WO2014109250A1 - 機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子 - Google Patents

機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2014109250A1
WO2014109250A1 PCT/JP2013/084924 JP2013084924W WO2014109250A1 WO 2014109250 A1 WO2014109250 A1 WO 2014109250A1 JP 2013084924 W JP2013084924 W JP 2013084924W WO 2014109250 A1 WO2014109250 A1 WO 2014109250A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
forming roll
roll
film forming
base material
Prior art date
Application number
PCT/JP2013/084924
Other languages
English (en)
French (fr)
Inventor
大石 清
鈴木 一生
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014556384A priority Critical patent/JPWO2014109250A1/ja
Publication of WO2014109250A1 publication Critical patent/WO2014109250A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to a method for producing a functional film, a functional film production apparatus, and an organic electroluminescence device including the functional film.
  • a gas barrier film on which a metal or a metal oxide is formed is widely used for packaging of these products that prevent deterioration of food, industrial products, pharmaceuticals, etc. by blocking water vapor, oxygen, and the like.
  • Gas barrier films are also used in organic electronic devices such as liquid crystal display elements, photoelectric conversion elements, organic electroluminescence elements (hereinafter referred to as “organic EL elements”), and as covering materials for these elements. Gas barrier films are required to have higher gas barrier performance against water vapor and the like.
  • Patent Document 1 As a technique for improving the efficiency of forming a gas barrier film, there is one described in Patent Document 1 below. That is, a thin film generated by applying a high-frequency voltage to a film-forming roll by generating a magnetic field swollen from the surface of the film-forming roll that conveys the wound long substrate by rotation. The plasma of the layer forming material is focused on the surface on which the substrate is wound. As a result, there is a technique in which the formation of a thin film layer on the substrate is made efficient by converging the plasma onto the substrate surface.
  • the magnetic field generated on the surface of the film forming roll has unevenness in the longitudinal direction of the substrate and the surface of the film forming roll has a curved surface structure.
  • the composition changes in the film thickness direction, the composition distribution in the film thickness direction is not controlled. For this reason, there is a possibility that stable production of a functional film having a certain high blocking performance may be difficult.
  • the present invention has been made to solve such problems. That is, the first film forming roll that conveys the wound substrate by rotation, and the wound substrate is conveyed by rotation at the downstream of the substrate conveyance path with respect to the first film forming roll.
  • the portion around which the material is wound is applied with a high frequency voltage to the portion of the first film forming roll on which the base material is wound and the second film forming roll facing through the facing space to generate plasma in the facing space. generate.
  • an endless tunnel-like magnetic field swelled in the opposing space is generated from each of the first film-forming roll and the second film-forming roll, and at least one of the first film-forming roll and the second film-forming roll Apply a bias voltage.
  • the functional film having high blocking performance can be obtained.
  • the purpose is to realize stable production.
  • the thin film layer is continuously formed on the surface of the base material by a plasma reaction of a plurality of film forming gases that are thin film layer forming materials while continuously transporting the long base material in the vacuum chamber.
  • the thin film layer is continuously formed on the surface of the base material by the reaction of plasma of a plurality of film forming gases which are the forming material of the thin film layer while continuously transporting the long base material in the vacuum chamber.
  • An apparatus for producing a functional film by performing a first film forming roll that conveys the wound base material by rotation, and downstream of the substrate transport path with respect to the first film forming roll.
  • the wound substrate is conveyed by rotation, and the portion around which the substrate is wound is opposed to the portion around which the substrate of the first film forming roll is wound through a facing space.
  • Plasma of a plurality of film forming gases which are the forming material of the thin film layer in the facing space by applying an alternating plasma generating voltage to the second film forming roll and the first film forming roll and the second film forming roll Raised
  • a magnetic field generator for generating a tunnel-like magnetic field; and at least one of a DC bias voltage and an AC bias voltage superimposed on the AC voltage on at least one of the first film-forming roll and the second film-forming roll.
  • a functional film manufacturing apparatus comprising: a bias power source that applies a bias voltage.
  • An organic electroluminescence device provided with a functional film produced by the method for producing a functional film.
  • FIG. 1 It is a schematic diagram of the functional film manufacturing apparatus which concerns on embodiment of this invention. It is the elements on larger scale centering on the film-forming roll in the schematic diagram of the functional film manufacturing apparatus shown in FIG.
  • FIG. 1 is a schematic diagram of a functional film manufacturing apparatus according to an embodiment of the present invention.
  • the functional film manufacturing apparatus 1 includes a delivery roll 100, transport rolls 101 to 104, a first film forming roll 105, a second film forming roll 106, a gas supply pipe 130, and a first magnetic field forming apparatus 111. , Second magnetic field forming device 112, take-up roll 113, vacuum chamber 118, and vacuum pump 119. Further, the functional film manufacturing apparatus 1 includes a first plasma generation power source 107, a second plasma generation power source 108, a first matching unit 109, a second matching unit 110, a first bias power source 114, a second bias power source 115, A first high frequency cut filter 116 and a second high frequency cut filter 117 are provided.
  • the delivery roll 100, the transport rolls 101 to 104, the first film forming roll 105, the second film forming roll 106, the gas supply pipe 41, the first magnetic field forming device 111, the second magnetic field forming device 112, and the take-up roll 113 are vacuum. It is disposed inside the chamber 118.
  • Functional film is a film in which a thin film layer is formed on a flexible resin substrate such as a plastic film.
  • a gas barrier film will be described as an example of a functional film.
  • the gas barrier film is a film or sheet capable of preventing the permeation of water vapor and oxygen.
  • the gas barrier film can be used as a base of an organic electronic device, and thereby prevent deterioration of the element due to the organic electronic device coming into contact with water vapor or the like.
  • Gas barrier films used in organic electronic devices are required to have higher barrier performance against water vapor and the like, and in particular, gas barrier films for organic EL are required for food and pharmaceuticals in order to suppress deterioration of organic EL. Therefore, the water vapor transmission rate is required to be 1 / 10,000 or less of the water vapor transmission rate.
  • the long roll base 120 before film formation is wound on the delivery roll 100.
  • the feed roll 100 feeds the substrate 120 while unwinding by rotating.
  • the base material 120 delivered from the delivery roll 100 is wound around the transport rolls 101 to 104, the first film formation roll 105, and the second film formation roll 106 between the delivery roll 100 and the take-up roll 113.
  • the roll is conveyed by rotation of each of these rolls while maintaining an appropriate tension.
  • the conveyance direction of the base material 120 is shown by the arrow.
  • the take-up roll 113 is installed on the most downstream side of the transport path of the base material 120, winds up the formed base material 120 by rotation, and accommodates it in a roll shape.
  • the substrate 120 is, for example, a film or sheet made of a resin or a composite material containing a resin.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin resins such as polyethylene (PE), polypropylene (PP), and cyclic polyolefin, polyamide resins, and polycarbonate resins.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyolefin resins such as polyethylene (PE), polypropylene (PP), and cyclic polyolefin
  • polyamide resins such as polyethylene (PE), polypropylene (PP), and cyclic polyolefin
  • polyamide resins such as polyamide resins
  • polycarbonate resins such as polycarbonate resins.
  • the thickness of the base material 120 can be set to 5 ⁇ m to 500 ⁇ m, for example.
  • the first film forming roll 105 and the second film forming roll 106 each convey the wound base material 120 by rotation.
  • the first film-forming roll 105 and the second film-forming roll 106 are arranged so that the portions around which the base material 120 is wound are opposed to each other through the facing space 121.
  • the first film forming roll 105 and the second film forming roll 106 are both made of a conductive material and insulated from each other.
  • the first plasma generating power source 107 is connected to the first film forming roll 105 via the first matching unit 109.
  • the first matching unit 109 prevents reflection of the high-frequency first plasma generation voltage generated by the first plasma generation power source 107 by matching the impedance.
  • the first matching unit 109 has a blocking capacitor that transmits only a high-frequency AC voltage component to the first film forming roll 105.
  • the second plasma generating power source 108 is connected to the second film forming roll 106 via the second matching unit 110.
  • the second matching unit 110 prevents reflection of the high-frequency second plasma generation voltage generated by the second plasma generation power source 108 by matching the impedance.
  • the second matching unit 110 includes a blocking capacitor that transmits only a high-frequency AC voltage component to the second film forming roll 106.
  • the first plasma generation power source 107 and the second plasma generation power source 108 generate a first plasma generation voltage and a second plasma generation voltage that are in opposite phases to each other, and are applied to the first film formation roll 105 and the second film formation roll 106, respectively. Apply. As a result, an electric field is formed in the facing space 121, and plasma of carbon, silicon, and oxygen, which are materials for forming the thin film layer, is generated.
  • the first magnetic field forming device 111 and the second magnetic field forming device 112 constitute magnetic field generating means, and are stored inside the first film forming roll 105 and the second film forming roll 106, respectively.
  • the first magnetic field forming device 111 and the second magnetic field forming device 112 are fixed independently of the rotation of the first film forming roll 105 and the second film forming roll 106, respectively.
  • FIG. 2 is a partially enlarged view centering on a film forming roll in the schematic diagram of the functional film manufacturing apparatus shown in FIG.
  • the first magnetic field forming device 111 and the second magnetic field forming device 112 each have a central magnet extending in the same direction as the extending direction of the first film forming roll 105 and the second film forming roll 106, respectively. a1 and a2. Further, the first magnetic field forming device 111 and the second magnetic field forming device 112 are respectively in the same direction as the extending direction of the first magnetic field forming device 111 and the second magnetic field forming device 112 while surrounding the central magnets a1 and a2.
