WO2014107204A2 - Additive manufacture of turbine component with multiple materials - Google Patents
Additive manufacture of turbine component with multiple materials Download PDFInfo
- Publication number
- WO2014107204A2 WO2014107204A2 PCT/US2013/063641 US2013063641W WO2014107204A2 WO 2014107204 A2 WO2014107204 A2 WO 2014107204A2 US 2013063641 W US2013063641 W US 2013063641W WO 2014107204 A2 WO2014107204 A2 WO 2014107204A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- layers
- laser
- component
- laser energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/009—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/04—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/008—Producing shaped prefabricated articles from the material made from two or more materials having different characteristics or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/50—Means for feeding of material, e.g. heads
- B22F12/53—Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24521—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
- Y10T428/24545—Containing metal or metal compound
Definitions
- This invention relates to additive layer manufacturing, and particularly to making multi-material metal/ceramic gas turbine components by selective laser sintering and selective laser melting of adjacent powder layers of different materials.
- Selective layer additive manufacturing includes selective laser melting (SLM) and selective layer sintering (SLS) of powder beds to build a component layer by layer to achieve net shape or near net shape.
- SLM selective laser melting
- SLS selective layer sintering
- a powder bed of the component final materia! or precursor material is deposited on a working surface.
- Laser energy is selectively directed onto the powder bed following a cross sectional area shape of the component, thus creating a layer or slice of the component, which then becomes a new working surface for a next layer.
- the powder bed is conventionally spread over the working surface in a first step, and then a laser defines or "paints" the component sectional area on the bed in a following step, for example by raster scanning.
- a related process often referred to as micro-cladding, deposits a powder onto a component via a moving nozzle or other delivery device.
- a laser concurrently melts the powder at the deposit point, thus forming a bead of material on the component as the delivery device moves. Successive passes can build a layer or layers of material for repair or fabrication of a component.
- FIG. 1 is a sectional view of a prior art gas turbine blade.
- FIG. 2 Is a sectional view of a powder delivery device forming adjacent powder layers on a working surface.
- FIG. 3 is a sectional view of laser beams melting and sintering adjacent powder layers.
- FIG 4 shows a pattern of scan paths for powder delivery and/or laser delivery parallel to non-linear sectional profiles of a component
- FIG 5 shows an alternate scan pattern with parallel linear paths.
- FIG 6 shows scan paths that are normal, or approximately normal, to the walls of the component.
- FIG 7 shows a second slice being formed on a first slice of the component.
- FIG 8 shows adjacent powder layers deposited at different thicknesses.
- FIG 9 shows an interlocking interface between adjacent materials.
- FIG 10 is a flow chart showing aspects of an embodiment of the invention.
- the inventors have devised a method for additive manufacturing of a component having multiple adjacent materials of different properties. It produces a net shape or near net shape with strong bonding of the adjacent materials, including metal to ceramic. This is especially beneficial in fabricating gas turbine components such as superalloy blades and vanes with ceramic thermal barrier coatings. Such airfoils are difficult to fabricate, because they have complex shapes with serpentine cooling channels lined with turbulators and film cooling holes.
- FIG 1 is a transverse sectional view of a typical gas turbine airfoil 20 with a leading edge 22, trailing edge 24, pressure side 26, suction side 28, metal substrate 30, cooling channels 32, partition walls 34, turbulators 38, film cooling exit holes 38, cooling pins 40, and trailing edge exit holes 42.
- the exterior of the airfoil substrate is coated with a ceramic thermal barrier coating 44.
- a metallic bond coat 45 may be applied between the substrate and the thermal barrier coating.
- Turbulators are bumps, dimples, ridges, or valleys within the cooling channels 32 that increase surface area and mix the fluid boundary layer of the coolant flow.
- FIG 2 shows a process and apparatus for delivering first 48, second 50, and third 52 adjacent powder layers onto a working surface 54A in respective first, second, and third section area shapes of first, second, and third adjacent final materials in a given section plane of a component.
- the first powder layer 48 may be a structural metal delivered in the area shape of an airfoil substrate 30 as shown in FIG 1.
- the second powder layer 50 may be a bond coat delivered adjacent the first powder 48 in the area shape of a bond coat 45 on the substrate (FIG 1 ).
- the third powder layer 52 may be a thermal barrier ceramic delivered adjacent the second powder in the area shape of the thermal barrier coating 44 (FIG 1 ).
- An interface 58 between the first and second powder layers may be delivered so as to form an overlap zone 57 that provides a material gradient transition between the two adjacent powder layers 48, 50.
- An interface 58 between the second and third powders 50, 52 may be delivered so as to form an engineered mechanical interlock such as interleaved fingers projecting alternately from the second and third powders (later shown).
- the powder delivery device 60 may have one or more nozzles 62 delivering powder spray 64 to a focal point 66.
- the powder delivery device 60 may incorporate multi-axis movements 61 relative to the working surface 54A, so that the nozzle can follow non-linear sectional profiles in a given horizontal plane, can move to different planes or distances relative to the working surface 54A, and can deliver powder at varying angles.
- the axes may be implemented by motions of the work table 55 and/or the powder delivery device 60 via tracks and rotation bearings under computer control.
- Powder delivery parameters such as nozzle translation speeds, mass delivery rates, and spray angles may be
- the powder may be compacted and stabilized by means such as electromagnetic energy and/or mechanical or acoustic vibration prior to laser heating.
- the powder may be wetted with water, alcohol, lacquer or binder prior to or during spraying so it holds a desired form until the laser melts or sinters it into a cohesive slice of the component.
- flux material may be included with the powder materials to facilitate the cladding process.
- FIG 3 shows a process and apparatus for melting and/or sintering different powder layers 48, 50, 52 with respective different laser energies.
- the substrate superalloy powder 48 and the bond coat powder 58 may be melted with first and second laser energies, and the ceramic thermal barrier powder 52 may be sintered with a third laser energy that only partly melts the ceramic particles.
- the different laser energies 69A, 69B may be provided by a single laser emitter 68A with variable output, or by multiple laser emitters 68A, 68B with different outputs for different powder layers.
- the laser emitter may incorporate multi-axis movement 70 relative to the working surface 54A, so that it can follow non-linear sectional profiles in a given plane, can move to different planes or distances relative to the working surface 54A, and can position and direct a laser beam for desired angles and spot sizes.
- FIG 4 shows a pattern of paths 72 that follow the non-linear sectional shape profiles 73, 74, 75 of the component 20.
- the powder delivery focus 66 of FIG 2 may be controlled to follow such paths.
- Such a scan pattern 72 parallel to the sectional shape profiles allows the powder type to be changed for each powder layer 48, 50, 52.
- the laser energy 69A-B may also follow non-linear scan paths such as 72 of FIG 4. This path type minimizes the number of changes in laser intensity for different powder materials.
- a first laser energy may be directed to follow a contour of the sectional shape 73 of the first powder layer 48
- a second laser energy may be directed to follow a contour of a sectional shape 74 of the second powder layer 50
- a third laser energy may be directed to follow a contour of a sectional shape 75 of the third powder layer 52.
- the laser may be cycled off as it passes over areas intended to remain as voids in the formed component, such as film cooling holes 38.
- FIG 5 shows an alternate scan pattern with parallel linear paths 74 for the laser energy.
- FIG 6 shows paths 76 that are normal, or approximately normal, to the walls of the component. Patterns 74 and 76 may require laser intensity changes at each crossing of the interfaces 56, 58 for the different powder layers in addition to off/on cycling for the voids 38.
- the spacing of scans 72, 74, 76 depends on the laser beam width or spot size at the powder surface. Multiple laser emitters may be used together to produce a wider swath to reduce the number of scans.
- the laser beam(s) may be adjusted in width by changing the distance of the emitter from the working surface, and/or the beam may be adjusted In size and shape by adjustable lenses, mirrors, or masks to better define small, sharp, or curved elements of the component such as fillets, without decreasing the scan spacing and spot size.
- FIG 7 shows a first solidified slice 74 of the component providing a new working surface 54B on which to apply powder layers 48, 50, 52 for a second slice 76 of the component.
- FIG 8 shows powder layers 48, 50, 52 delivered at different heights depending on their respective process shrinkages to achieve a final uniform slice thickness.
- the powders of the first 48 and second 50 adjacent layers may be deposited in the overlap zone 57 such that the powders overlap in a gradient material transition.
- the overlap width may be at least 0.2 mm for example.
- the powders of the second 50 and third 52 adjacent layers may also be deposited in an overlap zone 77 such that the powders overlap in a gradient material transition.
- the overlap widths may be at least 0.2 mm or 0.4 mm or up to 1 mm or up to 2 mm. for examples.
- FIG 9 shows an interface between the second 50 and third 52 layers formed with engineered interlocking features 80 there between, such as interleaved profiles that form 3D interlaced fingers projecting alternately from the bond layer 50 and the ceramic layer 52.
- interlocking mechanical interface may be provided instead of, or in addition to, a gradient material zone 77 as shown in FIG 8.
- Fissures 82 may be formed in the ceramic layer 52 for operational strain relief by cycling the laser energy off/on as it scans the ceramic layer 52.
- Hollow ceramic spheres 84 may be included in the material of the ceramic layer 52 to reduce thermal conductivity. Inclusion of hollow ceramic spheres in the thermal barrier layer 52 permanently reduces its thermal conductivity, since the sphere voids are not subject to reduction by operational sintering.
- FIG 10 is a flow chart of a method 84 showing aspects of an embodiment of the invention, including the following steps:
- step 92 Repeating from step 86 with successive section planes to fabricate the component by selective layer additive manufacturing.
- nano-scale ceramic particles can reduce the sintering temperature of the ceramic layer by as much as 350 °C in some embodiments. This can facilitate co-sintering and bonding of the metal and ceramic layers. Temperature reduction occurs particularly when the ceramic powder comprises at least 2% and up to 100% by volume of particles being less than 100 nm average diameter, and it especially occurs with particles less than 50 nm average diameter. The present method allows sintering by only partially melting such nano-particles. This is not possible when applying a ceramic coating with thermal spray technologies, because it tends to fully melt the smaller particles.
- Nickel-based superalloys used in high temperature gas turbine components are often strengthened by a gamma prime precipitant phase within a gamma phase matrix.
- the properties of these superalloys that make them durable in high-temperature environments also make them difficult to fabricate and repair.
