US20140099476A1 - Additive manufacture of turbine component with multiple materials - Google Patents

Additive manufacture of turbine component with multiple materials Download PDF

Info

Publication number
US20140099476A1
US20140099476A1 US14/043,037 US201314043037A US2014099476A1 US 20140099476 A1 US20140099476 A1 US 20140099476A1 US 201314043037 A US201314043037 A US 201314043037A US 2014099476 A1 US2014099476 A1 US 2014099476A1
Authority
US
United States
Prior art keywords
powder
layers
laser
component
laser energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/043,037
Other languages
English (en)
Inventor
Ramesh Subramanian
Michael Ott
Dimitrios Thomaidis
Alexandr Sadovoy
Jan Münzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to US14/043,037 priority Critical patent/US20140099476A1/en
Priority to PCT/US2013/063641 priority patent/WO2014107204A2/en
Priority to RU2015116240A priority patent/RU2015116240A/ru
Priority to CN201380052507.5A priority patent/CN104684667A/zh
Priority to IN2324DEN2015 priority patent/IN2015DN02324A/en
Priority to JP2015536818A priority patent/JP2016502589A/ja
Priority to EP13852362.6A priority patent/EP2903762A2/en
Assigned to SIEMENS ENERGY, INC reassignment SIEMENS ENERGY, INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUBRAMANIAN, RAMESH
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OTT, MICHAEL, THOMAIDIS, DIMITRIOS, MUENZER, JAN, SADOVOY, ALEXANDR
Publication of US20140099476A1 publication Critical patent/US20140099476A1/en
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS ENERGY, INC.
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS ENERGY, INC.
Priority to US14/513,535 priority patent/US9776282B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/008Producing shaped prefabricated articles from the material made from two or more materials having different characteristics or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
    • Y10T428/24545Containing metal or metal compound

Definitions

  • This invention relates to additive layer manufacturing, and particularly to making multi-material metal/ceramic gas turbine components by selective laser sintering and selective laser melting of adjacent powder layers of different materials.
  • a related process often referred to as micro-cladding, deposits a powder onto a component via a moving nozzle or other delivery device.
  • a laser concurrently melts the powder at the deposit point, thus forming a bead of material on the component as the delivery device moves. Successive passes can build a layer or layers of material for repair or fabrication of a component.
  • FIG. 1 is a sectional view of a prior art gas turbine blade.
  • FIG. 2 is a sectional view of a powder delivery device forming adjacent powder layers on a working surface.
  • FIG. 3 is a sectional view of laser beams melting and sintering adjacent powder layers.
  • FIG. 4 shows a pattern of scan paths for powder delivery and/or laser delivery parallel to non-linear sectional profiles of a component
  • FIG. 6 shows scan paths that are normal, or approximately normal, to the walls of the component.
  • FIG. 8 shows adjacent powder layers deposited at different thicknesses.
  • FIG. 9 shows an interlocking interface between adjacent materials.
  • FIG. 10 is a flow chart showing aspects of an embodiment of the invention.
  • the inventors have devised a method for additive manufacturing of a component having multiple adjacent materials of different properties. It produces a net shape or near net shape with strong bonding of the adjacent materials, including metal to ceramic. This is especially beneficial in fabricating gas turbine components such as superalloy blades and vanes with ceramic thermal barrier coatings. Such airfoils are difficult to fabricate, because they have complex shapes with serpentine cooling channels lined with turbulators and film cooling holes.
  • FIG. 1 is a transverse sectional view of a typical gas turbine airfoil 20 with a leading edge 22 , trailing edge 24 , pressure side 26 , suction side 28 , metal substrate 30 , cooling channels 32 , partition walls 34 , turbulators 36 , film cooling exit holes 38 , cooling pins 40 , and trailing edge exit holes 42 .
  • the exterior of the airfoil substrate is coated with a ceramic thermal barrier coating 44 .
  • a metallic bond coat 45 may be applied between the substrate and the thermal barrier coating.
  • Turbulators are bumps, dimples, ridges, or valleys within the cooling channels 32 that increase surface area and mix the fluid boundary layer of the coolant flow.
  • the powder delivery device 60 may incorporate multi-axis movements 61 relative to the working surface 54 A, so that the nozzle can follow non-linear sectional profiles in a given horizontal plane, can move to different planes or distances relative to the working surface 54 A, and can deliver powder at varying angles.
  • the axes may be implemented by motions of the work table 55 and/or the powder delivery device 60 via tracks and rotation bearings under computer control.
  • Powder delivery parameters such as nozzle translation speeds, mass delivery rates, and spray angles may be predetermined by discrete particle modeling simulations to optimize the final slice geometry. After spraying, the powder may be compacted and stabilized by means such as electromagnetic energy and/or mechanical or acoustic vibration prior to laser heating.
  • the powder may be wetted with water, alcohol, lacquer or binder prior to or during spraying so it holds a desired form until the laser melts or sinters it into a cohesive slice of the component.
  • flux material may be included with the powder materials to facilitate the cladding process.
  • FIG. 3 shows a process and apparatus for melting and/or sintering different powder layers 48 , 50 , 52 with respective different laser energies.
  • the substrate superalloy powder 48 and the bond coat powder 58 may be melted with first and second laser energies, and the ceramic thermal barrier powder 52 may be sintered with a third laser energy that only partly melts the ceramic particles.
  • the different laser energies 69 A, 69 B may be provided by a single laser emitter 68 A with variable output, or by multiple laser emitters 68 A, 68 B with different outputs for different powder layers.
  • the laser emitter may incorporate multi-axis movement 70 relative to the working surface 54 A, so that it can follow non-linear sectional profiles in a given plane, can move to different planes or distances relative to the working surface 54 A, and can position and direct a laser beam for desired angles and spot sizes.
  • FIG. 4 shows a pattern of paths 72 that follow the non-linear sectional shape profiles 73 , 74 , 75 of the component 20 .
  • the powder delivery focus 66 of FIG. 2 may be controlled to follow such paths.
  • Such a scan pattern 72 parallel to the sectional shape profiles allows the powder type to be changed for each powder layer 48 , 50 , 52 .
  • the laser energy 69 A-B may also follow non-linear scan paths such as 72 of FIG. 4 .
  • This path type minimizes the number of changes in laser intensity for different powder materials.
  • a first laser energy may be directed to follow a contour of the sectional shape 73 of the first powder layer 48
  • a second laser energy may be directed to follow a contour of a sectional shape 74 of the second powder layer 50
  • a third laser energy may be directed to follow a contour of a sectional shape 75 of the third powder layer 52 .
  • the laser may be cycled off as it passes over areas intended to remain as voids in the formed component, such as film cooling holes 38 .
  • FIG. 5 shows an alternate scan pattern with parallel linear paths 74 for the laser energy.
  • FIG. 6 shows paths 76 that are normal, or approximately normal, to the walls of the component. Patterns 74 and 76 may require laser intensity changes at each crossing of the interfaces 56 , 58 for the different powder layers in addition to off/on cycling for the voids 38 .
  • the spacing of scans 72 , 74 , 76 depends on the laser beam width or spot size at the powder surface. Multiple laser emitters may be used together to produce a wider swath to reduce the number of scans.
  • the laser beam(s) may be adjusted in width by changing the distance of the emitter from the working surface, and/or the beam may be adjusted in size and shape by adjustable lenses, mirrors, or masks to better define small, sharp, or curved elements of the component such as fillets, without decreasing the scan spacing and spot size.
  • FIG. 7 shows a first solidified slice 74 of the component providing a new working surface 54 B on which to apply powder layers 48 , 50 , 52 for a second slice 76 of the component.
  • FIG. 8 shows powder layers 48 , 50 , 52 delivered at different heights depending on their respective process shrinkages to achieve a final uniform slice thickness.
  • the powders of the first 48 and second 50 adjacent layers may be deposited in the overlap zone 57 such that the powders overlap in a gradient material transition.
  • the overlap width may be at least 0.2 mm for example.
  • the powders of the second 50 and third 52 adjacent layers may also be deposited in an overlap zone 77 such that the powders overlap in a gradient material transition.
  • the overlap widths may be at least 0.2 mm or 0.4 mm or up to 1 mm or up to 2 mm, for examples.
  • FIG. 9 shows an interface between the second 50 and third 52 layers formed with engineered interlocking features 80 there between, such as interleaved profiles that form 3D interlaced fingers projecting alternately from the bond layer 50 and the ceramic layer 52 .
  • Such an interlocking mechanical interface may be provided instead of, or in addition to, a gradient material zone 77 as shown in FIG. 8 .
  • Fissures 82 may be formed in the ceramic layer 52 for operational strain relief by cycling the laser energy off/on as it scans the ceramic layer 52 .
  • Hollow ceramic spheres 84 may be included in the material of the ceramic layer 52 to reduce thermal conductivity. Inclusion of hollow ceramic spheres in the thermal barrier layer 52 permanently reduces its thermal conductivity, since the sphere voids are not subject to reduction by operational sintering.
  • FIG. 10 is a flow chart of a method 84 showing aspects of an embodiment of the invention, including the following steps:
  • step 86 Repeating from step 86 with successive section planes to fabricate the component by selective layer additive manufacturing.
  • Inclusion of nano-scale ceramic particles can reduce the sintering temperature of the ceramic layer by as much as 350° C. in some embodiments. This can facilitate co-sintering and bonding of the metal and ceramic layers. Temperature reduction occurs particularly when the ceramic powder comprises at least 2% and up to 100% by volume of particles being less than 100 nm average diameter, and it especially occurs with particles less than 50 nm average diameter. The present method allows sintering by only partially melting such nano-particles. This is not possible when applying a ceramic coating with thermal spray technologies, because it tends to fully melt the smaller particles.
  • Nickel-based superalloys used in high temperature gas turbine components are often strengthened by a gamma prime precipitant phase within a gamma phase matrix.
  • the properties of these superalloys that make them durable in high-temperature environments also make them difficult to fabricate and repair.
  • they can be fabricated and joined to adjacent layers of different materials, including ceramics, by the method described herein. Casting of gas turbine blades having serpentine channels with turbulators and film cooling exit holes is difficult and expensive.
  • the present method reduces cost while more fully joining the different material layers. It allows a complete multi-material component such as a turbine blade to be fabricated in one process, instead of casting a superalloy blade, then coating it in a separate process, such as thermal spray.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
US14/043,037 2012-10-08 2013-10-01 Additive manufacture of turbine component with multiple materials Abandoned US20140099476A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/043,037 US20140099476A1 (en) 2012-10-08 2013-10-01 Additive manufacture of turbine component with multiple materials
JP2015536818A JP2016502589A (ja) 2012-10-08 2013-10-07 複数の材料によるタービンコンポーネントの積層造形
RU2015116240A RU2015116240A (ru) 2012-10-08 2013-10-07 Аддитивное изготовление детали турбины с использованием нескольких материалов
CN201380052507.5A CN104684667A (zh) 2012-10-08 2013-10-07 使用多种材料的涡轮机部件的添加制造
IN2324DEN2015 IN2015DN02324A (enExample) 2012-10-08 2013-10-07
PCT/US2013/063641 WO2014107204A2 (en) 2012-10-08 2013-10-07 Additive manufacture of turbine component with multiple materials
EP13852362.6A EP2903762A2 (en) 2012-10-08 2013-10-07 Additive manufacture of turbine component with multiple materials
US14/513,535 US9776282B2 (en) 2012-10-08 2014-10-14 Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261710995P 2012-10-08 2012-10-08
US201261711813P 2012-10-10 2012-10-10
US14/043,037 US20140099476A1 (en) 2012-10-08 2013-10-01 Additive manufacture of turbine component with multiple materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/513,535 Continuation-In-Part US9776282B2 (en) 2012-10-08 2014-10-14 Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems

Publications (1)

Publication Number Publication Date
US20140099476A1 true US20140099476A1 (en) 2014-04-10

Family

ID=50432877

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/043,037 Abandoned US20140099476A1 (en) 2012-10-08 2013-10-01 Additive manufacture of turbine component with multiple materials

Country Status (7)

Country Link
US (1) US20140099476A1 (enExample)
EP (1) EP2903762A2 (enExample)
JP (1) JP2016502589A (enExample)
CN (1) CN104684667A (enExample)
IN (1) IN2015DN02324A (enExample)
RU (1) RU2015116240A (enExample)
WO (1) WO2014107204A2 (enExample)

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130216836A1 (en) * 2012-02-17 2013-08-22 Maik Grebe Process for melting/sintering powder particles for the layer-by-layer production of three-dimensional objects
US20150003997A1 (en) * 2013-07-01 2015-01-01 United Technologies Corporation Method of forming hybrid metal ceramic components
US20150030434A1 (en) * 2013-07-23 2015-01-29 MTU Aero Engines AG Damping device for being situated between a housing wall and a casing ring of a housing of a thermal gas turbine
US20150064047A1 (en) * 2013-08-28 2015-03-05 Elwha Llc Systems and methods for additive manufacturing of three dimensional structures
US20150165547A1 (en) * 2013-12-12 2015-06-18 General Electric Company Fabrication process and fabricated article
WO2016025130A1 (en) * 2014-08-15 2016-02-18 Siemens Energy, Inc. Method for building a gas turbine engine component
WO2016025133A1 (en) * 2014-08-15 2016-02-18 Siemens Energy, Inc. Method for building a gas turbine engine component
US20160083303A1 (en) * 2013-04-25 2016-03-24 United Technologies Corporation Additive manufacturing of ceramic turbine components by transient liquid phase bonding using metal or ceramic binders
WO2016060799A1 (en) 2014-10-14 2016-04-21 Siemens Energy, Inc. Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
JP2016060169A (ja) * 2014-09-19 2016-04-25 株式会社東芝 積層造形装置及び積層造形方法
WO2016128388A1 (de) * 2015-02-11 2016-08-18 Ksb Aktiengesellschaft Strömungsführendes bauteil
US20160273114A1 (en) * 2013-11-04 2016-09-22 United Technologies Corporation Calcium-magnesium-alumino-silicate resistant thermal barrier coatings
EP3081323A1 (en) * 2015-04-16 2016-10-19 General Electric Company Article with cooling channels and manufacturing method thereof
CN106041079A (zh) * 2016-07-20 2016-10-26 北京隆源自动成型系统有限公司 一种选择性激光熔化成形操作方法
CN106041070A (zh) * 2015-04-01 2016-10-26 和硕联合科技股份有限公司 工作件加工设备以及工作件加工方法
CN106041071A (zh) * 2015-04-06 2016-10-26 波音公司 用于增材制造的沉积头
WO2016175813A1 (en) * 2015-04-30 2016-11-03 Hewlett-Packard Development Company, L.P. Printing a multi-structured 3d object
EP3098001A1 (en) * 2015-05-26 2016-11-30 Seiko Epson Corporation Three-dimensional forming apparatus and three-dimensional forming method
US20160369634A1 (en) * 2013-07-01 2016-12-22 United Technologies Corporation Airfoil, and method for manufacturing the same
WO2017011009A1 (en) 2015-07-15 2017-01-19 Hewlett-Packard Development Company, L.P. Processing object part data for a three-dimensional object
CN106457662A (zh) * 2015-03-30 2017-02-22 北京大学口腔医院 一种三维打印方法、装置和打印机
DE102015114959A1 (de) * 2015-09-07 2017-03-09 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung eines dreidimensionalen Objekts
JP2017078511A (ja) * 2015-10-20 2017-04-27 ゼネラル・エレクトリック・カンパニイ フィルム冷却が統合された噛合材料遷移領域
EP3162470A1 (en) * 2015-10-20 2017-05-03 General Electric Company Repair methods utilizing additively manufacturing for rotor blades and components
EP3162471A1 (en) * 2015-10-20 2017-05-03 General Electric Company Additively manufactured rotor blades and components
EP3162473A1 (en) * 2015-10-29 2017-05-03 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
CN106694886A (zh) * 2016-11-30 2017-05-24 苏州大学 一种激光制备泡沫铝夹芯板的方法
US20170248319A1 (en) * 2014-02-25 2017-08-31 General Electric Company System having layered structure and method of making the same
US20170266881A1 (en) * 2014-11-26 2017-09-21 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for the production of an edible object using sls
EP3222372A1 (de) * 2016-03-24 2017-09-27 Siemens Aktiengesellschaft Verfahren zum additiven herstellen eines bauteils mit mehreren baumaterialien und bauteil
US20170274456A1 (en) * 2016-03-24 2017-09-28 GM Global Technology Operations LLC Method of producing insulating three-dimensional (3d) structures using 3d printing
US9776282B2 (en) 2012-10-08 2017-10-03 Siemens Energy, Inc. Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
WO2017184087A1 (en) * 2016-04-20 2017-10-26 Scg Cement Co., Ltd. A cement formula composition for constructing a multiple layered object
EP3210699A4 (en) * 2015-12-25 2018-05-02 Technology Research Association For Future Additive Manufacturing Three-dimensional additive manufacturing device, control method of three-dimensional additive manufacturing device, and control program of three-dimensional additive manufacturing device
US20180119556A1 (en) * 2016-10-27 2018-05-03 United Technologies Corporation Additively manufactured component for a gas powered turbine
US9976441B2 (en) 2015-05-29 2018-05-22 General Electric Company Article, component, and method of forming an article
EP3354380A1 (en) * 2017-01-31 2018-08-01 General Electric Company Additive manufacturing system, article, and method of manufacturing an article
US10087776B2 (en) 2015-09-08 2018-10-02 General Electric Company Article and method of forming an article
US20180281066A1 (en) * 2017-03-30 2018-10-04 Safran Aero Boosters S.A. Three-dimensional printer
US20180311891A1 (en) * 2017-04-28 2018-11-01 Ut-Battelle, Llc Z-axis improvement in additive manufacturing
US20180311769A1 (en) * 2017-04-28 2018-11-01 Divergent Technologies, Inc. Multi-materials and print parameters for additive manufacturing
EP3403744A1 (de) * 2017-05-19 2018-11-21 Siemens Aktiengesellschaft Maschinenbauteil mit generatives verfahren hergestellt
