WO2014111310A1 - Procédé pour la préparation de gaz de synthèse - Google Patents

Procédé pour la préparation de gaz de synthèse Download PDF

Info

Publication number
WO2014111310A1
WO2014111310A1 PCT/EP2014/050377 EP2014050377W WO2014111310A1 WO 2014111310 A1 WO2014111310 A1 WO 2014111310A1 EP 2014050377 W EP2014050377 W EP 2014050377W WO 2014111310 A1 WO2014111310 A1 WO 2014111310A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
methane
carbon dioxide
reforming
auto
Prior art date
Application number
PCT/EP2014/050377
Other languages
English (en)
Inventor
Yuhan Sun
Tiejun Zhao
Zhiyong Tang
He ZHU
Bin Liu
Yaning XIAO
Dongfei WANG
Original Assignee
Shell Internationale Research Maatschappij B.V.
Shell Oil Company
Shanghai Advanced Research Institute, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V., Shell Oil Company, Shanghai Advanced Research Institute, Chinese Academy Of Sciences filed Critical Shell Internationale Research Maatschappij B.V.
Publication of WO2014111310A1 publication Critical patent/WO2014111310A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series

Definitions

  • the present invention is in the field of CI chemistry and relates to a process for the preparation of synthesis gas, more particularly a process for preparing synthesis gas by auto-thermal reforming of methane and carbon dioxide .
  • Syngas or synthesis gas is a commonly used term for a gas comprising carbon monoxide (CO) and hydrogen (3 ⁇ 4) and is used in a variety of processes as the starting reaction mixture for producing different chemicals, such as methanol or longer-chain hydrocarbons (via Fischer-Tropsch synthesis).
  • a catalytic process for converting CO2 at high temperature may turn into a very important direction for CO2 utilization at a large scale. Accordingly, a process for reforming CO2 and CH 4 into syngas not only
  • the CO2-CH 4 reforming reaction is a highly endothermic reaction. Based on thermodynamic analysis, it is clear that the temperature has to be increased to at least 600 °C before the C0 2 and CH 4 react into CO and H 2 .
  • reforming carbon dioxide-methane reveals a reforming method, in which a CH 4 -rich feed gas, CO2 , H 2 0 and O2 are added and preheated in a pyrolysis section of a thermal conversion reactor and when the temperature rises above 950 °C the reaction takes place to produce hot syngas. This hot syngas is subjected to cooling and heat
  • synthesis using synthesis gas generated by combined reforming of natural gas with carbon dioxide synthesis gas is obtained f om steam/carbon dioxide reforming of methane, in which steam reforming of natural gas is carried out simultaneously with carbon dioxide reforming of methane, by using a catalyst
  • Ni/Ce/MgA10 x or Ni/Ce-Zr/MgA10 x Ni/Ce-Zr/MgA10 x
  • Methanol synthesis is subsequently carried out by using the synthesis gas obtained and a catalyst system suitable for methanol synthesis with minimum byproduct formation .
  • CN-1660733-A discloses a process, in which the raw gaseous hydrocarbons and water vapour are introduced into a first furnace where the conversion occurs, then CO 2 and O 2 are added into the output conversion gas and the resulting reaction mixture is sent to the second furnace, where the further reaction of gaseous hydrocarbons with water vapour occurs with the adjustment of H/C ratio at the gas outlet of the second furnace.
  • the technical problem to be solved by this invention is to provide a process for the preparation of synthesis gas by carbon dioxide-methane auto-thermal reforming, which can be applied on an industrial scale and has advantages, such as low energy consumption, high
  • the present invention provides a process for the preparation of synthesis gas in which methane is first reacted with oxygen and the reaction heat generated in this exothermic reaction is subsequently used to enable the endothermic reforming reaction between methane and carbon dioxide to form synthesis gas.
  • the present invention provides a process for the preparation of synthesis gas by auto-thermal reforming of carbon dioxide and methane comprising the steps of
  • step (d) reacting methane with carbon dioxide in a reforming reaction in the presence of the reforming catalyst using the heat released in the oxidation reaction in step (c) ;
  • the methane-comprising feed gas, carbon dioxide and oxygen-containing gas are fed into the carbon dioxide-methane auto-thermal reforming reactor and are subsequently well mixed in step (b) , so that the methane and oxygen for the oxidation step can react effectively in oxidation step (c) to form a first part of the raw synthesis gas.
  • step (d) endothermic reforming reaction between carbon dioxide and methane in step (d) , thereby forming the remaining part of the raw synthesis gas.
  • the methane-comprising feed gas is suitably selected from the group consisting of natural gas, coke oven gas, oil gas, refinery gas, coal bed methane, methanol synthesis purge gas, Fischer-Tropsch synthesis vent gas and mixtures of two or more of these.
  • This feed gas is desulphurized before being introduced into the carbon dioxide-methane auto-thermal reforming reactor. If a methane-comprising gas is used which also comprises a substantial amount of carbon dioxide, then a separate carbon dioxide feed gas stream may not be required.
  • methane/carbon dioxide comprising gases
  • methane/carbon dioxide comprising gases
  • examples of such methane/carbon dioxide comprising gases are methanol synthesis purge gas and Fischer-Tropsch synthesis vent gas.
  • the oxygen-comprising gas suitably is pure oxygen or oxygen having a purity of more than 99%.
  • the carbon dioxide-methane auto-thermal reforming reactor can be any reactor suitable for auto-thermal reactions.
  • Such reactor will comprise inlet means for the various feed gases at the top part, an upper section comprising mixing means to effectively mix the feed gases and a combustion zone for subsequently carrying out the oxidation reaction, a lower section comprising the reforming catalyst bed where the carbon dioxide-methane reforming reaction takes place and a gas collection space for the raw syngas formed in the lower part of the reactor which gas collection space is fluidly connected with gas outlet means to remove the raw
  • the feed gases methane and carbon dioxide may also be mixed before entering the reactor, in which case the reactor does not need to contain separate mixing means.
  • the reactor may also contain a burner to initiate the reaction between methane and oxygen. In such a
  • configuration oxygen may also be premixed with methane and carbon dioxide as long as the temperature of the resulting gas mixture is below the auto-ignition point of methane (645 °C) .
  • the gas mixture is then introduced into the burner flame, the oxidation of methane occurs.
  • the methane optionally mixed with carbon dioxide, may be preheated to a temperature
  • the methane-comprising feed gas and the carbon dioxide are preheated before they are introduced into the auto-thermal reactor. It was found particularly suitable to introduce the methane-comprising gas and carbon dioxide into the auto-thermal reforming reactor at a temperature in the range of from 400 to 700 °C, preferably from 500 to 600 °C.
  • the temperature of the reaction mixture during the oxidation reaction will increase. Overall temperature of the gas mixture in the combustion zone will, however, generally be between 1000 and 1500 °C, more typically between 1100 and 1400 °C. This heat is subsequently used to promote the endothermic reforming reaction between methane and carbon dioxide. Accordingly, the temperature of the gas mixture will decrease when the reforming reaction takes place.
  • the reforming catalyst used can be any catalyst known to catalyze the reforming reaction between methane and carbon dioxide.
  • Examples include nickel-based refractory oxide catalysts and noble metal-based refractory oxide catalysts.
  • Suitable refractory oxide support materials include alumina (AI 2 O 3 ) , silica (S1O 2 ), titania (T1O 2 ) , zirconia (ZrC> 2 ), cerium oxide (CeC> 2 ) and chromium oxide (Cr 2 C>3) , optionally in combination with a promoter such as calcium oxide (CaO) and/or magnesium oxide (MgO) resulting in a refractory oxide composite catalyst.
  • a promoter such as calcium oxide (CaO) and/or magnesium oxide (MgO) resulting in a refractory oxide composite catalyst.
  • Ni-based composite catalysts such as Ni-Al 2 0 3 , Ni-CaO-Zr0 2 , Ni-CaO-Ce0 2 , Ni-CaO-Al 2 0 3 , Ni-CaO-Al 2 0 3 -Zr0 2 , Ni-MgO-Al 2 0 3 , Ni-MgO-CaO-Al 2 0 3 , Ni-MgO- Cr 2 0 3 -Al 2 0 3 , Ni-CaO-Ti0 2 -Al 2 0 3 , Ni-MgO-Ti0 2 -Si0 2 .
  • noble metal-based catalysts are Ru, Rh, Pd and/or Pt supported on one of the refractory oxide supports mentioned above.
  • a specific example is a Pt-Al 2 0 3
  • nickel comprising nickel, calcium and zirconium (i.e. nickel
  • Ni-CaO-ZrC>2 composite catalyst was particularly suitable for the process of the present invention .
  • the reforming catalyst is suitably shielded by a gas permeable, heat absorbing material, such as alumina ball and/or a heat-resistant catalyst layer.
  • a gas permeable, heat absorbing material such as alumina ball and/or a heat-resistant catalyst layer.
  • heat-resistant catalyst layer suitably comprises a relatively small amount of
  • catalytically active metal typically up to 10 wt%, suitably between 1 and 8 wt% supported on a heat
  • a suitable heat-resistant catalyst would be Ni- A1 2 0 3 or Ni-CaO-Al 2 0 3 .
  • the synthesis gas to be formed has a target hydrogen- to-carbon monoxide (H 2 /CO) molar ratio depending on the envisaged end use of the synthesis gas. Therefore, water vapour is suitably introduced into the carbon dioxide- methane auto-thermal reforming reactor in step (a) in an amount corresponding with the target H 2 /CO molar ratio of the synthesis gas. Such water vapour (steam) would suitably be added simultaneously with the other feed gases and be mixed with these gases in the top section of the auto-thermal reforming reactor.
  • H 2 /CO hydrogen- to-carbon monoxide
  • the methane (CH 4 ) , carbon dioxide (C0 2 ) , oxygen (0 2 ) and optionally water vapour (H 2 0) feed gases to the auto- thermal reforming reactor in step (a) are added in such amounts that the molar ratios of these gases in the mixed gas in the auto-thermal reforming reactor are suitably as follows: CH 4 / CO2 molar ratio is in the range of from 0.5 to 3, O2 / CH 4 molar ratio is in the range of from 0.1 to 0.4 and H 2 0/CH 4 molar ratio is in the range of from 0 to 3.5. Most preferably, these molar ratios are as follows:
  • CH 4 / CO2 molar ratio is 1.2
  • O2 / CH 4 molar ratio is 0.2
  • H 2 0/CH 4 molar ratio is in the range of from 0 to 1.5.
  • reforming reaction are an operating pressure of from 0.1 to 5 MPa, preferably from 1 to 3 MPa, and an operating temperature in the reforming catalyst reaction bed of from 700 to 1250 °C, preferably from 900 to 1100 °C .
  • the gas hourly space velocity of the gas feeds is suitably in the range of from 1000 to 50,000 m 3 feed gas (S.T.P.)/ m 3 catalyst /hour (m 3 / ( m 3 .h)), preferably from 5000 to
  • the gas hourly space velocity refers to the total feed gas volume (i.e. all different gases taken together) processed per unit volume of catalyst per hour.
  • the hydrogen to carbon monoxide (H 2 /CO) molar ratio in the synthesis gas produced is suitably in the range of from 0.5 to 3 and suitably contains from 0.1 to 2 %vol CH 4 .
  • the process according to the present invention has a number of advantages and beneficial effects.
  • the process according to the present invention is self-supplying in terms of heat required in the endothermic, high temperature reforming reaction between CO2 and CH 4 by utilizing the heat generated from the exothermic oxidation reaction between O2 and CH 4 .
  • This requires less heating of the reforming reactor at high temperature above 700 °C and also decreases the energy consumption and operation cost of the system.
  • the preferred Ni-CaO-Zr02 reforming catalyst is used, it can be used at high gas hourly space velocities without adding water vapour. This decreases the reactor volume required and amount of catalyst needed, which in return is advantageous in that it decreases the investment and operation cost.
  • the high temperature of the synthesis gas prepared can be used to preheat different feed gases and can be used to provide heat to a waste heat boiler. This decreases the energy consumption of the whole system.
  • the process according to the present invention uses CO 2 as a carbon source, thereby chemically utilizing the carbon in CO 2 , which not only decreases the emission of the greenhouse gas CO 2 , but also produces valuable resources.
  • Figure 1 is the schematic process diagram of one embodiment of the present invention as applied in Example 1 of the invention.
  • the methane-comprising feed gas (1) is desulphurized in desulphurization reactor (2).
  • the desulphurized methane-comprising feed (3) is subsequently preheated against hot raw syngas (12) in heat exchanger (4).
  • the preheated methane-comprising feed (5), water vapour (6), oxygen-containing feed gas (7) and carbon dioxide feed (8) are fed into carbon dioxide-methane auto-thermal reforming reactor (10), where mixing and oxidation of methane takes place in mixing/combustion zone (11) in the upper part of the reactor.
  • the resulting gas mixture is passed over reforming catalyst bed (12) and hot raw syngas (13) leaves the reactor at the bottom end and is passed through heat exchanger (4) to transfer heat to the desulphurized methane-comprising feed (3) .
  • the cooled raw syngas (14) is then passed through waste heat boiler (15), where steam (17) is generated. Cooled syngas (16) leaves the waste heat boiler (15) and is passed through separation tank (18) to remove any remaining water (20) , resulting in dry syngas (19) .
  • the desulphurized, cooled CH 4 -rich feed (5) was obtained by compressing the CH 4 -rich (or CH 4 /CC> 2 -rich) feed gas (to a pressure of 5.0 MPa, then feeding the compressed gas (1) into the desulfurization reactor (2), where desulphurization to a sulphur content of less than 5 ppm occurred.
  • the desulphurized CH 4 -rich feed gas (3) had a temperature of 380 °C .
  • This feed gas (3) was then passed into heat exchanger (4), where its temperature was increased to 600 °C .
  • the heat exchanger used the hot raw syngas (13) from the CO2-CH 4 auto-thermal reforming reactor (10) as heat source.
  • reaction conditions of the CO2-CH 4 reforming reaction were: Ni-CaO-ZrC>2 catalyst having a Ni-content of 15 wt%, gas hourly space velocity of 50, 000 m 3 / ( m 3 .h), pressure of 2.1 MPa, and catalytic reaction bed temperature of 950 °C.
  • the hot raw syngas (13) obtained had the following parameters: flow rate of 199 kmol/hr, temperature of 950 °C, pressure of 2.1 MPa, and molar composition of 31.4%
  • Example 1 was repeated except that no water vapour stream was used.
  • the remaining three gas streams were introduced into the CO 2 -CH 4 auto-thermal reforming reactor at the following conditions:
  • the above gases were mixed and reacted in the CO 2 - CH 4 auto-thermal reforming reactor at 3.0 MPa pressure, and 991 °C equilibrium temperature.
  • the combustion reaction between CH 4 and O 2 subsequently occurred as well as the CO 2 -CH 4 reforming reaction and syngas is formed.
  • Gas hourly space velocity was 1000 m 3 / ( m 3 .h) .
  • the hot raw syngas (13) obtained had the following parameters: flow rate of 424 kmol/hr, temperature of 991 °C, pressure of 3.0 MPa and molar composition of 32.0% H 2 , 36.0% CO, 12.7% C0 2 , 0.8% CH 4 , 18.3% H 2 0, and 2% N 2 .
  • Example 1 was repeated except that no water vapour stream was used and the methane-comprising feed gas and carbon dioxide feed gas were combined. Accordingly, the following feed gases were used: (a) A Fischer-Tropsch synthesis vent gas having a flow rate of 121 kmol/hr, a temperature of 503 °C, a pressure of 2.2 MPa and a molar composition of 34.27% H 2 , 7.19% CO, 20.6% C0 2 , 31.2% CH 4 , and 6.74% N 2 .
  • feed gases were used: (a) A Fischer-Tropsch synthesis vent gas having a flow rate of 121 kmol/hr, a temperature of 503 °C, a pressure of 2.2 MPa and a molar composition of 34.27% H 2 , 7.19% CO, 20.6% C0 2 , 31.2% CH 4 , and 6.74% N 2 .
  • Both gas feed streams were introduced into the C0 2 - CH 4 auto-thermal reforming reactor (10) and mixed in mixing/reaction zone (11) at 22.0 MPa pressure and 850 °C equilibrium temperature.
  • the combustion reaction between CH 4 and 0 2 subsequently occurred as well as the C0 2 -CH 4 reforming reaction and syngas is formed.
  • Gas hourly space velocity was 20, 000 m 3 / ( m 3 .h).
  • the hot raw syngas (13) obtained had the following parameters: flow rate of 163 kmol/hr, temperature of 850 °C and molar composition of 38.6% H 2 , 25.8% CO, 7.8% C0 2 , 10.0% CH 4 , 12.8% H 2 0, and 5.0% N 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

L'invention concerne un procédé pour la préparation d'un gaz de synthèse. Le procédé pour la préparation d'un gaz de synthèse par reformage autothermique de dioxyde de carbone et de méthane comprend les étapes consistant à (a) introduire un gaz d'alimentation comprenant du méthane, du dioxyde de carbone et un gaz contenant de l'oxygène dans un réacteur de reformage autothermique de dioxyde de carbone-méthane comprenant un lit de catalyseur de reformage; (b) mélanger le gaz d'alimentation comprenant du méthane, du dioxyde de carbone et un gaz contenant de l'oxygène : (c) faire réagir le méthane avec de l'oxygène dans une réaction d'oxydation; (d) faire réagir le méthane avec du dioxyde de carbone dans une réaction de reformage en présence du catalyseur de reformage à l'aide de la chaleur libérée dans la réaction d'oxydation dans l'étape (c); et (e) récupérer le gaz de synthèse produit dans les étapes (c) et (d). Le procédé réalise l'auto-alimentation en chaleur dans le réacteur de reformage à haute température par l'utilisation de la chaleur générée dans la réaction d'oxydation exothermique entre le méthane et l'oxygène dans la réaction de reformage de dioxyde de carbone-méthane endothermique. Par conséquent, l'invention non seulement résout les problèmes de chauffage du réacteur de reformage à des températures élevées, mais diminue également la consommation énergétique et le coût de fonctionnement du système.
PCT/EP2014/050377 2013-01-17 2014-01-10 Procédé pour la préparation de gaz de synthèse WO2014111310A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310017015.4 2013-01-17
CN201310017015.4A CN103979492A (zh) 2013-01-17 2013-01-17 二氧化碳-甲烷自热重整制备合成气的工艺方法

Publications (1)

Publication Number Publication Date
WO2014111310A1 true WO2014111310A1 (fr) 2014-07-24

Family

ID=50002691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/050377 WO2014111310A1 (fr) 2013-01-17 2014-01-10 Procédé pour la préparation de gaz de synthèse

Country Status (2)

Country Link
CN (1) CN103979492A (fr)
WO (1) WO2014111310A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072649A1 (fr) 2015-10-30 2017-05-04 Sabic Global Technologies B.V. Procédés et systèmes de production de gaz de synthèse à partir de dioxyde de carbone et d'hydrogène
CN107974317A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种焦炉气的甲烷化方法及催化剂和其制备方法
CN113401866A (zh) * 2021-05-29 2021-09-17 浙江大学 一种低温降解聚烯烃废塑料制备富氢合成气的方法
CN113955742A (zh) * 2021-12-09 2022-01-21 太原理工大学 一种二氧化碳-甲烷重整技术制备碳纳米管的工艺
CN114805023A (zh) * 2022-03-28 2022-07-29 国家能源集团宁夏煤业有限责任公司 零排放煤制烯烃的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520178A (zh) * 2015-09-14 2017-03-22 上海华西化工科技有限公司 一种焦炉煤气与小粒焦制气联合生产燃料油的方法
CN106520179A (zh) * 2015-09-14 2017-03-22 上海华西化工科技有限公司 一种用焦炉煤气与富二氧化碳气联合生产燃料油的方法
CN106520177A (zh) * 2015-09-14 2017-03-22 上海华西化工科技有限公司 一种焦炉煤气直接生产燃料油的方法
CN105502288B (zh) * 2015-12-15 2017-10-03 中国科学院上海高等研究院 一种两步甲烷‑二氧化碳重整制备醋酸原料气的方法
CN106986342B (zh) * 2017-05-05 2019-03-22 湖南大学 制备合成气以及捕获和利用二氧化碳的方法和装置
CN107416769A (zh) * 2017-08-03 2017-12-01 山西潞安煤基合成油有限公司 一种甲烷二氧化碳重整制备合成气的方法
CN109694038A (zh) * 2019-03-14 2019-04-30 四川天一科技股份有限公司 一种电加热轻烃转化制备合成气的工艺系统及转化方法
CN111484394B (zh) * 2020-04-08 2022-01-25 华南农业大学 可燃冰原位催化制气合成甲醇的方法及系统
CN113683055B (zh) * 2021-08-27 2024-01-12 西安交通大学 一种串联式补热与回热相结合的光热耦合甲烷/二氧化碳干重整系统及基于其的方法
CN114991740B (zh) * 2022-06-21 2023-08-25 西安石油大学 一种煤炭地下气化产出气降温节能方法与系统
CN115818572A (zh) * 2022-12-27 2023-03-21 西南化工研究设计院有限公司 一种烃类二氧化碳纯氧重整制取合成气的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1415531A (zh) 2001-11-01 2003-05-07 中国石油大庆石化分公司研究院 一种天然气或甲烷催化转化制合成气的方法
CN1648034A (zh) 2005-01-05 2005-08-03 山西中天煤化有限公司 二氧化碳-甲烷重整制合成气工艺
CN1660733A (zh) 2004-02-25 2005-08-31 庞玉学 一种利用烃类和水蒸汽转化制取甲醇合成气的工艺方法
US20080021251A1 (en) * 2006-06-23 2008-01-24 Iaccino Larry L Production of aromatic hydrocarbons and syngas from methane
US20080260628A1 (en) * 2007-04-17 2008-10-23 Korea Institute Of Science And Technology Ni-based catalyst for tri-reforming of methane and its catalysis application for the production of syngas
CN101450790A (zh) 2007-12-07 2009-06-10 上海焦化有限公司 一种天然气-二氧化碳重整制备合成气的方法和装置
US20110237689A1 (en) 2008-12-08 2011-09-29 Jong Wook Bae Method for methanol synthesis using synthesis gas generated by combined reforming of natural gas with carbon dioxide
US20120022306A1 (en) * 2008-12-17 2012-01-26 Oberon Fuels, Inc. Process and system for converting biogas to liquid fuels
WO2012059191A1 (fr) * 2010-11-02 2012-05-10 Saudi Basic Industries Corporation (Sabic) Procédé de production d'oléfines légères en utilisant un catalyseur à base de zsm - 5

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717073B (zh) * 2009-10-29 2012-10-03 太原理工大学 一种焦炉煤气制合成气的方法
CN102151570A (zh) * 2011-03-01 2011-08-17 上海中科高等研究院 一种甲烷-二氧化碳重整反应催化剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1415531A (zh) 2001-11-01 2003-05-07 中国石油大庆石化分公司研究院 一种天然气或甲烷催化转化制合成气的方法
CN1660733A (zh) 2004-02-25 2005-08-31 庞玉学 一种利用烃类和水蒸汽转化制取甲醇合成气的工艺方法
CN1648034A (zh) 2005-01-05 2005-08-03 山西中天煤化有限公司 二氧化碳-甲烷重整制合成气工艺
US20080021251A1 (en) * 2006-06-23 2008-01-24 Iaccino Larry L Production of aromatic hydrocarbons and syngas from methane
US20080260628A1 (en) * 2007-04-17 2008-10-23 Korea Institute Of Science And Technology Ni-based catalyst for tri-reforming of methane and its catalysis application for the production of syngas
CN101450790A (zh) 2007-12-07 2009-06-10 上海焦化有限公司 一种天然气-二氧化碳重整制备合成气的方法和装置
US20110237689A1 (en) 2008-12-08 2011-09-29 Jong Wook Bae Method for methanol synthesis using synthesis gas generated by combined reforming of natural gas with carbon dioxide
US20120022306A1 (en) * 2008-12-17 2012-01-26 Oberon Fuels, Inc. Process and system for converting biogas to liquid fuels
WO2012059191A1 (fr) * 2010-11-02 2012-05-10 Saudi Basic Industries Corporation (Sabic) Procédé de production d'oléfines légères en utilisant un catalyseur à base de zsm - 5

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARSCHNER F ET AL: "Gas Production", ULLMANN'S ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY, XX, XX, 15 June 2000 (2000-06-15), pages 1 - 21, XP002253967 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072649A1 (fr) 2015-10-30 2017-05-04 Sabic Global Technologies B.V. Procédés et systèmes de production de gaz de synthèse à partir de dioxyde de carbone et d'hydrogène
CN107974317A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种焦炉气的甲烷化方法及催化剂和其制备方法
CN113401866A (zh) * 2021-05-29 2021-09-17 浙江大学 一种低温降解聚烯烃废塑料制备富氢合成气的方法
CN113401866B (zh) * 2021-05-29 2023-05-30 浙江大学 一种低温降解聚烯烃废塑料制备富氢合成气的方法
CN113955742A (zh) * 2021-12-09 2022-01-21 太原理工大学 一种二氧化碳-甲烷重整技术制备碳纳米管的工艺
CN113955742B (zh) * 2021-12-09 2023-11-10 太原理工大学 一种二氧化碳-甲烷重整技术制备碳纳米管的工艺
CN114805023A (zh) * 2022-03-28 2022-07-29 国家能源集团宁夏煤业有限责任公司 零排放煤制烯烃的方法
CN114805023B (zh) * 2022-03-28 2024-04-16 国家能源集团宁夏煤业有限责任公司 零排放煤制烯烃的方法

Also Published As

Publication number Publication date
CN103979492A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2014111310A1 (fr) Procédé pour la préparation de gaz de synthèse
RU2650171C2 (ru) Параллельное получение водорода, монооксида углерода и углеродсодержащего продукта
CN107428650B (zh) 用于生产甲醛的方法
US9133074B2 (en) Process for the conversion of carbon dioxide to methanol
KR970006922B1 (ko) 일산화탄소가 풍부한 가스의 제조방법
CN113795460A (zh) 基于atr的氢气方法和设备
JPS5953245B2 (ja) メタンフユウガスノ セイゾウホウホウ
DK2723676T3 (en) PROCEDURE FOR MANUFACTURING AMMONIAK AND UREA
GB2494751A (en) Improved hydrocarbon production process
WO2007002911A1 (fr) Gaz de synthese: production et utilisation
US20170226029A1 (en) Methods of producing ethylene and synthesis gas by combining the oxidative coupling of methane and dry reforming of methane reactions
US20040265227A1 (en) Hydrogen generation with efficient byproduct recycle
KR20200096755A (ko) 합성 가스 제조를 위한 방법 및 시스템
JP2023528732A (ja) 空気から二酸化炭素を回収して二酸化炭素を燃料及び化学物質へと直接変換するための方法
EA033713B1 (ru) Система для производства богатых водородом газовых смесей
WO2014111315A1 (fr) Réacteur de reformage autothermique
WO2012084076A1 (fr) Procédé pour la production de gaz riche en méthane
JP7154289B2 (ja) 水素含有ガスを得るための装置および方法
US7008560B2 (en) Silicon carbide-supported catalysts for partial oxidation of natural gas to synthesis gas
US9643843B2 (en) Method for producing synthesis gas
CN104860266B (zh) 用于氨生产的合成气生产方法
RU2571149C1 (ru) Реактор конверсии метана
US20220135506A1 (en) Methanol production process
EA044126B1 (ru) Способ производства метанола

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14701308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14701308

Country of ref document: EP

Kind code of ref document: A1