  • the ring-shaped external magnets b1 and b2 are extended.
  • the first magnetic field forming device 111 and the second magnetic field forming device 112 form endless tunnel-like magnetic lines (magnetic fields) h1 and h2 connecting the center magnets a1 and a2 and the external magnets b1 and b2, respectively.
  • the first magnetic field forming device 111 and the second magnetic field forming device 112 are respectively connected to the endless tunnel-like magnetic field h1 swelled from the surfaces of the first film forming roll 105 and the second film forming roll 106 to the facing space 121. , H2.
  • the plasma P generated in the facing space 121 is converged where the magnetic fields h1 and h2 generated by the first magnetic field forming device 111 and the second magnetic field forming device 112 exist.
  • the magnetic fields h1 and h2 cause the plasma P generated in the facing space 121 to converge on the portions of the surfaces of the first film forming roll 105 and the second film forming roll 106 around which the base material 120 is wound.
  • FIG. 3 is an explanatory diagram showing a carbon distribution curve which is a gradient structure of the atomic ratio of carbon in the film thickness direction of the thin film layer of the gas barrier film manufactured by the functional film manufacturing apparatus.
  • the atomic ratio is a ratio of the amount of the atoms to the total amount of atoms constituting the thin film layer.
  • the magnetic fields h1 and h2 generated by the first magnetic field forming device 111 and the second magnetic field forming device 112 are endless tunnels that swell from the surfaces of the first film forming roll 105 and the second film forming roll 106 to the facing space 121. Therefore, the longitudinal direction of the substrate 120 is uneven. Moreover, since the base material 120 is formed in a state of being wound around the first film forming roll 105 and the second film forming roll 106, the surface of the base material 120 when forming the film has a curved surface structure. Thereby, the composition of the thin film layer formed on the surface of the substrate 120 has an inclined structure that changes in the film thickness direction.
  • the atomic ratio of carbon in the film thickness direction of the thin film layer has an extreme value and changes periodically.
  • the gas barrier film exhibits excellent gas barrier performance when the following three conditions are satisfied in the carbon distribution curve.
  • the atomic ratio of oxygen in a region where the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon is 90% or more of the thickness of the thin film layer>
  • the carbon distribution curve has at least one extreme value
  • the absolute value is 5 atm% or more.
  • this condition is referred to as “specific film formation condition”.
  • a film forming gas such as a raw material gas for the thin film layer is supplied from the gas supply pipe 130 to the facing space 121.
  • the gas supply pipe 130 has a tubular shape extending in the same direction as the extending direction of the first film-forming roll 105 and the second film-forming roll 106, and faces the opposing space 121 from holes provided at a plurality of positions.
  • a film forming gas is supplied to the substrate.
  • an organosilicon compound containing silicon can be used as the source gas.
  • the organosilicon compound include hexamethyldisiloxane (hereinafter referred to as “HMDSO”), 1.1.3.3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethyl Silane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane, dimethyldi Examples include silazane, trimethyldisilazane, tetramethyldisilazane, pentamethyldisilazan
  • organosilicon compounds it is desirable to use HMDSO from the viewpoint of easy handling of the compound and high gas barrier properties of the obtained gas barrier film.
  • organosilicon compounds may be used in combination of two or more.
  • the source gas may contain monosilane in addition to the organosilicon compound.
  • a reactive gas may be used in addition to the source gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as oxide or nitride is selected.
  • oxygen and ozone can be used as a reactive gas for forming an oxide as a thin film layer.
  • a carrier gas may be further used to supply the source gas into the vacuum chamber.
  • a discharge gas may be further used to generate plasma.
  • a carrier gas and the discharge gas for example, a rare gas such as argon and hydrogen are used.
  • the first bias power source 114 is connected to the first film forming roll 105 via the first high frequency cut filter 116.
  • the first high-frequency cut filter 116 cuts off the high-frequency voltage generated by the first plasma generating power source 107 to the first bias power source 114 and also outputs the first bias voltage generated by the first bias power source 114 to the first component. It is transmitted to the film roll 105. As a result, a voltage in which the first bias voltage is superimposed on the first high-frequency voltage generated by the first plasma generating power source 107 is applied to the first film forming roll 105.
  • the first bias voltage may be a DC voltage or an AC voltage.
  • the first DC bias voltage is referred to as a first DC bias voltage
  • the first AC bias voltage is referred to as a first AC bias voltage.
  • the second bias power source 115 is connected to the second film forming roll 106 via the second high frequency cut filter 117.
  • the second high-frequency cut filter 117 blocks the high-frequency voltage generated by the second plasma generation power source 108 from entering the second bias power source 115 and also outputs the second bias voltage generated by the second bias power source 115 to the second component. It is transmitted to the film roll 106.
  • a voltage obtained by superimposing the second bias voltage on the second high-frequency voltage generated by the second plasma generating power supply 108 is applied to the second film forming roll 106.
  • the second bias voltage may be a DC voltage or an AC voltage.
  • the DC second bias voltage is referred to as a second DC bias voltage
  • the AC second bias voltage is referred to as a second AC bias voltage.
  • FIG. 4 is an explanatory diagram showing the relationship between the control of the bias voltage and the voltage supplied to each film forming roll.
  • 4A shows the relationship between the control of the first DC bias voltage and the voltage supplied to the first film forming roll 105
  • FIG. 4B shows the control of the second DC bias voltage and the second composition. The relationship with the voltage supplied to the film roll 106 is shown.
  • the offsets of the voltages applied to the first film forming roll 105 and the second film forming roll 106 are changed. Can do.
  • FIG. 5 is an explanatory diagram showing the change in the carbon distribution curve of the thin film layer of the gas barrier film by changing the bias voltage.
  • the gradient structure of the atomic ratio of carbon in the film thickness direction of the thin film layer can be changed by changing the bias voltage. That is, by changing the bias voltage, it is possible to form a thin film layer having an inclined structure as shown in FIG.
  • the gradient structure of the composition in the film thickness direction of the thin film layer changes depending on the bias voltage. For example, the degree to which each cation constituting the plasma is attracted to the film forming roll by supplying a negative bias voltage to the film forming roll. It is considered that a plurality of factors such as a change in the composition ratio of each plasma on the surface of the substrate 120 and a change in ion bombardment of cations on the substrate 120 influence.
  • the uniformity of the composition of the thin film layer can be improved by controlling the bias voltage so that the inclined structure as shown in FIG.
  • the amplitude of the inclined structure can be increased by controlling the bias voltage so that the inclined structure as shown in FIG.
  • a negative DC voltage bias voltage is applied to at least one of the first film forming roll 105 and the second film forming roll 106.
  • a positive DC voltage bias voltage is applied to at least one of the first film forming roll 105 and the second film forming roll 106.
  • a DC bias voltage or an AC bias voltage having the same polarity is applied to the first film forming roll 105 and the second film forming roll 106.
  • a DC bias voltage or an AC bias voltage having different polarities is applied to the first film forming roll 105 and the second film forming roll 106.
  • An AC bias voltage having a continuous waveform or a pulse waveform is applied to at least one of the first film forming roll 105 and the second film forming roll 106.
  • An AC bias voltage having a frequency component lower than the plasma generation voltage and having an absolute value smaller than the plasma generation voltage is applied to at least one of the first film formation roll 105 and the second film formation roll 106.
  • FIG. 6 is an explanatory diagram showing a carbon distribution curve of a thin film layer of a gas barrier film formed by applying a bias voltage of an alternating voltage having an antiphase pulse waveform to the first film forming roll and the second film forming roll, respectively.
  • FIG. 6 is an explanatory diagram showing a carbon distribution curve of a thin film layer of a gas barrier film formed by applying a bias voltage of an alternating voltage having an antiphase pulse waveform to the first film forming roll and the second film forming roll, respectively.
  • the atomic ratio of carbon in the film thickness direction of the thin film layer can be made a complicated gradient structure. it can.
  • the bias voltage By changing the gradient structure of the composition in the film thickness direction of the thin film layer by the bias voltage, the water vapor transmission rate, flexibility, and productivity of the gas barrier film can be controlled.
  • FIG. 7 is a view showing a flowchart of a method for producing a functional film according to the present embodiment. This flowchart can be implemented by the functional film according to the present embodiment.
  • the base material 120 wound up in a roll shape is set on the feed roll 100, and the base material 120 is wound around the transport rolls 101 to 104, the first film forming roll 105, and the second film forming roll 106, Is fixed to the take-up roll 113 to place the substrate 120 in the functional film manufacturing apparatus 1 (S701).
  • a high-frequency plasma generation voltage is applied to the first film-forming roll 105 and the second film-forming roll 106 by the first plasma generation power source 107 and the second plasma generation power source 108, respectively, and the plasma of the film formation gas is applied to the facing space 121. Is generated.
  • the first magnetic field forming device 111 and the second magnetic field forming device 112 are respectively an endless tunnel-like magnetic field h1 swelled from the surfaces of the first film forming roll 105 and the second film forming roll 106 to the facing space 121, h2 is generated.
  • first bias power supply 114 and the second bias power supply 115 respectively apply the first bias voltage and the second bias voltage to the first film forming roll 105 and the second film forming roll 106, respectively (S702).
  • the plasma is converged on the portions of the surfaces of the first film forming roll 105 and the second film forming roll 106 where the base material 120 is wound, and the constituent elements of the thin film layer formed on the base material 120 are converged. Control the distribution curve.
