes n-type upper drift layer 81B (second breakdown voltage holding layer), p-type base layer 82, and n-type source region 83. And a contact region 84 having a p-type.
  • Upper range RB has a structure having only upper drift layer 81B in termination portion TM.
  • the lower drift layer 81A and the upper drift layer 81B constitute a drift region 81 (a breakdown voltage holding region) in the element portion CL.
  • Upper drift layer 81B preferably has a lower impurity concentration than that of single crystal substrate 80, and more preferably has the same impurity concentration as that of lower drift layer 81A.
  • the base layer 82 is provided on the upper drift layer 81B in the element portion CL.
  • Base layer 82 has, for example, an impurity concentration of 1 ⁇ 10 18 cm ⁇ 3 .
  • the source region 83 is provided on the base layer 82, and is separated from the upper drift layer 81B by the base layer 82.
  • Contact region 84 is connected to base layer 82.
  • a trench TR is provided on the element formation surface PE in the upper range RB of the epitaxial film 90.
  • Trench TR has side wall surface SW and bottom surface BT.
  • Sidewall surface SW passes through source region 83 and base layer 82 and reaches upper drift layer 81B. Therefore, side wall surface SW includes a portion formed by base layer 82.
  • Sidewall surface SW includes a channel surface of MOSFET 201 on base layer 82.
  • the side wall surface SW is inclined with respect to the element formation surface PE of the epitaxial film 90, whereby the trench TR expands in a tapered shape toward the opening.
  • the plane orientation of the side wall surface SW is preferably inclined at 50 ° or more and 80 ° or less with respect to the ⁇ 000-1 ⁇ plane, and is inclined at 50 ° or more and 80 ° or less with respect to the (000-1) plane. It is more preferable.
  • Side wall surface SW has one of the plane orientations ⁇ 0-33-8 ⁇ , ⁇ 0-11-2 ⁇ , ⁇ 0-11-4 ⁇ and ⁇ 0-11-1 ⁇ when viewed macroscopically. May be.
  • the plane orientation ⁇ 0-33-8 ⁇ has an off angle of 54.7 degrees from the ⁇ 000-1 ⁇ plane.
  • the plane orientation ⁇ 0-11-1 ⁇ has an off angle of 75.1 degrees from the ⁇ 000-1 ⁇ plane. Accordingly, the plane orientations ⁇ 0-33-8 ⁇ , ⁇ 0-11-2 ⁇ , ⁇ 0-11-4 ⁇ and ⁇ 0-11-1 ⁇ correspond to off-angles of 54.7 to 75.1 degrees.
  • the sidewall surface SW is processed by inclining about 50 degrees or more and 80 degrees or less with respect to the ⁇ 000-1 ⁇ plane.
  • the macroscopic plane orientation of SW is easily set to any one of ⁇ 0-33-8 ⁇ , ⁇ 0-11-2 ⁇ , ⁇ 0-11-4 ⁇ , and ⁇ 0-11-1 ⁇ .
  • the side wall surface SW preferably has a predetermined crystal plane (also referred to as a special plane) particularly in a portion on the base layer 82. Details of the special surface will be described later.
  • a predetermined crystal plane also referred to as a special plane
  • bottom surface BT is separated from the lower range RA by the upper range RB.
  • bottom surface BT has a flat shape substantially parallel to upper surface P2 of epitaxial film 90. Note that the bottom surface BT does not have to be a flat surface, and may be substantially point-like in the cross-sectional view of FIG.
  • the gate oxide film 91 covers each of the sidewall surface SW and the bottom surface BT of the trench TR.
  • Gate oxide film 91 has a portion that connects upper drift layer 81 ⁇ / b> B and source region 83 on base layer 82.
  • the gate electrode 92 is for switching between the ON state and the OFF state of the MOSFET 201.
  • the gate electrode 92 is provided on the gate oxide film 91.
  • Gate electrode 92 is arranged on sidewall surface SW via gate oxide film 91.
  • the source electrode 94 faces the element formation surface PE on the upper surface P2. Specifically, the source electrode 94 is in contact with each of the source region 83 and the contact region 84 on the element formation surface PE.
  • the source electrode 94 is an ohmic electrode and is made of, for example, silicide.
  • the source wiring layer 95 is in contact with the source electrode 94. Source wiring layer 95 is, for example, an aluminum layer.
  • the interlayer insulating film 93 insulates between the gate electrode 92 and the source wiring layer 95.
  • drain electrode 98 faces the lower surface P1. Specifically, drain electrode 98 is provided on lower surface P ⁇ b> 1 of epitaxial film 90 with single crystal substrate 80 interposed therebetween.
  • lower range RA is formed on single crystal substrate 80. Specifically, it is as follows.
  • lower drift layer 81 ⁇ / b> A forming lower surface P ⁇ b> 1 and intermediate surface PM is formed by epitaxial growth of silicon carbide on single crystal substrate 80.
  • the plane of the single crystal substrate 80 on which epitaxial growth is performed preferably has an off angle within 8 degrees from the ⁇ 000-1 ⁇ plane, and more preferably has an off angle within 8 degrees from the (000-1) plane. preferable.
  • Epitaxial growth can be performed by a CVD method.
  • the source gas for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) can be used. At this time, it is preferable to introduce, for example, nitrogen (N) or phosphorus (P) as impurities.
  • an impurity region is formed by impurity ion implantation on the intermediate surface PM exposed at this time.
  • the charge compensation region 71 is partially formed on the intermediate surface PM in the element portion CL.
  • a JTE region 72 and a guard ring region 73 are partially formed on the intermediate surface PM in the terminal end TM.
  • the order of forming the impurity regions is arbitrary.
  • an impurity for imparting p-type that is, an acceptor is implanted.
  • the acceptor for example, aluminum can be used.
  • an upper range RB is formed on the intermediate surface PM.
  • the step of forming the upper range RB is performed so that the upper range RB has a structure having only the upper drift layer 81B in the termination portion TM. Specifically, it is as follows.
  • the upper drift layer 81B is formed by the same method as the lower drift layer 81A. Thereby, an epitaxial film 90 having a lower range RA and an upper range RB is obtained.
  • impurity regions are formed by impurity ion implantation on the upper surface P2 of the epitaxial film 90 in the element portion CL.
  • the base layer 82 is formed on the upper drift layer 81B in the element portion CL.
  • a source region 83 separated from the upper drift layer 81B by the base layer 82 is formed on the base layer 82.
  • a contact region 84 extending from the upper surface P2 to the base layer 82 is formed in the element portion CL.
  • the order of forming the impurity regions is arbitrary. In the termination part TM, it is not necessary to perform impurity ion implantation on the upper surface P2.
  • the temperature of this heat treatment is preferably 1500 ° C. or higher and 1900 ° C. or lower, for example, about 1700 ° C.
  • the heat treatment time is, for example, about 30 minutes.
  • the atmosphere of the heat treatment is preferably an inert gas atmosphere, for example, an argon atmosphere.
  • a mask layer 61 having an opening is formed on the upper surface P ⁇ b> 2 of the epitaxial film 90.
  • the opening is formed corresponding to the position of trench TR (FIG. 2).
  • Mask layer 61 is preferably made of silicon dioxide, and more preferably formed by thermal oxidation. In the present embodiment, the opening is formed only on the portion in the element portion CL of the upper surface P2.
  • the reactive gas is supplied to the heated epitaxial film 90.
  • the reactive gas can react with silicon carbide under heating, and preferably contains a halogen gas.
  • the reactive gas contains, for example, at least one of Cl 2 , BCl 3, CF 4 , and SF 6 , and particularly preferably contains Cl 2 .
  • the reactive gas may further contain oxygen gas.
  • the reactive gas may contain a carrier gas.
  • As the carrier gas for example, nitrogen gas, argon gas or helium gas can be used.
  • the epitaxial film 90 is heated, for example, at about 700 ° C. or more and about 1000 ° C. or less.
  • the trench TR having the side wall surface SW is formed on the element formation surface PE on the upper surface P2 by this thermal etching.
  • the etching rate of silicon carbide in this thermal etching is, for example, about 70 ⁇ m / hour. In this case, if the mask layer 61 is made of silicon dioxide, its consumption is remarkably suppressed.
  • the trench TR is formed by thermal etching, a special surface is self-formed on the side wall surface SW, particularly on the base layer 82.
  • the mask layer 61 is removed by an arbitrary method such as etching (FIG. 10).
  • gate oxide film 91 is formed on sidewall surface SW and bottom surface BT of trench TR.
  • Gate oxide film 91 has a portion that connects upper drift layer 81 ⁇ / b> B and source region 83 on base layer 82.
  • the gate oxide film 91 is preferably formed by thermal oxidation.
  • NO annealing using nitrogen monoxide (NO) gas as the atmospheric gas may be performed.
  • the temperature profile has, for example, conditions of a temperature of 1100 ° C. to 1300 ° C. and a holding time of about 1 hour.
  • nitrogen atoms are introduced into the interface region between gate oxide film 91 and base layer 82.
  • a gas other than NO gas may be used as the atmospheric gas.
  • Ar annealing using argon (Ar) as an atmospheric gas may be further performed after the NO annealing.
  • the heating temperature for Ar annealing is preferably higher than the heating temperature for NO annealing and lower than the melting point of the gate oxide film 91.
  • the time during which this heating temperature is maintained is, for example, about 1 hour. Thereby, the formation of interface states in the interface region between gate oxide film 91 and base layer 82 is further suppressed.
  • other inert gas such as nitrogen gas may be used as the atmospheric gas instead of Ar gas.
  • a gate electrode 92 is formed on the gate oxide film 91.
  • gate electrode 92 is formed on gate oxide film 91 so as to at least partially fill the region inside trench TR with gate oxide film 91 interposed therebetween.
  • the gate electrode 92 can be formed by, for example, forming a conductor or doped polysilicon and CMP.
  • interlayer insulating film 93 is formed on gate electrode 92 and gate oxide film 91 so as to cover the exposed surface of gate electrode 92. Etching is performed so that openings are formed in the interlayer insulating film 93 and the gate oxide film 91. Through this opening, each of source region 83 and contact region 84 is exposed on upper surface P2. Next, a source electrode 94 facing the element formation surface PE on the upper surface P2 is formed. Specifically, source electrode 94 in contact with each of source region 83 and n contact region 84 is formed on upper surface P2.
  • the drain electrode 98 facing the lower surface P1 is formed. Specifically, the drain electrode 98 is formed on the lower drift layer 81A via the single crystal substrate 80. A source wiring layer 95 is formed. Thereby, the MOSFET 201 is obtained.
  • upper range RB (FIG. 2) has a structure having only upper drift layer 81B in termination portion TM. In other words, it is not necessary to provide a structure other than the upper drift layer 81B in the termination portion TM in the upper range RB. Therefore, the structure of the MOSFET 201 can be simplified.
  • the element formation surface PE and the termination surface PT are arranged on one plane. Thereby, the shape of the surface of the epitaxial film 90 is simplified. Therefore, the structure of the MOSFET 201 can be further simplified.
  • the portion in the termination part TM is composed only of the upper drift layer 81B.
  • the whole terminal surface PT has n-type. Therefore, no pn junction is provided on the termination surface PT. Therefore, electric field concentration in the vicinity of the end surface PT can be prevented. Therefore, it is possible to prevent a high electric field from being applied in the vicinity of the element formation surface PE adjacent to the termination surface PT. Therefore, destruction of the element part CL in the vicinity of the termination surface PT can be prevented.
  • the breakdown voltage of the MOSFET 201 can be increased.
  • the lower range RA includes the charge compensation region 71, the electric field in the element portion CL is suppressed. Thereby, the breakdown voltage of the MOSFET 201 can be further increased.
  • the structure of the MOSFET 201 increases the voltage burden due to the lower range RA in the terminal portion TM in the off state as compared with the upper range RB. If such a structure is applied to a Si semiconductor device instead of a SiC semiconductor device, the Si layer is likely to be destroyed in the lower range RA, and a high breakdown voltage cannot be obtained. Therefore, the structure of the MOSFET 201 is not very suitable for the Si semiconductor device, and is particularly suitable for the SiC semiconductor device.
  • termination surface PT is arranged so as to be shifted from virtual plane PV including element formation surface PE toward lower surface P1. .
  • the end surface PT and the element formation surface PE are connected by a side surface PS located at the end portion TM.
  • side surface PS is inclined at an angle of less than 90 degrees with respect to element formation surface PE.
  • the side surface PS may be a special surface described later.
  • the upper range RB covers the guard ring region 73.
  • the thickness of the upper range RB between the end surface PT and the intermediate surface PM is preferably 1 ⁇ m or less.
  • the upper range RB is formed, a part of the upper drift layer 81B is removed in the termination part TM. Thereby, the end surface PT shifted from the virtual plane PV including the element formation surface PE toward the lower surface P1 is formed.
  • the partial removal of upper drift layer 81B is performed such that upper range RB remains on guard ring region 73.
  • the partial removal of the upper drift layer 81B can be performed by, for example, thermal etching or reactive ion etching (RIE).
  • the position of the element formation surface PE and the position of the end surface PT are shifted in the thickness direction. Therefore, the influence of the electric field concentration in the vicinity of the termination surface PT on the vicinity of the element formation surface PE can be suppressed. Therefore, destruction of the element part CL in the vicinity of the termination surface PT can be prevented more reliably. Thereby, the breakdown voltage can be further increased.
  • the partial removal of the upper drift layer 81B is performed so that the upper range RB remains on the guard ring region 73.
  • the manufacturing method can be simplified as compared with the case where all of the upper range RB on the guard ring region 73 is removed.
  • the thickness of the upper range RB remaining on the intermediate surface PM is 1 ⁇ m or less, the wraparound of the electric field on the guard ring region 73 can be suppressed.
  • the structure of the MOSFET 202 increases the voltage burden due to the lower range RA in the termination portion TM in the off state as compared with the upper range RB. If such a structure is applied to a Si semiconductor device instead of a SiC semiconductor device, the Si layer is likely to be destroyed in the lower range RA, and a high breakdown voltage cannot be obtained. Therefore, the structure of MOSFET 202 is not very suitable for a Si semiconductor device, and is particularly suitable for a SiC semiconductor device.
  • guard ring region 73 is located on termination surface PT. Since the configuration other than the above is substantially the same as the configuration of the second embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof will not be repeated.
  • the epitaxial film 90 does not have a portion covering the guard ring region 73. Thereby, the wraparound of the electric field on the guard ring region 73 can be prevented. Therefore, destruction of the element part CL in the vicinity of the termination surface PT can be prevented more reliably. Thereby, the breakdown voltage can be further increased.
  • the structure of the MOSFET 203 increases the voltage burden caused by the lower range RA in the terminal portion TM in the off state as compared with the upper range RB. If such a structure is applied to a Si semiconductor device instead of a SiC semiconductor device, the Si layer is likely to be destroyed in the lower range RA, and a high breakdown voltage cannot be obtained. Therefore, the structure of the MOSFET 203 is not very suitable for the Si semiconductor device, and is particularly suitable for the SiC semiconductor device.
  • upper range RB has a structure arranged only in element portion CL among element portion CL and termination portion TM.
  • the upper range RB is provided only outside the terminal end TM. Accordingly, the upper range RB forms the element formation surface PE, and the lower range RA forms the termination surface PT.
  • the entire upper drift layer 81B is removed in the termination portion TM.
  • the upper range RB is provided only in the element part CL among the element part CL and the terminal part TM.
  • the end surface PT shifted from the virtual plane PV including the element formation surface PE toward the lower surface P1 is formed.
  • the structure of the MOSFET 201 can be simplified.
  • the element formation surface PE is configured by the upper range RB
  • the termination surface PT is configured by the lower range RA instead of the upper range RB.
  • the position of the element formation surface PE and the position of the end surface PT are shifted in the thickness direction. Therefore, the influence of the electric field concentration in the vicinity of the termination surface PT on the vicinity of the element formation surface PE can be suppressed. Therefore, destruction of the element part CL in the vicinity of the termination surface PT can be prevented. Thereby, the breakdown voltage can be further increased.
  • the structure of the MOSFET 204 (FIG. 17) is such that the voltage is applied only to the lower range RA without using the upper range RB in the termination portion TM in the off state. If such a structure is applied to a Si semiconductor device instead of a SiC semiconductor device, the Si layer is likely to be destroyed in the lower range RA, and a high breakdown voltage cannot be obtained. Therefore, the structure of the MOSFET 203 is not very suitable for the Si semiconductor device, and is particularly suitable for the SiC semiconductor device.
  • MOSFET 205 of the present embodiment which is a modification of MOSFET 201 (FIG. 2), is a planar type rather than a trench type. That is, the trench TR (FIG. 2) is not provided on the element formation surface PE of the epitaxial film 90, and a planar gate structure is provided. Specifically, impurity regions of a base layer 82P, a source region 83P, and a contact region 84P are formed on the element formation surface PE on the flat upper surface P2. A gate oxide film 91P is provided on the flat P2, and a gate electrode 92P is provided thereon. Since the configuration other than the above is substantially the same as the configuration of the first embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
  • the electric field strength applied to the boundary between the base layer 82P and the upper drift layer 81B, which tends to be a determining factor of the breakdown voltage in the planar MOSFET, is further reduced.
  • the breakdown voltage of the MOSFET 205 can be increased.
  • planar MOSFETs as modifications of the trench MOSFETs 202 to 204 (FIGS. 14, 16, and 17) of the other embodiments 2 to 4 may be used.
  • the trench type MOS structure in the MOSFETs 202 to 204 may be replaced with a planar type MOS structure as shown in the present embodiment.
  • side wall surface SW (FIG. 2) of trench TR preferably has a special surface particularly on base layer 82.
  • the case where the side wall surface SW has a special surface will be described.
  • the side wall surface SW having a special surface includes a surface S1 (first surface).
  • the plane S1 has a plane orientation ⁇ 0-33-8 ⁇ , and preferably has a plane orientation (0-33-8).
  • the side wall surface SW includes the surface S1 microscopically.
  • side wall surface SW further includes a surface S2 (second surface) microscopically.
  • the plane S2 has a plane orientation ⁇ 0-11-1 ⁇ , and preferably has a plane orientation (0-11-1).
  • “microscopic” means that the dimensions are as detailed as at least a dimension of about twice the atomic spacing.
  • TEM Transmission Electron Microscope
  • side wall surface SW has composite surface SR.
  • the composite surface SR is configured by periodically repeating the surfaces S1 and S2. Such a periodic structure can be observed by, for example, TEM or AFM (Atomic Force Microscopy).
  • Composite surface SR has a plane orientation ⁇ 0-11-2 ⁇ , preferably a plane orientation (0-11-2). In this case, the composite surface SR has an off angle of 62 ° macroscopically with respect to the ⁇ 000-1 ⁇ plane.
  • “macroscopic” means ignoring a fine structure having a dimension on the order of atomic spacing. As such a macroscopic off-angle measurement, for example, a general method using X-ray diffraction can be used.
  • the channel direction CD which is the direction in which carriers flow on the channel surface, is along the direction in which the above-described periodic repetition is performed.
  • Si atoms are atoms of A layer (solid line in the figure), B layer atoms (broken line in the figure) located below, C layer atoms (dotted line in the figure) located below, and B layer atoms (not shown) located below this It is provided repeatedly. That is, a periodic laminated structure such as ABCBABCBABCB... Is provided with four layers ABCB as one period.