- they can be fabricated and joined to adjacent layers of different materials, including ceramics, by the method described herein. Casting of gas turbine blades having serpentine channels with turbulators and film cooling exit holes is difficult and expensive.
- the present method reduces cost while more fully joining the different material layers, it allows a complete multi-material component such as a turbine blade to be fabricated in one process, instead of casting a superalloy blade, then coating it in a separate process, such as thermal spray.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Laminated Bodies (AREA)
- Laser Beam Processing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015536818A JP2016502589A (ja) | 2012-10-08 | 2013-10-07 | 複数の材料によるタービンコンポーネントの積層造形 |
| RU2015116240A RU2015116240A (ru) | 2012-10-08 | 2013-10-07 | Аддитивное изготовление детали турбины с использованием нескольких материалов |
| CN201380052507.5A CN104684667A (zh) | 2012-10-08 | 2013-10-07 | 使用多种材料的涡轮机部件的添加制造 |
| IN2324DEN2015 IN2015DN02324A (enExample) | 2012-10-08 | 2013-10-07 | |
| EP13852362.6A EP2903762A2 (en) | 2012-10-08 | 2013-10-07 | Additive manufacture of turbine component with multiple materials |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261710995P | 2012-10-08 | 2012-10-08 | |
| US61/710,995 | 2012-10-08 | ||
| US201261711813P | 2012-10-10 | 2012-10-10 | |
| US61/711,813 | 2012-10-10 | ||
| US14/043,037 | 2013-10-01 | ||
| US14/043,037 US20140099476A1 (en) | 2012-10-08 | 2013-10-01 | Additive manufacture of turbine component with multiple materials |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2014107204A2 true WO2014107204A2 (en) | 2014-07-10 |
| WO2014107204A3 WO2014107204A3 (en) | 2014-11-13 |
Family
ID=50432877
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2013/063641 Ceased WO2014107204A2 (en) | 2012-10-08 | 2013-10-07 | Additive manufacture of turbine component with multiple materials |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20140099476A1 (enExample) |
| EP (1) | EP2903762A2 (enExample) |
| JP (1) | JP2016502589A (enExample) |
| CN (1) | CN104684667A (enExample) |
| IN (1) | IN2015DN02324A (enExample) |
| RU (1) | RU2015116240A (enExample) |
| WO (1) | WO2014107204A2 (enExample) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102015207463A1 (de) * | 2015-04-23 | 2016-10-27 | Siemens Aktiengesellschaft | Gedrucktes Reparaturpflaster für Turbinenbauteile |
| WO2016185966A1 (ja) * | 2015-05-15 | 2016-11-24 | コニカミノルタ株式会社 | 粉末材料、立体造形物の製造方法および立体造形装置 |
| JP2016216801A (ja) * | 2015-05-26 | 2016-12-22 | セイコーエプソン株式会社 | 3次元形成装置および3次元形成方法 |
| JP2017036484A (ja) * | 2015-08-11 | 2017-02-16 | 株式会社日立製作所 | 金属製品製造方法 |
| JP2017078511A (ja) * | 2015-10-20 | 2017-04-27 | ゼネラル・エレクトリック・カンパニイ | フィルム冷却が統合された噛合材料遷移領域 |
| JP2017077729A (ja) * | 2015-10-20 | 2017-04-27 | ゼネラル・エレクトリック・カンパニイ | ロータブレード及び部品のための積層造形法を利用した修復方法 |
| JP2017527699A (ja) * | 2014-08-15 | 2017-09-21 | シーメンス エナジー インコーポレイテッド | ガスタービンエンジン部品を構築するための方法 |
| JP2017533340A (ja) * | 2014-08-15 | 2017-11-09 | シーメンス エナジー インコーポレイテッド | ガスタービンエンジン部品を造るための方法 |
| JP2018502245A (ja) * | 2014-11-26 | 2018-01-25 | アンサルド エネルジア アイ・ピー ユー・ケイ リミテッドAnsaldo Energia Ip Uk Limited | 翼のための前縁冷却チャネル |
| US10350684B2 (en) | 2015-11-10 | 2019-07-16 | General Electric Company | Additive manufacturing method for making complex film holes |
| DE102018203637A1 (de) * | 2018-03-09 | 2019-09-12 | Volkswagen Aktiengesellschaft | Gestaltung des Übergangs von Laserauftragsschweißgut zu Substrat zur Verminderung der Kerbwirkung |
| WO2020149835A1 (en) * | 2019-01-15 | 2020-07-23 | Hewlett-Packard Development Company, L.P. | Additive manufacturing of transitioned three-dimensional object |
| US11920486B2 (en) | 2019-03-29 | 2024-03-05 | Mitsubishi Power, Ltd. | High-temperature component and method of producing the high-temperature component |
Families Citing this family (111)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9511447B2 (en) * | 2013-12-12 | 2016-12-06 | General Electric Company | Process for making a turbulator by additive manufacturing |
| DE102012202487A1 (de) * | 2012-02-17 | 2013-08-22 | Evonik Industries Ag | Verfahren zum Aufschmelzen/Sintern von Pulverpartikeln zur schichtweisen Herstellung von dreidimensionalen Objekten |
| US9776282B2 (en) | 2012-10-08 | 2017-10-03 | Siemens Energy, Inc. | Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems |
| ES2777927T3 (es) * | 2012-10-12 | 2020-08-06 | MTU Aero Engines AG | Componente para una turbina |
| US10710161B2 (en) * | 2013-03-11 | 2020-07-14 | Raytheon Technologies Corporation | Turbine disk fabrication with in situ material property variation |
| JP2016527161A (ja) * | 2013-04-25 | 2016-09-08 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | 金属バインダーまたはセラミックバインダーを用いた過渡液相接合によるセラミックタービン構成要素の付加製造 |
| US10487667B2 (en) * | 2013-07-01 | 2019-11-26 | United Technologies Corporation | Airfoil, and method for manufacturing the same |
| US20150003997A1 (en) * | 2013-07-01 | 2015-01-01 | United Technologies Corporation | Method of forming hybrid metal ceramic components |
| EP2829689B1 (de) * | 2013-07-23 | 2019-03-13 | MTU Aero Engines GmbH | Dämmeinrichtung für eine thermischen Gastrubine und hiermit ausgerüstete thermische Gasturbine |
| US10260352B2 (en) | 2013-08-01 | 2019-04-16 | Siemens Energy, Inc. | Gas turbine blade with corrugated tip wall |
| US20150064047A1 (en) * | 2013-08-28 | 2015-03-05 | Elwha Llc | Systems and methods for additive manufacturing of three dimensional structures |
| US10584421B2 (en) | 2013-11-04 | 2020-03-10 | United Technologies Corporation | Calcium-magnesium-alumino-silicate resistant thermal barrier coatings |
| US9649690B2 (en) * | 2014-02-25 | 2017-05-16 | General Electric Company | System having layered structure and method of making the same |
| JP6305295B2 (ja) * | 2014-09-19 | 2018-04-04 | 株式会社東芝 | 積層造形装置及び積層造形方法 |
| CN106794519B (zh) * | 2014-10-14 | 2019-05-28 | 西门子能源有限公司 | 形成为一体化体系的包含多种材料的三维部件的激光增材制造 |
| JP2017535458A (ja) * | 2014-11-26 | 2017-11-30 | ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー | Slsを用いた可食性物品の製造方法 |
| DE102015202417A1 (de) | 2015-02-11 | 2016-08-11 | Ksb Aktiengesellschaft | Stömungsführendes Bauteil |
| US10094240B2 (en) * | 2015-02-12 | 2018-10-09 | United Technologies Corporation | Anti-deflection feature for additively manufactured thin metal parts and method of additively manufacturing thin metal parts |
| WO2016154850A1 (zh) * | 2015-03-30 | 2016-10-06 | 北京大学口腔医院 | 一种三维打印方法、装置和打印机 |
| TW201636188A (zh) * | 2015-04-01 | 2016-10-16 | 和碩聯合科技股份有限公司 | 工作件加工設備以及工作件加工方法 |
| US10322470B2 (en) * | 2015-04-06 | 2019-06-18 | The Boeing Company | Deposition head for additive manufacturing |
| US9849510B2 (en) * | 2015-04-16 | 2017-12-26 | General Electric Company | Article and method of forming an article |
| US10814549B2 (en) | 2015-04-30 | 2020-10-27 | Hewlett-Packard Development Company, L.P. | Printing a multi-structured 3D object |
| US9976441B2 (en) | 2015-05-29 | 2018-05-22 | General Electric Company | Article, component, and method of forming an article |
| US10688774B2 (en) | 2015-07-15 | 2020-06-23 | Hewlett-Packard Development Company, L.P. | Processing object part data for a three-dimensionsal object |
| US10344597B2 (en) | 2015-08-17 | 2019-07-09 | United Technologies Corporation | Cupped contour for gas turbine engine blade assembly |
| US10830176B2 (en) | 2015-08-26 | 2020-11-10 | Rohr, Inc. | Additive manufacturing fiber-reinforced, thrust reverser cascade |
| DE102015114959A1 (de) * | 2015-09-07 | 2017-03-09 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zur generativen Herstellung eines dreidimensionalen Objekts |
| US10087776B2 (en) | 2015-09-08 | 2018-10-02 | General Electric Company | Article and method of forming an article |
| US10253986B2 (en) | 2015-09-08 | 2019-04-09 | General Electric Company | Article and method of forming an article |
| US10739087B2 (en) | 2015-09-08 | 2020-08-11 | General Electric Company | Article, component, and method of forming an article |
| US10180072B2 (en) | 2015-10-20 | 2019-01-15 | General Electric Company | Additively manufactured bladed disk |
| US10370975B2 (en) | 2015-10-20 | 2019-08-06 | General Electric Company | Additively manufactured rotor blades and components |
| US10184344B2 (en) | 2015-10-20 | 2019-01-22 | General Electric Company | Additively manufactured connection for a turbine nozzle |
| LT6438B (lt) * | 2015-10-21 | 2017-08-25 | Uab "Neurotechnology" | Bekontakčio manipuliavimo įrenginys, surinkimo būdas ir 3d spausdinimas |
| JP6801173B2 (ja) | 2015-10-29 | 2020-12-16 | セイコーエプソン株式会社 | 三次元構造物の製造方法、その製造装置及びその制御プログラム |
| JP6170238B1 (ja) | 2015-12-25 | 2017-07-26 | 技術研究組合次世代3D積層造形技術総合開発機構 | 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム |
| DE102017106327B4 (de) | 2016-03-24 | 2021-08-26 | GM Global Technology Operations LLC | Verfahren zum Herstellen isolierender dreidimensionaler (3D-)Strukturen unter Verwendung von 3D-Druck |
| US10675687B2 (en) * | 2016-03-24 | 2020-06-09 | GM Global Technology Operations LLC | Method of producing insulating three-dimensional (3D) structures using 3D printing |
| EP3222372A1 (de) * | 2016-03-24 | 2017-09-27 | Siemens Aktiengesellschaft | Verfahren zum additiven herstellen eines bauteils mit mehreren baumaterialien und bauteil |
| JP2017180177A (ja) * | 2016-03-29 | 2017-10-05 | 三菱重工コンプレッサ株式会社 | 異種材料を用いた熱溶融積層造形によるインペラ製造方法およびインペラ |
| SG11201807807YA (en) * | 2016-04-20 | 2018-10-30 | Scg Cement Co Ltd | A cement formula composition for constructing a multiple layered object |
| US20170306764A1 (en) * | 2016-04-26 | 2017-10-26 | General Electric Company | Airfoil for a turbine engine |
| CN106041079B (zh) * | 2016-07-20 | 2018-01-19 | 北京隆源自动成型系统有限公司 | 一种选择性激光熔化成形操作方法 |
| WO2018057330A1 (en) | 2016-09-12 | 2018-03-29 | University Of Washington | Vat photopolymerization additive manufacturing of multi-material parts |
| US11149572B2 (en) * | 2016-10-27 | 2021-10-19 | Raytheon Technologies Corporation | Additively manufactured component for a gas powered turbine |
| KR101883272B1 (ko) * | 2016-10-31 | 2018-07-31 | 한국생산기술연구원 | 발포금속 제조방법 |
| CN106694886A (zh) * | 2016-11-30 | 2017-05-24 | 苏州大学 | 一种激光制备泡沫铝夹芯板的方法 |
| US11179926B2 (en) | 2016-12-15 | 2021-11-23 | General Electric Company | Hybridized light sources |
| US10583530B2 (en) | 2017-01-09 | 2020-03-10 | General Electric Company | System and methods for fabricating a component with laser array |
| US10773310B2 (en) | 2017-01-31 | 2020-09-15 | General Electric Company | Additive manufacturing system, article, and method of manufacturing an article |
| BE1025091B1 (fr) * | 2017-03-30 | 2018-10-29 | Safran Aero Boosters S.A. | Imprimante tridimensionnelle |
| US20180311769A1 (en) * | 2017-04-28 | 2018-11-01 | Divergent Technologies, Inc. | Multi-materials and print parameters for additive manufacturing |
| US20180311891A1 (en) * | 2017-04-28 | 2018-11-01 | Ut-Battelle, Llc | Z-axis improvement in additive manufacturing |
| EP3403744A1 (de) * | 2017-05-19 | 2018-11-21 | Siemens Aktiengesellschaft | Maschinenbauteil mit generatives verfahren hergestellt |
| US11123973B2 (en) * | 2017-06-07 | 2021-09-21 | Divergent Technologies, Inc. | Interconnected deflectable panel and node |
| CN108914029A (zh) * | 2017-06-13 | 2018-11-30 | 刘红宾 | 一种防止异种金属材料锯齿状界面开裂的方法 |
| CN107538008A (zh) * | 2017-06-13 | 2018-01-05 | 郭志光 | 一种新型异种金属材料结合界面结构及其制造方法 |
| US10889872B2 (en) | 2017-08-02 | 2021-01-12 | Kennametal Inc. | Tool steel articles from additive manufacturing |
| WO2019079497A1 (en) * | 2017-10-17 | 2019-04-25 | Desktop Metal, Inc. | BINDER PROJECTION IN THE ADDITIVE MANUFACTURE OF NON-HOMOGENEOUS THREE DIMENSIONAL PIECES |
| DE102017219333A1 (de) | 2017-10-27 | 2019-05-02 | Siemens Aktiengesellschaft | Verfahren zur Modifikation von Bauteilen unter Einsatz additiver Fertigung |
| WO2019087281A1 (ja) | 2017-10-31 | 2019-05-09 | 三菱重工エンジン&ターボチャージャ株式会社 | タービン動翼、ターボチャージャ及びタービン動翼の製造方法 |
| US11571743B2 (en) | 2017-11-13 | 2023-02-07 | General Electric Company | Systems and methods for additive manufacturing |
| US10307823B1 (en) | 2017-11-13 | 2019-06-04 | General Electric Company | Methods and systems for repairing powder containment structures |
| US11097348B2 (en) | 2017-12-08 | 2021-08-24 | General Electric Company | Structures and components having composite unit cell matrix construction |
| WO2019116455A1 (ja) | 2017-12-12 | 2019-06-20 | 株式会社ニコン | 造形システム及び造形方法 |
| JP7130675B2 (ja) | 2018-01-11 | 2022-09-05 | 三菱重工エンジン&ターボチャージャ株式会社 | タービン動翼、ターボチャージャ及びタービン動翼の製造方法 |
| US10835996B2 (en) * | 2018-01-30 | 2020-11-17 | Siemens Energy, Inc. | Laser metal deposition with inoculation |
| JP6950583B2 (ja) * | 2018-03-02 | 2021-10-13 | トヨタ自動車株式会社 | 金型の製造方法 |
| CN108648220B (zh) * | 2018-04-17 | 2021-01-19 | 湖南华曙高科技有限责任公司 | 一种三维打印扫描方法、可读存储介质及三维打印扫描控制设备 |
| CN110405204B (zh) * | 2018-04-28 | 2021-09-10 | 深圳市裕展精密科技有限公司 | 异质金属件的制备方法 |
| KR102115229B1 (ko) * | 2018-06-20 | 2020-05-27 | 한국생산기술연구원 | 단일 공정 적층성형 곡면 다공성 부품 제조방법 |
| US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
| DE102018215609A1 (de) * | 2018-09-13 | 2020-03-19 | Thyssenkrupp Ag | Herstellungsverfahren für Wälzlagerkäfige, insbesondere Großwälzlagerkäfige, und Wälzlagerkäfige |
| RU2701436C1 (ru) * | 2018-09-28 | 2019-09-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Способ изготовления детали из металлического порошкового материала |
| RU2704360C1 (ru) * | 2018-09-28 | 2019-10-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Способ изготовления детали из металлического порошкового материала |
| EP3921102A1 (en) * | 2019-02-04 | 2021-12-15 | Kanthal AB | Tube, method of manufacturing tube, and related devices |
| EP3698968A1 (en) * | 2019-02-22 | 2020-08-26 | Essilor International | Method and system for manufacturing an optical volume element from a hardenable material using an additive manufacturing technology |
| TWI809251B (zh) * | 2019-03-08 | 2023-07-21 | 日商東京威力科創股份有限公司 | 基板處理裝置及基板處理方法 |
| JP6636668B1 (ja) * | 2019-03-29 | 2020-01-29 | 三菱重工業株式会社 | 高温部品、高温部品の製造方法及び流量調節方法 |
| US11123916B2 (en) | 2019-05-06 | 2021-09-21 | Rohr, Inc. | Forming a thrust reverser cascade using corrugated bodies |
| EP3741480A1 (en) * | 2019-05-24 | 2020-11-25 | Siemens Aktiengesellschaft | Powder bed fusion system for a multi-material production of an object |
| US11951566B2 (en) * | 2019-07-31 | 2024-04-09 | General Electric Company | Assignment of multiple print parameter sets in additive manufacturing |
| EP3789513B1 (de) * | 2019-09-09 | 2023-06-21 | Sturm Maschinen- & Anlagenbau GmbH | Beschichtungsvorrichtung und verfahren zum metallischen beschichten von werkstücken |
| US11584083B2 (en) * | 2019-09-26 | 2023-02-21 | General Electric Company | Method and system of additive manufacturing contour-based hatching |
| CN111186140B (zh) * | 2020-01-20 | 2021-03-26 | 浙江大学 | 一种力线分布的掩模打印路径生成方法 |
| US11590705B2 (en) | 2020-05-13 | 2023-02-28 | The Boeing Company | System and method for additively manufacturing an object |
| US11766832B2 (en) | 2020-05-13 | 2023-09-26 | The Boeing Company | System and method for additively manufacturing an object |
| FR3111577B1 (fr) * | 2020-06-18 | 2022-10-07 | Safran | Chauffage laser pour la fabrication ou la reparation d’aube de turbine |
| US20230264295A1 (en) * | 2020-06-19 | 2023-08-24 | Dmg Mori Co., Ltd. | Workpiece processing method and processing machine |
| EP3936260A1 (de) * | 2020-07-06 | 2022-01-12 | Siemens Aktiengesellschaft | Bestrahlungsstrategie für eine additiv hergestellte struktur |
| CN111978755A (zh) * | 2020-08-10 | 2020-11-24 | 北京航空航天大学 | 一种基于3d打印的二维可控梯度互锁多胞结构 |
| WO2022036591A1 (zh) * | 2020-08-19 | 2022-02-24 | 西门子股份公司 | 增材制造中的打印工艺制定方法及装置 |
| US11707883B2 (en) | 2020-11-20 | 2023-07-25 | General Electric Company | Foil interaction device for additive manufacturing |
| CN112775431B (zh) * | 2020-12-25 | 2023-07-18 | 北京航空航天大学合肥创新研究院 | 一种钛合金/不锈钢异种金属构件的激光增材制造方法 |
| CN112958781A (zh) * | 2021-01-29 | 2021-06-15 | 陕西博鼎快速精铸科技有限责任公司 | 一种基于3d打印的trt叶片的制备方法 |
| US11865780B2 (en) | 2021-02-26 | 2024-01-09 | General Electric Company | Accumalator assembly for additive manufacturing |
| US11951679B2 (en) | 2021-06-16 | 2024-04-09 | General Electric Company | Additive manufacturing system |
| US11731367B2 (en) | 2021-06-23 | 2023-08-22 | General Electric Company | Drive system for additive manufacturing |
| US11958249B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
| US11958250B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
| US11826950B2 (en) | 2021-07-09 | 2023-11-28 | General Electric Company | Resin management system for additive manufacturing |
| US12370741B2 (en) | 2021-08-13 | 2025-07-29 | General Electric Company | Material deposition assembly for additive manufacturing |
| KR102512669B1 (ko) * | 2021-08-13 | 2023-03-22 | 한국생산기술연구원 | 복셀-바이-복셀 멀티 재료 3차원 프린팅 장치 |
| US12296535B2 (en) | 2021-08-24 | 2025-05-13 | General Electric Company | Attachment structure for additive manufacturing |
| US11813799B2 (en) | 2021-09-01 | 2023-11-14 | General Electric Company | Control systems and methods for additive manufacturing |
| EP4249216A1 (en) | 2022-03-23 | 2023-09-27 | General Electric Company | Systems and methods for additive manufacturing |
| CN115138859B (zh) * | 2022-08-17 | 2023-07-07 | 南京农业大学 | 一种一体化成形的金刚石砂轮及其制备方法 |
| US12403654B2 (en) | 2022-09-30 | 2025-09-02 | General Electric Company | Systems and methods for additive manufacturing |
| CN115926501B (zh) * | 2022-12-27 | 2023-08-22 | 广东省科学院中乌焊接研究所 | 一种提高电弧增材制造超级双相不锈钢结构件耐蚀性能的方法 |
| CN117620209A (zh) * | 2023-12-01 | 2024-03-01 | 南京理工大学 | 一种多材质同面异材多工位选区激光熔融的方法 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130140278A1 (en) | 2011-01-13 | 2013-06-06 | Gerald J. Bruck | Deposition of superalloys using powdered flux and metal |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2612106B1 (fr) * | 1987-03-09 | 1989-05-19 | Alsthom | Procede de pose d'un revetement protecteur sur une aube en alliage de titane et aube ainsi revetue |
| JPH04120259A (ja) * | 1990-09-10 | 1992-04-21 | Agency Of Ind Science & Technol | レーザ溶射法による機器・部材の製造方法および装置 |
| US5759641A (en) * | 1996-05-15 | 1998-06-02 | Dimitrienko; Ludmila Nikolaevna | Method of applying strengthening coatings to metallic or metal-containing surfaces |
| WO1999055527A2 (de) * | 1998-04-29 | 1999-11-04 | Siemens Aktiengesellschaft | Erzeugnis mit einer schutzschicht gegen korrosion sowie verfahren zur herstellung einer schutzschicht gegen korrosion |
| US6391251B1 (en) * | 1999-07-07 | 2002-05-21 | Optomec Design Company | Forming structures from CAD solid models |
| WO2001045882A2 (en) * | 1999-11-16 | 2001-06-28 | Triton Systems, Inc. | Laser fabrication of discontinuously reinforced metal matrix composites |
| EP1400339A1 (de) * | 2002-09-17 | 2004-03-24 | Siemens Aktiengesellschaft | Verfahren zum Herstellen eines dreidimensionalen Formkörpers |
| US7186092B2 (en) * | 2004-07-26 | 2007-03-06 | General Electric Company | Airfoil having improved impact and erosion resistance and method for preparing same |
| US20070003416A1 (en) * | 2005-06-30 | 2007-01-04 | General Electric Company | Niobium silicide-based turbine components, and related methods for laser deposition |
| CN100404174C (zh) * | 2006-01-24 | 2008-07-23 | 华中科技大学 | 一种快速制造功能梯度材料的制备方法 |
| EP2182084A1 (de) * | 2008-11-04 | 2010-05-05 | Siemens Aktiengesellschaft | Schweisszusatzwerkstoff, Verwendung des Schweisszusatzwserkstoffes und Bauteil |
| EP2292357B1 (en) * | 2009-08-10 | 2016-04-06 | BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG | Ceramic article and methods for producing such article |
| EP2502729A1 (en) * | 2011-03-25 | 2012-09-26 | BAE Systems Plc | Additive layer manufacturing |
-
2013
- 2013-10-01 US US14/043,037 patent/US20140099476A1/en not_active Abandoned
- 2013-10-07 JP JP2015536818A patent/JP2016502589A/ja active Pending
- 2013-10-07 RU RU2015116240A patent/RU2015116240A/ru not_active Application Discontinuation
- 2013-10-07 EP EP13852362.6A patent/EP2903762A2/en not_active Withdrawn
- 2013-10-07 WO PCT/US2013/063641 patent/WO2014107204A2/en not_active Ceased
- 2013-10-07 IN IN2324DEN2015 patent/IN2015DN02324A/en unknown
- 2013-10-07 CN CN201380052507.5A patent/CN104684667A/zh active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130140278A1 (en) | 2011-01-13 | 2013-06-06 | Gerald J. Bruck | Deposition of superalloys using powdered flux and metal |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017527699A (ja) * | 2014-08-15 | 2017-09-21 | シーメンス エナジー インコーポレイテッド | ガスタービンエンジン部品を構築するための方法 |
| JP2017533340A (ja) * | 2014-08-15 | 2017-11-09 | シーメンス エナジー インコーポレイテッド | ガスタービンエンジン部品を造るための方法 |
| JP2018502245A (ja) * | 2014-11-26 | 2018-01-25 | アンサルド エネルジア アイ・ピー ユー・ケイ リミテッドAnsaldo Energia Ip Uk Limited | 翼のための前縁冷却チャネル |
| JP2018502246A (ja) * | 2014-11-26 | 2018-01-25 | アンサルド エネルジア アイ・ピー ユー・ケイ リミテッドAnsaldo Energia Ip Uk Limited | 翼のためのテーパした冷却チャネル |
| DE102015207463A1 (de) * | 2015-04-23 | 2016-10-27 | Siemens Aktiengesellschaft | Gedrucktes Reparaturpflaster für Turbinenbauteile |
| JPWO2016185966A1 (ja) * | 2015-05-15 | 2018-03-01 | コニカミノルタ株式会社 | 粉末材料、立体造形物の製造方法および立体造形装置 |
| WO2016185966A1 (ja) * | 2015-05-15 | 2016-11-24 | コニカミノルタ株式会社 | 粉末材料、立体造形物の製造方法および立体造形装置 |
| JP2016216801A (ja) * | 2015-05-26 | 2016-12-22 | セイコーエプソン株式会社 | 3次元形成装置および3次元形成方法 |
| US10717231B2 (en) | 2015-05-26 | 2020-07-21 | Seiko Epson Corporation | Three-dimensional forming apparatus and three-dimensional forming method |
| JP2017036484A (ja) * | 2015-08-11 | 2017-02-16 | 株式会社日立製作所 | 金属製品製造方法 |
| JP2017078511A (ja) * | 2015-10-20 | 2017-04-27 | ゼネラル・エレクトリック・カンパニイ | フィルム冷却が統合された噛合材料遷移領域 |
| JP2017077729A (ja) * | 2015-10-20 | 2017-04-27 | ゼネラル・エレクトリック・カンパニイ | ロータブレード及び部品のための積層造形法を利用した修復方法 |
| US10350684B2 (en) | 2015-11-10 | 2019-07-16 | General Electric Company | Additive manufacturing method for making complex film holes |
| DE102018203637A1 (de) * | 2018-03-09 | 2019-09-12 | Volkswagen Aktiengesellschaft | Gestaltung des Übergangs von Laserauftragsschweißgut zu Substrat zur Verminderung der Kerbwirkung |
| WO2020149835A1 (en) * | 2019-01-15 | 2020-07-23 | Hewlett-Packard Development Company, L.P. | Additive manufacturing of transitioned three-dimensional object |
| CN115943041A (zh) * | 2019-01-15 | 2023-04-07 | 惠普发展公司,有限责任合伙企业 | 过渡三维物体的增材制造 |
| US11920486B2 (en) | 2019-03-29 | 2024-03-05 | Mitsubishi Power, Ltd. | High-temperature component and method of producing the high-temperature component |
Also Published As
| Publication number | Publication date |
|---|---|
| RU2015116240A (ru) | 2016-11-27 |
| CN104684667A (zh) | 2015-06-03 |
| IN2015DN02324A (enExample) | 2015-08-28 |
| JP2016502589A (ja) | 2016-01-28 |
| EP2903762A2 (en) | 2015-08-12 |
| US20140099476A1 (en) | 2014-04-10 |
| WO2014107204A3 (en) | 2014-11-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20140099476A1 (en) | Additive manufacture of turbine component with multiple materials | |
| EP3434396A1 (en) | Pre-fusion laser sintering for metal powder stabilization during additive manufacturing | |
| EP3551594B1 (en) | Method to additively manufacture a fiber-reinforced ceramic matrix composite | |
| Duda et al. | 3D metal printing technology | |
| Wang et al. | Research on the fabricating quality optimization of the overhanging surface in SLM process | |
| CA2717834C (en) | Method to apply multiple materials with selective laser melting on a 3d article | |
| JP6770245B2 (ja) | 三次元造形物の製造方法及び三次元造形物の製造装置 | |
| Bourell et al. | Introduction to additive manufacturing | |
| JP6642790B2 (ja) | 三次元造形物の製造方法及び三次元造形物の製造装置 | |
| US20160319690A1 (en) | Additive manufacturing methods for turbine shroud seal structures | |
| JP2017196889A (ja) | 積層造形法のための方法及びキー溝支持体 | |
| EP3103570A1 (en) | Additive manufacturing methods and hybrid articles using brazeable structures made by additive manufacturing | |
| EP3786497B1 (en) | Flow discourager | |
| US11945158B2 (en) | Interlace scanning strategies and uses thereof | |
| EP3246148B1 (en) | Additive layer manufacturing base plate | |
| EP3592488A1 (en) | Triangle hatch pattern for additive manufacturing | |
| Bineli et al. | Direct metal laser sintering (DMLS): Technology for design and construction of microreactors | |
| EP3814036B1 (en) | Additively manufactured build assemblies having reduced distortion and residual stress | |
| WO2018169630A1 (en) | Constantly varying hatch for additive manufacturing | |
| EP3461574B1 (en) | Modified frame and recoating system | |
| JP2019039067A (ja) | 高圧タービンの連続的付加製造 | |
| US12290856B2 (en) | Method for additively manufacturing three-dimensional components and corresponding device | |
| EP3427869A1 (en) | Additive manufacturing methods and related components | |
| EP2865479A1 (en) | Method and system for generating a component using thermal spraying and laser fusing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13852362 Country of ref document: EP Kind code of ref document: A2 |
|
| ENP | Entry into the national phase |
Ref document number: 2015536818 Country of ref document: JP Kind code of ref document: A |
|
| REEP | Request for entry into the european phase |
Ref document number: 2013852362 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013852362 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2015116240 Country of ref document: RU Kind code of ref document: A |