  • the base material 120 is transported by rotating the feed roll 100, the transport rolls 101 to 104, the first film forming roll 105, the second film forming roll 106, and the take-up roll 113, and a thin film layer is formed on the base material 120.
  • a gas barrier film is manufactured by forming continuously (S703).
  • FIG. 8 is a cross-sectional view of an organic EL element including a gas barrier film manufactured by the method for manufacturing a functional film according to the present embodiment.
  • the organic EL element 8 has a gas barrier film 12 composed of a base material 120 and a thin film 121, an anode electrode 122, an organic EL element portion 123, a cathode electrode 124, and a sealing film 125.
  • the organic EL element portion 123 is configured by laminating a hole transport layer, a light emitting layer, and an electron transport layer made of an organic material.
  • the organic EL element unit 123 emits light when holes and electrons supplied from the anode electrode 122 and the cathode electrode 124 are combined in the light emitting layer, the light emitting layer is excited, and then the light emitting layer returns to the original steady state. To do.
  • the anode electrode 122 can be made of, for example, ITO (Indium Tin Oxide).
  • the cathode electrode 124 can be made of metal, for example.
  • the sealing film can be composed of, for example, a silicon nitride film, and prevents deterioration of the organic EL element by blocking water vapor.
  • Example 1 [Film formation method] 1. Base material Thickness: 100 ⁇ m, width: 350 mm biaxially stretched polyethylene naphthalate film (manufactured by Teijin DuPont Films, “Teonex Q65FA”) was used. 2. Film formation gas A mixed gas of HMDSO as a raw material gas and oxygen gas as a reaction gas and a discharge gas was used. The supply amount ratio of the film forming gas supplied from the gas supply pipe was adjusted so that the width direction end region / width direction non-end region of the substrate was 1.05 / 1. The mixing ratio of HMDSO and oxygen gas was controlled so as to satisfy the specific condition described above. 3. Film-forming method The gas barrier film was manufactured by forming the thin film layer which consists of SiOC whose film thickness of the width direction non-end part area
  • Constant temperature and humidity oven Yamato Humidic Chamber IG47M 1.2 Preparation of evaluation cell
  • calcium which is a corrosive metal
  • a vacuum atmosphere deposition apparatus calcium, which is a corrosive metal, is deposited in 9 square 12 mm square shapes on the opposite side of the gas barrier film thin film layer. It was. At this time, portions other than nine places where calcium was deposited were masked.
  • each square-shaped calcium deposited is referred to as a “test piece”.
  • each test piece is sealed by vapor-depositing aluminum, which is a water vapor-impermeable metal, so that the entire surface on which the test piece of the gas barrier film is provided covers the test piece. did.
  • the vacuum state is released, and an ultraviolet-curing resin for sealing the surface of the gas barrier film on which the aluminum is deposited and the quartz glass having a thickness of 0.2 mm are quickly sealed in a dry nitrogen gas atmosphere (manufactured by Nagase ChemteX Corporation).
  • each test piece was further sealed with quartz glass by irradiating with ultraviolet rays to produce an evaluation cell.
  • Evaluation procedure (1) The evaluation cell is hermetically stored in a constant temperature and humidity oven and left in a high temperature humidified state at a temperature of 60 ° C. and a relative humidity of 90%, and the evaluation cell is left in the constant temperature and humidity oven. Images were taken with a camera. (2) Based on the photographed image, the area where the specimen is corroded is extracted by image processing, and the water vapor transmission rate of the gas barrier film is calculated by calculating the amount of water vapor required for the entire area of the specimen to corrode. Was calculated. Specifically, the water vapor transmission rate was calculated as follows.
  • the amount of water vapor required for the corrosion of the test piece is determined as follows: the standing time T [hour], the area A [cm 2 ] of the test piece, the corroded area ⁇ [cm 2 ], Film thickness t [cm], thickness correction coefficient ⁇ after corrosion of calcium, calcium molecular weight M 1 , calcium hydroxide molecular weight M 2 , calcium density d 1 [g / cm 3 ], water after corrosion from the density of calcium oxide d 2 [g / cm 3] , it was determined by the following equation.
  • the molar amount X of calcium hydroxide after the standing time T has elapsed is given by the following formulas (2) and (3).
  • X ( ⁇ ⁇ t ⁇ ⁇ ⁇ d 2 ) / M 2 (2) 1 ⁇ ⁇ (M 2 / d 2 ) / (M 1 / d 1 ) (3) Therefore, the water vapor transmission rate [g / m 2 / day] (Water Vapor Transmission Rate, hereinafter referred to as “WVTR”) was determined by the following formula (4).
  • WVTR X ⁇ 18 ⁇ 2 ⁇ (10 4 / A) * (24 / T) (4) Note that water supply to the gas barrier film occurs immediately after the evaluation cell is left, so that the WVTR apparently decreases.
  • Example 2 The bias voltage was set to +0.5 kV (DC) (both the first film-forming roll and the second film-forming roll), and was the same as Example 1.
  • Example 3 The bias voltage was the same as Example 1 except that +0.5 kV (DC) (first film forming roll) and ⁇ 0.5 kV (second film forming roll) were used.
  • Example 4 The conditions were the same as in Example 1 except that the film formation conditions were as follows.
  • the WVTR performance in Examples 1 to 4 is displayed as a magnification when the WVTR of the comparative example is 1.
  • the bending resistance is indicated as a double circle when no change in WVTR is observed before and after bending, and as a circle when WVTR deterioration is 10% or less before and after bending.
  • the WVTR is 0.1 to 0.5 times that of the comparative example, and it is demonstrated that the WVTR performance of the gas barrier film is improved by applying a bias voltage. It was.
  • a first film forming roll that conveys the wound base material by rotation, and a substrate that is wound around the first film forming roll downstream of the conveyance path of the base material by rotation.
  • the wound portion applies a high-frequency voltage to the second film forming roll that faces the portion around which the base material of the first film forming roll is wound through the facing space to generate plasma in the facing space.
  • an endless tunnel-like magnetic field swelled in the opposing space is generated from each of the first film-forming roll and the second film-forming roll, and at least one of the first film-forming roll and the second film-forming roll Apply a bias voltage.
  • the functional film having a certain blocking performance is obtained by controlling the gradient structure of the composition in the film thickness direction of the thin film layer by changing the composition ratio of each plasma on the substrate surface and the ion bombardment by the bias voltage. Stable production can be realized.
  • the gas barrier performance and bending resistance of the functional film can be improved by changing the bias voltage to control the gradient structure of the composition in the film thickness direction of the thin film layer.
  • the thin film layer is formed by two film forming rolls, but the thin film layer may be formed by one film forming roll.
  • a bias voltage may be superimposed on the plasma generating voltage and applied to each film forming roll.
  • the present invention has the following configuration.
  • the thin film layer is continuously formed on the surface of the base material by a plasma reaction of a plurality of film forming gases, which are forming materials of the thin film layer, while continuously transporting the long base material in a vacuum chamber.
  • Forming a functional film by forming a first film-forming roll that conveys the wound base material by rotation, and a transport path of the base material with respect to the first film-forming roll.
  • the wound base material is conveyed by rotation, and the part around which the base material is wound passes through the facing space with the part around which the base material is wound of the first film forming roll.
  • the bias voltage applied by the bias power source to at least one of the first film-forming roll and the second film-forming roll in the step (a) is a negative DC voltage as described in (1) above.
  • the bias voltage applied by the bias power source to at least one of the first film forming roll and the second film forming roll in the step (a) is a positive DC voltage.
  • the bias power source applies the bias voltage having the same polarity to the first film forming roll and the second film forming roll.
  • the bias power source applies the bias voltages having different polarities to the first film-forming roll and the second film-forming roll.
  • the AC bias voltage applied to at least one of the first film-forming roll and the second film-forming roll by the bias power source in the step (a) is an AC voltage having a continuous waveform or a pulse waveform.
  • the bias power supply applies to at least one of the first film-forming roll and the second film-forming roll, the AC bias voltage is applied by the plasma generating power source to the first component.
  • the AC bias voltage is applied by the plasma generating power source to the first component.
  • the thin film layer contains silicon, oxygen, and carbon, and the atomic ratio of silicon, which is the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms, and the total amount
  • the atomic ratio of oxygen that is the ratio of the amount of oxygen atoms to the carbon
  • the atomic ratio of carbon that is the ratio of the amount of carbon atoms to the total amount, and the distance from the surface of the thin film layer in the film thickness direction of the thin film layer
  • the carbon distribution curve showing the relationship with the atomic ratio of carbon is: (1) In the region where the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon are 90% or more of the film thickness of the thin film layer, In the region where the atomic ratio> the atomic ratio of silicon> the atomic ratio of oxygen or the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon are 90% or more of the thin film layer, carbon atoms Ratio> atomic ratio of silicon> atomic
  • the thin film is continuously formed on the surface of the base material by a plasma reaction of a plurality of film forming gases that are the material for forming the thin film layer, while continuously transporting the long base material in the vacuum chamber.
  • a device for producing a functional film by forming a layer, the first film forming roll for conveying the wound base material by rotation, and the transport route of the base material with respect to the first film forming roll The portion of the first film forming roll wound around the portion of the first film forming roll that is wound around the opposite portion of the first film forming roll is transported by rotating the wound substrate.
  • a plurality of film forming materials forming the thin film layer in the facing space by applying an alternating plasma generating voltage to the second film forming roll facing each other and the first film forming roll and the second film forming roll.
  • Gas plasma A power source for generating plasma, and an endless device provided inside the first film-forming roll and the second film-forming roll, and bulging from the first film-forming roll and the second film-forming roll to the opposing space, respectively.
  • a magnetic field generator for generating a tunnel-like magnetic field; and at least one of a DC bias voltage and an AC bias voltage superimposed on the AC voltage on at least one of the first film forming roll and the second film forming roll And a bias power supply for applying the bias voltage.
  • An organic electroluminescence device comprising a functional film produced by any one of the methods (1) to (8).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】一定の遮断性能を有する機能性フィルムの安定生産を可能とする機能性フィルムの製造方法、機能性フィルムの製造装置、および機能性フィルムにより被覆された有機エレクトロルミネッセンス素子を提供する。 【解決手段】巻き掛けられた基材を自転により搬送する第1成膜ロールと、第1成膜ロールに対し基材の搬送経路の下流において、巻き掛けられた基材を自転により搬送するとともに、基材が巻き掛けられた部分が、第1成膜ロールの基材が巻き掛けられた部分と対向空間を介して対向する第2成膜ロールと、にプラズマ発生電圧を印加して対向空間に成膜ガスのプラズマを発生させ、各成膜ロールから対向空間に膨らんだ無終端のトンネル状の磁場を発生させ、第1成膜ロールおよび第2成膜ロールの少なくともいずれかにバイアス電圧を印加し、基材の表面にプラズマの反応により連続的に薄膜層を形成する。

Description

機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子
 本発明は機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子に関する。
 近年、軽量で割れにくいフレキシブル樹脂基板上に薄膜層を成膜した種々の機能性フィルムが提案されている。例えば、金属や金属酸化物を成膜したガスバリアフィルムは、水蒸気や酸素等を遮断することにより、食品、工業用品、医薬品等の変質を防止するこれらの製品の包装に広く用いられている。また、ガスバリアフィルムは、液晶表示素子、光電変換素子、有機エレクロトルミネッセンス素子(以下、「有機EL素子」と称する)等の有機電子デバイスにも用いられており、これらの素子の被覆材としてのガスバリアフィルムには水蒸気等に対するより高いガスバリア性能が求められている。
 ガスバリアフィルムの成膜を効率化するための技術としては下記特許文献1に記載されたものがある。すなわち、巻き掛けられた長尺状の基板を回転により搬送する成膜ロールの表面付近に当該表面から膨らんだ磁場を発生させることにより、成膜ロールに高周波電圧を印加することで発生させた薄膜層の形成材料のプラズマを基板が巻き掛けられた当該表面に収束させる。これにより、基板表面上へプラズマを収束させることで基板上への薄膜層の成膜を効率化するというものがある。
特開2008-196001号公報
 しかし、上記従来技術では、成膜ロールの表面において発生させた磁場は基板の長手方向にムラがあり、かつ成膜ロールの表面は曲面構造を有するため、基板上に成膜される薄膜層の組成は膜厚方向で変化するにもかかわらず、膜厚方向の組成分布の制御は行われていない。このため、一定の高い遮断性能を有する機能性フィルムの安定生産が困難となる可能性がある。
 本発明は、このような問題を解決するためになされたものである。すなわち、巻き掛けられた基材を回転により搬送する第1成膜ロールと、第1成膜ロールに対し基材の搬送経路の下流において、巻き掛けられた基材を回転により搬送するとともに、基材が巻き掛けられた部分が、第1成膜ロールの基材が巻き掛けられた部分と対向空間を介して対向する第2成膜ロールと、に高周波電圧を印加して対向空間にプラズマを発生させる。そして、第1成膜ロールおよび第2成膜ロールから、それぞれ対向空間に膨らんだ無終端のトンネル状の磁場を発生させるとともに、第1成膜ロールおよび第2成膜ロールの少なくともいずれか一方にバイアス電圧を印加する。これにより、基板表面上の各プラズマの構成比率とイオンボンバートメントとをバイアス電圧により変化させて薄膜層の膜厚方向の組成の傾斜構造を制御することで、高い遮断性能を有する機能性フィルムの安定生産を実現することを目的とする。
 真空チャンバー内において長尺状の基材を連続的に搬送しながら、薄膜層の形成材料である複数の成膜ガスのプラズマ反応により前記基材の前記表面に連続的に前記薄膜層を形成することにより機能性フィルムを製造する方法であって、巻き掛けられた前記基材を回転により搬送する第1成膜ロールと、前記第1成膜ロールに対し前記基材の搬送経路の下流において、巻き掛けられた前記基材を回転により搬送するとともに、前記基材が巻き掛けられた部分が、前記第1成膜ロールの前記基材が巻き掛けられた部分と対向空間を介して対向する第2成膜ロールと、に交流のプラズマ発生電圧を印加することにより前記対向空間に前記薄膜層の形成材料である複数の成膜ガスのプラズマを発生させ、前記第1成膜ロールおよび前記第2成膜ロールから、それぞれ前記対向空間に膨らんだ無終端のトンネル状の磁場を発生させ、前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に前記交流電圧に重畳される直流バイアス電圧および交流バイアス電圧の少なくともいずれかの前記バイアス電圧を印加する段階(a)と、前記第1成膜ロールおよび前記第2成膜ロールにより前記基材を連続的に搬送することにより前記基材の前記表面に連続的に前記薄膜層を形成する段階(b)と、を有する機能性フィルムの製造方法。
 真空チャンバー内において長尺状の基材を連続的に搬送しながら、薄膜層の形成材料である複数の成膜ガスのプラズマの反応により前記基材の前記表面に連続的に前記薄膜層を形成することにより機能性フィルムを製造する装置であって、巻き掛けられた前記基材を回転により搬送する第1成膜ロールと、前記第1成膜ロールに対し前記基材の搬送経路の下流において、巻き掛けられた前記基材を回転により搬送するとともに、前記基材が巻き掛けられた部分が、前記第1成膜ロールの前記基材が巻き掛けられた部分と対向空間を介して対向する第2成膜ロールと、前記第1成膜ロールおよび前記第2成膜ロールに交流のプラズマ発生電圧を印加することにより前記対向空間に前記薄膜層の形成材料である複数の成膜ガスのプラズマを発生させるプラズマ発生用電源と、前記第1成膜ロールおよび前記第2成膜ロールの内部に設けられ、前記第1成膜ロールおよび前記第2成膜ロールから前記対向空間にそれぞれ膨らんだ無終端のトンネル状の磁場を発生させる磁場発生部と、前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に前記交流電圧に重畳する直流バイアス電圧および交流バイアス電圧の少なくともいずれかの前記バイアス電圧を印加するバイアス電源と、を有する機能性フィルム製造装置。
 上記機能性フィルムの製造方法により製造された機能性フィルムを備える有機エレクトロルミネッセンス素子。
本発明の実施形態に係る機能性フィルム製造装置の模式図である。 図1に示す機能性フィルム製造装置の模式図における成膜ロールを中心とした部分拡大図である。 機能性フィルム製造装置により製造されたガスバリアフィルムの薄膜層の膜厚方向の炭素の原子比の傾斜構造である炭素分布曲線を示す説明図である。 バイアス電圧の制御と各成膜ロールに供給される電圧との関係を示す説明図である。 バイアス電圧を変化させることによるガスバリアフィルムの薄膜層の炭素分布曲線の変化を示す説明図である。 第1成膜ロールおよび第2成膜ロールにそれぞれ逆位相のパルス状波形の交流電圧のバイアス電圧を印加することにより成膜されるガスバリアフィルムの薄膜層の炭素分布曲線を示す説明図である。 本発明の実施形態に係る機能性フィルムの製造方法のフローチャートを示す図である。 本発明の実施形態に係る機能性フィルムの製造方法により製造されたガスバリアフィルムを備える有機EL素子の断面図である。
 本出願は、2013年1月8日に出願された日本特許出願番号2013-001203号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
 以下、図面を参照して、本発明の実施形態に係る機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子について詳細に説明する。
 図1は、本発明の実施形態に係る機能性フィルム製造装置の模式図である。
 図1に示すように、機能性フィルム製造装置1は、送り出しロール100、搬送ロール101~104、第1成膜ロール105、第2成膜ロール106、ガス供給管130、第1磁場形成装置111、第2磁場形成装置112、巻き取りロール113、真空チャンバー118、および真空ポンプ119を有する。さらに、機能性フィルム製造装置1は、第1プラズマ発生用電源107、第2プラズマ発生用電源108、第1整合器109、第2整合器110、第1バイアス電源114、第2バイアス電源115、第1高周波カットフィルター116、および第2高周波カットフィルター117を有する。
 送り出しロール100、搬送ロール101~104、第1成膜ロール105、第2成膜ロール106、ガス供給管41、第1磁場形成装置111、第2磁場形成装置112、および巻き取りロール113は真空チャンバー118の内部に配置される。
 機能性フィルムとは、プラスチックフィルムのようなフレキシブルな樹脂基板上に薄膜層が成膜されたフィルムである。以下、簡単のために、機能性フィルムの例として、ガスバリアフィルムを製造する場合について説明する。
 ガスバリアフィルムは水蒸気および酸素の透過を防止できるフィルムまたはシートであり、例えば、有機電子デバイスの基盤に用いられることで有機電子デバイスが水蒸気等に接触することによる素子の劣化を防止できる。有機電子デバイスに使用されるガスバリアフィルムには水蒸気等に対するより高い遮断性能が求められており、特に、有機EL用ガスバリアフィルムには有機ELの劣化を抑制するために、食品や医薬品等に要求される水蒸気透過率の1/10000以下の水蒸気透過率の性能が求められている。
 送り出しロール100には、成膜前の長尺状の基材120が巻き取られた状態で設置される。送り出しロール100は、回転することにより基材120を巻き出しながら送り出す。
 送り出しロール100から送り出された基材120は、送り出しロール100と巻き取りロール113との間で、搬送ロール101~104、第1成膜ロール105、および第2成膜ロール106に巻き掛けられることにより適当な張力を保ちつつ、これらの各ロールの回転により搬送される。なお、基材120の搬送方向は矢印で示されている。
 巻き取りロール113は、基材120の搬送経路の最下流に設置され、成膜された基材120を自転により巻き取り、ロール状に収容する。
 基材120は、例えば、樹脂または樹脂を含有する複合材料からなるフィルムまたはシートである。
 基材120を構成する樹脂は、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、エチレン-酢酸ビニル共重合体のケン化物、ポリアクリロニトリル樹脂、アセタール樹脂、ポリイミド樹脂、ポリエーテルサルファイド(PES)であり、これらの組合せであってもよい。
 基材120の厚さは、例えば5μm~500μmとすることができる。
 第1成膜ロール105および第2成膜ロール106は、それぞれ巻き掛けられた基材120を回転により搬送する。第1成膜ロール105と第2成膜ロール106とは、それぞれ基材120が巻き掛けられた部分が対向空間121を介して対向するように配置される。
 第1成膜ロール105および第2成膜ロール106は、共に導電性材料により構成され、互いに絶縁される。
 第1プラズマ発生用電源107は、第1整合器109を介して第1成膜ロール105に接続される。第1整合器109は、インピーダンスが整合されることにより第1プラズマ発生用電源107が発生した高周波の第1プラズマ発生電圧の反射を防止する。また、第1整合器109は、第1成膜ロール105に高周波の交流電圧成分のみを伝達するブロッキングコンデンサーを有する。
 同様に、第2プラズマ発生用電源108は、第2整合器110を介して第2成膜ロール106に接続される。第2整合器110は、インピーダンスが整合されることにより第2プラズマ発生用電源108が発生した高周波の第2プラズマ発生電圧の反射を防止する。また、第2整合器110は、第2成膜ロール106に高周波の交流電圧成分のみを伝達するブロッキングコンデンサーを有する。
 第1プラズマ発生用電源107および第2プラズマ発生用電源108は互いに逆位相の第1プラズマ発生電圧および第2プラズマ発生電圧を発生し、それぞれ第1成膜ロール105および第2成膜ロール106に印加する。これにより、対向空間121において電場が形成され、薄膜層の形成材料である炭素、珪素、および酸素のプラズマが発生される。
 第1磁場形成装置111および第2磁場形成装置112は磁場発生手段を構成し、それぞれ第1成膜ロール105および第2成膜ロール106の内部に格納される。第1磁場形成装置111および第2磁場形成装置112は、それぞれ第1成膜ロール105および第2成膜ロール106の回転とは独立に固定されている。
 図2は、図1に示す機能性フィルム製造装置の模式図における成膜ロールを中心とした部分拡大図である。
 図2に示すように、第1磁場形成装置111および第2磁場形成装置112は、それぞれ、第1成膜ロール105および第2成膜ロール106の延在方向と同じ方向に延在する中心磁石a1、a2を有する。また、第1磁場形成装置111および第2磁場形成装置112は、それぞれ、中心磁石a1、a2の周囲を囲みながら第1磁場形成装置111および第2磁場形成装置112の延在方向と同じ方向に延在する円環状の外部磁石b1、b2を有する。第1磁場形成装置111および第2磁場形成装置112は、それぞれ、中心磁石a1、a2と外部磁石b1、b2とを結ぶ無終端のトンネル状の磁力線(磁場)h1、h2を形成する。これにより、第1磁場形成装置111および第2磁場形成装置112は、それぞれ、第1成膜ロール105および第2成膜ロール106の表面から対向空間121に膨らんだ無終端のトンネル状の磁場h1、h2を発生させる。
 対向空間121において発生されたプラズマPは、第1磁場形成装置111および第2磁場形成装置112が発生させた磁場h1、h2が存在するところに収束される。これにより、磁場h1、h2は、対向空間121において発生されたプラズマPを、それぞれ第1成膜ロール105および第2成膜ロール106の表面の基材120が巻き掛けられた部分に収束させることができる。よって、基材120表面上へ収束されたプラズマの反応(プラズマ反応)によるプラズマCVD(Chemical Vapor Deposition)により成膜される薄膜層の成膜効率が向上され、ガスバリアフィルムの生産性を向上させることができる。
 図3は、機能性フィルム製造装置により製造されたガスバリアフィルムの薄膜層の膜厚方向の炭素の原子比の傾斜構造である炭素分布曲線を示す説明図である。原子比とは薄膜層を構成する各原子の合計量に対する当該原子の量の比率である。
 第1磁場形成装置111および第2磁場形成装置112が発生させた磁場h1、h2は、第1成膜ロール105および第2成膜ロール106の表面から対向空間121に膨らんだ無終端のトンネル状をなすため、基材120の長手方向にムラがある。また、基材120は、第1成膜ロール105および第2成膜ロール106にそれぞれ巻き掛けられた状態で成膜されるため、成膜させる際の基材120の表面は曲面構造を有する。これにより、基材120の表面に成膜される薄膜層の組成は膜厚方向に変化する傾斜構造を有する。
 図3の炭素分布曲線により示されるように、薄膜層の膜厚方向の炭素の原子比は極値を有するとともに周期的に変化する。発明者による鋭意検討の結果、ガスバリアフィルムは、炭素分布曲線において、次の3つの条件を満たすときに優れたガスバリア性能を発揮することが判明している。すなわち、薄膜層としてSiOCを成膜する場合に、(1)珪素の原子比、酸素の原子比、および炭素の原子比が薄膜層の膜厚の90%以上の領域において、酸素の原子比>珪素の原子比>酸素の原子比の条件を満たすこと、または、珪素の原子比、酸素の原子比、および炭素の原子比が薄膜層の90%以上の領域において、炭素の原子比>珪素の原子比>酸素の原子比の条件を満たすこと、(2)炭素分布曲線が少なくとも1つの極値を有すること、および、(3)前記炭素分布曲線における炭素の原子比の最大値および最小値の絶対値が5atm%以上であることである。以下、本条件を「特定成膜条件」と称する。
 再び図1を参照すると、ガス供給管130からは、対向空間121に薄膜層の原料ガス等の成膜ガスが供給される。ガス供給管130は、第1成膜ロール105および第2成膜ロール106の延在方向と同じ方向に延在する管状の形状を有しており、複数個所に設けられた穴から対向空間121に成膜ガスが供給される。
 原料ガスには、例えば、ケイ素を含有する有機ケイ素化合物を使用することができる。有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(以下、「HMDSO」と称する)、1.1.3.3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン、ジメチルジシラザン、トリメチルジシラザン、テトラメチルジシラザン、ペンタメチルジシラザン、ヘキサメチルジシラザンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い易さや得られるガスバリアフィルムの高いガスバリア性等の観点から、HMDSOを使用することが望ましい。なお、これらの有機ケイ素化合物は、2種以上を組み合わせて使用されてもよい。また、原料ガスには、有機ケイ素化合物の他にモノシランが含有されてもよい。
 成膜ガスとしては、原料ガスの他に反応ガスが使用されてもよい。反応ガスとしては、原料ガスと反応して酸化物、窒化物等の無機化合物となるガスが選択される。薄膜層として酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを使用することができる。なお、これらの反応ガスは、2種以上を組み合わせて使用されてもよい。
 成膜ガスとしては、原料ガスを真空チャンバー内に供給するために、さらにキャリアガスが使用されてもよい。また、成膜ガスとして、プラズマを発生させるために、さらに放電用ガスが使用されてもよい。キャリアガスおよび放電ガスとしては、例えば、アルゴン等の希ガス、および水素が使用される。
 なお、ガス供給管130からは、上述した特定条件を満たすように成膜ガスに含まれる原料ガスと反応ガスとの混合比が制御されることが望ましい。
 第1バイアス電源114は、第1高周波カットフィルター116を介して第1成膜ロール105に接続される。第1高周波カットフィルター116は、第1プラズマ発生用電源107が発生した高周波電圧の第1バイアス電源114への回り込みを遮断するとともに、第1バイアス電源114が発生した第1バイアス電圧を第1成膜ロール105に伝達する。これにより、第1プラズマ発生用電源107が発生する第1高周波電圧に第1バイアス電圧が重畳された電圧が第1成膜ロール105に印加される。なお、第1バイアス電圧は、直流電圧でも交流電圧でもよい。以下、直流の第1バイアス電圧を第1直流バイアス電圧、交流の第1バイアス電圧を第1交流バイアス電圧と称する。
 同様に、第2バイアス電源115は、第2高周波カットフィルター117を介して第2成膜ロール106に接続される。第2高周波カットフィルター117は、第2プラズマ発生用電源108が発生した高周波電圧の第2バイアス電源115への回り込みを遮断するとともに、第2バイアス電源115が発生した第2バイアス電圧を第2成膜ロール106に伝達する。これにより、第2プラズマ発生用電源108が発生する第2高周波電圧に第2バイアス電圧が重畳された電圧が第2成膜ロール106に印加される。なお、第2バイアス電圧は、直流電圧でも交流電圧でもよい。以下、直流の第2バイアス電圧を第2直流バイアス電圧、交流の第2バイアス電圧を第2交流バイアス電圧と称する。
 図4は、バイアス電圧の制御と各成膜ロールに供給される電圧との関係を示す説明図である。図4のAは、第1直流バイアス電圧の制御と第1成膜ロール105に供給される電圧との関係を示しており、図4のBは、第2直流バイアス電圧の制御と第2成膜ロール106に供給される電圧との関係を示している。
 図4に示すように、第1直流バイアス電圧および第2直流バイアス電圧をそれぞれ制御することにより、第1成膜ロール105および第2成膜ロール106にそれぞれ印加される電圧のオフセットを変化させることができる。
 図5は、バイアス電圧を変化させることによるガスバリアフィルムの薄膜層の炭素分布曲線の変化を示す説明図である。
 図5に示すように、バイアス電圧を変化させることにより薄膜層の膜厚方向の炭素の原子比の傾斜構造を変化させることができる。すなわち、バイアス電圧を変化させることにより、図5のAまたはBのような傾斜構造の薄膜層を形成することができる。
 バイアス電圧により薄膜層の膜厚方向の組成の傾斜構造が変化するのは、例えば、負のバイアス電圧を成膜ロールに供給することによりプラズマを構成する各陽イオンが成膜ロールに引き寄せられる度合が変化して基材120表面上の各プラズマの構成比率が変化することや、陽イオンの基材120へのイオンボンバートメントが変化すること等の複数の要素が影響していると考えられる。
 図5のAのような傾斜構造となるようにバイアス電圧を制御することにより、薄膜層の組成の均一性を向上することができる。一方、図5のAのような傾斜構造となるようにバイアス電圧を制御することにより、傾斜構造の振幅を大きくすることができる。
 各成膜ロールに供給されるバイアス電圧は様々な態様が考えられるが、例えば次のようなものがある。
(1)第1成膜ロール105および第2成膜ロール106の少なくともいずれか一方に、負の直流電圧のバイアス電圧を印加する。
(2)第1成膜ロール105および第2成膜ロール106の少なくともいずれか一方に、正の直流電圧のバイアス電圧を印加する。
(3)第1成膜ロール105および第2成膜ロール106に同じ極性の直流バイアス電圧または交流バイアス電圧を印加する。
(4)第1成膜ロール105および第2成膜ロール106に異なる極性の直流バイアス電圧または交流バイアス電圧を印加する。
(5)第1成膜ロール105および第2成膜ロール106の少なくともいずれか一方に、連続波形またはパルス状波形の交流バイアス電圧を印加する。
(6)第1成膜ロール105および第2成膜ロール106の少なくともいずれか一方に、プラズマ発生電圧より低い周波数成分を有するとともに、前記プラズマ発生電圧より絶対値が小さい交流バイアス電圧を印加する。
 図6は、第1成膜ロールおよび第2成膜ロールにそれぞれ逆位相のパルス状波形の交流電圧のバイアス電圧を印加することにより成膜されるガスバリアフィルムの薄膜層の炭素分布曲線を示す説明図である。
 図6に示すように、パルス状波形の交流電圧のバイアス電圧を各成膜ロール105、106に印加することにより、薄膜層の膜厚方向の炭素の原子比を複雑な傾斜構造とすることができる。
 このように、バイアス電圧により薄膜層の膜厚方向の組成の傾斜構造を変化させることにより、ガスバリアフィルムの水蒸気透過率、フレキシブル性、および生産性を制御することができる。
 図7は、本実施形態に係る機能性フィルムの製造方法のフローチャートを示す図である。本フローチャートは、本実施形態に係る機能性フィルムにより実施されることができる。
 ロール状に巻き取られている基材120を送り出しロール100に設置し、基材120を搬送ロール101~104、第1成膜ロール105、および第2成膜ロール106に巻き掛け、基材120の先端を巻き取りロール113に固定することにより基材120を機能性フィルム製造装置1に配置する(S701)。
 第1成膜ロール105および第2成膜ロール106にそれぞれ第1プラズマ発生用電源107および第2プラズマ発生用電源108によりそれぞれ高周波のプラズマ発生電圧を印加して対向空間121に成膜ガスのプラズマを発生させる。また、第1磁場形成装置111および第2磁場形成装置112は、それぞれ、第1成膜ロール105および第2成膜ロール106の表面から対向空間121に膨らんだ無終端のトンネル状の磁場h1、h2を発生させる。さらに、第1バイアス電源114および第2バイアス電源115によりそれぞれ第1バイアス電圧および第2バイアス電圧をそれぞれ第1成膜ロール105および第2成膜ロール106に印加する(S702)。これにより、プラズマをそれぞれ第1成膜ロール105および第2成膜ロール106の表面の基材120が巻き掛けられた部分に収束させるとともに、基材120に成膜される薄膜層の構成元素の分布曲線を制御する。
 送り出しロール100、搬送ロール101~104、第1成膜ロール105、第2成膜ロール106、および巻き取りロール113をそれぞれ回転させることにより基材120を搬送し、基材120上に薄膜層を連続的に形成することによりガスバリアフィルムを製造する(S703)。
 図8は、本実施形態に係る機能性フィルムの製造方法により製造されたガスバリアフィルムを備える有機EL素子の断面図である。
 図8に示すように、有機EL素子8は、基材120と薄膜121からなるガスバリアフィルム12、陽極電極122、有機EL素子部123、陰極電極124、および封止膜125を有する。
 有機EL素子部123は、有機物からなる正孔輸送層、発光層、および電子輸送層が積層されることで構成される。有機EL素子部123は、陽極電極122および陰極電極124からそれぞれ供給される正孔および電子が発光層で結合して発光層が励起状態となり、その後発光層が元の定常状態に戻る際に発光する。
 陽極電極122は、例えばITO(Indium Tin Oxide)により構成されることができる。陰極電極124は、例えば、金属により構成されることができる。
 封止膜は、例えば、窒化シリコン膜により構成されることができ、水蒸気を遮断することにより有機EL素子の劣化を防止する。
 本発明の実施例について説明する。
 (実施例)
A.実施例1
 [成膜方法]
1.基材
 厚さ:100μm、幅:350mmの2軸延伸ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製、「テオネックスQ65FA」)を使用した。
2.成膜ガス
 原料ガスとしてのHMDSOと、反応ガスおよび放電ガスとしての酸素ガスとの混合ガスを使用した。ガス供給管から供給される成膜ガスの供給量比が、基材の幅方向端部領域/幅方向非端部領域=1.05/1となるように調整した。なお、HMDSOと酸素ガスとの混合比は、上述した特定条件を満たすように制御した。
3.成膜方法
 プラズマCVDにより、基材の幅方向非端部領域の膜厚が600nmであるSiOCからなる薄膜層の成膜を行うことによりガスバリアフィルムを製造した。
 [成膜条件]
成膜ガスの混合比(HMDSO/酸素):1/10
真空チャンバー内の真空度:3Pa
プラズマ発生用電源による高周波電圧:±1.0kV、70kHz
バイアス電圧:-0.5kV(DC)(第1成膜ロール、第2成膜ロールとも)
基材の搬送速度:0.5m/秒
 [評価方法]
1.水蒸気透過率
1.1評価装置
蒸着装置:日本電子(株)製真空蒸着装置JEE-400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
1.2評価用セルの作製
真空雰囲気の蒸着装置内で、腐食性金属であるカルシウムを、ガスバリアフィルムの薄膜層が積層された面の反対の面に12mm角の正方形形状で9か所蒸着させた。この際、カルシウムを蒸着させる9か所以外の部分はマスクした。以下、蒸着させた正方形形状の各カルシウムを「試験片」と称する。
 その後、真空雰囲気のままマスクを除去し、ガスバリアフィルムの試験片が設けられた面全体を、各試験片を覆うように水蒸気不透過性金属であるアルミニウムを蒸着させることで各試験片を封止した。その後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、ガスバリアフィルムのアルミニウムが蒸着された面と厚さ0.2mmの石英ガラスとを封止用紫外線硬化樹脂(ナガセケムテックス社製)を介して対面させ、紫外線を照射することでさらに各試験片を石英ガラスで封止して評価用セルを作製した。
1.3評価手順
(1)恒温恒湿度オーブンに評価用セルを密封格納し、温度60℃、相対湿度90%で高温加湿状態に放置するとともに、恒温恒湿度オーブンに放置されている評価用セルの画像をカメラにより撮影した。
(2)撮影した画像に基づき、試験片が腐食している領域を画像処理により抽出し、試験片の全領域が腐食するのに要した水蒸気の量を計算することによりガスバリアフィルムの水蒸気透過率を算出した。具体的には、次のように水蒸気透過率を算出した。
 式(1)に示すように、カルシウム1molは2molの水分と反応し、1molの水酸化カルシウムを生成する。
 Ca+2HO→Ca(OH)+H ・・・(1)
 式(1)を考慮し、試験片の腐食に要した水蒸気の量を、放置時間T[hour]、試験片の面積A[cm]と腐食された面積δ[cm]、試験片の膜厚t[cm]、カルシウムの腐食後の厚み補正係数α、カルシウムの分子量M、腐食後の水酸化カルシウムの分子量M、カルシウムの密度d[g/cm]、腐食後の水酸化カルシウムの密度d[g/cm]から、下記式により求めた。
 放置時間T経過後の水酸化カルシウムのモル量Xは、下記式(2)(3)で与えられる。
X=(δ×t×α×d)/M ・・・(2)
1<α≦(M/d)/(M/d) ・・・(3)
 従って、水蒸気透過率[g/m/day](Water Vapor Transmission Rate、以下、「WVTR」と称する)を、下記式(4)で求めた。
WVTR=X×18×2×(10/A)*(24/T) ・・・(4)
 なお、評価用セルの放置直後はガスバリアフィルムへの給水が起こるため、見かけ上WVTRが低下する。そこで、WVTRを複数回測定し、その値が定常状態に達した後のWVTRを測定結果とした。
2.屈曲耐性
 製造したガスバリアフィルムを直径50mmで100回屈曲させる前後におけるWVTRの変化を計測した。
B.実施例2
バイアス電圧を、+0.5kV(DC)(第1成膜ロール、第2成膜ロールとも)とする以外、実施例1と同様とした。
C.実施例3
バイアス電圧を、+0.5kV(DC)(第1成膜ロール)、-0.5kV(第2成膜ロール)とする以外、実施例1と同様とした。
D.実施例4
成膜条件を以下とする以外、実施例1と同様とした。
 [成膜条件]
成膜ガスの混合比(HMDSO/酸素):1/10
真空チャンバー内の真空度:3Pa
プラズマ発生用電源による高周波電圧:±1.0kV、80kHz(デューティ比:50%のパルス電圧の周波数)
バイアス電圧:-0.5kV(DC)(第1成膜ロール、第2成膜ロールとも)
基材の搬送速度:0.5m/秒
E.比較例
 実施例1に対し、バイアス電圧を、0kV(第1成膜ロール、第2成膜ロールとも)として、ガスバリアフィルムの製造と評価を行った。
F.結果
 表1に上述した実施例1~4と比較例の結果を示した。
Figure JPOXMLDOC01-appb-T000001
 表1において、実施例1~4におけるWVTR性能は、比較例のWVTRを1としたときの倍率として表示されている。また、屈曲耐性は、屈曲前後でWVTRの変化が認められない場合を二重丸とし、屈曲前後でWVTRの劣化が10%以下の場合を丸として表示されている。
 表1に示すように、実施例は、比較例に対しWVTRが0.1倍~0.5倍となっており、バイアス電圧を印加することによりガスバリアフィルムのWVTR性能が向上することが実証された。
 さらに、実施例2~4については、屈曲耐性も比較例より向上しており、バイアス電圧を印加の態様によって屈曲耐性を向上させることができることが実証された。
 以上、本発明の実施形態に係る機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子について説明したが、本実施形態は以下の効果を奏する。
 巻き掛けられた基材を回転により搬送する第1成膜ロールと、第1成膜ロールに対し基材の搬送経路の下流において、巻き掛けられた基材を回転により搬送するとともに、基材が巻き掛けられた部分が、第1成膜ロールの基材が巻き掛けられた部分と対向空間を介して対向する第2成膜ロールと、に高周波電圧を印加して対向空間にプラズマを発生させる。そして、第1成膜ロールおよび第2成膜ロールから、それぞれ対向空間に膨らんだ無終端のトンネル状の磁場を発生させるとともに、第1成膜ロールおよび第2成膜ロールの少なくともいずれか一方にバイアス電圧を印加する。これにより、基板表面上の各プラズマの構成比率とイオンボンバートメントとをバイアス電圧により変化させて薄膜層の膜厚方向の組成の傾斜構造を制御することで、一定の遮断性能を有する機能性フィルムの安定生産を実現することができる。
 また、バイアス電圧により変化させて薄膜層の膜厚方向の組成の傾斜構造を制御することで、機能性フィルムのガスバリア性能および屈曲耐性を向上させることができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されるものではない。例えば、上述した実施形態においては2つの成膜ロールにより薄膜層を成膜しているが、1つの成膜ロールにより薄膜層を成膜してもよい。
 また、各プラズマ発生用電源および各バイアス電源を直列に接続することにより、プラズマ発生電圧にバイアス電圧を重畳させて各成膜ロールに印加してもよい。
 本発明は、以下の構成を有する。
 (1)真空チャンバー内において長尺状の基材を連続的に搬送しながら、薄膜層の形成材料である複数の成膜ガスのプラズマ反応により前記基材の前記表面に連続的に前記薄膜層を形成することにより機能性フィルムを製造する方法であって、巻き掛けられた前記基材を回転により搬送する第1成膜ロールと、前記第1成膜ロールに対し前記基材の搬送経路の下流において、巻き掛けられた前記基材を回転により搬送するとともに、前記基材が巻き掛けられた部分が、前記第1成膜ロールの前記基材が巻き掛けられた部分と対向空間を介して対向する第2成膜ロールと、に交流のプラズマ発生電圧を印加することにより前記対向空間に前記薄膜層の形成材料である複数の成膜ガスのプラズマを発生させ、前記第1成膜ロールおよび前記第2成膜ロールから、それぞれ前記対向空間に膨らんだ無終端のトンネル状の磁場を発生させ、前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に前記交流電圧に重畳される直流バイアス電圧および交流バイアス電圧の少なくともいずれかの前記バイアス電圧を印加する段階(a)と、前記第1成膜ロールおよび前記第2成膜ロールにより前記基材を連続的に搬送することにより前記基材の前記表面に連続的に前記薄膜層を形成する段階(b)と、を有する機能性フィルムの製造方法。
 (2)前記段階(a)において前記バイアス電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加するバイアス電圧は、負の直流電圧である上記(1)に記載の機能性フィルムの製造方法。
 (3)前記段階(a)において前記バイアス電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加するバイアス電圧は、正の直流電圧である上記(1)に記載の機能性フィルムの製造方法。
 (4)前記段階(a)において、前記バイアス電源は、前記第1成膜ロールおよび前記第2成膜ロールに同じ極性の前記バイアス電圧を印加する上記(1)~(3)のいずれかに記載の機能性フィルムの製造方法。
 (5)前記段階(a)において、前記バイアス電源は、前記第1成膜ロールおよび前記第2成膜ロールに異なる極性の前記バイアス電圧を印加する上記(1)~(3)のいずれかに記載の機能性フィルムの製造方法。
 (6)前記段階(a)において前記バイアス電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加する前記交流バイアス電圧は、連続波形またはパルス状波形の交流電圧である上記(1)、(4)、または(5)に記載の機能性フィルムの製造方法。
 (7)前記段階(a)において前記バイアス電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加する前記交流バイアス電圧は、前記プラズマ発生用電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加するプラズマ発生電圧より低い周波数成分を有するとともに、前記プラズマ発生電圧より絶対値が小さい上記(1)、(4)、(5)、または(6)に記載の機能性フィルムの製造方法。
 (8)前記薄膜層は珪素、酸素および炭素を含有しており、かつ、珪素原子、酸素原子、および炭素原子の合計量に対する珪素原子の量の比率である珪素の原子比と、前記合計量に対する酸素原子の量の比率である酸素の原子比と、前記合計量に対する炭素原子の量の比率である炭素の原子比と、前記薄膜層の膜厚方向における前記薄膜層の表面からの距離と炭素の原子比との関係を示す炭素分布曲線と、が(1)珪素の原子比、酸素の原子比、および炭素の原子比が前記薄膜層の膜厚の90%以上の領域において、酸素の原子比>珪素の原子比>酸素の原子比の条件を満たすこと、または、珪素の原子比、酸素の原子比、および炭素の原子比が前記薄膜層の90%以上の領域において、炭素の原子比>珪素の原子比>酸素の原子比の条件を満たすこと、(2)前記炭素分布曲線が少なくとも1つの極値を有すること、および、(3)前記炭素分布曲線における炭素の原子比の最大値および最小値の絶対値が5atm%以上であること、のすべての条件を満たすように前記複数の成膜ガスに含まれる有機珪素化合物と酸素との混合比が制御される上記(1)~(7)に記載の機能性フィルムの製造方法。
 (9)真空チャンバー内において長尺状の基材を連続的に搬送しながら、薄膜層の形成材料である複数の成膜ガスのプラズマの反応により前記基材の前記表面に連続的に前記薄膜層を形成することにより機能性フィルムを製造する装置であって、巻き掛けられた前記基材を回転により搬送する第1成膜ロールと、前記第1成膜ロールに対し前記基材の搬送経路の下流において、巻き掛けられた前記基材を回転により搬送するとともに、前記基材が巻き掛けられた部分が、前記第1成膜ロールの前記基材が巻き掛けられた部分と対向空間を介して対向する第2成膜ロールと、前記第1成膜ロールおよび前記第2成膜ロールに交流のプラズマ発生電圧を印加することにより前記対向空間に前記薄膜層の形成材料である複数の成膜ガスのプラズマを発生させるプラズマ発生用電源と、前記第1成膜ロールおよび前記第2成膜ロールの内部に設けられ、前記第1成膜ロールおよび前記第2成膜ロールから前記対向空間にそれぞれ膨らんだ無終端のトンネル状の磁場を発生させる磁場発生部と、前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に前記交流電圧に重畳する直流バイアス電圧および交流バイアス電圧の少なくともいずれかの前記バイアス電圧を印加するバイアス電源と、を有する機能性フィルム製造装置。
 (10)上記(1)~(8)のいずれかの方法により製造された機能性フィルムを備える有機エレクトロルミネッセンス素子。
  1  機能性フィルム製造装置、
  8  有機エレクトロルミネッセンス素子、
  105  第1成膜ロール、
  106  第2成膜ロール、
  107  第1プラズマ発生用電源、
  108  第2プラズマ発生用電源、
  111  第1磁場形成装置、
  112  第2磁場形成装置、
  114  第1バイアス電源、
  115  第2バイアス電源、
  118  真空チャンバー、
  119  真空ポンプ、
  120  基材、
  121  対向空間、
  130  ガス供給管
  h1、h2  磁界(磁場)、
  P  プラズマ。

Claims (10)

  1.  真空チャンバー内において長尺状の基材を連続的に搬送しながら、薄膜層の形成材料である複数の成膜ガスのプラズマ反応により前記基材の前記表面に連続的に前記薄膜層を形成することにより機能性フィルムを製造する方法であって、
     巻き掛けられた前記基材を回転により搬送する第1成膜ロールと、前記第1成膜ロールに対し前記基材の搬送経路の下流において、巻き掛けられた前記基材を回転により搬送するとともに、前記基材が巻き掛けられた部分が、前記第1成膜ロールの前記基材が巻き掛けられた部分と対向空間を介して対向する第2成膜ロールと、に交流のプラズマ発生電圧を印加することにより前記対向空間に前記薄膜層の形成材料である複数の成膜ガスのプラズマを発生させ、
     前記第1成膜ロールおよび前記第2成膜ロールから、それぞれ前記対向空間に膨らんだ無終端のトンネル状の磁場を発生させ、
     前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に前記交流電圧に重畳される直流バイアス電圧および交流バイアス電圧の少なくともいずれかの前記バイアス電圧を印加する段階(a)と、
     前記第1成膜ロールおよび前記第2成膜ロールにより前記基材を連続的に搬送することにより前記基材の前記表面に連続的に前記薄膜層を形成する段階(b)と、
     を有する、機能性フィルムの製造方法。
  2.  前記段階(a)において前記バイアス電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加するバイアス電圧は、負の直流電圧である、請求項1に記載の機能性フィルムの製造方法。
  3.  前記段階(a)において前記バイアス電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加するバイアス電圧は、正の直流電圧である、請求項1に記載の機能性フィルムの製造方法。
  4.  前記段階(a)において、前記バイアス電源は、前記第1成膜ロールおよび前記第2成膜ロールに同じ極性の前記バイアス電圧を印加する、請求項1~3のいずれか一項に記載の機能性フィルムの製造方法。
  5.  前記段階(a)において、前記バイアス電源は、前記第1成膜ロールおよび前記第2成膜ロールに異なる極性の前記バイアス電圧を印加する、請求項1~3のいずれか一項に記載の機能性フィルムの製造方法。
  6.  前記段階(a)において前記バイアス電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加する前記交流バイアス電圧は、連続波形またはパルス状波形の交流電圧である、請求項1、4、または5に記載の機能性フィルムの製造方法。
  7.  前記段階(a)において前記バイアス電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加する前記交流バイアス電圧は、前記プラズマ発生用電源が前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に印加するプラズマ発生電圧より低い周波数成分を有するとともに、前記プラズマ発生電圧より絶対値が小さい、請求項1、4、5、または6に記載の機能性フィルムの製造方法。
  8.  前記薄膜層は珪素、酸素および炭素を含有しており、かつ、珪素原子、酸素原子、および炭素原子の合計量に対する珪素原子の量の比率である珪素の原子比と、前記合計量に対する酸素原子の量の比率である酸素の原子比と、前記合計量に対する炭素原子の量の比率である炭素の原子比と、前記薄膜層の膜厚方向における前記薄膜層の表面からの距離と炭素の原子比との関係を示す炭素分布曲線と、が
    (1)珪素の原子比、酸素の原子比、および炭素の原子比が前記薄膜層の膜厚の90%以上の領域において、
    酸素の原子比>珪素の原子比>酸素の原子比の条件を満たすこと、または、
    珪素の原子比、酸素の原子比、および炭素の原子比が前記薄膜層の90%以上の領域において、
    炭素の原子比>珪素の原子比>酸素の原子比の条件を満たすこと、
    (2)前記炭素分布曲線が少なくとも1つの極値を有すること、および、
    (3)前記炭素分布曲線における炭素の原子比の最大値および最小値の絶対値が5atm%以上であること、
    のすべての条件を満たすように前記複数の成膜ガスに含まれる有機珪素化合物と酸素との混合比が制御される、請求項1~7に記載の機能性フィルムの製造方法。
  9.  真空チャンバー内において長尺状の基材を連続的に搬送しながら、薄膜層の形成材料である複数の成膜ガスのプラズマの反応により前記基材の前記表面に連続的に前記薄膜層を形成することにより機能性フィルムを製造する装置であって、
     巻き掛けられた前記基材を回転により搬送する第1成膜ロールと、
     前記第1成膜ロールに対し前記基材の搬送経路の下流において、巻き掛けられた前記基材を回転により搬送するとともに、前記基材が巻き掛けられた部分が、前記第1成膜ロールの前記基材が巻き掛けられた部分と対向空間を介して対向する第2成膜ロールと、
     前記第1成膜ロールおよび前記第2成膜ロールに交流のプラズマ発生電圧を印加することにより前記対向空間に前記薄膜層の形成材料である複数の成膜ガスのプラズマを発生させるプラズマ発生用電源と、
     前記第1成膜ロールおよび前記第2成膜ロールの内部に設けられ、前記第1成膜ロールおよび前記第2成膜ロールから前記対向空間にそれぞれ膨らんだ無終端のトンネル状の磁場を発生させる磁場発生部と、
     前記第1成膜ロールおよび前記第2成膜ロールの少なくともいずれか一方に前記交流電圧に重畳する直流バイアス電圧および交流バイアス電圧の少なくともいずれかの前記バイアス電圧を印加するバイアス電源と、
     を有する、機能性フィルム製造装置。
  10.  請求項1~8のいずれか一項の方法により製造された機能性フィルムを備える有機エレクトロルミネッセンス素子。
PCT/JP2013/084924 2013-01-08 2013-12-26 機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子 WO2014109250A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014556384A JPWO2014109250A1 (ja) 2013-01-08 2013-12-26 機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-001203 2013-01-08
JP2013001203 2013-01-08

Publications (1)

Publication Number Publication Date
WO2014109250A1 true WO2014109250A1 (ja) 2014-07-17

Family

ID=51166906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084924 WO2014109250A1 (ja) 2013-01-08 2013-12-26 機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JPWO2014109250A1 (ja)
WO (1) WO2014109250A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111458A (ja) * 1995-10-16 1997-04-28 Fuji Photo Film Co Ltd 成膜装置及び成膜方法
JP2008196001A (ja) * 2007-02-13 2008-08-28 Kobe Steel Ltd プラズマcvd装置
JP2011068970A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 機能膜の製造装置および製造方法
JP2011184738A (ja) * 2010-03-09 2011-09-22 Fujifilm Corp ガスバリアフィルムの製造方法
JP2012097354A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd 積層体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111458A (ja) * 1995-10-16 1997-04-28 Fuji Photo Film Co Ltd 成膜装置及び成膜方法
JP2008196001A (ja) * 2007-02-13 2008-08-28 Kobe Steel Ltd プラズマcvd装置
JP2011068970A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 機能膜の製造装置および製造方法
JP2011184738A (ja) * 2010-03-09 2011-09-22 Fujifilm Corp ガスバリアフィルムの製造方法
JP2012097354A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd 積層体の製造方法

Also Published As

Publication number Publication date
JPWO2014109250A1 (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
JP5725865B2 (ja) プラズマ処理装置、及び大気圧グロー放電電極構成を使用して基板を処理するための方法
WO2014123201A1 (ja) ガスバリア性フィルム、およびその製造方法
US10535838B2 (en) Laminated film and process for manufacturing the same
JP2011073430A (ja) ガスバリア性積層フィルム
WO2012046778A1 (ja) プラズマcvd成膜による積層体の製造方法
JP2008235165A (ja) 透明導電膜を有するロール状樹脂フィルムの製造方法
JP6332283B2 (ja) ガスバリア性フィルム
JPWO2008096616A1 (ja) 透明ガスバリア性フィルム及びその製造方法
US20170288169A1 (en) Laminated film and process for manufacturing the same, as well as method for analyzing laminated film
US20110311734A1 (en) Two Layer Barrier on Polymeric Substrate
JP2009274251A (ja) 透明バリアフィルムおよびその製造方法
JP2012082464A (ja) プラズマcvd成膜装置、成膜方法、ガスバリア性積層フィルム
JP5673926B2 (ja) 積層フィルム
JP5781350B2 (ja) ガスバリア積層体、その製造方法、電子デバイス用部材及び電子デバイス
JP2013040378A (ja) プラズマcvd成膜装置、成膜方法
WO2014109250A1 (ja) 機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子
TWI666121B (zh) 層合薄膜、有機電致發光裝置、光電轉換裝置及液晶顯示器
WO2016080447A1 (ja) 成膜装置及びガスバリアーフィルムの製造方法
WO2017104357A1 (ja) プラズマcvd成膜装置用電極、電極の製造方法、プラズマcvd成膜装置および機能性フィルムの製造方法
JP5719106B2 (ja) 透明ガスバリア性フィルム及び透明ガスバリア性フィルムの製造方法
JP2014001444A (ja) 成膜方法
WO2015163358A1 (ja) ガスバリアーフィルム及びその製造方法
WO2012046776A1 (ja) 成膜装置及び成膜方法
JP2014000782A (ja) 積層フィルム
JP2012082466A (ja) プラズマcvd成膜装置、成膜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871225

Country of ref document: EP

Kind code of ref document: A1