  • the atoms in each of the four layers ABCB constituting one period described above are (0-11-2) It is not arranged to be completely along the plane.
  • the (0-11-2) plane is shown so as to pass through the position of atoms in the B layer.
  • the atoms in the A layer and the C layer are separated from the (0-11-2) plane. You can see that it is shifted. For this reason, even if the macroscopic plane orientation of the surface of the silicon carbide single crystal, that is, the plane orientation when ignoring the atomic level structure is limited to (0-11-2), the surface is microscopic. Can take various structures.
  • a surface S1 having a surface orientation (0-33-8) and a surface S2 connected to the surface S1 and having a surface orientation different from the surface orientation of the surface S1 are alternately provided. It is configured by being.
  • the length of each of the surface S1 and the surface S2 is twice the atomic spacing of Si atoms (or C atoms).
  • the surface obtained by averaging the surfaces S1 and S2 corresponds to the (0-11-2) surface (FIG. 17).
  • the single crystal structure periodically includes a structure (part of the plane S1) equivalent to a cubic crystal when viewed partially.
  • a surface S1 having a surface orientation (001) in a structure equivalent to the above-described cubic crystal and a surface S2 connected to the surface S1 and having a surface orientation different from the surface orientation of the surface S1 are alternated. It is comprised by being provided in.
  • a plane having a plane orientation (001) in the structure equivalent to a cubic crystal (plane S1 in FIG. 19) and a plane connected to this plane and having a plane orientation different from this plane orientation plane in FIG. 23
  • polytypes other than 4H may constitute the surface according to S2).
  • the polytype may be 6H or 15R, for example.
  • the horizontal axis indicates the angle D1 between the macroscopic plane orientation of the side wall surface SW having the channel surface and the (000-1) plane
  • the vertical axis indicates the mobility MB.
  • the plot group CM corresponds to the case where the side wall surface SW is finished as a special surface by thermal etching
  • the plot group MC corresponds to the case where such thermal etching is not performed.
  • the mobility MB in the plot group MC was maximized when the macroscopic surface orientation of the channel surface was (0-33-8). This is because, when thermal etching is not performed, that is, when the microscopic structure of the channel surface is not particularly controlled, the macroscopic plane orientation is set to (0-33-8). This is probably because the ratio of the formation of the visual plane orientation (0-33-8), that is, the plane orientation (0-33-8) considering the atomic level, stochastically increased.
  • the mobility MB in the plot group CM was maximized when the macroscopic surface orientation of the channel surface was (0-11-2) (arrow EX).
  • the reason for this is that, as shown in FIGS. 22 and 23, a large number of surfaces S1 having a plane orientation (0-33-8) are regularly and densely arranged via the surface S2, so that the surface of the channel surface is fine. This is probably because the proportion of the visual plane orientation (0-33-8) has increased.
  • the mobility MB has an orientation dependency on the composite surface SR.
  • the horizontal axis indicates the angle D2 between the channel direction and the ⁇ 0-11-2> direction
  • the vertical axis indicates the mobility MB (arbitrary unit) of the channel surface.
  • a broken line is added to make the graph easier to see.
  • the angle D2 of the channel direction CD (FIG. 19) is preferably 0 ° or more and 60 ° or less, and more preferably approximately 0 °. all right.
  • the side wall surface SW may further include a surface S3 (third surface) in addition to the composite surface SR (shown in a simplified manner as a straight line in FIG. 26).
  • the off angle of the side wall surface SW with respect to the ⁇ 000-1 ⁇ plane deviates from 62 ° which is the ideal off angle of the composite surface SR. This deviation is preferably small and preferably within a range of ⁇ 10 °.
  • a surface included in such an angle range for example, there is a surface whose macroscopic plane orientation is a ⁇ 0-33-8 ⁇ plane.
  • the off angle of the side wall surface SW with respect to the (000-1) plane deviates from 62 °, which is the ideal off angle of the composite surface SR.
  • This deviation is preferably small and preferably within a range of ⁇ 10 °.
  • a surface included in such an angle range for example, there is a surface whose macroscopic plane orientation is a (0-33-8) plane.
  • the side wall surface SW may include a composite surface SQ configured by periodically repeating the surface S3 and the composite surface SR.
  • a periodic structure can be observed by, for example, TEM or AFM (Atomic Force Microscopy).
  • the silicon carbide semiconductor device may be a MISFET (Metal Insulator Semiconductor Field Effect Transistor) other than a MOSFET, or may be a transistor other than a MISFET, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the silicon carbide semiconductor device may not be a transistor, and may be, for example, a Schottky barrier diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 炭化珪素膜(90)は第1および第2の主面(P1、P2)を有する。第2の主面(P2)は素子形成面(PE)と終端面(PT)とを有する。炭化珪素膜(90)は、第1の主面(P1)と第1の主面(P1)と反対の中間面(PM)とをなす第1の範囲(RA)と、中間面(PM)上に設けられ素子形成面(PE)をなす第2の範囲(RB)とを有する。第1の範囲(RA)は、第1の耐圧保持層(81A)と、終端部(TM)内において中間面(PM)に部分的に設けられたガードリング領域(73)とを含む。第2の範囲(RB)は第2の耐圧保持層(81B)を有する。第2の範囲(RB)は、終端部(TM)内において第2の耐圧保持層(81B)のみを有する構造、および、素子部(CL)および終端部(TM)のうち素子部(CL)にのみ配置される構造のいずれかを有する。

Description

炭化珪素半導体装置およびその製造方法
 この発明は、炭化珪素(SiC)半導体装置およびその製造方法に関するものであり、特に、ガードリング領域を有する炭化珪素半導体装置およびその製造方法に関するものである。
 広く用いられている電力用半導体装置であるSi(シリコン)MOSFET(Metal Oxide Semiconductor Field Effect Transistor)に関して、耐圧の主な決定要因は、耐圧保持領域をなすドリフト層が耐え得る電界強度の上限である。Siから作られたドリフト層は、0.3MV/cm程度以上の電界が印加された箇所で破壊し得る。このためMOSFETのドリフト層全体において電界強度を所定の値未満に抑えることが必要である。最も単純な方法はドリフト層の不純物濃度を低くすることである。しかしながらこの方法ではMOSFETのオン抵抗が大きくなるという短所がある。すなわちオン抵抗と耐圧との間にトレードオフ関係が存在する。
 特開平9-191109号公報において、典型的なSi MOSFETについて、Siの物性値から得られる理論限界を考慮しつつ、オン抵抗と耐圧との間のトレードオフ関係の説明がなされている。そしてこのトレードオフを解消するために、ドレイン電極上のn型基板の上のn型ベース層中において、下側のp型埋込層と、上側のp型埋込層とを付加することが開示されている。下側のp型埋込層および上側の埋込層によってn型ベース層は、各々等しい厚さを有する下段と中断と上段とに区分される。この公報によれば、3つの段の各々によって等しい電圧が分担され、各段の最大電界が限界電界強度以下に保たれる。
 また上記公報は、ガードリング("Field Limiting Ring"とも称される)を有する終端構造を設けることを開示している。具体的には、終端構造において、上述した3つの段の各々に対応する深さ位置にガードリングが設けられる。より具体的には終端部において、n型ベース層中において2つの互いに異なる深さ位置のそれぞれに埋込みガードリングが設けられ、さらにn型ベース層の表面上にもガードリングが設けられる。これら3種類のガードリングによって、終端構造においても、各段の最大電界が限界強度以下に保たれる。
 なおより一般的には、上記のような埋込みガードリングを有さずn型ベース層の表面上にのみガードリングを有する終端構造の方が、広く用いられている。
特開平9-191109号公報
 オン抵抗と耐圧との間のトレードオフをより大きく改善するための方法として、近年、Siに代わりSiCを用いることが活発に検討されている。SiCはSiと異なり0.4MV/cm以上の電界強度にも十分に耐え得る材料である。すなわち、そのような電界強度下において、Si層は破壊されやすいが、SiC層は破壊されない。このように高い電界が印加され得る場合は、MOSFET構造における特定位置での電界集中に起因した破壊が問題となる。たとえばトレンチ型MOSFETの場合、SiC層中ではなくゲート絶縁膜中での電界集中に起因したゲート絶縁膜の破壊現象が、耐圧の主な決定要因である。このように耐圧の決定要因がSi半導体装置とSiC半導体装置との間で異なる。このため、Siの使用を前提としていると考えられる上記公報の技術をSiC半導体装置の耐圧を向上させるために単純に適用することは最善の策ではない。よって、耐圧を維持するための終端構造についても、SiC半導体装置に最適なものを用いることが好ましい。
 終端構造として、一般的なガードリング、すなわち半導体層上のガードリングが用いられた場合、半導体層の表面近傍での電界集中が生じる。この結果、素子部のうち、ガードリングに隣接しかつ半導体層の表面に近い箇所において、電界が集中しやすい。この箇所において、電界集中に起因した破壊現象が生じることがあった。また上記公報に記載のようにガードリングを半導体層中と半導体層上との両方に設ける場合、複数種類のガードリングを有する点で半導体装置の構造が複雑であり、またガードリングを形成するための不純物注入工程の回数が増加する点で製造方法が複雑であった。
 本発明は、上記のような課題を解決するために成されたものであり、この発明の目的は、高い耐圧と簡素な構造とを有する炭化珪素半導体装置およびその製造方法を提供することである。
 本発明の炭化珪素半導体装置は、半導体素子が設けられている素子部と、素子部を取り囲んでいる終端部とを有するものである。炭化珪素半導体装置は、炭化珪素膜と、第1の主電極と、第2の主電極とを有する。炭化珪素膜は第1の主面および第1の主面と反対の第2の主面を有する。第2の主面は、素子部内の素子形成面と、終端部内の終端面とを有する。炭化珪素膜は、第1の主面と第1の主面と反対の中間面とをなす第1の範囲と、中間面上に設けられ素子形成面をなす第2の範囲とを有する。第1の範囲は、第1の導電型を有する第1の耐圧保持層と、終端部内において中間面に部分的に設けられ中間面上において素子部を取り囲み第2の導電型を有するガードリング領域とを含む。第2の範囲は、第1の導電型を有する第2の耐圧保持層を有する。第2の範囲は、終端部内において第2の耐圧保持層のみを有する構造、および、素子部および終端部のうち素子部にのみ配置される構造のいずれかを有する。第1の主電極は第1の主面に面している。第2の主電極は第2の主面の素子形成面に面している。
 この炭化珪素半導体装置によれば、第2の範囲は、終端部内において第2の耐圧保持層のみを有する構造、および、素子部および終端部のうち素子部にのみ配置される構造のいずれかを有する。第2の範囲が終端部内において第2の耐圧保持層のみを有する場合、第2の範囲のうち終端部内に第2の耐圧保持層以外の構造を設ける必要がない。第2の範囲が素子部および終端部のうち素子部にのみ配置される構造を有する場合、終端部内に第2の範囲を設ける必要がない。いずれの場合においても、炭化珪素半導体装置の構造を簡素化することができる。
 また、第2の範囲が終端部内において第2の耐圧保持層のみを有する場合、第2の範囲のうち終端部内の部分が第2の耐圧保持層のみからなる。これにより、終端面全体が第1の導電型を有する。よって終端面上にpn接合が設けられない。よって終端面の近傍における電界集中を防止することができる。よって終端面に隣接する素子形成面の近傍に高電界が印加されることが防止される。第2の範囲が素子部および終端部のうち素子部にのみ配置される構造を有する場合、素子形成面が第2の範囲によって構成されつつ、終端面が第2の範囲ではなく第1の範囲によって構成される。これにより厚さ方向において素子形成面の位置と終端面の位置とがずらされる。よって終端面の近傍における電界集中が及ぼす素子形成面の近傍への影響を抑えることができる。いずれの場合においても、終端面の近傍における素子部の破壊を防止することができる。
 以上述べたように、上記の炭化珪素半導体装置によれば、炭化珪素半導体装置の構造を簡素化し、かつ炭化珪素半導体装置の耐圧を高めることができる。
 第1の範囲は、素子部内において中間面に部分的に設けられ、第2の導電型を有しガードリング領域の不純物濃度に比して低い不純物濃度を有する電荷補償領域を含んでもよい。これにより、素子部内の電界を抑制することで、炭化珪素半導体装置の耐圧をより高めることができる。
 素子形成面と終端面とは一の平面上に配置されていてもよい。これにより炭化珪素膜の表面の形状が単純化される。よって炭化珪素半導体装置の構造をより簡素化することができる。
 終端面は、素子形成面を含む仮想平面から第1の主面の方へずらされて配置されていてもよい。これにより厚さ方向において素子形成面の位置と終端面の位置とがずらされる。よって終端面の近傍における電界集中が及ぼす素子形成面の近傍への影響を抑えることができる。よって終端面の近傍における素子部の破壊をより確実に防止することができる。
 第2の範囲はガードリング領域を覆っていてもよい。すなわちガードリング領域上に第2の範囲が残存していてもよい。この場合、ガードリング領域上の第2の範囲の全てが除去される場合に比して、炭化珪素半導体装置の製造方法を簡素化することができる。
 ガードリング領域は終端面に位置していてもよい。この場合、炭化珪素膜は、ガードリング領域を覆う部分を有しない。よってガードリング上における電界の回り込みを防止することができる。よって終端面の近傍における素子部の破壊をより確実に防止することができる。
 本発明の炭化珪素半導体装置の製造方法は、半導体素子が設けられている素子部と素子部を取り囲んでいる終端部とを有する炭化珪素半導体装置の製造方法である。炭化珪素半導体装置は、第1の主面および第1の主面と反対の第2の主面を有する炭化珪素膜を含む。第2の主面は、素子部内の素子形成面と、終端部内の終端面とを有する。炭化珪素半導体装置の製造方法は、以下の工程を有する。
 第1の主面と第1の主面と反対の中間面とをなす第1の範囲が形成される。第1の範囲を形成する工程は、第1の主面および中間面をなし第1の導電型を有する第1の耐圧保持層を形成する工程と、終端部内において中間面に部分的に、中間面上において素子部を取り囲み第2の導電型を有するガードリング領域を形成する工程とを含む。中間面上に、素子形成面をなす第2の範囲が形成される。第2の範囲を形成する工程は、ガードリング領域を形成する工程の後に、中間面上に、第1の導電型を有する第2の耐圧保持層を形成する工程を含む。第2の範囲を形成する工程は、第2の範囲が、終端部内において第2の耐圧保持層のみを有する構造、および、素子部および終端部のうち素子部にのみ配置される構造のいずれかを有するように行わる。第1の主面に面する第1の主電極が形成される。第2の主面の素子形成面に面する第2の主電極が形成される。
 この製造方法によれば、第2の範囲は、終端部内において第2の耐圧保持層のみを有する構造、および、素子部および終端部のうち素子部にのみ配置される構造のいずれかを有する。第2の範囲が終端部内において第2の耐圧保持層のみを有する場合、第2の範囲のうち終端部内の部分が第2の耐圧保持層のみからなる。これにより、終端面全体が第1の導電型を有する。よって終端面上にpn接合が設けられない。よって終端面の近傍における電界集中を防止することができる。よって終端面に隣接する素子形成面の近傍に高電界が印加されることが防止される。第2の範囲が素子部および終端部のうち素子部にのみ配置される構造を有する場合、素子形成面が第2の範囲によって構成されつつ、終端面が第2の範囲ではなく第1の範囲によって構成される。これにより厚さ方向において素子形成面の位置と終端面の位置とがずらされる。よって終端面の近傍における電界集中が及ぼす素子形成面の近傍への影響を抑えることができる。上記いずれの場合においても、終端面の近傍における素子部の破壊を防止することができる。
 また、第2の範囲は、終端部内において第2の導電型を有する部分を含む必要がない。これにより炭化珪素半導体装置の製造方法を簡素化することができる。
 以上述べたように、上記の製造方法によれば、炭化珪素半導体装置の耐圧を高め、かつ製造方法を簡素化することができる。
 第2の範囲を形成する工程は、終端部内において第2の耐圧保持層の少なくとも一部を除去することによって、素子形成面を含む仮想平面から第1の主面の方へずらされた終端面を形成する工程を含んでもよい。これにより厚さ方向において素子形成面の位置と終端面の位置とがずらされる。よって終端面の近傍における電界集中が及ぼす素子形成面の近傍への影響を抑えることができる。よって終端面の近傍における素子部の破壊をより確実に防止することができる。
 本発明によれば上述したように、炭化珪素半導体装置の構造を簡素化し、かつ炭化珪素半導体装置の耐圧を高めることができる。
本発明の実施の形態1における炭化珪素半導体装置の構成を概略的に示す平面図である。 図1の線II-IIに沿う概略的な部分断面図である。 図1の破線部IIIにおける、炭化珪素半導体装置が有する炭化珪素膜の概略的な部分断面斜視図である。 図2の炭化珪素半導体装置の製造方法の第1工程を概略的に示す部分断面図である。 図2の炭化珪素半導体装置の製造方法の第2工程を概略的に示す部分断面図である。 図2の炭化珪素半導体装置の製造方法の第3工程を概略的に示す部分断面図である。 図2の炭化珪素半導体装置の製造方法の第4工程を概略的に示す部分断面図である。 図2の炭化珪素半導体装置の製造方法の第5工程を概略的に示す部分断面図である。 図2の炭化珪素半導体装置の製造方法の第6工程を概略的に示す部分断面図である。 図2の炭化珪素半導体装置の製造方法の第7工程を概略的に示す部分断面図である。 図2の炭化珪素半導体装置の製造方法の第8工程を概略的に示す部分断面図である。 図2の炭化珪素半導体装置の製造方法の第9工程を概略的に示す部分断面図である。 図2の炭化珪素半導体装置の製造方法の第10工程を概略的に示す部分断面図である。 本発明の実施の形態2における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 図14の炭化珪素半導体装置の製造方法の一工程を概略的に示す部分断面図である。 本発明の実施の形態3における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 本発明の実施の形態4における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 本発明の実施の形態5における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 炭化珪素半導体装置が有する炭化珪素膜の表面の微細構造を概略的に示す部分断面図である。 ポリタイプ4Hの六方晶における(000-1)面の結晶構造を示す図である。 図20の線XXI-XXIに沿う(11-20)面の結晶構造を示す図である。 図19の複合面の表面近傍における結晶構造を(11-20)面内において示す図である。 図19の複合面を(01-10)面から見た図である。 巨視的に見たチャネル面および(000-1)面の間の角度と、チャネル移動度との関係の一例を、熱エッチングが行われた場合と行われなかった場合との各々について示すグラフ図である。 チャネル方向および<0-11-2>方向の間の角度と、チャネル移動度との関係の一例を示すグラフ図である。 図19の変形例を示す図である。
 以下、本発明の実施の形態について図に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
 (実施の形態1)
 図1に示すように、MOSFET201(炭化珪素半導体装置)は、トランジスタ素子(半導体素子)が設けられている素子部CLと、素子部CLを取り囲んでいる終端部TMとを有するものである。図2に示すように、MOSFET201は、単結晶基板80と、エピタキシャル膜90(炭化珪素膜)と、ゲート酸化膜91(ゲート絶縁膜)と、ゲート電極92と、ドレイン電極98(第1の主電極)と、ソース電極94(第2の主電極)と、層間絶縁膜93と、ソース配線層95とを有する。
 単結晶基板80は、n型(第1の導電型)の炭化珪素から作られている。単結晶基板80は、六方晶系の結晶構造を有することが好ましく、ポリタイプ4Hを有することがより好ましい。エピタキシャル膜90(図3)は、単結晶基板80上にエピタキシャルに形成された炭化珪素膜である。エピタキシャル膜90は、単結晶基板80に接する下面P1(第1の主面)と、上面P2(第1の主面と反対の第2の主面)とを有する。上面P2は、素子部CL内の素子形成面PEと、終端部TM内の終端面PTとを有する。エピタキシャル膜90は下側範囲RA(第1の範囲)と上側範囲RB(第2の範囲)とを有する。
 下側範囲RAは、下面P1と、下面P1と反対の中間面PMとをなしている。下側範囲RAは、n型を有する下側ドリフト層81A(第1の耐圧保持層)と、p型(第1の導電型と異なる第2の導電型)を有する電荷補償領域71と、p型を有するJTE(Junction Termination Extension)領域72と、p型を有するガードリング領域73とを有する。
 下側ドリフト層81Aは、好ましくは単結晶基板80の不純物濃度に比して低い不純物濃度を有する。下側ドリフト層81Aの不純物濃度は、好ましくは1×1015cm-3以上5×1016cm-3以下であり、たとえば8×1015cm-3である。
 電荷補償領域71は、素子部CL内において中間面PM上に部分的に設けられている。電荷補償領域71は2.5×1013cm-3程度以上の不純物濃度を有することが好ましい。
 JTE領域72は、終端部TM内において中間面PM上に部分的に設けられており、電荷補償領域71に接しており、素子部CLを取り囲んでいる。JTE領域72は電荷補償領域71の不純物濃度に比して低い不純物濃度を有する。
 ガードリング領域73は、終端部TM内において中間面PMに部分的に設けられている。ガードリング領域73は中間面PM上において、素子部CLを取り囲んでおり、JTE領域72から離れている。ガードリング領域73は、電荷補償領域71の不純物濃度に比して低い不純物濃度を有することが好ましく、JTE領域72の不純物濃度と同様の不純物濃度を有してもよい。
 上側範囲RBは、中間面PM上に設けられており、素子形成面PEおよび終端面PTをなしている。素子形成面PEと終端面PTとは一の平面上に配置されている。上側範囲RBは、図2および図3に示すように、n型を有する上側ドリフト層81B(第2の耐圧保持層)と、p型を有するベース層82と、n型を有するソース領域83と、p型を有するコンタクト領域84とを有する。上側範囲RBは、終端部TM内において上側ドリフト層81Bのみを有する構造を有する。下側ドリフト層81Aおよび上側ドリフト層81Bは素子部CLにおいてドリフト領域81(耐圧保持領域)を構成している。
 上側ドリフト層81Bは、単結晶基板80の不純物濃度に比して低い不純物濃度を有することが好ましく、下側ドリフト層81Aの不純物濃度と同じ不純物濃度を有することがより好ましい。ベース層82は素子部CL内において上側ドリフト層81B上に設けられている。ベース層82は、たとえば不純物濃度1×1018cm-3を有する。ソース領域83は、ベース層82上に設けられており、ベース層82によって上側ドリフト層81Bから隔てられている。コンタクト領域84はベース層82につながっている。
 エピタキシャル膜90の上側範囲RBにおいて素子形成面PE上にトレンチTRが設けられている。トレンチTRは側壁面SWおよび底面BTを有する。側壁面SWはソース領域83およびベース層82を貫通して上側ドリフト層81Bに至っている。よって側壁面SWはベース層82によって構成された部分を含む。側壁面SWはベース層82上において、MOSFET201のチャネル面を含む。
 側壁面SWはエピタキシャル膜90の素子形成面PEに対して傾斜しており、これによりトレンチTRは開口に向かってテーパ状に拡がっている。側壁面SWの面方位は、{000-1}面に対して50°以上80°以下傾斜していることが好ましく、(000-1)面に対して50°以上80°以下傾斜していることがより好ましい。
 側壁面SWは、巨視的に見て、面方位{0-33-8}、{0-11-2}、{0-11-4}および{0-11-1}のいずれかを有してもよい。なお面方位{0-33-8}は{000-1}面から54.7度のオフ角を有する。面方位{0-11-1}は{000-1}面から75.1度のオフ角を有する。よって面方位{0-33-8}、{0-11-2}、{0-11-4}および{0-11-1}は、オフ角54.7~75.1度に対応する。オフ角について5度程度の製造誤差が想定されることを考慮すると、側壁面SWが{000-1}面に対して50度以上80度以下程度傾斜するような加工を行うことで、側壁面SWの巨視的な面方位を、{0-33-8}、{0-11-2}、{0-11-4}および{0-11-1}のいずれかとしやすくなる。
 側壁面SWは、特にベース層82上の部分において、所定の結晶面(特殊面とも称する)を有することが好ましい。特殊面の詳細については後述する。
 底面BTは上側範囲RBによって下側範囲RAから離れている。底面BTは、本実施の形態においてはエピタキシャル膜90の上面P2とほぼ平行な平坦な形状を有する。なお底面BTは平坦面でなくてもよく、図2の断面視においてほぼ点状であってもよく、この場合、トレンチTRはV字形状を有する。
 ゲート酸化膜91はトレンチTRの側壁面SWおよび底面BTの各々を覆っている。ゲート酸化膜91は、ベース層82上において上側ドリフト層81Bとソース領域83とを互いにつなぐ部分を有する。ゲート電極92は、MOSFET201のオン状態およびオフ状態の間のスイッチングを行うためのものである。ゲート電極92はゲート酸化膜91上に設けられている。ゲート電極92はゲート酸化膜91を介して側壁面SW上に配置されている。
 ソース電極94は上面P2の素子形成面PEに面している。具体的には、ソース電極94は素子形成面PE上においてソース領域83およびコンタクト領域84の各々に接している。ソース電極94は、オーミック電極であり、たとえばシリサイドから作られている。ソース配線層95はソース電極94に接している。ソース配線層95は、たとえばアルミニウム層である。層間絶縁膜93はゲート電極92とソース配線層95との間を絶縁している。
 ドレイン電極98は下面P1に面している。具体的にはドレイン電極98は、単結晶基板80を介してエピタキシャル膜90の下面P1上に設けられている。
 次にMOSFET201の製造方法について、以下に説明する。
 図4および図5に示すように、単結晶基板80上に下側範囲RAが形成される。具体的には、以下のとおりである。
 まず図4に示すように、単結晶基板80上における炭化珪素のエピタキシャル成長によって、下面P1および中間面PMをなす下側ドリフト層81Aが形成される。単結晶基板80の、エピタキシャル成長が行われる面は、{000-1}面から8度以内のオフ角を有することが好ましく、(000-1)面から8度以内のオフ角を有することがより好ましい。エピタキシャル成長はCVD法により行われ得る。原料ガスとしては、たとえば、シラン(SiH4)とプロパン(C38)との混合ガスを用い得る。この際、不純物として、たとえば窒素(N)やリン(P)を導入することが好ましい。
 次に図5に示すように、この時点では露出されている中間面PM上への不純物イオン注入によって、不純物領域が形成される。具体的には、素子部CL内において中間面PM上に部分的に、電荷補償領域71が形成される。また終端部TM内において中間面PM上に部分的に、JTE領域72と、ガードリング領域73とが形成される。各不純物領域の形成の順番は任意である。本実施の形態においては、p型を付与するための不純物、すなわちアクセプタが注入される。アクセプタとしては、たとえばアルミニウムを用い得る。
 図6~図10に示すように、中間面PM上に上側範囲RBが形成される。上側範囲RBを形成する工程は、上側範囲RBが、終端部TM内において上側ドリフト層81Bのみを有する構造を有するように行わる。具体的には、以下のとおりである。
 まず図6に示すように、下側ドリフト層81Aと同様の方法によって、上側ドリフト層81Bが形成される。これにより下側範囲RAおよび上側範囲RBを有するエピタキシャル膜90が得られる。
 次に図7に示すように、素子部CLにおけるエピタキシャル膜90の上面P2上への不純物イオン注入によって、不純物領域が形成される。具体的には、素子部CL内において上側ドリフト層81B上にベース層82が形成される。またベース層82上に、ベース層82によって上側ドリフト層81Bから隔てられたソース領域83が形成される。また素子部CL内において上面P2からベース層82まで延びるコンタクト領域84が形成される。各不純物領域の形成の順番は任意である。なお終端部TMにおいては、上面P2上への不純物イオン注入を行う必要がない。
 次に、不純物を活性化するための熱処理が行われる。この熱処理の温度は、好ましくは1500℃以上1900℃以下であり、たとえば1700℃程度である。熱処理の時間は、たとえば30分程度である。熱処理の雰囲気は、好ましくは不活性ガス雰囲気であり、たとえばアルゴン雰囲気である。
 図8に示すように、エピタキシャル膜90の上面P2上に、開口部を有するマスク層61が形成される。開口部はトレンチTR(図2)の位置に対応して形成される。マスク層61は、二酸化珪素から作られることが好ましく、熱酸化によって形成されることがより好ましい。本実施の形態においては、開口部は、上面P2のうち素子部CL内の部分の上のみに形成される。
 図9に示すように、マスク層61を用いた熱エッチングが行われる。具体的には、加熱されたエピタキシャル膜90へ、反応性ガスの供給が行われる。反応性ガスは、加熱下において炭化珪素と反応し得るものであり、好ましくはハロゲンガスを含む。反応性ガスは、たとえば、Cl2、BCl3、CF4、およびSF6の少なくともいずれかを含有するものであり、特にCl2を含有するものが好ましい。反応性ガスはさらに酸素ガスを含んでもよい。また反応性ガスはキャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素ガス、アルゴンガスまたはヘリウムガスを用いることができる。エピタキシャル膜90の加熱は、たとえば700℃程度以上1000℃程度以下程度で行われる。
 この熱エッチングにより上面P2の素子形成面PEに、側壁面SWを有するトレンチTRが形成される。この熱エッチングにおける炭化珪素のエッチング速度はたとえば約70μm/時になる。この場合に、マスク層61が二酸化珪素から作られていれば、その消耗が顕著に抑制される。熱エッチングによるトレンチTRの形成時に、側壁面SW上、特にベース層82上において、特殊面が自己形成される。次にマスク層61がエッチングなど任意の方法により除去される(図10)。
 図11に示すように、トレンチTRの側壁面SWおよび底面BTの上にゲート酸化膜91が形成される。ゲート酸化膜91は、ベース層82上において上側ドリフト層81Bとソース領域83とを互いにつなぐ部分を有する。ゲート酸化膜91は、熱酸化により形成されることが好ましい。
 ゲート酸化膜91の形成後に、雰囲気ガスとして一酸化窒素(NO)ガスを用いるNOアニールが行われてもよい。温度プロファイルは、たとえば、温度1100℃以上1300℃以下、保持時間1時間程度の条件を有する。これにより、ゲート酸化膜91とベース層82との界面領域に窒素原子が導入される。その結果、界面領域における界面準位の形成が抑制されることで、チャネル移動度を向上させることができる。なお、このような窒素原子の導入が可能であれば、NOガス以外のガスが雰囲気ガスとして用いられてもよい。このNOアニールの後にさらに、雰囲気ガスとしてアルゴン(Ar)を用いるArアニールが行われてもよい。Arアニールの加熱温度は、上記NOアニールの加熱温度よりも高く、ゲート酸化膜91の融点よりも低いことが好ましい。この加熱温度が保持される時間は、たとえば1時間程度である。これにより、ゲート酸化膜91とベース層82との界面領域における界面準位の形成がさらに抑制される。なお、雰囲気ガスとして、Arガスに代えて窒素ガスなどの他の不活性ガスが用いられてもよい。
 図12に示すように、ゲート酸化膜91上にゲート電極92が形成される。具体的には、トレンチTRの内部の領域をゲート酸化膜91を介して少なくとも部分的に埋めるように、ゲート酸化膜91上にゲート電極92が形成される。ゲート電極92の形成方法は、たとえば、導体またはドープトポリシリコンの成膜とCMPとによって行い得る。
 図13を参照して、ゲート電極92の露出面を覆うように、ゲート電極92およびゲート酸化膜91上に層間絶縁膜93が形成される。層間絶縁膜93およびゲート酸化膜91に開口部が形成されるようにエッチングが行われる。この開口部により上面P2上においてソース領域83およびコンタクト領域84の各々が露出される。次に上面P2の素子形成面PEに面するソース電極94が形成される。具体的には、上面P2上においてソース領域83およびnコンタクト領域84の各々に接するソース電極94が形成される。
 再び図2を参照して、下面P1に面するドレイン電極98が形成される。具体的には、下側ドリフト層81A上に単結晶基板80を介してドレイン電極98が形成される。ソース配線層95が形成される。これによりMOSFET201が得られる。
 本実施の形態によれば、上側範囲RB(図2)は、終端部TM内において上側ドリフト層81Bのみを有する構造を有する。言い換えれば、上側範囲RBのうち終端部TM内に上側ドリフト層81B以外の構造を設ける必要がない。よってMOSFET201の構造を簡素化することができる。また素子形成面PEと終端面PTとは一の平面上に配置されている。これによりエピタキシャル膜90の表面の形状が単純化される。よってMOSFET201の構造をより簡素化することができる。
 また上側範囲RBのうち終端部TM内の部分が上側ドリフト層81Bのみからなる。これにより、終端面PT全体がn型を有する。よって終端面PT上にpn接合が設けられない。よって終端面PTの近傍における電界集中を防止することができる。よって終端面PTに隣接する素子形成面PEの近傍に高電界が印加されることが防止される。よって終端面PTの近傍における素子部CLの破壊を防止することができる。これによりMOSFET201の耐圧を高めることができる。また下側範囲RAが電荷補償領域71を含むことにより、素子部CL内の電界が抑制される。これによりMOSFET201の耐圧をより高めることができる。
 なおMOSFET201(図2)の構造は、オフ状態の際に終端部TMにおいて、上側範囲RBに比して下側範囲RAによる電圧負担を高めるものである。このような構造を、仮にSiC半導体装置でなくSi半導体装置に適用したとすると、下側範囲RAにおけるSi層の破壊現象が生じやすくなり、高い耐圧が得られなくなる。よってMOSFET201の構造は、Si半導体装置にはあまり適しておらず、SiC半導体装置に特に適したものである。
 (実施の形態2)
 図14に示すように、本実施の形態のMOSFET202(炭化珪素半導体装置)においては、終端面PTが、素子形成面PEを含む仮想平面PVから、下面P1の方へずらされて配置されている。終端面PTと素子形成面PEとは、終端部TMに位置する側面PSによってつながっている。側面PSは、本実施の形態においては、素子形成面PEに対して90度未満の角度で傾いている。側面PSは、後述する特殊面であってもよい。上側範囲RBはガードリング領域73を覆っている。終端面PTおよび中間面PMの間における上側範囲RBの厚さは1μm以下であることが好ましい。
 MOSFET202の製造においては、図15に示すように、上側範囲RBが形成される際に、終端部TM内において上側ドリフト層81Bの一部が除去される。これにより、素子形成面PEを含む仮想平面PVから下面P1の方へずらされた終端面PTが形成される。上側ドリフト層81Bの部分的な除去は、ガードリング領域73上に上側範囲RBが残存するように行われる。上側ドリフト層81Bの部分的な除去は、たとえば、熱エッチングまたは反応性イオンエッチング(RIE)により行い得る。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、厚さ方向において素子形成面PEの位置と終端面PTの位置とがずらされる。よって終端面PTの近傍における電界集中が及ぼす素子形成面PEの近傍への影響を抑えることができる。よって終端面PTの近傍における素子部CLの破壊をより確実に防止することができる。これにより耐圧をより高めることができる。
 また上側ドリフト層81Bの部分的な除去は、ガードリング領域73上に上側範囲RBが残存するように行われる。これにより、ガードリング領域73上の上側範囲RBの全てが除去される場合に比して、製造方法を簡素化することができる。中間面PM上に残存した上側範囲RBの厚さが1μm以下とされる場合、ガードリング領域73上における電界の回り込みを抑制することができる。
 なおMOSFET202(図14)の構造は、オフ状態の際に終端部TMにおいて、上側範囲RBに比して下側範囲RAによる電圧負担を高めるものである。このような構造を、仮にSiC半導体装置でなくSi半導体装置に適用したとすると、下側範囲RAにおけるSi層の破壊現象が生じやすくなり、高い耐圧が得られなくなる。よってMOSFET202の構造は、Si半導体装置にはあまり適しておらず、SiC半導体装置に特に適したものである。
 (実施の形態3)
 図16に示すように、本実施の形態のMOSFET203(炭化珪素半導体装置)においてはガードリング領域73が終端面PTに位置している。なお、上記以外の構成については、上述した実施の形態2の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、エピタキシャル膜90はガードリング領域73を覆う部分を有しない。これによりガードリング領域73上における電界の回り込みを防止することができる。よって終端面PTの近傍における素子部CLの破壊をより確実に防止することができる。これにより耐圧をより高めることができる。
 なおMOSFET203(図16)の構造は、オフ状態の際に終端部TMにおいて、上側範囲RBに比して下側範囲RAによる電圧負担を高めるものである。このような構造を、仮にSiC半導体装置でなくSi半導体装置に適用したとすると、下側範囲RAにおけるSi層の破壊現象が生じやすくなり、高い耐圧が得られなくなる。よってMOSFET203の構造は、Si半導体装置にはあまり適しておらず、SiC半導体装置に特に適したものである。
 (実施の形態4)
 図17に示すように、本実施の形態のMOSFET204(炭化珪素半導体装置)においては、上側範囲RBは、素子部CLおよび終端部TMのうち素子部CLにのみ配置される構造を有する。言い換えれば、上側範囲RBは終端部TMの外側にのみ設けられている。これにより、上側範囲RBが素子形成面PEをなし、また下側範囲RAが終端面PTをなしている。
 MOSFET204の製造方法においては、図15と類似の工程が上側範囲RBを形成するために行われるに際して、終端部TM内において上側ドリフト層81Bの全部が除去される。この結果、上側範囲RBが、素子部CLおよび終端部TMのうち素子部CLにのみ設けられる。これにより、素子形成面PEを含む仮想平面PVから下面P1の方へずらされた終端面PTが形成される。
 なお、上記以外の構成については、上述した実施の形態3の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、終端部TM内に上側範囲RBを設ける必要がない。よってMOSFET201の構造を簡素化することができる。また素子形成面PEが上側範囲RBによって構成されつつ、終端面PTが上側範囲RBではなく下側範囲RAによって構成される。これにより厚さ方向において素子形成面PEの位置と終端面PTの位置とがずらされる。よって終端面PTの近傍における電界集中が及ぼす素子形成面PEの近傍への影響を抑えることができる。よって終端面PTの近傍における素子部CLの破壊を防止することができる。これにより耐圧をより高めることができる。
 なおMOSFET204(図17)の構造は、オフ状態の際に終端部TMにおいて、上側範囲RBを用いず下側範囲RAにのみ電圧を負担させるものである。このような構造を、仮にSiC半導体装置でなくSi半導体装置に適用したとすると、下側範囲RAにおけるSi層の破壊現象が生じやすくなり、高い耐圧が得られなくなる。よってMOSFET203の構造は、Si半導体装置にはあまり適しておらず、SiC半導体装置に特に適したものである。
 (実施の形態5)
 図18に示すように、MOSFET201(図2)の変形例である本実施の形態のMOSFET205は、トレンチ型ではなくプレーナ型である。すなわちエピタキシャル膜90の素子形成面PE上には、トレンチTR(図2)が設けられておらず、プレーナゲート構造が設けられている。具体的には、平坦な上面P2における素子形成面PE上に、ベース層82Pと、ソース領域83Pと、コンタクト領域84Pとの不純物領域が形成されている。また平坦なP2上にゲート酸化膜91Pが設けられ、その上にゲート電極92Pが設けられている。なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、プレーナ型MOSFETにおいて耐圧の決定要因となりやすい、ベース層82Pと上側ドリフト層81Bとの境界に加わる電界強度が、より低くされる。これによりMOSFET205の耐圧を高めることができる。
 なお他の実施の形態2~4のトレンチ型のMOSFET202~204(図14、図16および図17)の変形例としてのプレーナ型MOSFETが用いられてもよい。言い換えれば、MOSFET202~204におけるトレンチ型MOS構造が、本実施の形態に示すようなプレーナ型MOS構造に置き換えられてもよい。
 (特殊面の構成)
 上述した「特殊面」について詳しく説明する。上述したように、トレンチTRの側壁面SW(図2)は、特にベース層82上において特殊面を有することが好ましい。以下、側壁面SWが特殊面を有する場合について説明する。
 図19に示すように、特殊面を有する側壁面SWは、面S1(第1の面)を含む。面S1は面方位{0-33-8}を有し、好ましくは面方位(0-33-8)を有する。好ましくは側壁面SWは面S1を微視的に含む。好ましくは側壁面SWはさらに面S2(第2の面)を微視的に含む。面S2は面方位{0-11-1}を有し、好ましくは面方位(0-11-1)を有する。ここで「微視的」とは、原子間隔の2倍程度の寸法を少なくとも考慮する程度に詳細に、ということを意味する。このように微視的な構造の観察方法としては、たとえばTEM(Transmission Electron Microscope)を用いることができる。
 好ましくは側壁面SWは複合面SRを有する。複合面SRは、面S1およびS2が周期的に繰り返されることによって構成されている。このような周期的構造は、たとえば、TEMまたはAFM(Atomic Force Microscopy)により観察し得る。複合面SRは面方位{0-11-2}を有し、好ましくは面方位(0-11-2)を有する。この場合、複合面SRは{000-1}面に対して巨視的に62°のオフ角を有する。ここで「巨視的」とは、原子間隔程度の寸法を有する微細構造を無視することを意味する。このように巨視的なオフ角の測定としては、たとえば、一般的なX線回折を用いた方法を用い得る。好ましくは、チャネル面上においてキャリアが流れる方向であるチャネル方向CDは、上述した周期的繰り返しが行われる方向に沿っている。
 次に、複合面SRの詳細な構造について説明する。
 一般に、ポリタイプ4Hの炭化珪素単結晶を(000-1)面から見ると、図20に示すように、Si原子(またはC原子)は、A層の原子(図中の実線)と、この下に位置するB層の原子(図中の破線)と、この下に位置するC層の原子(図中の一点鎖線)と、この下に位置するB層の原子(図示せず)とが繰り返し設けられている。つまり4つの層ABCBを1周期としてABCBABCBABCB・・・のような周期的な積層構造が設けられている。
 図21に示すように、(11-20)面(図20の線XXI-XXIの断面)において、上述した1周期を構成する4つの層ABCBの各層の原子は、(0-11-2)面に完全に沿うようには配列されていない。図21においてはB層の原子の位置を通るように(0-11-2)面が示されており、この場合、A層およびC層の各々の原子は(0-11-2)面からずれていることがわかる。このため、炭化珪素単結晶の表面の巨視的な面方位、すなわち原子レベルの構造を無視した場合の面方位が(0-11-2)に限定されたとしても、この表面は、微視的には様々な構造をとり得る。
 図22に示すように、複合面SRは、面方位(0-33-8)を有する面S1と、面S1につながりかつ面S1の面方位と異なる面方位を有する面S2とが交互に設けられることによって構成されている。面S1および面S2の各々の長さは、Si原子(またはC原子)の原子間隔の2倍である。なお面S1および面S2が平均化された面は、(0-11-2)面(図17)に対応する。
 図23に示すように、複合面SRを(01-10)面から見て単結晶構造は、部分的に見て立方晶と等価な構造(面S1の部分)を周期的に含んでいる。具体的には複合面SRは、上述した立方晶と等価な構造における面方位(001)を有する面S1と、面S1につながりかつ面S1の面方位と異なる面方位を有する面S2とが交互に設けられることによって構成されている。このように、立方晶と等価な構造における面方位(001)を有する面(図19においては面S1)と、この面につながりかつこの面方位と異なる面方位を有する面(図23においては面S2)とによって表面を構成することは4H以外のポリタイプにおいても可能である。ポリタイプは、たとえば6Hまたは15Rであってもよい。
 次に図24を参照して、側壁面SWの結晶面と、チャネル面の移動度MBとの関係について説明する。図24のグラフにおいて、横軸は、チャネル面を有する側壁面SWの巨視的な面方位と(000-1)面とのなす角度D1を示し、縦軸は移動度MBを示す。プロット群CMは側壁面SWが熱エッチングによる特殊面として仕上げられた場合に対応し、プロット群MCはそのような熱エッチングがなされない場合に対応する。
 プロット群MCにおける移動度MBは、チャネル面の表面の巨視的な面方位が(0-33-8)のときに最大となった。この理由は、熱エッチングが行われない場合、すなわち、チャネル表面の微視的な構造が特に制御されない場合においては、巨視的な面方位が(0-33-8)とされることによって、微視的な面方位(0-33-8)、つまり原子レベルまで考慮した場合の面方位(0-33-8)が形成される割合が確率的に高くなったためと考えられる。
 一方、プロット群CMにおける移動度MBは、チャネル面の表面の巨視的な面方位が(0-11-2)のとき(矢印EX)に最大となった。この理由は、図22および図23に示すように、面方位(0-33-8)を有する多数の面S1が面S2を介して規則正しく稠密に配置されることで、チャネル面の表面において微視的な面方位(0-33-8)が占める割合が高くなったためと考えられる。
 なお移動度MBは複合面SR上において方位依存性を有する。図25に示すグラフにおいて、横軸はチャネル方向と<0-11-2>方向との間の角度D2を示し、縦軸はチャネル面の移動度MB(任意単位)を示す。破線はグラフを見やすくするために補助的に付してある。このグラフから、チャネル移動度MBを大きくするには、チャネル方向CD(図19)が有する角度D2は、0°以上60°以下であることが好ましく、ほぼ0°であることがより好ましいことがわかった。
 図26に示すように、側壁面SWは複合面SR(図26においては直線で単純化されて示されている。)に加えてさらに面S3(第3の面)を含んでもよい。この場合、側壁面SWの{000-1}面に対するオフ角は、理想的な複合面SRのオフ角である62°からずれる。このずれは小さいことが好ましく、±10°の範囲内であることが好ましい。このような角度範囲に含まれる表面としては、たとえば、巨視的な面方位が{0-33-8}面となる表面がある。より好ましくは、側壁面SWの(000-1)面に対するオフ角は、理想的な複合面SRのオフ角である62°からずれる。このずれは小さいことが好ましく、±10°の範囲内であることが好ましい。このような角度範囲に含まれる表面としては、たとえば、巨視的な面方位が(0-33-8)面となる表面がある。
 より具体的には側壁面SWは、面S3および複合面SRが周期的に繰り返されることによって構成された複合面SQを含んでもよい。このような周期的構造は、たとえば、TEMまたはAFM(Atomic Force Microscopy)により観察し得る。
 (特殊面を有する炭化珪素半導体装置)
 トレンチTRの側壁面SW(図2)が面S1(図19)を含む場合、面方位{0-33-8}を有する面にチャネルが形成される。これにより、オン抵抗のうちチャネル抵抗が占める部分が抑制される。よってオン抵抗を所定の値以下に維持しつつ、ドリフト領域81による抵抗を大きくし得る。よってドリフト領域81の不純物濃度をより低くすることができる。よってMOSFET201の耐圧をより高めることができる。トレンチTRの側壁面SWが面S1および面S2を微視的に含む場合は、オン抵抗をより抑制し得る。よって耐圧をより高めることができる。側壁面SWの面S1およびS2が複合面SRを構成している場合、オン抵抗をより抑制し得る。よって耐圧をより高めることができる。
 (付記)
 上記実施の形態におけるn型(第1の導電型)とp型(第2の導電型)とが入れ替えられた構成も用いられ得る。また電荷補償領域およびJTE領域の一方または両方が省略された構成も用いられ得る。また炭化珪素半導体装置は、MOSFET以外のMISFET(Metal Insulator Semiconductor Field Effect Transistor)であってもよく、またMISFET以外のトランジスタであってもよく、たとえばIGBT(Insulated Gate Bipolar Transistor)であってもよい。また炭化珪素半導体装置はトランジスタでなくてもよく、たとえばショットキーバリアダイオードであってもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 61 マスク層、71 電荷補償領域、72 JTE領域、73 ガードリング領域、80 単結晶基板、81 ドリフト領域(耐圧保持領域)、81A 下側ドリフト層(第1の耐圧保持層)、81B 上側ドリフト層(第2の耐圧保持層)、82,82P ベース層(チャネル形成領域)、83,83P ソース領域、84,84P コンタクト領域、90 エピタキシャル膜(炭化珪素膜)、91,91P ゲート酸化膜(ゲート絶縁膜)、92,92P ゲート電極、93 層間絶縁膜、94 ソース電極(第2の主電極)、98 ドレイン電極(第1の主電極)、200~205 MOSFET(炭化珪素半導体装置)、BT 底面、CL 素子部、PM 中間面、P1 下面(第1の主面)、P2 上面(第2の主面)、PE 素子形成面、PS 側面、PV 仮想平面、RA 下側範囲(第1の範囲)、RB 上側範囲(第2の範囲)、S1 面(第1の面)、SQ,SR 複合面、SW 側壁面、TM 終端部、TR トレンチ。

Claims (8)

  1.  半導体素子が設けられている素子部と、前記素子部を取り囲んでいる終端部とを有する炭化珪素半導体装置であって、
     第1の主面および前記第1の主面と反対の第2の主面を有する炭化珪素膜を備え、前記第2の主面は前記素子部内の素子形成面と前記終端部内の終端面とを有し、前記炭化珪素膜は、前記第1の主面と前記第1の主面と反対の中間面とをなす第1の範囲と、前記中間面上に設けられ前記素子形成面をなす第2の範囲とを有し、前記第1の範囲は、第1の導電型を有する第1の耐圧保持層と、前記終端部内において前記中間面に部分的に設けられ前記中間面上において前記素子部を取り囲み第2の導電型を有するガードリング領域とを含み、前記第2の範囲は、前記第1の導電型を有する第2の耐圧保持層を有し、前記第2の範囲は、前記終端部内において前記第2の耐圧保持層のみを有する構造、および、前記素子部および前記終端部のうち前記素子部にのみ配置される構造のいずれかを有し、前記炭化珪素半導体装置はさらに
     前記第1の主面に面する第1の主電極と、
     前記第2の主面の前記素子形成面に面する第2の主電極とを備える、炭化珪素半導体装置。
  2.  前記第1の範囲は、前記素子部内において前記中間面に部分的に設けられ、前記第2の導電型を有し前記ガードリング領域の不純物濃度に比して低い不純物濃度を有する電荷補償領域を含む、請求項1に記載の炭化珪素半導体装置。
  3.  前記素子形成面と前記終端面とは一の平面上に配置されている、請求項1または2に記載の炭化珪素半導体装置。
  4.  前記終端面は、前記素子形成面を含む仮想平面から前記第1の主面の方へずらされて配置されている、請求項1または2に記載の炭化珪素半導体装置。
  5.  前記第2の範囲は前記ガードリング領域を覆っている、請求項4に記載の炭化珪素半導体装置。
  6.  前記ガードリング領域は前記終端面に位置している、請求項4に記載の炭化珪素半導体装置。
  7.  半導体素子が設けられている素子部と前記素子部を取り囲んでいる終端部とを有する炭化珪素半導体装置の製造方法であって、前記炭化珪素半導体装置は第1の主面および前記第1の主面と反対の第2の主面を有する炭化珪素膜を含み、前記第2の主面は前記素子部内の素子形成面と前記終端部内の終端面とを有するものであり、前記炭化珪素半導体装置の製造方法は、
     前記第1の主面と前記第1の主面と反対の中間面とをなす第1の範囲を形成する工程を備え、前記第1の範囲を形成する工程は、前記第1の主面および前記中間面をなし第1の導電型を有する第1の耐圧保持層を形成する工程と、前記終端部内において前記中間面に部分的に、前記中間面上において前記素子部を取り囲み第2の導電型を有するガードリング領域を形成する工程とを含み、前記炭化珪素半導体装置の製造方法はさらに
     前記中間面上に、前記素子形成面をなす第2の範囲を形成する工程を備え、前記第2の範囲を形成する工程は、前記ガードリング領域を形成する工程の後に、前記中間面上に、前記第1の導電型を有する第2の耐圧保持層を形成する工程を含み、前記第2の範囲を形成する工程は、前記第2の範囲が、前記終端部内において前記第2の耐圧保持層のみを有する構造、および、前記素子部および前記終端部のうち前記素子部にのみ配置される構造のいずれかを有するように行われ、前記炭化珪素半導体装置の製造方法はさらに
     前記第1の主面に面する第1の主電極を形成する工程と、
     前記第2の主面の前記素子形成面に面する第2の主電極を形成する工程とを備える、炭化珪素半導体装置の製造方法。
  8.  前記第2の範囲を形成する工程は、前記終端部内において前記第2の耐圧保持層の少なくとも一部を除去することによって、前記素子形成面を含む仮想平面から前記第1の主面の方へずらされた前記終端面を形成する工程を含む、請求項7に記載の炭化珪素半導体装置の製造方法。
PCT/JP2013/081864 2013-01-15 2013-11-27 炭化珪素半導体装置およびその製造方法 WO2014112213A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380065488.XA CN104854702B (zh) 2013-01-15 2013-11-27 碳化硅半导体器件及其制造方法
EP13871443.1A EP2947690A4 (en) 2013-01-15 2013-11-27 SILICON CARBIDE SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD THEREFOR
US14/646,666 US10211284B2 (en) 2013-01-15 2013-11-27 Silicon carbide semiconductor device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-004631 2013-01-15
JP2013004631A JP5958352B2 (ja) 2013-01-15 2013-01-15 炭化珪素半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2014112213A1 true WO2014112213A1 (ja) 2014-07-24

Family

ID=51209323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081864 WO2014112213A1 (ja) 2013-01-15 2013-11-27 炭化珪素半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US10211284B2 (ja)
EP (1) EP2947690A4 (ja)
JP (1) JP5958352B2 (ja)
CN (1) CN104854702B (ja)
WO (1) WO2014112213A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478559A (zh) * 2016-07-20 2019-03-15 三菱电机株式会社 碳化硅半导体装置及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6255111B2 (ja) * 2014-09-17 2017-12-27 株式会社日立製作所 半導体装置、インバータモジュール、インバータ、鉄道車両、および半導体装置の製造方法
SE541466C2 (en) * 2017-09-15 2019-10-08 Ascatron Ab A concept for silicon carbide power devices
US10813607B2 (en) * 2018-06-27 2020-10-27 Prismatic Sensors Ab X-ray sensor, method for constructing an x-ray sensor and an x-ray imaging system comprising such an x-ray sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191109A (ja) 1995-11-06 1997-07-22 Toshiba Corp 半導体装置
JPH11330496A (ja) * 1998-05-07 1999-11-30 Hitachi Ltd 半導体装置
JP2003197921A (ja) * 2001-12-26 2003-07-11 Kansai Electric Power Co Inc:The 高耐電圧半導体装置
JP2008016461A (ja) * 2006-06-30 2008-01-24 Toshiba Corp 半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037632A (en) * 1995-11-06 2000-03-14 Kabushiki Kaisha Toshiba Semiconductor device
SE9704149D0 (sv) * 1997-11-13 1997-11-13 Abb Research Ltd A semiconductor device of SiC and a transistor of SiC having an insulated gate
JP4450122B2 (ja) 1999-11-17 2010-04-14 株式会社デンソー 炭化珪素半導体装置
JP4011848B2 (ja) 2000-12-12 2007-11-21 関西電力株式会社 高耐電圧半導体装置
JP3506676B2 (ja) * 2001-01-25 2004-03-15 Necエレクトロニクス株式会社 半導体装置
JP2007258742A (ja) * 2007-05-23 2007-10-04 Kansai Electric Power Co Inc:The 高耐電圧半導体装置
CN102334176A (zh) * 2009-12-16 2012-01-25 住友电气工业株式会社 碳化硅衬底

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191109A (ja) 1995-11-06 1997-07-22 Toshiba Corp 半導体装置
JPH11330496A (ja) * 1998-05-07 1999-11-30 Hitachi Ltd 半導体装置
JP2003197921A (ja) * 2001-12-26 2003-07-11 Kansai Electric Power Co Inc:The 高耐電圧半導体装置
JP2008016461A (ja) * 2006-06-30 2008-01-24 Toshiba Corp 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2947690A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478559A (zh) * 2016-07-20 2019-03-15 三菱电机株式会社 碳化硅半导体装置及其制造方法
CN109478559B (zh) * 2016-07-20 2022-02-11 三菱电机株式会社 碳化硅半导体装置及其制造方法

Also Published As

Publication number Publication date
JP5958352B2 (ja) 2016-07-27
US20160293690A1 (en) 2016-10-06
JP2014138025A (ja) 2014-07-28
US10211284B2 (en) 2019-02-19
CN104854702B (zh) 2018-03-20
EP2947690A1 (en) 2015-11-25
CN104854702A (zh) 2015-08-19
EP2947690A4 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP6064614B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6111673B2 (ja) 炭化珪素半導体装置
US9608074B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP5954140B2 (ja) 炭化珪素半導体装置
WO2014141754A1 (ja) 炭化珪素半導体装置
JP5983415B2 (ja) 炭化珪素半導体装置
JP6075120B2 (ja) 炭化珪素半導体装置
JP6171678B2 (ja) 炭化珪素半導体装置およびその製造方法
US20170207311A1 (en) Silicon carbide semiconductor device and method for manufacturing same
JP2014241368A (ja) 炭化珪素半導体装置
JP5958352B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6098417B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2015019731A1 (ja) 炭化珪素半導体装置
EP2851959B1 (en) Semiconductor device
JP6070155B2 (ja) 炭化珪素半導体装置
WO2014041879A1 (ja) 炭化珪素半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646666

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013871443

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE