WO2014112014A1 - Method for manufacturing heat dissipation structure - Google Patents

Method for manufacturing heat dissipation structure Download PDF

Info

Publication number
WO2014112014A1
WO2014112014A1 PCT/JP2013/007519 JP2013007519W WO2014112014A1 WO 2014112014 A1 WO2014112014 A1 WO 2014112014A1 JP 2013007519 W JP2013007519 W JP 2013007519W WO 2014112014 A1 WO2014112014 A1 WO 2014112014A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
gel
introduction hole
filling
predetermined volume
Prior art date
Application number
PCT/JP2013/007519
Other languages
French (fr)
Japanese (ja)
Inventor
裕巳 関戸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014112014A1 publication Critical patent/WO2014112014A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4338Pistons, e.g. spring-loaded members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present disclosure relates to a method for manufacturing a heat dissipation structure.
  • an electronic component such as a processor element held on an electronic board generates heat when electric power is supplied.
  • the heat generated in such a heating element may damage the heating element.
  • the heat generating element is brought into contact with a heat radiating member having a high thermal conductivity to release heat generated in the heat generating element to the heat radiating member, thereby avoiding thermal damage to the heat generating element.
  • the heat radiating member when the heat radiating member is brought into direct contact with the heat generating element, mechanical stress may be applied from the heat radiating member to the heat generating element at the time of assembly in order to strengthen the contact between the two. In this case, the heating element may be mechanically damaged by this stress. For this reason, in order to relieve the mechanical stress, it is considered to provide a heat radiating gel between the heat generating element and the heat radiating member.
  • a method for manufacturing such a heat dissipation structure for example, as disclosed in Patent Document 1, a method of providing a heat dissipation gel between a heat generating element and a heat dissipation member using a dedicated discharge control device is known. According to this method, by controlling the discharge amount of the heat radiating gel discharged from the nozzle by the discharge control device, a desired amount of the heat radiating gel can be disposed between the heat generating element and the heat radiating member.
  • the amount of heat radiation gel is precisely adjusted by a discharge control device, for example, the amount of discharge from the nozzle is previously measured so as to match the amount of heat radiation gel provided between the heat generating element and the heat radiation member. It is necessary to manage it. Therefore, the work efficiency at the time of manufacture falls.
  • the present disclosure has been made in view of the above-described problems, and an object thereof is to maintain the reliability of the heat dissipation structure after manufacturing while improving work efficiency at the time of manufacturing.
  • a heat generating element that generates heat during operation, a heat radiating member that releases the heat received from the heat generating element to the outside, and formed between the heat generating element and the heat radiating member are formed.
  • a manufacturing method of a heat dissipation structure comprising: the filled space; and a heat dissipation gel that fills the filling space and transfers the heat of the heat generating element to the heat dissipation member.
  • the heat radiating gel having a predetermined volume set to fill the filling space is introduced into the introduction hole of the heat radiating member.
  • the filling space is filled with the predetermined amount of the heat-dissipating gel in the introduction hole.
  • FIG. 1 is an exploded perspective view showing a heat dissipation structure in the first embodiment of the present disclosure.
  • FIG. 2 is an exploded cross-sectional view of the heat dissipation structure in the first embodiment.
  • FIG. 3 is a partial cross-sectional view showing a main part of the heat dissipation structure in the first embodiment.
  • FIG. 4 is an explanatory diagram showing an introduction process in the first embodiment.
  • FIG. 5 is an explanatory view showing an assembly process in the first embodiment.
  • FIG. 6 is an explanatory diagram showing a filling step in the first embodiment.
  • FIG. 7 is a partial cross-sectional view showing the state after the filling step in the first embodiment is completed.
  • FIG. 8 is an explanatory diagram illustrating an introduction process in the second embodiment of the present disclosure.
  • FIG. 9 is an explanatory diagram showing an assembly process in the second embodiment.
  • FIG. 10 is an explanatory view showing a filling step in the second embodiment.
  • FIG. 11 is a partial cross-sectional view showing the state after the filling process in Modification 1 is completed.
  • FIG. 12 is a cross-sectional view showing a heat dissipation structure in the second modification.
  • the heat dissipation structure 1 of the electronic device of the first embodiment includes a processor element 200, a main substrate 400, a heat dissipation gel 300, a top case 100, a frame portion 600, a bottom case 800, Side frame 700.
  • the processor element 200 as a “heating element” is an integrated circuit (electronic circuit device) such as an IC or an LSI.
  • the processor element 200 performs arithmetic processing and the like when electric power is supplied from the outside. At that time, the processor element 200 having a resistance converts a part of the energy obtained from the electric power into heat energy.
  • the processor element 200 generates heat due to its thermal energy.
  • the plate-like main substrate 400 as the “holding member” is made of resin or the like and has electric wiring printed on the surface thereof on the surface.
  • the processor element 200 and other electronic components are mounted and held on such wiring, and the main board 400 supplies electric power from the outside to each of these elements via electric wiring.
  • the main board 400 has a supply terminal (not shown) for supplying power from the outside and an output terminal 410 for outputting the result calculated by the processor element 200 to the outside.
  • the heat dissipating gel 300 is made of a silicone resin or the like that has conductivity and heat conductivity and has a high viscoelastic coefficient.
  • the upper case 100 is in indirect contact with the processor element 200 through the heat radiating gel 300.
  • the heat radiating gel 300 is in contact with the processor element 200 and the upper case 100 between the processor element 200 and the upper case 100, thereby transferring heat generated in the processor element 20 to the upper case 100.
  • the heat dissipating gel 300 has a high viscoelastic coefficient to disperse external load stress applied to the processor element 200 by the upper case 100 during the process of assembling the upper case 100 to the main board 400.
  • the processor element 200 has a stress relaxation function that relieves stress directly applied to the processor element 200.
  • the top case 100 as a “heat radiating member” is made of a metal having good heat conductivity such as aluminum, and is formed by die casting or the like. As shown in FIGS. 2 and 3, the upper case 100 includes a main body portion 110 and heat radiating fins 120. A plurality of plate-like heat radiation fins 120 are formed in a recess 130 that is recessed toward the processor element 200 in the main body 110, and protrudes from the bottom surface 131 of the recess 130 in the normal direction. The heat radiating fin 120 effectively radiates heat by increasing the surface area of the upper case 100 and increasing the area in contact with air.
  • a protrusion 140 is formed in the recess 130 so as to protrude to the opposite side of the processor element 200.
  • An introduction hole 150 is formed on the bottom surface 131 of the recess 130 so as to penetrate the protrusion 140.
  • the introduction hole 150 is formed in a cylindrical shape between a specific pair of radiating fins 120. Further, the introduction hole 150 extends in the normal direction with respect to the flat surface (plane) 21 of the processor element 200.
  • the frame portion 600 is made of aluminum or the like and supports the main substrate 400.
  • a bottom case 800 made of aluminum or the like is fixed to the frame 600 on the opposite side of the top case 100.
  • the frame portion 600 forms a space between the bottom case 800 and holds an HDD (not shown), a power supply substrate (not shown), and the like that are electrically connected to the main substrate 400 between the frames.
  • the frame portion 600 is fixed to the heat dissipation structure 1 by fitting the upper surface case 100 and the bottom surface case 800 via a side frame 700 described later, thereby improving the rigidity of the heat dissipation structure 1.
  • the side frame 700 is made of aluminum or the like and is formed in a plate shape.
  • a pair of side frames 700 are provided in the heat dissipation structure 1 and are fitted to the top case 100 and the bottom case 800. Thereby, the thermal radiation structure 1 becomes a housing
  • a screw receiving portion 160 is formed at a corner of the upper case 100 on the processor element 200 side.
  • the screw 2 is fastened to the screw receiving portion 160 via the frame portion 600 and the main substrate 400, whereby the frame portion 600 and the main substrate 400 are fixed to the upper case 100.
  • the main board 400 is covered with a casing including the top case 100, the side frame 700, and the bottom case 800, the main board 400, the processor element 200, and the like are protected from external impacts.
  • the heat radiation gel 300 is filled between the surface 21 of the processor element 200 on the main substrate 400 and the lower end surface 102 of the upper case 100.
  • a filling space 60 is defined.
  • the introduction hole 150 communicates with the filling space 60, and the internal volume of the introduction hole 150 has the same internal volume as the filling space 60.
  • the manufacturing method of the heat dissipation structure 1 will be described in detail with reference to FIGS. 4 to 7, the heat dissipating fins 120 are not shown in order to simplify the structure.
  • a heat dissipating gel 300 having a predetermined volume set to fill the filling space 60 is introduced into the introduction hole 150 of the upper case 100.
  • the partition member 3 is brought into contact with the lower end surface 102 side of the upper case 100.
  • the partition member 3 is a plate-like member that can come into contact with the upper case 100 so that there is no gap between the partition member 3 and the lower end surface 102. Therefore, while fixing the partition member 3 and the upper case 100 to each other, the heat radiating gel 300 is introduced into the introduction hole 150 from the upper end surface 101 side opposite to the lower end surface 102 in the upper case 100.
  • the heat radiating gel 300 When the heat radiating gel 300 is introduced into the introduction hole 150, it reaches the surface partitioned by the partition member 3. Further, by continuing to introduce the heat radiating gel 300, when the introduction hole 150 is filled with the heat radiating gel 300, the introduction of the heat radiating gel 300 is stopped, and the sweep member 4 is slid parallel to the upper end surface 101. The excess heat radiating gel 300 coming out of the introduction hole 150 is removed. Thereafter, the partition member 3 that has been in contact is removed from the upper surface case 100. At this time, since the heat radiating gel 300 is a material having a high viscoelastic coefficient, it does not leak from the introduction hole 150 even if the partition member 3 is removed. As described above, the heat radiating gel 300 is held in the introduction hole 150 and the introduction process is completed.
  • the upper case 100 into which the heat radiating gel 300 has been introduced in the introducing process is assembled to the main board 400.
  • the introduction hole 150 is positioned on the opposite side of the main board 400 with the processor element 200 interposed therebetween.
  • the filling space 60 is determined so as to be sandwiched between the lower end surface 102 of the upper case 100 and the surface 21 of the processor element 200 by the assembly. That is, the filling space 60 is defined on one side (the lower side in FIG. 5) in the vertical direction of FIG. 5 by the surface 21 of the processor element 200, and the other side (the upper side in FIG. 5) is the lower end surface of the upper case 100. 102.
  • the assembly process is completed.
  • the heat dissipating gel 300 held in the introduction hole 150 is extruded to fill the filling space 60.
  • the extrusion member 50 that is disposed on the upper end surface 101 side of the upper case 100 and that extrudes the heat-dissipating gel 300 from the introduction hole 150 is moved from the upper case 100 side to the processor element 200 side by an orthogonal drive device (not shown). Fit and insert in the A direction toward By this insertion, the heat radiating gel 300 in the introduction hole 150 is extruded into the filling space 60.
  • the pushing member 50 When the pushing member 50 is inserted to a position where the front end surface 51 of the pushing member 50 does not exceed the lower end surface 102 of the upper case 100, the insertion is stopped.
  • the volume of the introduction hole 150 is ensured to be the same as the volume that fills the filling space 60, when the heat radiating gel 300 is pushed out to the lower end surface 102 by the pushing member 50, the heat radiating gel 300 is filled in the filling space 60. It will be packed tightly.
  • the extrusion member 50 is then extracted from the introduction hole 150, and the filling process is completed. As described above, when the filling step is completed, the heat radiating gel 300 is provided between the upper case 100 and the processor element 200, and the heat radiating structure 1 as shown in FIG. 7 is completed.
  • the heat radiating gel 300 is introduced into the introduction hole 150 formed in the upper surface case 100 and the introduced heat radiating gel 300 is extruded, so that the heat radiating gel 300 is brought into contact with the processor element 200 and the upper surface. It can be provided between the case 100.
  • the heat dissipation gel 300 having a volume that fills the filling space 60 can be introduced into the introduction hole 150, the heat dissipation gel 300 extruded into the filling space 60 can be densely filled into the filling space 60. Therefore, it can be relieved from the necessity of precisely managing the amount of the heat radiating gel 300 provided between the processor element 200 and the upper case 100.
  • the heat-dissipating gel 300 is filled in the filling space 60 between the processor element 200 and the upper case 100, the heat-dissipating gel 300 is less exposed, and the heat-dissipating gel 300 adheres to the operator's hand and Can be prevented. As described above, it is possible to maintain the reliability of the heat dissipation structure 1 at the time of manufacture while improving the working efficiency when the heat dissipation gel 300 is provided between the processor element 200 and the upper case 100 at the time of manufacture.
  • the heat radiating gel 300 introduced into the introduction hole 150 is extruded by the extruding member 50 to fill the heat radiating gel 300 into the filling space 60. According to this, since the thermal radiation gel 300 can be extruded using the extrusion member 50, a filling process can be performed reliably. Therefore, it is possible to contribute to the improvement of work efficiency when the heat dissipating gel 300 is provided between the processor element 200 and the upper case 100.
  • the assembly process for assembling the upper case 100 and the main board 400 is performed after the introduction process is completed. According to this, since the introduction process can be performed before the upper case 100 and the main substrate 400 are assembled, the heat radiating gel 300 can be introduced into the introduction hole 150 without being obstructed by the main substrate 400. Therefore, it is possible to contribute to the improvement of work efficiency when the heat dissipating gel 300 is provided between the processor element 200 and the upper case 100.
  • the upper case 100 has a protruding portion 140 protruding to the opposite side of the processor element 200, and the introduction hole 150 is formed through the protruding portion 140.
  • the same volume as the volume that fills the filling space 60 can be secured in the introduction hole 150 using the protrusion 140. Therefore, the volume of the introduction hole 150 can be secured without increasing the diameter of the introduction hole 150 and the contact area between the heat radiating gel 300 and the upper surface case 100 can be increased, so that heat transfer from the processor element 200 to the upper surface case 100 can be performed. It can be suitably performed. Therefore, it is possible to improve the work efficiency when the heat radiating gel 300 is provided between the processor element 200 and the upper case 100 without impairing the heat dissipation.
  • the introduction hole 150 formed in the protrusion 140 extends in the normal direction with respect to the flat surface (plane) 21 that defines the filling space 60 in the processor element 200.
  • the extruding member 50 is extracted from the introducing hole 150 after the heat radiating gel 300 in the introducing hole 150 is extruded into the filling space 60 by the extruding member 50. According to this, since the extrusion member 50 can be repeatedly used by not fixing the extrusion member 50 to the heat dissipation structure 1, the number of parts of the heat dissipation structure 1 can be reduced. Therefore, it is possible to improve the work efficiency when the heat radiating gel 300 is provided between the processor element 200 and the upper case 100 while realizing cost reduction.
  • a female screw portion 151 is formed on the inner peripheral surface of the introduction hole 150 of the second embodiment.
  • the heat dissipation structure 1 of the second embodiment is provided with a screwed body 500 made of a highly heat-conductive metal or the like.
  • a male screw portion 501 that can be screwed with the female screw portion 151 is formed on the outer peripheral surface of the screwed body 500.
  • the screwed body 500 corresponds to the extruded member of the present disclosure.
  • the screwed body 500 is inserted into a part of the introducing hole 150 by screwing the female screw portion 151 and the male screw portion 501 together.
  • a space on the processor element 200 side of the inner surface of the introduction hole 150 with respect to the tip surface 503 of the screwed body 500 is used as the introduction space 70. Therefore, the screw body 500 is inserted into the introduction hole 150 until the introduction space 70 has the same volume as the filling space 60.
  • the heat radiating gel 300 is introduced into the introduction space 70. By this introduction, the heat radiating gel 300 reaches the tip end surface 503 of the screwed body 500.
  • the introduction space 70 is filled with the heat radiating gel 300
  • the introduction of the heat radiating gel 300 is stopped, and further, by sliding the sweep member 4 in parallel with the lower end surface 102, Excessive heat-dissipating gel 300 exiting from the introduction hole 150 is removed.
  • the heat dissipation gel 300 is held in the introduction hole 150 in a state where the introduction space 70 is filled, and the introduction process is completed.
  • the upper case 100 into which the heat-dissipating gel 300 has been introduced in the introduction process is assembled to the main board 400 with the lower end surface 102 facing the processor element 200 side.
  • the introduction hole 150 is positioned on the opposite side of the main board 400 with the processor element 200 interposed therebetween.
  • the filling space 60 is determined so as to be sandwiched between the lower end surface 102 of the upper case 100 and the surface 21 of the processor element 200 by the assembly.
  • the assembly process is completed.
  • the heat radiating gel 300 held in the introduction space 70 is extruded to fill the filling space 60.
  • the screw body 500 inserted into the introduction hole 150 in the introduction step is further screwed and inserted in the A direction from the upper case 100 side toward the processor element 200 side to fill the heat dissipation gel 300 in the introduction space 70.
  • the screw body 500 has a proximal end head 502 as a stopper.
  • the proximal end head 502 abuts against the protruding portion 140 and stops, whereby the screw body 500 is inserted into the insertion hole 150. Is stopped.
  • the threaded body 500 is inserted into the introduction hole 150 to a position where the front end surface 503 of the threaded body 500 does not exceed the lower end surface 102 of the upper case 100.
  • the volume of the introduction space 70 is ensured to be the same as the volume that fills the filling space 60, when the heat radiating gel 300 is pushed out to the lower end surface 102 by the screwed body 500, the heat radiating gel 300 is filled with the filling space 60. It will be packed tightly. Thereafter, the screwed body 500 is fixed to the upper surface case 100 without being extracted from the introduction hole 150, and the filling process is completed. As described above, when the filling process is completed, the heat radiating gel 300 is provided between the upper case 100 and the processor element 200, and the heat radiating structure 1 is completed.
  • the screw body 500 is inserted into a part of the introduction hole 150 to form the introduction space 70 for introducing the heat radiating gel 300, and then the screw body 500 is further inserted.
  • the heat radiating gel 300 in the introduction space 70 is extruded into the filling space 60.
  • the front end surface 503 of the screwed body 500 can exhibit the same function as the partition member 3 of the first embodiment, and the introduction space 70 can be accurately adjusted by the insertion depth of the screwed body 500.
  • the screwed body 500 can exhibit the same function as the extruded member 50 of the first embodiment.
  • the same volume as the volume that fills the filling space 60 can be secured in the introduction space 70 and the filling of the heat radiating gel 300 in the filling space 60 can be reliably made dense, the reliability of the heat radiating structure 1 after manufacturing can be maintained. Is possible.
  • the screwing body 500 is fixed to the introduction hole 150 and left. According to this, since the good heat transfer screw 500 can be used as it is as a part of the heat dissipation structure 1, the heat dissipation efficiency of the heat generated in the processor element 200 can be increased. Further, since the introduction hole 150 can be filled with the screwed body 500, the heat radiating gel 300 can be prevented from leaking from the filling space 60. Therefore, it is possible to improve the work efficiency when the heat radiating gel 300 is provided between the processor element 200 and the upper case 100 while improving the heat dissipation.
  • the screwed body 500 fixed to the upper surface case 100 by screwing is changed to a press-fitting member 504 fixed by press-fitting as shown in FIG. Also good.
  • the press-fitting member 504 has a proximal end head portion 506 as a stopper.
  • the press-fitting member 504 is press-fitted into the insertion hole 150, the proximal end head portion 506 is brought into contact with the protruding portion 140 and stopped, whereby the press-fitting of the press-fitting member 504 into the insertion hole 150 is stopped.
  • the press-fitting member 504 is inserted into the introduction hole 150 until the tip end surface 507 of the press-fitting member 504 does not exceed the lower end surface 102 of the upper case 100.
  • the press-fitting member 504 can be used in place of the partition member 3 of the first embodiment in the introduction step, and the press-fitting member 504 is used in the filling step in the pressing member 50 of the first embodiment.
  • Can be used instead of The press-fitting member 504 corresponds to the extrusion member of the present disclosure.
  • FIG. 12 shows, instead of the upper surface case 100 which provided the radiation fin 120, the fan case member 11 with which the some cooling fan 5 is provided. May be adopted as the “heat radiating member”.
  • a plurality of (two in the example of FIG. 12) introduction holes 150 are provided in the fan case member 11 at positions corresponding to the gaps between the fans 5 among the plurality of cooling fans 5 whose positions are fixed.
  • the manufacturing method of the heat dissipation structure 1 of the present disclosure can be applied by introducing the heat dissipation gel 300 into the introduction hole 150.
  • the introduction hole 150 formed in the upper case 100 is formed so as to be inclined with respect to the surface 21 of the processor element 200 in the normal direction. May be. Furthermore, in Modification 4 regarding the first embodiment and the second embodiment, a plurality of introduction holes 150 formed in the upper surface case 100 may be formed. Here, when a plurality of introduction holes 150 are formed, each introduction hole 150 is formed such that the total volume of the introduction holes 150 is the same as the volume that fills the filling space 60.
  • the heat radiating gel 300 may be introduced so that the excessive heat radiating gel 300 protruding from the introduction hole 150 is not removed in the introducing step. .
  • the introducing step may be performed after the assembling step.
  • both the partition member 3 and the upper surface case 100 are assembled to the main substrate 400 to complete the assembly process.
  • the partition member 3 is removed and the introduction process is completed.
  • the screwed body 500 in the filling step, may be extracted from the introduction hole 150 after the screwed body 500 extrudes the heat radiating gel 300.
  • the extruding member 50 in Modification 8 regarding the first embodiment, after the extruding member 50 extrudes the heat radiating gel 300 in the filling step, the extruding member 50 may be fitted and fixed without being extracted.
  • the ninth modified example related to the first embodiment without using the pushing member 50, compressed air is blown onto the exposed surface of the heat radiating gel 300 filled with the introduction hole 150 to fill the filling space 60 from the introduction hole 150.
  • the heat dissipating gel 300 may be discharged and filled.
  • the “heat generating element” may be a power semiconductor element such as a power transistor.

Abstract

The present invention provides a method for manufacturing a heat dissipation structure provided with a heat generation element (200), a heat dissipation member (100), a loading space (60), and a heat dissipation gel (300). The heat generation element (200) generates heat, and the heat dissipation member (100) dissipates to the outside heat received from the heat generation element (200). The loading space (60) is formed between the heat generation element (200) and the heat dissipation member (100), and the heat dissipation gel (300) is loaded into the loading space (60) so as to transfer the heat of the heat generation element (200) to the heat dissipation member (100). In this manufacturing method, a predetermined volume of the heat dissipation gel (300) set to fill the loading space (60) is introduced into an introduction hole (150) in the heat dissipation member (100). Next, the heat dissipation gel (300) in the introduction hole (150) is loaded into the loading space (60).

Description

放熱構造の製造方法Manufacturing method of heat dissipation structure 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年1月15日に出願された日本国特許出願第2013-004767号に基づくものであり、この開示をもってその内容を本明細書中に開示したものとする。 This disclosure is based on Japanese Patent Application No. 2013-004767 filed on January 15, 2013, and the contents thereof are disclosed in this specification.
 本開示は、放熱構造の製造方法に関する。 The present disclosure relates to a method for manufacturing a heat dissipation structure.
 従来、電子基板上に保持されるプロセッサ素子などの電子部品は、電力が供給されることによって発熱する。このような発熱素子に生じた熱は、発熱素子を損傷させる可能性がある。このため、発熱素子を、熱伝導率の高い放熱部材に接触させて該発熱素子に生じた熱を放熱部材へ逃がすことにより、発熱素子の熱損傷を回避するようにしている。 Conventionally, an electronic component such as a processor element held on an electronic board generates heat when electric power is supplied. The heat generated in such a heating element may damage the heating element. For this reason, the heat generating element is brought into contact with a heat radiating member having a high thermal conductivity to release heat generated in the heat generating element to the heat radiating member, thereby avoiding thermal damage to the heat generating element.
 しかし、放熱部材を発熱素子に直接接触させる場合、両者の接触を強固にするために組付け時に放熱部材から発熱素子に機械的応力を付与することがある。この場合、この応力により、発熱素子が機械的損傷を受ける可能性がある。このため、上記機械的応力を緩和すべく放熱ゲルを発熱素子と放熱部材の間に設けることが考えられている。 However, when the heat radiating member is brought into direct contact with the heat generating element, mechanical stress may be applied from the heat radiating member to the heat generating element at the time of assembly in order to strengthen the contact between the two. In this case, the heating element may be mechanically damaged by this stress. For this reason, in order to relieve the mechanical stress, it is considered to provide a heat radiating gel between the heat generating element and the heat radiating member.
 さて、こうした放熱構造を製造する方法としては、例えば特許文献1に開示されるように、専用の吐出制御装置を用いて発熱素子と放熱部材との間に放熱ゲルを設ける方法が知られている。かかる方法によれば、ノズルから吐出される放熱ゲルの吐出量を、吐出制御装置によって制御することにより、発熱素子と放熱部材との間に所望の量の放熱ゲルを配置することができる。 As a method for manufacturing such a heat dissipation structure, for example, as disclosed in Patent Document 1, a method of providing a heat dissipation gel between a heat generating element and a heat dissipation member using a dedicated discharge control device is known. . According to this method, by controlling the discharge amount of the heat radiating gel discharged from the nozzle by the discharge control device, a desired amount of the heat radiating gel can be disposed between the heat generating element and the heat radiating member.
 さて、特許文献1の装置では、発熱素子と放熱部材との間に設ける放熱ゲル量と一致するように、ノズルからの吐出量を予め計量しておくなど、吐出制御装置によって放熱ゲル量を緻密に管理しておく必要がある。そのため、製造時の作業効率が低下する。 In the device of Patent Document 1, the amount of heat radiation gel is precisely adjusted by a discharge control device, for example, the amount of discharge from the nozzle is previously measured so as to match the amount of heat radiation gel provided between the heat generating element and the heat radiation member. It is necessary to manage it. Therefore, the work efficiency at the time of manufacture falls.
 さらに特許文献1の装置では、電子基板と放熱部材とを組付ける前に、発熱素子上に放熱ゲルを塗布するため、組付けの際に作業者の手に放熱ゲルが付着することが原因で、所望量に管理された量が不足することになるので、製造後における放熱構造の信頼性が低下する。 Furthermore, in the apparatus of Patent Document 1, since the heat radiating gel is applied onto the heat generating element before the electronic substrate and the heat radiating member are assembled, the heat radiating gel adheres to the operator's hand during the assembly. Since the amount controlled to the desired amount is insufficient, the reliability of the heat dissipation structure after manufacture is lowered.
特開2012-143678号公報JP 2012-143678 A
 本開示は、上記の問題点に鑑みてなされたものであり、その目的は、製造時における作業効率を向上させながら、製造後における放熱構造の信頼性を保つことにある。 The present disclosure has been made in view of the above-described problems, and an object thereof is to maintain the reliability of the heat dissipation structure after manufacturing while improving work efficiency at the time of manufacturing.
 上記の目的を達成するために、本開示では、作動時に熱を発する発熱素子と、前記発熱素子から受けた前記熱を外部へ逃がす放熱部材と、前記発熱素子と前記放熱部材との間に形成された充填空間と、前記充填空間に充填されて前記発熱素子の前記熱を前記放熱部材に伝える放熱ゲルとを備える放熱構造の製造方法を提供する。この製造方法では、前記充填空間を満たすべく設定された所定容積の前記放熱ゲルを、前記放熱部材の導入孔へ導入する。次いで、前記導入孔内の前記所定容積の放熱ゲルを前記充填空間に充填する。 In order to achieve the above object, in the present disclosure, a heat generating element that generates heat during operation, a heat radiating member that releases the heat received from the heat generating element to the outside, and formed between the heat generating element and the heat radiating member are formed. There is provided a manufacturing method of a heat dissipation structure comprising: the filled space; and a heat dissipation gel that fills the filling space and transfers the heat of the heat generating element to the heat dissipation member. In this manufacturing method, the heat radiating gel having a predetermined volume set to fill the filling space is introduced into the introduction hole of the heat radiating member. Next, the filling space is filled with the predetermined amount of the heat-dissipating gel in the introduction hole.
図1は、本開示の第一実施形態における放熱構造を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a heat dissipation structure in the first embodiment of the present disclosure. 図2は、第一実施形態における放熱構造の分解断面図である。FIG. 2 is an exploded cross-sectional view of the heat dissipation structure in the first embodiment. 図3は、第一実施形態における放熱構造の要部を示す一部断面図である。FIG. 3 is a partial cross-sectional view showing a main part of the heat dissipation structure in the first embodiment. 図4は、第一実施形態における導入工程を示す説明図である。FIG. 4 is an explanatory diagram showing an introduction process in the first embodiment. 図5は、第一実施形態における組付工程を示す説明図である。FIG. 5 is an explanatory view showing an assembly process in the first embodiment. 図6は、第一実施形態における充填工程を示す説明図である。FIG. 6 is an explanatory diagram showing a filling step in the first embodiment. 図7は、第一実施形態における充填工程完了後を示す一部断面図である。FIG. 7 is a partial cross-sectional view showing the state after the filling step in the first embodiment is completed. 図8は、本開示の第二実施形態における導入工程を示す説明図である。FIG. 8 is an explanatory diagram illustrating an introduction process in the second embodiment of the present disclosure. 図9は、第二実施形態における組付工程を示す説明図である。FIG. 9 is an explanatory diagram showing an assembly process in the second embodiment. 図10は、第二実施形態における充填工程を示す説明図である。FIG. 10 is an explanatory view showing a filling step in the second embodiment. 図11は、変形例1における充填工程完了後を示す一部断面図である。FIG. 11 is a partial cross-sectional view showing the state after the filling process in Modification 1 is completed. 図12は、変形例2における放熱構造を示す断面図である。FIG. 12 is a cross-sectional view showing a heat dissipation structure in the second modification.
 以下、本開示の複数の実施形態を図面に基づいて説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを変更している場合、当該構成の他の部分においては、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせだけでなく、特に組み合わせに支障が生じなければ、明示していなくとも複数の実施形態の構成同士を部分的に組み合わせることが可能である。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In addition, the overlapping description may be abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment. When only a part of the configuration is changed in each embodiment, the configuration of the other embodiment described above can be applied to other portions of the configuration. In addition to the combination of the configurations explicitly described in the description of each embodiment, it is possible to partially combine the configurations of the plurality of embodiments even if they are not explicitly specified unless there is a problem with the combination. .
 (第一実施形態)
 図1~7に示される本開示の第一実施形態について詳細に説明する。
(First embodiment)
The first embodiment of the present disclosure shown in FIGS. 1 to 7 will be described in detail.
 図1に示すように、第一実施形態の電子装置の放熱構造1は、プロセッサ素子200と、メイン基板400と、放熱ゲル300と、上面ケース100と、フレーム部600と、底面ケース800と、側面フレーム700とを備える。 As shown in FIG. 1, the heat dissipation structure 1 of the electronic device of the first embodiment includes a processor element 200, a main substrate 400, a heat dissipation gel 300, a top case 100, a frame portion 600, a bottom case 800, Side frame 700.
 「発熱素子」としてのプロセッサ素子200は、IC、LSIなどの集積回路(電子回路装置)である。プロセッサ素子200は、電力が外部から供給されて演算処理などを行う。その際、抵抗を有するプロセッサ素子200は、電力から得るエネルギーの一部を熱エネルギーへ変える。プロセッサ素子200は、その熱エネルギーにより発熱することになる。 The processor element 200 as a “heating element” is an integrated circuit (electronic circuit device) such as an IC or an LSI. The processor element 200 performs arithmetic processing and the like when electric power is supplied from the outside. At that time, the processor element 200 having a resistance converts a part of the energy obtained from the electric power into heat energy. The processor element 200 generates heat due to its thermal energy.
 「保持部材」としての板状のメイン基板400は、樹脂などからなり、プリント状に印刷された電気配線を表面に有している。かかる配線上には、プロセッサ素子200や他の電子部品が実装保持されており、メイン基板400は、電気配線を介して外部からの電力をそれら各要素に供給する。また、メイン基板400は、外部から電力を供給するための供給ターミナル(図示しない)や、プロセッサ素子200によって演算された結果を外部へ出力する出力ターミナル410を有している。 The plate-like main substrate 400 as the “holding member” is made of resin or the like and has electric wiring printed on the surface thereof on the surface. The processor element 200 and other electronic components are mounted and held on such wiring, and the main board 400 supplies electric power from the outside to each of these elements via electric wiring. The main board 400 has a supply terminal (not shown) for supplying power from the outside and an output terminal 410 for outputting the result calculated by the processor element 200 to the outside.
 放熱ゲル300は、導電性と伝熱性とを備え、かつ粘弾性係数が高いシリコーン樹脂などからなる。かかる放熱ゲル300を介して上面ケース100は、プロセッサ素子200と間接的に接している。これにより放熱ゲル300は、プロセッサ素子200と上面ケース100との間において、それらプロセッサ素子200及び上面ケース100と接することで、プロセッサ素子20に生じた熱を上面ケース100に伝達する。また、放熱ゲル300は、高い粘弾性係数を有することにより、上面ケース100のメイン基板400への組付工程時などに、上面ケース100がプロセッサ素子200に与える外的な負荷応力を分散して、プロセッサ素子200に直接的に負荷される応力を緩和する応力緩和機能を持つ。 The heat dissipating gel 300 is made of a silicone resin or the like that has conductivity and heat conductivity and has a high viscoelastic coefficient. The upper case 100 is in indirect contact with the processor element 200 through the heat radiating gel 300. As a result, the heat radiating gel 300 is in contact with the processor element 200 and the upper case 100 between the processor element 200 and the upper case 100, thereby transferring heat generated in the processor element 20 to the upper case 100. In addition, the heat dissipating gel 300 has a high viscoelastic coefficient to disperse external load stress applied to the processor element 200 by the upper case 100 during the process of assembling the upper case 100 to the main board 400. The processor element 200 has a stress relaxation function that relieves stress directly applied to the processor element 200.
 「放熱部材」としての上面ケース100は、アルミニウムといった良伝熱性の金属などからなり、ダイカスト成型などによって形成されている。図2、3に示すように上面ケース100は、本体部110と、放熱フィン120とからなる。板状の放熱フィン120は、本体部110においてプロセッサ素子200側に凹んだ凹部130に複数形成されており、凹部130の底面131から法線方向に突出している。放熱フィン120は、上面ケース100の表面積を大きくして、空気に触れる面積を大きくすることにより、効果的に放熱する。 The top case 100 as a “heat radiating member” is made of a metal having good heat conductivity such as aluminum, and is formed by die casting or the like. As shown in FIGS. 2 and 3, the upper case 100 includes a main body portion 110 and heat radiating fins 120. A plurality of plate-like heat radiation fins 120 are formed in a recess 130 that is recessed toward the processor element 200 in the main body 110, and protrudes from the bottom surface 131 of the recess 130 in the normal direction. The heat radiating fin 120 effectively radiates heat by increasing the surface area of the upper case 100 and increasing the area in contact with air.
 凹部130には、プロセッサ素子200とは反対側に突出するように、突出部140が形成されている。また、凹部130の底面131には、突出部140を貫通するように、導入孔150が形成されている。導入孔150は、特定の一対の放熱フィン120の間において円筒形状に形成されている。さらに、導入孔150は、プロセッサ素子200のうち平坦面状の表面(平面)21に対して法線方向に延びている。 A protrusion 140 is formed in the recess 130 so as to protrude to the opposite side of the processor element 200. An introduction hole 150 is formed on the bottom surface 131 of the recess 130 so as to penetrate the protrusion 140. The introduction hole 150 is formed in a cylindrical shape between a specific pair of radiating fins 120. Further, the introduction hole 150 extends in the normal direction with respect to the flat surface (plane) 21 of the processor element 200.
 図1に示すようにフレーム部600は、アルミニウムなどからなり、メイン基板400を支持している。フレーム部600において上面ケース100の反対側には、アルミニウムなどからなる底面ケース800が固定されている。フレーム部600は、底面ケース800との間に、空間を形成しており、その間において、メイン基板400に電気的に接続されるHDD(図示せず)や電源基板(図示せず)などを保持する。フレーム部600は、後述する側面フレーム700を介して上面ケース100と底面ケース800と嵌め合わせることにより、メイン基板400を放熱構造1内に固定して、放熱構造1の剛性を向上させている。 As shown in FIG. 1, the frame portion 600 is made of aluminum or the like and supports the main substrate 400. A bottom case 800 made of aluminum or the like is fixed to the frame 600 on the opposite side of the top case 100. The frame portion 600 forms a space between the bottom case 800 and holds an HDD (not shown), a power supply substrate (not shown), and the like that are electrically connected to the main substrate 400 between the frames. To do. The frame portion 600 is fixed to the heat dissipation structure 1 by fitting the upper surface case 100 and the bottom surface case 800 via a side frame 700 described later, thereby improving the rigidity of the heat dissipation structure 1.
 図1に示すように側面フレーム700は、アルミニウムなどからなり、板状に形成されている。側面フレーム700は、放熱構造1において一対設けられており、上面ケース100及び底面ケース800に嵌め合わされる。これにより、放熱構造1が筐体形状となる。 As shown in FIG. 1, the side frame 700 is made of aluminum or the like and is formed in a plate shape. A pair of side frames 700 are provided in the heat dissipation structure 1 and are fitted to the top case 100 and the bottom case 800. Thereby, the thermal radiation structure 1 becomes a housing | casing shape.
 図2に示すように、上面ケース100においてプロセッサ素子200側の角には、ビス受け部160が形成されている。かかるビス受け部160に、フレーム部600及びメイン基板400を介してビス2が締結されることで、フレーム部600及びメイン基板400が上面ケース100に固定されている。また、上面ケース100、側面フレーム700、及び底面ケース800からなる筐体によりメイン基板400が覆われることで、外部から受ける衝撃に対してメイン基板400及びプロセッサ素子200などが保護されている。 As shown in FIG. 2, a screw receiving portion 160 is formed at a corner of the upper case 100 on the processor element 200 side. The screw 2 is fastened to the screw receiving portion 160 via the frame portion 600 and the main substrate 400, whereby the frame portion 600 and the main substrate 400 are fixed to the upper case 100. Further, since the main board 400 is covered with a casing including the top case 100, the side frame 700, and the bottom case 800, the main board 400, the processor element 200, and the like are protected from external impacts.
 図3に示されるように、上面ケース100とメイン基板400とを組付けると、メイン基板400上のプロセッサ素子200の表面21と上面ケース100の下端面102の間には、放熱ゲル300の充填される充填空間60が画定されている。導入孔150は、充填空間60に連通しており、この導入孔150の内部容積は充填空間60と同じ内部容積を有している。 As shown in FIG. 3, when the upper case 100 and the main substrate 400 are assembled, the heat radiation gel 300 is filled between the surface 21 of the processor element 200 on the main substrate 400 and the lower end surface 102 of the upper case 100. A filling space 60 is defined. The introduction hole 150 communicates with the filling space 60, and the internal volume of the introduction hole 150 has the same internal volume as the filling space 60.
 次に、図4~7を用いて放熱構造1の製造方法について詳細に述べる。なお、図4~7では、構造を簡略化するために、放熱フィン120は図示されていない。 Next, the manufacturing method of the heat dissipation structure 1 will be described in detail with reference to FIGS. 4 to 7, the heat dissipating fins 120 are not shown in order to simplify the structure.
 図4に示されるように導入工程では、上面ケース100の導入孔150に充填空間60を満たすべく設定された所定容積の放熱ゲル300を導入する。具体的には、まず、上面ケース100の下端面102側に、仕切部材3を当接させる。ここで仕切部材3は、下端面102との間に隙間がないように上面ケース100に対して当接可能な板状の部材である。そこで、かかる仕切部材3と上面ケース100とを互いに固定しながら、上面ケース100において下端面102とは反対の上端面101側から導入孔150に放熱ゲル300を導入する。放熱ゲル300は、導入孔150に導入されると、仕切部材3にて仕切られた面まで達する。また、放熱ゲル300を導入し続けることにより、導入孔150内が放熱ゲル300で満たされると、放熱ゲル300の導入が止められ、さらにスイープ部材4を上端面101と平行に摺らすことにより、導入孔150から出ている余剰な放熱ゲル300が除去される。その後、当接させていた仕切部材3を上面ケース100から取り外す。このとき放熱ゲル300は、粘弾性係数の高い材料であることから、仕切部材3を取り外しても導入孔150から漏出することはない。以上により、放熱ゲル300が導入孔150に保持されて、導入工程が完了する。 As shown in FIG. 4, in the introduction step, a heat dissipating gel 300 having a predetermined volume set to fill the filling space 60 is introduced into the introduction hole 150 of the upper case 100. Specifically, first, the partition member 3 is brought into contact with the lower end surface 102 side of the upper case 100. Here, the partition member 3 is a plate-like member that can come into contact with the upper case 100 so that there is no gap between the partition member 3 and the lower end surface 102. Therefore, while fixing the partition member 3 and the upper case 100 to each other, the heat radiating gel 300 is introduced into the introduction hole 150 from the upper end surface 101 side opposite to the lower end surface 102 in the upper case 100. When the heat radiating gel 300 is introduced into the introduction hole 150, it reaches the surface partitioned by the partition member 3. Further, by continuing to introduce the heat radiating gel 300, when the introduction hole 150 is filled with the heat radiating gel 300, the introduction of the heat radiating gel 300 is stopped, and the sweep member 4 is slid parallel to the upper end surface 101. The excess heat radiating gel 300 coming out of the introduction hole 150 is removed. Thereafter, the partition member 3 that has been in contact is removed from the upper surface case 100. At this time, since the heat radiating gel 300 is a material having a high viscoelastic coefficient, it does not leak from the introduction hole 150 even if the partition member 3 is removed. As described above, the heat radiating gel 300 is held in the introduction hole 150 and the introduction process is completed.
 次に、図5に示される組付工程では、導入工程にて放熱ゲル300が導入された上面ケース100を、メイン基板400に組付ける。この組付けにより導入孔150は、プロセッサ素子200を介してメイン基板400と反対側に位置することになる。また、組付けにより充填空間60は、上面ケース100の下端面102とプロセッサ素子200の表面21との間に挟まれるように定められる。即ち、充填空間60は、図5の上下方向における一方の側(図5の下側)がプロセッサ素子200の表面21によって画定され、他方の側(図5の上側)が上面ケース100の下端面102によって画定されている。以上により、組付工程が完了する。 Next, in the assembling process shown in FIG. 5, the upper case 100 into which the heat radiating gel 300 has been introduced in the introducing process is assembled to the main board 400. By this assembly, the introduction hole 150 is positioned on the opposite side of the main board 400 with the processor element 200 interposed therebetween. Further, the filling space 60 is determined so as to be sandwiched between the lower end surface 102 of the upper case 100 and the surface 21 of the processor element 200 by the assembly. That is, the filling space 60 is defined on one side (the lower side in FIG. 5) in the vertical direction of FIG. 5 by the surface 21 of the processor element 200, and the other side (the upper side in FIG. 5) is the lower end surface of the upper case 100. 102. Thus, the assembly process is completed.
 続いて、図6に示される充填工程では、導入孔150に保持されている放熱ゲル300を押出して、充填空間60に充填する。具体的には、上面ケース100の上端面101側に配置されて導入孔150から放熱ゲル300を押出す押出部材50を、図示しない直交型駆動装置などにより、上面ケース100側からプロセッサ素子200側へ向かうA方向に嵌合挿入する。この挿入により、導入孔150内の放熱ゲル300が充填空間60に押出される。押出部材50の先端面51が上面ケース100の下端面102を越えない位置まで、押出部材50が挿入されると、当該挿入は止められる。ここで導入孔150の容積は、充填空間60を満たす容積と同じとなるように確保されているので、放熱ゲル300を押出部材50により下端面102まで押出すと、放熱ゲル300は充填空間60に密に充填されることになる。押出部材50は、その後、導入孔150から抜き出されて、充填工程が完了する。以上、充填工程が完了することにより、放熱ゲル300が上面ケース100とプロセッサ素子200との間に設けられて、図7に示すような放熱構造1が完成する。 Subsequently, in the filling step shown in FIG. 6, the heat dissipating gel 300 held in the introduction hole 150 is extruded to fill the filling space 60. Specifically, the extrusion member 50 that is disposed on the upper end surface 101 side of the upper case 100 and that extrudes the heat-dissipating gel 300 from the introduction hole 150 is moved from the upper case 100 side to the processor element 200 side by an orthogonal drive device (not shown). Fit and insert in the A direction toward By this insertion, the heat radiating gel 300 in the introduction hole 150 is extruded into the filling space 60. When the pushing member 50 is inserted to a position where the front end surface 51 of the pushing member 50 does not exceed the lower end surface 102 of the upper case 100, the insertion is stopped. Here, since the volume of the introduction hole 150 is ensured to be the same as the volume that fills the filling space 60, when the heat radiating gel 300 is pushed out to the lower end surface 102 by the pushing member 50, the heat radiating gel 300 is filled in the filling space 60. It will be packed tightly. The extrusion member 50 is then extracted from the introduction hole 150, and the filling process is completed. As described above, when the filling step is completed, the heat radiating gel 300 is provided between the upper case 100 and the processor element 200, and the heat radiating structure 1 as shown in FIG. 7 is completed.
 ここまで説明した第一実施形態では、上面ケース100に形成される導入孔150に放熱ゲル300を導入して、導入された放熱ゲル300を押出すことによって、放熱ゲル300をプロセッサ素子200と上面ケース100との間に設けることができる。ここで導入孔150には、充填空間60を満たす容積の放熱ゲル300を導入できるので、充填空間60に押出された放熱ゲル300は、充填空間60に密に充填できる。故に、プロセッサ素子200と上面ケース100との間に設ける放熱ゲル300の量を緻密に管理する必要性から、解放され得る。また、プロセッサ素子200と上面ケース100との間の充填空間60に放熱ゲル300を充填するから、放熱ゲル300の露出が少なくなり、放熱ゲル300が作業者の手に付着して放熱ゲルの量が不足することを防止できる。以上により、製造時において、特に放熱ゲル300をプロセッサ素子200と上面ケース100との間に設ける際の作業効率を向上させながら、製造時における放熱構造1の信頼性を保つことが可能となる。 In the first embodiment described so far, the heat radiating gel 300 is introduced into the introduction hole 150 formed in the upper surface case 100 and the introduced heat radiating gel 300 is extruded, so that the heat radiating gel 300 is brought into contact with the processor element 200 and the upper surface. It can be provided between the case 100. Here, since the heat dissipation gel 300 having a volume that fills the filling space 60 can be introduced into the introduction hole 150, the heat dissipation gel 300 extruded into the filling space 60 can be densely filled into the filling space 60. Therefore, it can be relieved from the necessity of precisely managing the amount of the heat radiating gel 300 provided between the processor element 200 and the upper case 100. Further, since the heat-dissipating gel 300 is filled in the filling space 60 between the processor element 200 and the upper case 100, the heat-dissipating gel 300 is less exposed, and the heat-dissipating gel 300 adheres to the operator's hand and Can be prevented. As described above, it is possible to maintain the reliability of the heat dissipation structure 1 at the time of manufacture while improving the working efficiency when the heat dissipation gel 300 is provided between the processor element 200 and the upper case 100 at the time of manufacture.
 また、第一実施形態において充填工程では、導入孔150に導入された放熱ゲル300を押出部材50により押出すことにより、放熱ゲル300を充填空間60に充填する。これによれば、押出部材50を用いて放熱ゲル300を押出すことができるので、確実に充填工程を行うことができる。故に、放熱ゲル300をプロセッサ素子200と上面ケース100との間に設ける際の作業効率向上に、貢献可能となる。 Further, in the filling process in the first embodiment, the heat radiating gel 300 introduced into the introduction hole 150 is extruded by the extruding member 50 to fill the heat radiating gel 300 into the filling space 60. According to this, since the thermal radiation gel 300 can be extruded using the extrusion member 50, a filling process can be performed reliably. Therefore, it is possible to contribute to the improvement of work efficiency when the heat dissipating gel 300 is provided between the processor element 200 and the upper case 100.
 さらに、第一実施形態において上面ケース100とメイン基板400とを組付ける組付工程は、導入工程が完了した後に行われる。これによれば、上面ケース100とメイン基板400との組付け前に導入工程を行えるので、メイン基板400に邪魔されることなく、導入孔150へと放熱ゲル300を導入できる。故に、放熱ゲル300をプロセッサ素子200と上面ケース100との間に設ける際の作業効率向上に、貢献可能となる。 Furthermore, in the first embodiment, the assembly process for assembling the upper case 100 and the main board 400 is performed after the introduction process is completed. According to this, since the introduction process can be performed before the upper case 100 and the main substrate 400 are assembled, the heat radiating gel 300 can be introduced into the introduction hole 150 without being obstructed by the main substrate 400. Therefore, it is possible to contribute to the improvement of work efficiency when the heat dissipating gel 300 is provided between the processor element 200 and the upper case 100.
 またさらに、第一実施形態において上面ケース100には、プロセッサ素子200の反対側に突出した突出部140を有しており、導入孔150は、突出部140を貫通して形成されている。これによれば、上面ケース100の厚みに関わらず突出部140を利用して、充填空間60を満たす容積と同じ容積を導入孔150に確保できる。したがって、導入孔150を大径化することなく導入孔150の容積を確保して、放熱ゲル300と上面ケース100との接触面積を大きくできるので、プロセッサ素子200から上面ケース100への熱伝達を好適に行い得る。故に、放熱性を損なうことなく、放熱ゲル300をプロセッサ素子200と上面ケース100との間に設ける際の作業効率を向上可能となる。 Furthermore, in the first embodiment, the upper case 100 has a protruding portion 140 protruding to the opposite side of the processor element 200, and the introduction hole 150 is formed through the protruding portion 140. According to this, regardless of the thickness of the upper surface case 100, the same volume as the volume that fills the filling space 60 can be secured in the introduction hole 150 using the protrusion 140. Therefore, the volume of the introduction hole 150 can be secured without increasing the diameter of the introduction hole 150 and the contact area between the heat radiating gel 300 and the upper surface case 100 can be increased, so that heat transfer from the processor element 200 to the upper surface case 100 can be performed. It can be suitably performed. Therefore, it is possible to improve the work efficiency when the heat radiating gel 300 is provided between the processor element 200 and the upper case 100 without impairing the heat dissipation.
 加えて、第一実施形態では、突出部140に形成された導入孔150は、プロセッサ素子200のうち充填空間60を定める平坦面状の表面(平面)21に対して、法線方向に延びている。これによれば、押出部材50で放熱ゲル300を押出す際に、押出部材50は、プロセッサ素子200の表面21に沿って押出す力を放熱ゲル300に略均等に与えることができる。故に、放熱ゲル300が、プロセッサ素子200の表面上に均一に広がることで、放熱ゲル300をプロセッサ素子200と上面ケース100との間に設ける際の作業効率が向上するとともに、放熱構造1の信頼性を保つことが可能となる。 In addition, in the first embodiment, the introduction hole 150 formed in the protrusion 140 extends in the normal direction with respect to the flat surface (plane) 21 that defines the filling space 60 in the processor element 200. Yes. According to this, when extruding the heat radiating gel 300 by the extruding member 50, the extruding member 50 can apply the force of extruding along the surface 21 of the processor element 200 to the heat radiating gel 300 substantially evenly. Therefore, since the heat radiating gel 300 spreads uniformly on the surface of the processor element 200, the work efficiency when the heat radiating gel 300 is provided between the processor element 200 and the upper case 100 is improved, and the reliability of the heat radiating structure 1 is improved. It becomes possible to keep sex.
 さらに加えて、第一実施形態では、充填工程において、押出部材50によって導入孔150内の放熱ゲル300を充填空間60に押出した後で、押出部材50が導入孔150から抜き出される。これによれば、押出部材50を放熱構造1に固定しないことにより、押出部材50を繰り返し使用することができるので、放熱構造1の部品点数を削減し得る。故に、コストの削減を実現しながらも、放熱ゲル300をプロセッサ素子200と上面ケース100との間に設ける際の作業効率を向上可能となる。 In addition, in the first embodiment, in the filling step, the extruding member 50 is extracted from the introducing hole 150 after the heat radiating gel 300 in the introducing hole 150 is extruded into the filling space 60 by the extruding member 50. According to this, since the extrusion member 50 can be repeatedly used by not fixing the extrusion member 50 to the heat dissipation structure 1, the number of parts of the heat dissipation structure 1 can be reduced. Therefore, it is possible to improve the work efficiency when the heat radiating gel 300 is provided between the processor element 200 and the upper case 100 while realizing cost reduction.
 (第二実施形態)
 次に図8~10に示される本開示の第二実施形態について詳細に説明する。
(Second embodiment)
Next, the second embodiment of the present disclosure shown in FIGS. 8 to 10 will be described in detail.
 図8に示されるように、第二実施形態の導入孔150の内周面には、雌螺子部151が形成されている。また、第二実施形態の放熱構造1には、良伝熱性の金属などからなる螺合体500が設けられている。螺合体500の外周面には、雌螺子部151と螺合可能な雄螺子部501が形成されている。なお、螺合体500は、本開示の押出部材に相当する。 As shown in FIG. 8, a female screw portion 151 is formed on the inner peripheral surface of the introduction hole 150 of the second embodiment. Further, the heat dissipation structure 1 of the second embodiment is provided with a screwed body 500 made of a highly heat-conductive metal or the like. A male screw portion 501 that can be screwed with the female screw portion 151 is formed on the outer peripheral surface of the screwed body 500. The screwed body 500 corresponds to the extruded member of the present disclosure.
 図8に示される導入工程では、まず、雌螺子部151と雄螺子部501とを螺合させることにより、螺合体500を導入孔150の一部に挿入する。この挿入により、導入孔150の内部空間のうち螺合体500の先端面503よりもプロセッサ素子200側の空間は、導入空間70として利用される。そこで螺合体500は、かかる導入空間70が充填空間60を満たす容積と同じとなるまで、導入孔150に挿入される。続いて導入工程では、導入空間70に放熱ゲル300を導入する。この導入により放熱ゲル300は、螺合体500の先端面503にまで達する。また、放熱ゲル300を導入し続けることにより、導入空間70が放熱ゲル300で満たされると、放熱ゲル300の導入は止められ、さらにスイープ部材4を下端面102と平行に摺らすことにより、導入孔150から出ている余剰な放熱ゲル300が除去される。以上により、放熱ゲル300が導入空間70を満たした状態で導入孔150に保持されて、導入工程が完了する。 In the introducing step shown in FIG. 8, first, the screwed body 500 is inserted into a part of the introducing hole 150 by screwing the female screw portion 151 and the male screw portion 501 together. By this insertion, a space on the processor element 200 side of the inner surface of the introduction hole 150 with respect to the tip surface 503 of the screwed body 500 is used as the introduction space 70. Therefore, the screw body 500 is inserted into the introduction hole 150 until the introduction space 70 has the same volume as the filling space 60. Subsequently, in the introduction step, the heat radiating gel 300 is introduced into the introduction space 70. By this introduction, the heat radiating gel 300 reaches the tip end surface 503 of the screwed body 500. Further, by continuing to introduce the heat radiating gel 300, when the introduction space 70 is filled with the heat radiating gel 300, the introduction of the heat radiating gel 300 is stopped, and further, by sliding the sweep member 4 in parallel with the lower end surface 102, Excessive heat-dissipating gel 300 exiting from the introduction hole 150 is removed. Thus, the heat dissipation gel 300 is held in the introduction hole 150 in a state where the introduction space 70 is filled, and the introduction process is completed.
 次に、図9に示される組付工程では、導入工程にて放熱ゲル300が導入された上面ケース100を、下端面102がプロセッサ素子200側に向いた状態で、メイン基板400に組付ける。この組付けにより導入孔150は、プロセッサ素子200を介してメイン基板400と反対側に位置することになる。また、組付けにより充填空間60は、上面ケース100の下端面102とプロセッサ素子200の表面21との間に挟まれるように定められる。以上により、組付工程が完了する。 Next, in the assembly process shown in FIG. 9, the upper case 100 into which the heat-dissipating gel 300 has been introduced in the introduction process is assembled to the main board 400 with the lower end surface 102 facing the processor element 200 side. By this assembly, the introduction hole 150 is positioned on the opposite side of the main board 400 with the processor element 200 interposed therebetween. Further, the filling space 60 is determined so as to be sandwiched between the lower end surface 102 of the upper case 100 and the surface 21 of the processor element 200 by the assembly. Thus, the assembly process is completed.
 続いて、図10に示される充填工程では、導入空間70に保持されている放熱ゲル300を押出して、充填空間60に充填する。具体的には、導入工程において導入孔150に挿入された螺合体500を、上面ケース100側からプロセッサ素子200側へ向かうA方向にさらに螺合挿入して、導入空間70の放熱ゲル300を充填空間60に押出す。すなわち、本実施形態においては、第一実施形態の押出部材50に相当するものが螺合体500となっている。この押出しにおいて、螺合体500の先端面503が上面ケース100の下端面102を越えない位置まで螺合体500が螺合されると、挿入が止められる。螺合体500は、ストッパとしての基端頭部502を有する。螺合体500を挿入孔150に螺合により挿入する際、図10に示すように、基端頭部502が突出部140に当接して停止することにより、挿入孔150への螺合体500の挿入が止められる。これにより、螺合体500は、該螺合体500の先端面503が上面ケース100の下端面102を越えない位置まで導入孔150に挿入されることになる。ここで導入空間70の容積は、充填空間60を満たす容積と同じとなるように確保されているので、放熱ゲル300を螺合体500により下端面102まで押出すと、放熱ゲル300は充填空間60に密に充填されることになる。螺合体500は、その後、導入孔150から抜き出されることなく上面ケース100に固定されて、充填工程が完了する。以上、充填工程が完了することにより、放熱ゲル300が上面ケース100とプロセッサ素子200との間に設けられて、放熱構造1が完成する。 Subsequently, in the filling step shown in FIG. 10, the heat radiating gel 300 held in the introduction space 70 is extruded to fill the filling space 60. Specifically, the screw body 500 inserted into the introduction hole 150 in the introduction step is further screwed and inserted in the A direction from the upper case 100 side toward the processor element 200 side to fill the heat dissipation gel 300 in the introduction space 70. Extrude into space 60. That is, in the present embodiment, the screwed body 500 corresponds to the pushing member 50 of the first embodiment. In this extrusion, when the screw body 500 is screwed to a position where the front end surface 503 of the screw body 500 does not exceed the lower end surface 102 of the upper case 100, the insertion is stopped. The screw body 500 has a proximal end head 502 as a stopper. When the screw body 500 is inserted into the insertion hole 150 by screwing, as shown in FIG. 10, the proximal end head 502 abuts against the protruding portion 140 and stops, whereby the screw body 500 is inserted into the insertion hole 150. Is stopped. As a result, the threaded body 500 is inserted into the introduction hole 150 to a position where the front end surface 503 of the threaded body 500 does not exceed the lower end surface 102 of the upper case 100. Here, since the volume of the introduction space 70 is ensured to be the same as the volume that fills the filling space 60, when the heat radiating gel 300 is pushed out to the lower end surface 102 by the screwed body 500, the heat radiating gel 300 is filled with the filling space 60. It will be packed tightly. Thereafter, the screwed body 500 is fixed to the upper surface case 100 without being extracted from the introduction hole 150, and the filling process is completed. As described above, when the filling process is completed, the heat radiating gel 300 is provided between the upper case 100 and the processor element 200, and the heat radiating structure 1 is completed.
 ここまで説明したように第二実施形態では、螺合体500を導入孔150の一部に挿入することにより、放熱ゲル300を導入する導入空間70を形成した後、螺合体500をさらに挿入することにより、導入空間70の放熱ゲル300を充填空間60に押出す。これによれば、導入工程では、螺合体500の先端面503が第一実施形態の仕切部材3と同機能を発揮できるとともに、螺合体500の挿入深さによって導入空間70を正確に調整できるだけでなく、充填工程では、螺合体500が第一実施形態の押出部材50と同機能を発揮できる。以上により、充填空間60を満たす容積と同じ容積を導入空間70に確保して、充填空間60における放熱ゲル300の充填を確実に密にできるので、製造後における放熱構造1の信頼性を保つことが可能となる。 As described so far, in the second embodiment, the screw body 500 is inserted into a part of the introduction hole 150 to form the introduction space 70 for introducing the heat radiating gel 300, and then the screw body 500 is further inserted. Thus, the heat radiating gel 300 in the introduction space 70 is extruded into the filling space 60. According to this, in the introduction process, the front end surface 503 of the screwed body 500 can exhibit the same function as the partition member 3 of the first embodiment, and the introduction space 70 can be accurately adjusted by the insertion depth of the screwed body 500. Instead, in the filling step, the screwed body 500 can exhibit the same function as the extruded member 50 of the first embodiment. As described above, since the same volume as the volume that fills the filling space 60 can be secured in the introduction space 70 and the filling of the heat radiating gel 300 in the filling space 60 can be reliably made dense, the reliability of the heat radiating structure 1 after manufacturing can be maintained. Is possible.
 また、第二実施形態では、充填工程において、螺合体500によって導入孔150内の放熱ゲル300を充填空間60に押出した後で、螺合体500は、導入孔150に固定され、残置される。これによれば、良伝熱性の螺合体500をそのまま放熱構造1の一部として利用できるので、プロセッサ素子200で生じた熱の放熱効率を、高めることができる。また、導入孔150を螺合体500で埋めることができるため、放熱ゲル300が充填空間60から漏出することを防ぐことができる。故に、放熱性を向上させながらも、放熱ゲル300をプロセッサ素子200と上面ケース100との間に設ける際の作業効率も向上させることが、可能となる。 In the second embodiment, after the heat dissipation gel 300 in the introduction hole 150 is extruded into the filling space 60 by the screwing body 500 in the filling step, the screwing body 500 is fixed to the introduction hole 150 and left. According to this, since the good heat transfer screw 500 can be used as it is as a part of the heat dissipation structure 1, the heat dissipation efficiency of the heat generated in the processor element 200 can be increased. Further, since the introduction hole 150 can be filled with the screwed body 500, the heat radiating gel 300 can be prevented from leaking from the filling space 60. Therefore, it is possible to improve the work efficiency when the heat radiating gel 300 is provided between the processor element 200 and the upper case 100 while improving the heat dissipation.
 (その他の実施形態)
 以上、本開示の複数の実施形態について説明したが、本開示はそれら実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することができる。
(Other embodiments)
Although a plurality of embodiments of the present disclosure have been described above, the present disclosure is not limited to these embodiments, and can be applied to various embodiments without departing from the scope of the present disclosure.
 具体的に、第二実施形態に関する変形例1では、螺合により上面ケース100に固定される螺合体500を、図11に示されるように、圧入により固定される圧入部材504へと変更してもよい。圧入部材504は、ストッパとしての基端頭部506を有する。圧入部材504を挿入孔150に圧入する際、基端頭部506が突出部140に当接して停止することにより、挿入孔150への圧入部材504の圧入が止められる。これにより、圧入部材504は、該圧入部材504の先端面507が上面ケース100の下端面102を越えない位置まで導入孔150に挿入されることになる。これによれば、第二実施形態と同様に、導入工程において圧入部材504を第一実施形態の仕切部材3の代わりに活用できるともに、充填工程において圧入部材504を第一実施形態の押圧部材50の代わりに活用できる。なお、圧入部材504は、本開示の押出部材に相当する。 Specifically, in Modification 1 related to the second embodiment, the screwed body 500 fixed to the upper surface case 100 by screwing is changed to a press-fitting member 504 fixed by press-fitting as shown in FIG. Also good. The press-fitting member 504 has a proximal end head portion 506 as a stopper. When the press-fitting member 504 is press-fitted into the insertion hole 150, the proximal end head portion 506 is brought into contact with the protruding portion 140 and stopped, whereby the press-fitting of the press-fitting member 504 into the insertion hole 150 is stopped. As a result, the press-fitting member 504 is inserted into the introduction hole 150 until the tip end surface 507 of the press-fitting member 504 does not exceed the lower end surface 102 of the upper case 100. According to this, similarly to the second embodiment, the press-fitting member 504 can be used in place of the partition member 3 of the first embodiment in the introduction step, and the press-fitting member 504 is used in the filling step in the pressing member 50 of the first embodiment. Can be used instead of The press-fitting member 504 corresponds to the extrusion member of the present disclosure.
 また、第一実施形態及び第二実施形態に関する変形例2では、図12に示されるように、放熱フィン120を設けた上面ケース100の代わりに、複数の冷却ファン5が設けられるファンケース部材11を「放熱部材」として採用してもよい。この場合、位置固定した複数の冷却ファン5のうち各ファン5間の隙間と対応する位置において、ファンケース部材11に複数(図12の例では2つ)の導入孔150を設ける。そして、導入工程において、かかる導入孔150に放熱ゲル300を導入することで、本開示の放熱構造1の製造方法を適用することができる。 Moreover, in the modification 2 regarding 1st embodiment and 2nd embodiment, as FIG. 12 shows, instead of the upper surface case 100 which provided the radiation fin 120, the fan case member 11 with which the some cooling fan 5 is provided. May be adopted as the “heat radiating member”. In this case, a plurality of (two in the example of FIG. 12) introduction holes 150 are provided in the fan case member 11 at positions corresponding to the gaps between the fans 5 among the plurality of cooling fans 5 whose positions are fixed. And in the introduction process, the manufacturing method of the heat dissipation structure 1 of the present disclosure can be applied by introducing the heat dissipation gel 300 into the introduction hole 150.
 さらに、第一実施形態及び第二実施形態に関する変形例3では、上面ケース100に形成される導入孔150を、プロセッサ素子200の表面21に対して、その法線方向とは傾くように形成してもよい。またさらに、第一実施形態及び第二実施形態に関する変形例4では、上面ケース100に形成される導入孔150を、複数形成してもよい。ここで導入孔150を複数形成する場合においては、各導入孔150は、それら各導入孔150の総積が充填空間60を満たす容積と同じになるように形成される。 Furthermore, in Modification 3 relating to the first embodiment and the second embodiment, the introduction hole 150 formed in the upper case 100 is formed so as to be inclined with respect to the surface 21 of the processor element 200 in the normal direction. May be. Furthermore, in Modification 4 regarding the first embodiment and the second embodiment, a plurality of introduction holes 150 formed in the upper surface case 100 may be formed. Here, when a plurality of introduction holes 150 are formed, each introduction hole 150 is formed such that the total volume of the introduction holes 150 is the same as the volume that fills the filling space 60.
 加えて、第一実施形態及び第二実施形態に関する変形例5では、導入工程において、導入孔150から出ている余剰な放熱ゲル300を除去しないように、放熱ゲル300の導入を行なってもよい。 In addition, in the modified example 5 regarding the first embodiment and the second embodiment, the heat radiating gel 300 may be introduced so that the excessive heat radiating gel 300 protruding from the introduction hole 150 is not removed in the introducing step. .
 また加えて、第一実施形態及び第二実施形態に関する変形例6では、組付工程の後に導入工程を行ってもよい。この場合、仕切部材3を組付工程以前に上面ケース100に当接させた後、仕切部材3と上面ケース100とをともにメイン基板400に組付けて、組付工程を完了させる。そして、その後に、放熱ゲル300を導入孔150に導入してから、仕切部材3を取り除いて、導入工程を完了させる。さらに加えて、第二実施形態に関する変形例7では、充填工程において、螺合体500が放熱ゲル300を押出した後に、導入孔150から螺合体500を抜き出してもよい。またさらに加えて、第一実施形態に関する変形例8では、充填工程において、押出部材50が放熱ゲル300を押出した後に、押出部材50を抜き出さずに嵌合固定してもよい。 In addition, in the modified example 6 related to the first embodiment and the second embodiment, the introducing step may be performed after the assembling step. In this case, after the partition member 3 is brought into contact with the upper surface case 100 before the assembly process, both the partition member 3 and the upper surface case 100 are assembled to the main substrate 400 to complete the assembly process. And after that, after introducing the thermal radiation gel 300 into the introduction hole 150, the partition member 3 is removed and the introduction process is completed. In addition, in Modification Example 7 related to the second embodiment, in the filling step, the screwed body 500 may be extracted from the introduction hole 150 after the screwed body 500 extrudes the heat radiating gel 300. In addition, in Modification 8 regarding the first embodiment, after the extruding member 50 extrudes the heat radiating gel 300 in the filling step, the extruding member 50 may be fitted and fixed without being extracted.
 さらには、第一実施形態に関する変形例9では、押出部材50を採用せずに、導入孔150の充填された放熱ゲル300の露出表面に圧縮空気を吹付けて該導入孔150から充填空間60に放熱ゲル300を排出し、充填するようにしてもよい。 Furthermore, in the ninth modified example related to the first embodiment, without using the pushing member 50, compressed air is blown onto the exposed surface of the heat radiating gel 300 filled with the introduction hole 150 to fill the filling space 60 from the introduction hole 150. The heat dissipating gel 300 may be discharged and filled.
 また、さらには、第一実施形態及び第二実施形態に関する変形例10では、「発熱素子」は、パワートランジスタなどの電力用半導体素子であってもよい。 Furthermore, in the modification 10 related to the first embodiment and the second embodiment, the “heat generating element” may be a power semiconductor element such as a power transistor.

Claims (8)

  1.  作動時に熱を発する発熱素子(200)と、前記発熱素子(200)から受けた前記熱を外部へ逃がす放熱部材(100、11)と、前記発熱素子(200)と前記放熱部材(100、11)との間に形成された充填空間(60)と、前記充填空間(60)に充填されて前記発熱素子(200)の前記熱を前記放熱部材(100、11)に伝える放熱ゲル(300)とを備える放熱構造の製造方法であって、
     前記充填空間(60)を満たすべく設定された所定容積の前記放熱ゲル(300)を、前記放熱部材(100、11)の導入孔(150)へ導入することと、
     前記導入孔(150)内の前記所定容積の放熱ゲル(300)を前記充填空間(60)に充填することを含む製造方法。
    A heat generating element (200) that generates heat during operation, a heat radiating member (100, 11) that releases the heat received from the heat generating element (200), the heat generating element (200), and the heat radiating member (100, 11) ) And a heat radiation gel (300) that fills the filling space (60) and transmits the heat of the heat generating element (200) to the heat radiating member (100, 11). A method of manufacturing a heat dissipation structure comprising:
    Introducing the heat-dissipating gel (300) of a predetermined volume set to fill the filling space (60) into the introduction hole (150) of the heat-dissipating member (100, 11);
    The manufacturing method including filling the filling space (60) with the heat-dissipating gel (300) of the predetermined volume in the introduction hole (150).
  2.  前記所定容積の放熱ゲル(300)を前記充填空間(60)に充填することは、押出部材(50、500、504)を前記導入孔(150)内に挿入することにより、前記押出部材(50、500、504)によって前記導入孔(150)内の前記所定容積の放熱ゲル(300)を前記充填空間(60)に押出し、前記充填空間(60)を前記所定容積の放熱ゲル(300)で充填することを含む請求項1に記載の製造方法。 Filling the filling space (60) with the predetermined volume of the heat-dissipating gel (300) is achieved by inserting the push-out member (50, 500, 504) into the introduction hole (150). , 500, 504) extruding the predetermined volume of the radiating gel (300) in the introduction hole (150) into the filling space (60), and the filling space (60) with the predetermined volume of the radiating gel (300). The manufacturing method of Claim 1 including filling.
  3.  前記所定容積の放熱ゲル(300)を前記放熱部材(100、11)の前記導入孔(150)へ導入することは、押出部材(500、504)を前記導入孔(150)の一部に挿入することにより、導入空間(70)を前記導入孔(150)内に形成することと、前記所定容積の放熱ゲル(300)を前記導入孔(150)内の前記導入空間(70)に導入することを含み、
     前記所定容積の放熱ゲル(300)を前記充填空間(60)に充填することは、前記所定容積の放熱ゲル(300)を前記導入空間(70)に導入した後で、前記押出部材(500、504)を前記導入孔(150)にさらに挿入することにより、前記押出部材(500、504)によって前記導入空間(70)の前記所定容積の放熱ゲル(300)を前記充填空間(60)に押出し、前記充填空間(60)を前記所定容積の放熱ゲル(300)で充填することを含む請求項1に記載の製造方法。
    Introducing the predetermined volume of the heat radiating gel (300) into the introduction hole (150) of the heat radiating member (100, 11) inserts the pushing member (500, 504) into a part of the introduction hole (150). Thus, the introduction space (70) is formed in the introduction hole (150), and the heat-dissipating gel (300) having the predetermined volume is introduced into the introduction space (70) in the introduction hole (150). Including
    Filling the filling space (60) with the predetermined volume of the heat dissipating gel (300) means that after the heat dissipating gel (300) with the predetermined volume is introduced into the introduction space (70), the pushing member (500, 504) is further inserted into the introduction hole (150), and the pushing member (500, 504) pushes the predetermined amount of the heat-dissipating gel (300) in the introduction space (70) into the filling space (60). The manufacturing method according to claim 1, comprising filling the filling space (60) with the heat-dissipating gel (300) of the predetermined volume.
  4.  前記所定容積の放熱ゲル(300)を前記放熱部材(100、11)の前記導入孔(150)へ導入した後で、前記放熱部材(100、11)と、前記発熱素子(200)を保持する保持部材(400)とを組付けることを含む請求項1乃至3のいずれか一項に記載の製造方法。 After introducing the heat dissipation gel (300) of the predetermined volume into the introduction hole (150) of the heat dissipation member (100, 11), the heat dissipation member (100, 11) and the heat generating element (200) are held. The manufacturing method according to any one of claims 1 to 3, comprising assembling the holding member (400).
  5.  前記所定容積の放熱ゲル(300)を前記放熱部材(100、11)の前記導入孔(150)へ導入することは、前記発熱素子(200)とは反対側に突出した前記放熱部材(100、11)の突出部(140)を貫通して延びる前記導入孔(150)へ前記所定容積の放熱ゲル(300)を導入することを含む請求項1乃至4のいずれか一項に記載の製造方法。 Introducing the heat-dissipating gel (300) of the predetermined volume into the introduction hole (150) of the heat-dissipating member (100, 11) means that the heat-dissipating member (100, 11. The manufacturing method according to claim 1, comprising introducing the predetermined amount of the heat-dissipating gel (300) into the introduction hole (150) extending through the protrusion (140) of 11). .
  6.  前記所定容積の放熱ゲル(300)を前記充填空間(60)に充填することは、一方の側が前記発熱素子(200)の平面(21)によって画定された前記充填空間(60)に対し、前記発熱素子(200)の前記平面(21)に対し法線方向に延びる前記導入孔(150)を通じて、前記所定容積の放熱ゲル(300)を充填することを含む請求項1乃至5のいずれか一項に記載の製造方法。 Filling the filling space (60) with the predetermined volume of the heat-dissipating gel (300) means that the filling space (60) is defined on one side by the plane (21) of the heating element (200). 6. The method according to claim 1, further comprising filling the heat-dissipating gel (300) with the predetermined volume through the introduction hole (150) extending in a normal direction with respect to the plane (21) of the heating element (200). The production method according to item.
  7. 前記所定容積の放熱ゲル(300)を前記充填空間(60)に充填することは、前記押出部材(50)によって前記導入孔(150)内の前記所定容積の放熱ゲル(300)を前記充填空間(60)に押出した後で、前記押出部材(50)を前記導入孔(150)から抜き出すことを含む請求項2または3に記載の製造方法。 Filling the filling space (60) with the predetermined volume of the heat-dissipating gel (300) means that the predetermined volume of the heat-dissipating gel (300) in the introduction hole (150) is filled with the filling space by the pushing member (50). The manufacturing method according to claim 2 or 3, comprising extracting the extruded member (50) from the introduction hole (150) after being extruded into (60).
  8.  前記所定容積の放熱ゲル(300)を前記充填空間(60)に充填することは、前記押出部材(500、504)によって前記導入孔(150)内の前記所定容積の放熱ゲル(300)を前記充填空間(60)に押出した後で、前記押出部材(500、504)を固定し、前記導入孔(150)内に残置することを含む請求項2または3に記載の製造方法。 Filling the filling space (60) with the predetermined volume of the heat-dissipating gel (300) may cause the predetermined volume of the heat-dissipating gel (300) in the introduction hole (150) to be filled with the pushing member (500, 504). The method according to claim 2 or 3, further comprising fixing the extruded member (500, 504) and leaving the extruded member (500) in the introduction hole (150) after being extruded into the filling space (60).
PCT/JP2013/007519 2013-01-15 2013-12-23 Method for manufacturing heat dissipation structure WO2014112014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-004767 2013-01-15
JP2013004767A JP5741597B2 (en) 2013-01-15 2013-01-15 Manufacturing method of heat dissipation structure

Publications (1)

Publication Number Publication Date
WO2014112014A1 true WO2014112014A1 (en) 2014-07-24

Family

ID=51209142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007519 WO2014112014A1 (en) 2013-01-15 2013-12-23 Method for manufacturing heat dissipation structure

Country Status (2)

Country Link
JP (1) JP5741597B2 (en)
WO (1) WO2014112014A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070219A (en) * 1996-08-27 1998-03-10 Fujitsu Ltd Packaged module cooling device
JPH10190263A (en) * 1996-12-27 1998-07-21 Alps Electric Co Ltd Heat radiating structure of electronic component
JP2001251008A (en) * 2000-03-06 2001-09-14 Hitachi Cable Ltd Optical transmitter and receiver
US20030183909A1 (en) * 2002-03-27 2003-10-02 Chia-Pin Chiu Methods and apparatus for disposing a thermal interface material between a heat source and a heat dissipation device
JP2006269505A (en) * 2005-03-22 2006-10-05 Nec Corp Cooling structure
JP2009290118A (en) * 2008-05-30 2009-12-10 Toshiba Corp Electronic device
JP2010219260A (en) * 2009-03-17 2010-09-30 Panasonic Corp Semiconductor device and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070219A (en) * 1996-08-27 1998-03-10 Fujitsu Ltd Packaged module cooling device
JPH10190263A (en) * 1996-12-27 1998-07-21 Alps Electric Co Ltd Heat radiating structure of electronic component
JP2001251008A (en) * 2000-03-06 2001-09-14 Hitachi Cable Ltd Optical transmitter and receiver
US20030183909A1 (en) * 2002-03-27 2003-10-02 Chia-Pin Chiu Methods and apparatus for disposing a thermal interface material between a heat source and a heat dissipation device
JP2006269505A (en) * 2005-03-22 2006-10-05 Nec Corp Cooling structure
JP2009290118A (en) * 2008-05-30 2009-12-10 Toshiba Corp Electronic device
JP2010219260A (en) * 2009-03-17 2010-09-30 Panasonic Corp Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2014138030A (en) 2014-07-28
JP5741597B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP6354600B2 (en) CIRCUIT COMPOSITION, ELECTRIC CONNECTION BOX, AND METHOD FOR MANUFACTURING CIRCUIT COMPOSITION
JP4241756B2 (en) Component mounting board structure
CN101556941B (en) Heat radiation structure of surface mounting high-power element
JP6252871B2 (en) Circuit structure and electrical junction box
JP5391776B2 (en) heatsink
US9131628B2 (en) Circuit board device and manufacturing method thereof and power supply having the circuit board device
JP6027945B2 (en) Electronic control unit
JP6252000B2 (en) substrate
US20130153193A1 (en) Bidirectional heat sink for package element and method for assembling the same
TW201322844A (en) Method for filling a circuit board
JP4433875B2 (en) Heat dissipating structure of heat generating component and method of manufacturing heat dissipating member in this heat dissipating structure
JP2004072106A (en) Adjustable pedestal thermal interface
JP2017005093A (en) Substrate heat dissipation structure and method of assembling the same
KR200396968Y1 (en) heat sink structure for electric and electronic products
WO2014112014A1 (en) Method for manufacturing heat dissipation structure
US20170339789A1 (en) Semiconductor device and motor apparatus
JP2011171656A (en) Semiconductor package and method for manufacturing the same
KR101846204B1 (en) Elctronic control device having interior heat radiation fin
JP2007035843A (en) Electronic circuit device
JPH06318486A (en) Ic part mounting pin socket and collective socket
CN110392971A (en) Motor
JP2009238923A (en) Electronic equipment
JP5861692B2 (en) Manufacturing method of heat dissipation structure
KR100616310B1 (en) Manufaturing method of a heatsink for electronic equipment
WO2014208006A1 (en) Electronic device and method for manufacturing said electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871403

Country of ref document: EP

Kind code of ref document: A1