US10180072B2 (en) 2015-10-20 2019-01-15 General Electric Company Additively manufactured bladed disk
US10184344B2 (en) 2015-10-20 2019-01-22 General Electric Company Additively manufactured connection for a turbine nozzle
JP2019502554A (ja) * 2015-10-21 2019-01-31 ユーエービー “ニューロテクノロジー” 非接触操作装置、組み立て方法、および3d印刷
US20190085719A1 (en) * 2015-02-12 2019-03-21 United Technologies Corporation Anti-deflection feature for additively manufactured thin metal parts and method of additively manufacturing thin metal parts
US10253986B2 (en) 2015-09-08 2019-04-09 General Electric Company Article and method of forming an article
US10260352B2 (en) 2013-08-01 2019-04-16 Siemens Energy, Inc. Gas turbine blade with corrugated tip wall
WO2019079497A1 (en) * 2017-10-17 2019-04-25 Desktop Metal, Inc. BINDER PROJECTION IN THE ADDITIVE MANUFACTURE OF NON-HOMOGENEOUS THREE DIMENSIONAL PIECES
US10307823B1 (en) 2017-11-13 2019-06-04 General Electric Company Methods and systems for repairing powder containment structures
US10344597B2 (en) 2015-08-17 2019-07-09 United Technologies Corporation Cupped contour for gas turbine engine blade assembly
WO2019112760A3 (en) * 2017-12-08 2019-08-08 General Electric Company Structures and components having composite unit cell matrix construction
US10583530B2 (en) 2017-01-09 2020-03-10 General Electric Company System and methods for fabricating a component with laser array
CN111186140A (zh) * 2020-01-20 2020-05-22 浙江大学 一种力线分布的掩模打印路径生成方法
CN111278588A (zh) * 2017-10-27 2020-06-12 西门子股份公司 用于利用增材制造改型构件的方法
US10710161B2 (en) * 2013-03-11 2020-07-14 Raytheon Technologies Corporation Turbine disk fabrication with in situ material property variation
US10739087B2 (en) 2015-09-08 2020-08-11 General Electric Company Article, component, and method of forming an article
US10830176B2 (en) 2015-08-26 2020-11-10 Rohr, Inc. Additive manufacturing fiber-reinforced, thrust reverser cascade
CN111978755A (zh) * 2020-08-10 2020-11-24 北京航空航天大学 一种基于3d打印的二维可控梯度互锁多胞结构
US10889872B2 (en) 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
US20210031302A1 (en) * 2019-07-31 2021-02-04 General Electric Company Assignment of multiple print parameter sets in additive manufacturing
EP3797907A1 (en) * 2019-09-26 2021-03-31 General Electric Company Method and system of additive manufacturing contour-based hatching
CN112775431A (zh) * 2020-12-25 2021-05-11 北京航空航天大学合肥创新研究院 一种钛合金/不锈钢异种金属构件的激光增材制造方法
DE102017106327B4 (de) 2016-03-24 2021-08-26 GM Global Technology Operations LLC Verfahren zum Herstellen isolierender dreidimensionaler (3D-)Strukturen unter Verwendung von 3D-Druck
US11123916B2 (en) 2019-05-06 2021-09-21 Rohr, Inc. Forming a thrust reverser cascade using corrugated bodies
CN113474545A (zh) * 2019-03-29 2021-10-01 三菱动力株式会社 高温部件、高温部件的制造方法、以及流量调节方法
CN113498382A (zh) * 2019-02-22 2021-10-12 依视路国际公司 使用增材制造技术由可固化材料制造光学体积元素的方法和系统
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11179926B2 (en) 2016-12-15 2021-11-23 General Electric Company Hybridized light sources
EP3936260A1 (de) * 2020-07-06 2022-01-12 Siemens Aktiengesellschaft Bestrahlungsstrategie für eine additiv hergestellte struktur
EP3856520A4 (en) * 2019-01-15 2022-05-04 Hewlett-Packard Development Company, L.P. ADDITIONAL MANUFACTURING OF A CHANGING THREE-DIMENSIONAL OBJECT
US20220184733A1 (en) * 2019-03-08 2022-06-16 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
US11421535B2 (en) 2017-10-31 2022-08-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine blade, turbocharger, and method of producing turbine blade
CN115138859A (zh) * 2022-08-17 2022-10-04 南京农业大学 一种一体化成形的金刚石砂轮及其制备方法
US11512634B2 (en) 2018-01-11 2022-11-29 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine rotor blade, turbocharger, and method for producing turbine rotor blade
US11518087B2 (en) 2016-09-12 2022-12-06 University Of Washington Vat photopolymerization additive manufacturing of multi-material parts
US11571743B2 (en) 2017-11-13 2023-02-07 General Electric Company Systems and methods for additive manufacturing
US11590705B2 (en) 2020-05-13 2023-02-28 The Boeing Company System and method for additively manufacturing an object
CN115926501A (zh) * 2022-12-27 2023-04-07 广东省科学院中乌焊接研究所 一种提高电弧增材制造超级双相不锈钢结构件耐蚀性能的方法
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US20230264295A1 (en) * 2020-06-19 2023-08-24 Dmg Mori Co., Ltd. Workpiece processing method and processing machine
US11766832B2 (en) 2020-05-13 2023-09-26 The Boeing Company System and method for additively manufacturing an object
US20230302588A1 (en) * 2020-06-18 2023-09-28 Safran Laser heating for the manufacture or repair of a turbine blade
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US11890696B2 (en) 2018-01-30 2024-02-06 Siemens Aktiengesellschaft Laser metal deposition with inoculation
CN117620209A (zh) * 2023-12-01 2024-03-01 南京理工大学 一种多材质同面异材多工位选区激光熔融的方法
US11920486B2 (en) 2019-03-29 2024-03-05 Mitsubishi Power, Ltd. High-temperature component and method of producing the high-temperature component
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US12251883B2 (en) 2017-12-12 2025-03-18 Nikon Corporation Build system, build method, computer program, control apparatus to build an object utilizing an irradiation optical system
US12285908B2 (en) 2020-11-20 2025-04-29 General Electric Company Foil interaction device for additive manufacturing
US12296535B2 (en) 2021-08-24 2025-05-13 General Electric Company Attachment structure for additive manufacturing
US12370741B2 (en) 2021-08-13 2025-07-29 General Electric Company Material deposition assembly for additive manufacturing
US12403654B2 (en) 2022-09-30 2025-09-02 General Electric Company Systems and methods for additive manufacturing
US12409604B2 (en) 2022-03-23 2025-09-09 General Electric Company Systems and methods for additive manufacturing
US12434436B2 (en) 2021-02-26 2025-10-07 General Electric Company Accumalator assembly for additive manufacturing

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2777927T3 (es) * 2012-10-12 2020-08-06 MTU Aero Engines AG Componente para una turbina
US20160146019A1 (en) * 2014-11-26 2016-05-26 Elena P. Pizano Cooling channel for airfoil with tapered pocket
DE102015207463A1 (de) * 2015-04-23 2016-10-27 Siemens Aktiengesellschaft Gedrucktes Reparaturpflaster für Turbinenbauteile
EP3296043A4 (en) * 2015-05-15 2018-04-25 Konica Minolta, Inc. Powder material, method for producing three-dimensional molded article, and three-dimensional molding device
JP2017036484A (ja) * 2015-08-11 2017-02-16 株式会社日立製作所 金属製品製造方法
US10350684B2 (en) 2015-11-10 2019-07-16 General Electric Company Additive manufacturing method for making complex film holes
JP2017180177A (ja) * 2016-03-29 2017-10-05 三菱重工コンプレッサ株式会社 異種材料を用いた熱溶融積層造形によるインペラ製造方法およびインペラ
US20170306764A1 (en) * 2016-04-26 2017-10-26 General Electric Company Airfoil for a turbine engine
KR101883272B1 (ko) * 2016-10-31 2018-07-31 한국생산기술연구원 발포금속 제조방법
US11123973B2 (en) * 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
CN108914029A (zh) * 2017-06-13 2018-11-30 刘红宾 一种防止异种金属材料锯齿状界面开裂的方法
CN107538008A (zh) * 2017-06-13 2018-01-05 郭志光 一种新型异种金属材料结合界面结构及其制造方法
JP6950583B2 (ja) * 2018-03-02 2021-10-13 トヨタ自動車株式会社 金型の製造方法
DE102018203637A1 (de) * 2018-03-09 2019-09-12 Volkswagen Aktiengesellschaft Gestaltung des Übergangs von Laserauftragsschweißgut zu Substrat zur Verminderung der Kerbwirkung
CN108648220B (zh) * 2018-04-17 2021-01-19 湖南华曙高科技有限责任公司 一种三维打印扫描方法、可读存储介质及三维打印扫描控制设备
CN110405204B (zh) * 2018-04-28 2021-09-10 深圳市裕展精密科技有限公司 异质金属件的制备方法
KR102115229B1 (ko) * 2018-06-20 2020-05-27 한국생산기술연구원 단일 공정 적층성형 곡면 다공성 부품 제조방법
DE102018215609A1 (de) * 2018-09-13 2020-03-19 Thyssenkrupp Ag Herstellungsverfahren für Wälzlagerkäfige, insbesondere Großwälzlagerkäfige, und Wälzlagerkäfige
RU2701436C1 (ru) * 2018-09-28 2019-09-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ изготовления детали из металлического порошкового материала
RU2704360C1 (ru) * 2018-09-28 2019-10-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ изготовления детали из металлического порошкового материала
EP3921102A1 (en) * 2019-02-04 2021-12-15 Kanthal AB Tube, method of manufacturing tube, and related devices
EP3741480A1 (en) * 2019-05-24 2020-11-25 Siemens Aktiengesellschaft Powder bed fusion system for a multi-material production of an object
EP3789513B1 (de) * 2019-09-09 2023-06-21 Sturm Maschinen- & Anlagenbau GmbH Beschichtungsvorrichtung und verfahren zum metallischen beschichten von werkstücken
WO2022036591A1 (zh) * 2020-08-19 2022-02-24 西门子股份公司 增材制造中的打印工艺制定方法及装置
CN112958781A (zh) * 2021-01-29 2021-06-15 陕西博鼎快速精铸科技有限责任公司 一种基于3d打印的trt叶片的制备方法
KR102512669B1 (ko) * 2021-08-13 2023-03-22 한국생산기술연구원 복셀-바이-복셀 멀티 재료 3차원 프린팅 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832993A (en) * 1987-03-09 1989-05-23 Alsthom Method of applying a protective coating to a titanium alloy blade, and a blade obtained thereby
US5208431A (en) * 1990-09-10 1993-05-04 Agency Of Industrial Science & Technology Method for producing object by laser spraying and apparatus for conducting the method
US5759641A (en) * 1996-05-15 1998-06-02 Dimitrienko; Ludmila Nikolaevna Method of applying strengthening coatings to metallic or metal-containing surfaces
US6610419B1 (en) * 1998-04-29 2003-08-26 Siemens Akteingesellschaft Product with an anticorrosion protective layer and a method for producing an anticorrosion protective
US7186092B2 (en) * 2004-07-26 2007-03-06 General Electric Company Airfoil having improved impact and erosion resistance and method for preparing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391251B1 (en) * 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
WO2001045882A2 (en) * 1999-11-16 2001-06-28 Triton Systems, Inc. Laser fabrication of discontinuously reinforced metal matrix composites
EP1400339A1 (de) * 2002-09-17 2004-03-24 Siemens Aktiengesellschaft Verfahren zum Herstellen eines dreidimensionalen Formkörpers
US20070003416A1 (en) * 2005-06-30 2007-01-04 General Electric Company Niobium silicide-based turbine components, and related methods for laser deposition
CN100404174C (zh) * 2006-01-24 2008-07-23 华中科技大学 一种快速制造功能梯度材料的制备方法
EP2182084A1 (de) * 2008-11-04 2010-05-05 Siemens Aktiengesellschaft Schweisszusatzwerkstoff, Verwendung des Schweisszusatzwserkstoffes und Bauteil
EP2292357B1 (en) * 2009-08-10 2016-04-06 BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG Ceramic article and methods for producing such article
US9352413B2 (en) 2011-01-13 2016-05-31 Siemens Energy, Inc. Deposition of superalloys using powdered flux and metal
EP2502729A1 (en) * 2011-03-25 2012-09-26 BAE Systems Plc Additive layer manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832993A (en) * 1987-03-09 1989-05-23 Alsthom Method of applying a protective coating to a titanium alloy blade, and a blade obtained thereby
US5208431A (en) * 1990-09-10 1993-05-04 Agency Of Industrial Science & Technology Method for producing object by laser spraying and apparatus for conducting the method
US5759641A (en) * 1996-05-15 1998-06-02 Dimitrienko; Ludmila Nikolaevna Method of applying strengthening coatings to metallic or metal-containing surfaces
US6610419B1 (en) * 1998-04-29 2003-08-26 Siemens Akteingesellschaft Product with an anticorrosion protective layer and a method for producing an anticorrosion protective
US7186092B2 (en) * 2004-07-26 2007-03-06 General Electric Company Airfoil having improved impact and erosion resistance and method for preparing same

Cited By (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272446B2 (en) * 2012-02-17 2016-03-01 Evonik Degussa Gmbh Process for melting/sintering powder particles for the layer-by-layer production of three-dimensional objects
US20130216836A1 (en) * 2012-02-17 2013-08-22 Maik Grebe Process for melting/sintering powder particles for the layer-by-layer production of three-dimensional objects
US9776282B2 (en) 2012-10-08 2017-10-03 Siemens Energy, Inc. Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
US10710161B2 (en) * 2013-03-11 2020-07-14 Raytheon Technologies Corporation Turbine disk fabrication with in situ material property variation
US20160083303A1 (en) * 2013-04-25 2016-03-24 United Technologies Corporation Additive manufacturing of ceramic turbine components by transient liquid phase bonding using metal or ceramic binders
US20150003997A1 (en) * 2013-07-01 2015-01-01 United Technologies Corporation Method of forming hybrid metal ceramic components
US20160369634A1 (en) * 2013-07-01 2016-12-22 United Technologies Corporation Airfoil, and method for manufacturing the same
US10487667B2 (en) * 2013-07-01 2019-11-26 United Technologies Corporation Airfoil, and method for manufacturing the same
US20150030434A1 (en) * 2013-07-23 2015-01-29 MTU Aero Engines AG Damping device for being situated between a housing wall and a casing ring of a housing of a thermal gas turbine
US9771827B2 (en) * 2013-07-23 2017-09-26 MTU Aero Engines AG Damping device for being situated between a housing wall and a casing ring of a housing of a thermal gas turbine
US10260352B2 (en) 2013-08-01 2019-04-16 Siemens Energy, Inc. Gas turbine blade with corrugated tip wall
US20150064047A1 (en) * 2013-08-28 2015-03-05 Elwha Llc Systems and methods for additive manufacturing of three dimensional structures
US20160273114A1 (en) * 2013-11-04 2016-09-22 United Technologies Corporation Calcium-magnesium-alumino-silicate resistant thermal barrier coatings
US10584421B2 (en) * 2013-11-04 2020-03-10 United Technologies Corporation Calcium-magnesium-alumino-silicate resistant thermal barrier coatings
US11566331B2 (en) 2013-11-04 2023-01-31 Raytheon Technologies Corporation Calcium-magnesium-alumino-silicate resistant thermal barrier coatings
US20150165547A1 (en) * 2013-12-12 2015-06-18 General Electric Company Fabrication process and fabricated article
US9511447B2 (en) * 2013-12-12 2016-12-06 General Electric Company Process for making a turbulator by additive manufacturing
US20170248319A1 (en) * 2014-02-25 2017-08-31 General Electric Company System having layered structure and method of making the same
US11137143B2 (en) * 2014-02-25 2021-10-05 General Electric Company System having layered structure and method of making the same
CN106660126B (zh) * 2014-08-15 2018-10-26 西门子能源有限公司 制造燃气涡轮发动机部件的方法
US9359897B2 (en) 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
KR20170044141A (ko) * 2014-08-15 2017-04-24 지멘스 에너지, 인코포레이티드 가스 터빈 엔진 컴포넌트를 형성하기 위한 방법
CN106660126A (zh) * 2014-08-15 2017-05-10 西门子能源有限公司 制造燃气涡轮发动机部件的方法
KR101980732B1 (ko) 2014-08-15 2019-05-21 지멘스 에너지, 인코포레이티드 가스 터빈 엔진 컴포넌트를 형성하기 위한 방법
US9358643B2 (en) 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
WO2016025133A1 (en) * 2014-08-15 2016-02-18 Siemens Energy, Inc. Method for building a gas turbine engine component
WO2016025130A1 (en) * 2014-08-15 2016-02-18 Siemens Energy, Inc. Method for building a gas turbine engine component
CN106573350A (zh) * 2014-08-15 2017-04-19 西门子能源有限公司 制造燃气涡轮发动机部件的方法
JP2016060169A (ja) * 2014-09-19 2016-04-25 株式会社東芝 積層造形装置及び積層造形方法
EP3206817A4 (en) * 2014-10-14 2018-07-04 Siemens Energy, Inc. Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
CN106794519B (zh) * 2014-10-14 2019-05-28 西门子能源有限公司 形成为一体化体系的包含多种材料的三维部件的激光增材制造
CN106794519A (zh) * 2014-10-14 2017-05-31 西门子能源有限公司 形成为一体化体系的包含多种材料的三维部件的激光增材制造
WO2016060799A1 (en) 2014-10-14 2016-04-21 Siemens Energy, Inc. Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
US20170266881A1 (en) * 2014-11-26 2017-09-21 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for the production of an edible object using sls
CN107208653A (zh) * 2015-02-11 2017-09-26 Ksb 股份公司 起流动引导作用的构件
US11033966B2 (en) 2015-02-11 2021-06-15 Ksb Aktiengesellschaft Flow-conducting component
WO2016128388A1 (de) * 2015-02-11 2016-08-18 Ksb Aktiengesellschaft Strömungsführendes bauteil
US20190085719A1 (en) * 2015-02-12 2019-03-21 United Technologies Corporation Anti-deflection feature for additively manufactured thin metal parts and method of additively manufacturing thin metal parts
CN106457662A (zh) * 2015-03-30 2017-02-22 北京大学口腔医院 一种三维打印方法、装置和打印机
CN106041070A (zh) * 2015-04-01 2016-10-26 和硕联合科技股份有限公司 工作件加工设备以及工作件加工方法
US11358239B2 (en) 2015-04-06 2022-06-14 The Boeing Company Method for additively manufacturing a three-dimensional article
CN106041071A (zh) * 2015-04-06 2016-10-26 波音公司 用于增材制造的沉积头
US10322470B2 (en) 2015-04-06 2019-06-18 The Boeing Company Deposition head for additive manufacturing
RU2641578C2 (ru) * 2015-04-06 2018-01-18 Зе Боинг Компани Головка для нанесения при производстве по аддитивной технологии
EP3078483A3 (en) * 2015-04-06 2017-01-11 The Boeing Company Deposition head for additive manufacturing
US9849510B2 (en) 2015-04-16 2017-12-26 General Electric Company Article and method of forming an article
EP3081323A1 (en) * 2015-04-16 2016-10-19 General Electric Company Article with cooling channels and manufacturing method thereof
CN106041068A (zh) * 2015-04-16 2016-10-26 通用电气公司 制品及形成制品的方法
US11383432B2 (en) 2015-04-30 2022-07-12 Hewlett-Packard Development Company, L.P. Printing a multi-structured 3D object
CN107206675A (zh) * 2015-04-30 2017-09-26 惠普发展公司有限责任合伙企业 打印多结构3d物体
WO2016175813A1 (en) * 2015-04-30 2016-11-03 Hewlett-Packard Development Company, L.P. Printing a multi-structured 3d object
US10814549B2 (en) 2015-04-30 2020-10-27 Hewlett-Packard Development Company, L.P. Printing a multi-structured 3D object
EP3098001A1 (en) * 2015-05-26 2016-11-30 Seiko Epson Corporation Three-dimensional forming apparatus and three-dimensional forming method
US10717231B2 (en) * 2015-05-26 2020-07-21 Seiko Epson Corporation Three-dimensional forming apparatus and three-dimensional forming method
CN111468725A (zh) * 2015-05-26 2020-07-31 精工爱普生株式会社 三维造型方法
CN106180706A (zh) * 2015-05-26 2016-12-07 精工爱普生株式会社 三维形成装置以及三维形成方法
US20160347001A1 (en) * 2015-05-26 2016-12-01 Seiko Epson Corporation Three-dimensional forming apparatus and three-dimensional forming method
US9976441B2 (en) 2015-05-29 2018-05-22 General Electric Company Article, component, and method of forming an article
WO2017011009A1 (en) 2015-07-15 2017-01-19 Hewlett-Packard Development Company, L.P. Processing object part data for a three-dimensional object
US10688774B2 (en) 2015-07-15 2020-06-23 Hewlett-Packard Development Company, L.P. Processing object part data for a three-dimensionsal object
EP3271807A4 (en) * 2015-07-15 2018-12-12 Hewlett-Packard Development Company, L.P. Processing object part data for a three-dimensional object
US10344597B2 (en) 2015-08-17 2019-07-09 United Technologies Corporation Cupped contour for gas turbine engine blade assembly
US11591914B2 (en) 2015-08-17 2023-02-28 Raytheon Technologies Corporation Cupped contour for gas turbine engine blade assembly
US10830176B2 (en) 2015-08-26 2020-11-10 Rohr, Inc. Additive manufacturing fiber-reinforced, thrust reverser cascade
DE102015114959A1 (de) * 2015-09-07 2017-03-09 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung eines dreidimensionalen Objekts
US10087776B2 (en) 2015-09-08 2018-10-02 General Electric Company Article and method of forming an article
US10739087B2 (en) 2015-09-08 2020-08-11 General Electric Company Article, component, and method of forming an article
US10253986B2 (en) 2015-09-08 2019-04-09 General Electric Company Article and method of forming an article
CN106988786A (zh) * 2015-10-20 2017-07-28 通用电气公司 添加制造的转子叶片及构件
US10180072B2 (en) 2015-10-20 2019-01-15 General Electric Company Additively manufactured bladed disk
US10184344B2 (en) 2015-10-20 2019-01-22 General Electric Company Additively manufactured connection for a turbine nozzle
EP3162469A1 (en) * 2015-10-20 2017-05-03 General Electric Company Interlocking material transition zone with integrated film cooling
EP3162470A1 (en) * 2015-10-20 2017-05-03 General Electric Company Repair methods utilizing additively manufacturing for rotor blades and components
US9914172B2 (en) 2015-10-20 2018-03-13 General Electric Company Interlocking material transition zone with integrated film cooling
EP3162471A1 (en) * 2015-10-20 2017-05-03 General Electric Company Additively manufactured rotor blades and components
US10370975B2 (en) 2015-10-20 2019-08-06 General Electric Company Additively manufactured rotor blades and components
US9884393B2 (en) 2015-10-20 2018-02-06 General Electric Company Repair methods utilizing additively manufacturing for rotor blades and components
JP2017078511A (ja) * 2015-10-20 2017-04-27 ゼネラル・エレクトリック・カンパニイ フィルム冷却が統合された噛合材料遷移領域
JP2019502554A (ja) * 2015-10-21 2019-01-31 ユーエービー “ニューロテクノロジー” 非接触操作装置、組み立て方法、および3d印刷
EP3162473A1 (en) * 2015-10-29 2017-05-03 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
US11185922B2 (en) 2015-10-29 2021-11-30 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
US20170120331A1 (en) 2015-10-29 2017-05-04 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
EP3210699A4 (en) * 2015-12-25 2018-05-02 Technology Research Association For Future Additive Manufacturing Three-dimensional additive manufacturing device, control method of three-dimensional additive manufacturing device, and control program of three-dimensional additive manufacturing device
US10239305B2 (en) 2015-12-25 2019-03-26 Technology Research Association For Future Additive Manufacturing Three-dimensional laminating and shaping apparatus, control method of three-dimensional laminating and shaping apparatus, and control program of three-dimensional laminating and shaping apparatus
EP3222372A1 (de) * 2016-03-24 2017-09-27 Siemens Aktiengesellschaft Verfahren zum additiven herstellen eines bauteils mit mehreren baumaterialien und bauteil
DE102017106327B4 (de) 2016-03-24 2021-08-26 GM Global Technology Operations LLC Verfahren zum Herstellen isolierender dreidimensionaler (3D-)Strukturen unter Verwendung von 3D-Druck
WO2017162445A1 (de) * 2016-03-24 2017-09-28 Siemens Aktiengesellschaft Verfahren zum additiven herstellen eines bauteils mit mehreren baumaterialien und bauteil
US20170274456A1 (en) * 2016-03-24 2017-09-28 GM Global Technology Operations LLC Method of producing insulating three-dimensional (3d) structures using 3d printing
US10675687B2 (en) * 2016-03-24 2020-06-09 GM Global Technology Operations LLC Method of producing insulating three-dimensional (3D) structures using 3D printing
WO2017184087A1 (en) * 2016-04-20 2017-10-26 Scg Cement Co., Ltd. A cement formula composition for constructing a multiple layered object
CN106041079A (zh) * 2016-07-20 2016-10-26 北京隆源自动成型系统有限公司 一种选择性激光熔化成形操作方法
US11518087B2 (en) 2016-09-12 2022-12-06 University Of Washington Vat photopolymerization additive manufacturing of multi-material parts
US11149572B2 (en) * 2016-10-27 2021-10-19 Raytheon Technologies Corporation Additively manufactured component for a gas powered turbine
US20180119556A1 (en) * 2016-10-27 2018-05-03 United Technologies Corporation Additively manufactured component for a gas powered turbine
CN106694886A (zh) * 2016-11-30 2017-05-24 苏州大学 一种激光制备泡沫铝夹芯板的方法
US11179926B2 (en) 2016-12-15 2021-11-23 General Electric Company Hybridized light sources
US10583530B2 (en) 2017-01-09 2020-03-10 General Electric Company System and methods for fabricating a component with laser array
EP3354380A1 (en) * 2017-01-31 2018-08-01 General Electric Company Additive manufacturing system, article, and method of manufacturing an article
US10773310B2 (en) 2017-01-31 2020-09-15 General Electric Company Additive manufacturing system, article, and method of manufacturing an article
US20180281066A1 (en) * 2017-03-30 2018-10-04 Safran Aero Boosters S.A. Three-dimensional printer
US20180311769A1 (en) * 2017-04-28 2018-11-01 Divergent Technologies, Inc. Multi-materials and print parameters for additive manufacturing
WO2018200192A1 (en) * 2017-04-28 2018-11-01 Divergent Technologies, Inc. Multi-materials and print parameters for additive manufacturing
KR102458119B1 (ko) * 2017-04-28 2022-10-21 디버전트 테크놀로지스, 인크. 적층 제조를 위한 다수의 재료들 및 인쇄 파라미터들
KR20190136091A (ko) * 2017-04-28 2019-12-09 디버전트 테크놀로지스, 인크. 적층 제조를 위한 다수의 재료들 및 인쇄 파라미터들
US20180311891A1 (en) * 2017-04-28 2018-11-01 Ut-Battelle, Llc Z-axis improvement in additive manufacturing
EP3403744A1 (de) * 2017-05-19 2018-11-21 Siemens Aktiengesellschaft Maschinenbauteil mit generatives verfahren hergestellt
US10889872B2 (en) 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
WO2019079497A1 (en) * 2017-10-17 2019-04-25 Desktop Metal, Inc. BINDER PROJECTION IN THE ADDITIVE MANUFACTURE OF NON-HOMOGENEOUS THREE DIMENSIONAL PIECES
US11752552B2 (en) 2017-10-27 2023-09-12 Siemens Energy Global GmbH & Co. KG Method for modifying components using additive manufacturing
CN111278588A (zh) * 2017-10-27 2020-06-12 西门子股份公司 用于利用增材制造改型构件的方法
US11421535B2 (en) 2017-10-31 2022-08-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine blade, turbocharger, and method of producing turbine blade
US10307823B1 (en) 2017-11-13 2019-06-04 General Electric Company Methods and systems for repairing powder containment structures
US11571743B2 (en) 2017-11-13 2023-02-07 General Electric Company Systems and methods for additive manufacturing
US11097348B2 (en) 2017-12-08 2021-08-24 General Electric Company Structures and components having composite unit cell matrix construction
US11865619B2 (en) 2017-12-08 2024-01-09 General Electric Company Structures and components having composite unit cell matrix construction
WO2019112760A3 (en) * 2017-12-08 2019-08-08 General Electric Company Structures and components having composite unit cell matrix construction
US12251883B2 (en) 2017-12-12 2025-03-18 Nikon Corporation Build system, build method, computer program, control apparatus to build an object utilizing an irradiation optical system
US11512634B2 (en) 2018-01-11 2022-11-29 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine rotor blade, turbocharger, and method for producing turbine rotor blade
US11890696B2 (en) 2018-01-30 2024-02-06 Siemens Aktiengesellschaft Laser metal deposition with inoculation
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US12122120B2 (en) 2018-08-10 2024-10-22 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
EP3856520A4 (en) * 2019-01-15 2022-05-04 Hewlett-Packard Development Company, L.P. ADDITIONAL MANUFACTURING OF A CHANGING THREE-DIMENSIONAL OBJECT
CN113498382A (zh) * 2019-02-22 2021-10-12 依视路国际公司 使用增材制造技术由可固化材料制造光学体积元素的方法和系统
US20220184733A1 (en) * 2019-03-08 2022-06-16 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
US12415230B2 (en) * 2019-03-08 2025-09-16 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
US11702944B2 (en) 2019-03-29 2023-07-18 Mitsubishi Power, Ltd. High-temperature component, production method for high-temperature component, and flow rate control method
CN113474545A (zh) * 2019-03-29 2021-10-01 三菱动力株式会社 高温部件、高温部件的制造方法、以及流量调节方法
US11920486B2 (en) 2019-03-29 2024-03-05 Mitsubishi Power, Ltd. High-temperature component and method of producing the high-temperature component
US11123916B2 (en) 2019-05-06 2021-09-21 Rohr, Inc. Forming a thrust reverser cascade using corrugated bodies
US11668265B2 (en) 2019-05-06 2023-06-06 Rohr, Inc. Forming a thrust reverser cascade using corrugated bodies
US11951566B2 (en) * 2019-07-31 2024-04-09 General Electric Company Assignment of multiple print parameter sets in additive manufacturing
US20210031302A1 (en) * 2019-07-31 2021-02-04 General Electric Company Assignment of multiple print parameter sets in additive manufacturing
EP3797907A1 (en) * 2019-09-26 2021-03-31 General Electric Company Method and system of additive manufacturing contour-based hatching
US11584083B2 (en) * 2019-09-26 2023-02-21 General Electric Company Method and system of additive manufacturing contour-based hatching
CN111186140A (zh) * 2020-01-20 2020-05-22 浙江大学 一种力线分布的掩模打印路径生成方法
US11993020B2 (en) 2020-05-13 2024-05-28 The Boeing Company System and method for additively manufacturing an object
US11766832B2 (en) 2020-05-13 2023-09-26 The Boeing Company System and method for additively manufacturing an object
US11590705B2 (en) 2020-05-13 2023-02-28 The Boeing Company System and method for additively manufacturing an object
US20230302588A1 (en) * 2020-06-18 2023-09-28 Safran Laser heating for the manufacture or repair of a turbine blade
EP4163048A4 (en) * 2020-06-19 2023-09-06 DMG Mori Co., Ltd. Workpiece processing method and processing machine
US20230264295A1 (en) * 2020-06-19 2023-08-24 Dmg Mori Co., Ltd. Workpiece processing method and processing machine
EP3936260A1 (de) * 2020-07-06 2022-01-12 Siemens Aktiengesellschaft Bestrahlungsstrategie für eine additiv hergestellte struktur
CN111978755A (zh) * 2020-08-10 2020-11-24 北京航空航天大学 一种基于3d打印的二维可控梯度互锁多胞结构
US12285908B2 (en) 2020-11-20 2025-04-29 General Electric Company Foil interaction device for additive manufacturing
CN112775431A (zh) * 2020-12-25 2021-05-11 北京航空航天大学合肥创新研究院 一种钛合金/不锈钢异种金属构件的激光增材制造方法
US12434436B2 (en) 2021-02-26 2025-10-07 General Electric Company Accumalator assembly for additive manufacturing
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US12447682B2 (en) 2021-06-24 2025-10-21 General Electric Company Reclamation system for additive manufacturing
US12390986B2 (en) 2021-07-09 2025-08-19 General Electric Company Resin management system for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US12370741B2 (en) 2021-08-13 2025-07-29 General Electric Company Material deposition assembly for additive manufacturing
US12296535B2 (en) 2021-08-24 2025-05-13 General Electric Company Attachment structure for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
US12409604B2 (en) 2022-03-23 2025-09-09 General Electric Company Systems and methods for additive manufacturing
CN115138859A (zh) * 2022-08-17 2022-10-04 南京农业大学 一种一体化成形的金刚石砂轮及其制备方法
US12403654B2 (en) 2022-09-30 2025-09-02 General Electric Company Systems and methods for additive manufacturing
CN115926501A (zh) * 2022-12-27 2023-04-07 广东省科学院中乌焊接研究所 一种提高电弧增材制造超级双相不锈钢结构件耐蚀性能的方法
CN117620209A (zh) * 2023-12-01 2024-03-01 南京理工大学 一种多材质同面异材多工位选区激光熔融的方法

Also Published As

Publication number Publication date
RU2015116240A (ru) 2016-11-27
WO2014107204A2 (en) 2014-07-10
CN104684667A (zh) 2015-06-03
IN2015DN02324A (enExample) 2015-08-28
JP2016502589A (ja) 2016-01-28
EP2903762A2 (en) 2015-08-12
WO2014107204A3 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
US20140099476A1 (en) Additive manufacture of turbine component with multiple materials
EP3434396A1 (en) Pre-fusion laser sintering for metal powder stabilization during additive manufacturing
Duda et al. 3D metal printing technology
EP3551594B1 (en) Method to additively manufacture a fiber-reinforced ceramic matrix composite
EP3034206B1 (en) Hybrid additive manufacturing method for forming hybrid additively manufactured features for hybrid component
CA2717834C (en) Method to apply multiple materials with selective laser melting on a 3d article
JP6770245B2 (ja) 三次元造形物の製造方法及び三次元造形物の製造装置
JP6642790B2 (ja) 三次元造形物の製造方法及び三次元造形物の製造装置
Bourell et al. Introduction to additive manufacturing
US20160319690A1 (en) Additive manufacturing methods for turbine shroud seal structures
US20170326792A1 (en) Method, Device, and Recoating Module for Producing a Three-Dimensional Object
JP2017196889A (ja) 積層造形法のための方法及びキー溝支持体
JP2018524476A (ja) 空間制御された材料の溶融による付加製造
EP3103570A1 (en) Additive manufacturing methods and hybrid articles using brazeable structures made by additive manufacturing
US11945158B2 (en) Interlace scanning strategies and uses thereof
EP3246148B1 (en) Additive layer manufacturing base plate
EP3786497B1 (en) Flow discourager
WO2018164770A1 (en) Triangle hatch pattern for additive manufacturing
Bineli et al. Direct metal laser sintering (DMLS): Technology for design and construction of microreactors
WO2018169630A1 (en) Constantly varying hatch for additive manufacturing
EP3461574B1 (en) Modified frame and recoating system
JP2019039067A (ja) 高圧タービンの連続的付加製造
EP3592487A1 (en) Leg elimination strategy for hatch pattern
US12290856B2 (en) Method for additively manufacturing three-dimensional components and corresponding device
EP3427869A1 (en) Additive manufacturing methods and related components

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUENZER, JAN;OTT, MICHAEL;SADOVOY, ALEXANDR;AND OTHERS;SIGNING DATES FROM 20131016 TO 20131031;REEL/FRAME:032461/0695

Owner name: SIEMENS ENERGY, INC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUBRAMANIAN, RAMESH;REEL/FRAME:032459/0761

Effective date: 20131213

AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS ENERGY, INC.;REEL/FRAME:032850/0640

Effective date: 20140327

AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS ENERGY, INC.;REEL/FRAME:032887/0586

Effective date: 20140327

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION