WO2019116455A1 - 造形システム及び造形方法 - Google Patents

造形システム及び造形方法 Download PDF

Info

Publication number
WO2019116455A1
WO2019116455A1 PCT/JP2017/044624 JP2017044624W WO2019116455A1 WO 2019116455 A1 WO2019116455 A1 WO 2019116455A1 JP 2017044624 W JP2017044624 W JP 2017044624W WO 2019116455 A1 WO2019116455 A1 WO 2019116455A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
modeling
shaping
irradiation
energy beam
Prior art date
Application number
PCT/JP2017/044624
Other languages
English (en)
French (fr)
Inventor
和樹 上野
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2017/044624 priority Critical patent/WO2019116455A1/ja
Priority to JP2019559455A priority patent/JPWO2019116455A1/ja
Priority to EP18888827.5A priority patent/EP3725453A4/en
Priority to PCT/JP2018/045281 priority patent/WO2019117076A1/ja
Priority to US16/770,909 priority patent/US11577466B2/en
Priority to JP2019559622A priority patent/JPWO2019117076A1/ja
Priority to CN202211167553.7A priority patent/CN115415552A/zh
Priority to CN201880080527.6A priority patent/CN111465467B/zh
Priority to TW107144700A priority patent/TW201934221A/zh
Publication of WO2019116455A1 publication Critical patent/WO2019116455A1/ja
Priority to US18/085,787 priority patent/US20230122763A1/en
Priority to JP2023030865A priority patent/JP2023085256A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to, for example, the technical field of a shaping system and a shaping method for forming a shaped object.
  • Patent Document 1 describes a shaping apparatus that forms a shaped object by melting powdery material with an energy beam and then resolidifying the molten material. In such a modeling apparatus, it becomes a technical subject to form an appropriate modeling thing.
  • a modeling apparatus performing a modeling process of forming a modeled object by supplying the modeling material to the irradiation area of the energy beam by the supply system while irradiating the energy beam to the object by the irradiation system
  • a changing device capable of changing the relative positions of the energy beam and the object, the conditions of the shaping process performed on the first region of the object, and the second of the object
  • a build system is provided that differs from the conditions of the build process performed on the area.
  • a modeling apparatus performing a modeling process of forming a modeled object by supplying the modeling material to the irradiation region of the energy beam by the supply system while irradiating the energy beam to the object by the irradiation system And a change device capable of changing the relative position between the energy beam and the object, wherein the object processing is performed on a first region in which the irradiation region is set a plurality of times.
  • a modeling system is provided which makes the condition different from the condition of the modeling process performed on the second area set the number of times smaller than the number of times the irradiation area is set to the first area among the objects. .
  • the supply system supplies the modeling material to the irradiation region of the energy beam, and the relative relationship between the energy beam and the object is Provided with a modeling apparatus for growing a model in a position changing direction and performing modeling processing, and a changing apparatus capable of changing the relative position between the energy beam and the object, and in the first timing, the modeling process
  • a modeling system is provided that changes a condition of the modeling process at timing with a condition of the modeling process at first timing.
  • a plurality of layered structures are laminated by supplying the modeling material to the irradiation region of the energy beam by the supply system while irradiating the energy beam to the object via the optical system by the irradiation system.
  • a changing device capable of changing the relative position between the energy beam and the object, wherein the size of the depth of focus of the optical system is:
  • a build system is provided that is greater than the thickness of one layer of the layered structure and less than the thickness of two layers.
  • the shaping process is performed to form a shaped object by supplying the modeling material to the irradiation area by the supply system while irradiating the energy beam to the irradiation area on the object by the irradiation system A device, and a change device capable of changing the relative positions of the energy beam and the object, wherein the relative position of the irradiation region of the energy beam and the object is changed in a first direction.
  • performing a forming process of forming a shaped object by supplying the forming material to the irradiation area of the energy beam while irradiating the object with the energy beam, and irradiating the energy beam Changing the relative position of the area and the object, the condition of the forming process performed on the first area of the object, and the condition of the forming process performed on the second area of the object
  • a shaping method including changing conditions.
  • performing a forming process of forming a shaped object by supplying the forming material to the irradiation area of the energy beam while irradiating the object with the energy beam, and irradiating the energy beam Changing the relative position between the area and the object, the condition of the shaping process performed on the first area of the object in which the irradiation area is set a plurality of times, and the condition of the object
  • a modeling method including: differentiating the conditions of the modeling process performed on the second area set the number of times smaller than the number of times the irradiation area is set on the first area.
  • performing a forming process of forming a shaped object by supplying the forming material to the irradiation area of the energy beam while irradiating the object with the energy beam, and irradiating the energy beam
  • the relative position relationship between the region and the object, and the relative positional relationship between the energy beam subjected to the formation processing at the first timing and the object, the formation processing at the second timing Changing the conditions of the shaping process at the second timing to the conditions of the shaping process at the first timing when the relative positional relationship between the energy beam and the object when performing Is provided.
  • irradiating an object with an energy beam supplying a modeling material to the object, irradiating the object with the energy beam, and irradiating the irradiation area of the energy beam Performing a forming process of forming a laminated structure in which a plurality of layered structures are laminated by supplying the forming material, and irradiating the energy beam, the size of the depth of focus of the layered structure
  • a shaping method comprising irradiating the energy beam through an optical system which is larger than the thickness of one layer and smaller than the thickness of two layers.
  • FIG. 1 is a cross-sectional view showing the structure of the modeling system of the present embodiment.
  • FIG.2 (a) to FIG.2 (c) is sectional drawing which shows a mode when light is irradiated in the one area
  • FIG.3 (a) and FIG.3 (b) is a top view which shows the movement trace of the irradiation area
  • FIG. 4A to FIG. 4C is a cross-sectional view showing a process of forming a three-dimensional structure.
  • FIG.5 (a) is a top view which shows the movement path of the irradiation area
  • FIG.5 (b) is a movement of the modeling thing and irradiation area
  • FIG. 5C is a cross-sectional view showing a shaped object formed in a region where the paths do not intersect
  • FIG. 5C is a region where the movement paths of the shaped region and the irradiated region do not intersect. It is a top view showing the modeling thing formed in.
  • FIG.6 (a) to FIG.6 (c) is a graph which shows the supply rate of the modeling material controlled so that dispersion
  • FIG. 7 is a graph showing the relationship between the supply rate of the forming material and the supply amount of the forming material from the material nozzle.
  • FIG. 8 (a) is a cross-sectional view showing a supply mode of the modeling material when the gas injection device is injecting the inert gas
  • FIG. 8 (b) is a gas injection device injecting the inert gas. It is sectional drawing which shows the supply aspect of the modeling material in not being.
  • FIG.9 (a) is sectional drawing which shows the supply aspect of a modeling material in case a shielding member exists in a non-shielding state
  • FIG.9 (b) is a supply aspect of a modeling material when a shielding member is in a shielding state It is sectional drawing which shows.
  • Fig.10 (a) is sectional drawing which shows the supply aspect of a modeling material when a material nozzle is in a supply state
  • FIG.10 (b) is a supply aspect of a modeling material when a material nozzle is in a non-supplying state It is sectional drawing which shows.
  • Each of Drawing 11 (a) to Drawing 11 (c) is a graph showing a heat transfer rate controlled so that dispersion of height of a modeling thing may be controlled.
  • FIG. 12 is a graph showing the relationship between the heat transfer rate and the light intensity on the irradiation area.
  • FIG. 13 (a) is a cross-sectional view showing the irradiation mode of light when the light shielding member is in the light shielding state, and FIG. 13 (b) shows the irradiation mode of light when the light shielding member is in the light non-shielding state.
  • FIG. FIG. 14 (a) is a cross-sectional view showing an irradiation mode of light when the focus position is set on the modeling surface, and FIG. 14 (b) is set to a position where the focusing position is away from the modeling surface It is sectional drawing which shows the irradiation aspect of the light in the case of.
  • FIG. 15 (a) and FIG.15 (b) is a graph which shows the movement speed of the irradiation area
  • Fig.16 (a) is a top view which shows the movement path of the irradiation area
  • FIG.16 (b) is a graph which shows the relationship between the movement speed of irradiation area
  • FIG. 17 is a graph showing the supply rate of the modeling material controlled based on the moving speed of the irradiation area so as to suppress the variation in the height of the modeling object.
  • FIG.16 (a) is a top view which shows the movement path of the irradiation area
  • FIG.16 (b) is a graph which shows the relationship between the movement speed of irradiation area
  • FIG. 17 is a graph
  • FIG. 18 is a graph showing the relationship between the moving speed of the irradiation area, the supply rate of the forming material, and the height of the formed object.
  • FIG. 19 is a graph showing a heat transfer rate controlled based on the moving speed of the irradiation area so as to suppress the variation in the height of the shaped object.
  • FIG. 20 is a graph showing the relationship between the moving speed of the irradiation area, the heat transfer rate, and the height of the object.
  • FIG. 21 (a) is a perspective view showing an example of the position in the existing structure where heat is relatively difficult to be diffused and the position of the region where heat is relatively easily diffused, and FIG.
  • FIG. 21 (b) is a heat It is sectional drawing which shows the modeling object formed in the area
  • FIG. 22 is a graph showing the supply rate of the modeling material controlled based on the degree of heat diffusion so as to suppress the variation in the height of the modeling object.
  • FIG. 23 is a graph showing a heat transfer rate controlled based on the degree of heat diffusion so as to suppress variations in the height of a shaped object.
  • FIG. 24 is a graph showing the moving speed of the irradiation area controlled based on the degree of heat diffusion so as to suppress the variation in the height of the shaped object.
  • FIG. 25 (a) is a perspective view showing an example of the position of the region where the light EL is irradiated relatively frequently and the position of the region where the light EL is irradiated relatively less frequently
  • FIG. 25 (b) These are sectional drawings which show the three-dimensional object formed in the area
  • FIG. 26 is a graph showing the supply rate of the modeling material controlled based on the frequency of light irradiation so as to suppress the variation in the height of the modeling object.
  • FIG. 27 is a graph showing a heat transfer rate controlled based on the frequency of light irradiation so as to suppress variations in the height of a shaped object.
  • FIG. 28 is a graph showing the moving speed of the irradiation area controlled based on the frequency of light irradiation so as to suppress the variation in the height of the shaped object.
  • FIG. 29 is a plan view and a sectional view showing a mark formed on a formed surface.
  • FIG. 30 (a) and FIG.30 (b) is a top view which shows the movement trace of the irradiation area
  • FIGS. 31A to 31D is a plan view showing a mark whose size is controlled by the size control operation.
  • FIG. 32 is a graph showing the relationship between the heat transfer rate and the size of the mark.
  • FIG. 33 is a graph showing the relationship between the moving speed of the irradiation area and the size of the mark.
  • FIG. 34 is a graph showing the relationship between the size of the irradiation area and the size of the mark.
  • FIGS. 35 (a) and 35 (b) is a plan view showing the relationship between the size of the mark and the number of linear structures constituting the mark, and FIGS. 35 (c) to 35 (d).
  • Each of is a top view which shows the relationship between the size of a mark, and the length of the linear structure which comprises a mark.
  • FIG. 36D is a plan view showing a mark whose height is controlled by the height control operation.
  • FIG. 37 is a graph showing the relationship between the supply rate and the height of the mark.
  • FIG. 38 is a graph showing the relationship between the heat transfer rate and the height of the mark.
  • FIG. 39 is a graph showing the relationship between the moving speed of the irradiation area and the height of the mark.
  • FIG. 40 (a) and FIG. 40 (b) is a cross-sectional view showing the relationship between the height of the mark and the number of structural layers constituting the mark.
  • FIGS. 41 (a) to 41 (c) is a cross-sectional view showing a mark whose surface shape is controlled by the shape control operation.
  • FIG. 42 (c) is a cross-sectional view showing a mark whose shape of the connecting surface is controlled by the shape control operation.
  • FIG. 43 (a) is a plan view and a cross-sectional view showing a mark pressed against an object as a seal
  • FIG. 43 (b) is a plan view showing a seal imprint transferred onto the object against which the mark is pressed.
  • FIG. 44 (a) to FIG. 44 (c) is a cross-sectional view showing a mark in which the shape of the connecting surface is controlled to be in a complementary relationship with the target surface of the object.
  • FIG. 45 (a) is a graph showing an example of the control mode of the characteristic of the specific gas in the period in which a plurality of marks are formed
  • FIG. 45 (a) is a graph showing an example of the control mode of the characteristic of the specific gas in the period in which a plurality of marks are formed
  • FIG. 45 (a) is a graph showing an example of the control mode of the characteristic of the specific gas
  • FIG. 45 (b) is specified in the control mode shown in FIG. 45 (a)
  • FIG. 45 (c) is a plan view showing a plurality of marks formed when the characteristics of the gas are controlled
  • FIG. 45 (c) shows an example of a control aspect of the characteristics of the specific gas in a period during which a single mark is formed.
  • FIG. 45 (d) is a graph shown
  • FIG. 45 (d) is a plan view showing a mark formed when the characteristics of the specific gas are controlled in the control mode shown in FIG. 45 (c).
  • Each of FIGS. 46 (a) to 46 (c) is a cross-sectional view showing the state of the surface to be polished during the polishing operation.
  • FIG. 47 (a) is a plan view showing the movement path of the irradiation area during the period in which the shaping operation is being performed, and FIG. 47 (b) is the movement of the irradiation area during the period during which the polishing operation is being performed It is a top view which shows a course.
  • FIG. 48 (a) is a plan view showing the moving path of the irradiation area during the period in which the shaping operation is being performed, and FIG. 48 (b) is the movement of the irradiation area during the period during which the polishing operation is being performed. It is a top view which shows a course.
  • FIG. 49 is a cross-sectional view showing the depth of focus of the illumination optical system provided in the modeling system of the first modification.
  • FIG. 50 (a) is a cross-sectional view showing a structural layer formed by the modeling system of the first modification when the irradiation area is set in a certain area portion on the modeling surface
  • FIG. It is sectional drawing which shows the structural layer formed by the modeling system of a 1st modification, when an irradiation area
  • FIG. 51 (a) and FIG. 51 (b) is a cross-sectional view showing the positional relationship between the shaped surface and the range of the focal depth of the illumination optical system.
  • FIG. 52 is a cross-sectional view showing a structure of a modeling system of a second modified example.
  • FIG. 53 (a) is a cross-sectional view showing the structure of the irradiation optical system provided in the modeling system of the third modification
  • FIG. 53 (b) shows the structure of the optical system provided in the irradiation optical system of the third modification. It is a perspective view shown.
  • FIG. 54 is a cross-sectional view showing the structure of the modeling apparatus provided in the modeling system of the fourth modification.
  • FIG. 55 is a cross-sectional view showing the structure of the modeling apparatus provided in the modeling system of the fifth modification.
  • FIG. 56 is a cross-sectional view showing a configuration of a formed object formed by the sixth modification.
  • FIG. 57 is a cross-sectional view showing a configuration of a formed object formed by the seventh modification.
  • FIG. 58 is a cross sectional view showing an operation of the eighth modified example.
  • FIG. 59 is a cross-sectional view showing an example of a supply amount changing device used in the eighth modification.
  • FIG. 60 is a cross-sectional view showing an example of a supply amount changing device used in the eighth modification.
  • FIG. 61 (a) is a plan view showing the movement locus of the irradiation area on the modeling surface, and FIG. 61 (b) is the case where the irradiation area moves along the movement locus shown in FIG. 61 (a) It is sectional drawing which shows a part of molded article formed.
  • FIG. 62 (a) is a plan view showing the movement locus of the irradiation area on the formed surface, and FIG. 62 (b) is a case where the irradiation area moves along the movement locus shown in FIG. 62 (a) It is sectional drawing which shows a part of molded article formed.
  • LMD Laser Metal Deposition
  • Laser build-up welding includes direct metal deposition, direct energy deposition, laser cladding, laser engineered net shaping, direct light fabrication, and laser consolidation. Shape deposition manufacturing, wire-feed laser deposition, gas through wire, laser powder fusion, laser metal forming, selective laser powder remelting, laser direct It may be referred to as casting, laser powder deposition, laser additive manufacturing, laser rapid forming.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in a horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). In the vertical direction).
  • the rotational directions (in other words, the inclined directions) around the X axis, the Y axis and the Z axis will be referred to as the ⁇ X direction, the ⁇ Y direction and the ⁇ Z direction, respectively.
  • the Z-axis direction may be the gravity direction.
  • the XY plane may be in the horizontal direction.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a modeling system 1 of the present embodiment.
  • the modeling system 1 can form a three-dimensional structure ST (that is, a three-dimensional object having a size in any direction of three-dimensional directions, and a three-dimensional object).
  • the modeling system 1 can form the three-dimensional structure ST on the workpiece W which is a basis (that is, a base material) for forming the three-dimensional structure ST.
  • the modeling system 1 can form the three-dimensional structure ST by performing additional processing on the workpiece W.
  • the workpiece W is a stage 43 described later, the modeling system 1 can form a three-dimensional structure ST on the stage 43. If the workpiece W is an existing structure held by the stage 43, the shaping system 1 can form a three-dimensional structure ST on the existing structure.
  • the modeling system 1 may form a three-dimensional structure ST integrated with the existing structure.
  • the operation of forming the three-dimensional structure ST integrated with the existing structure is equivalent to the operation of adding a new structure to the existing structure.
  • the shaping system 1 may form a three-dimensional structure ST which can be separated from the existing structure.
  • FIG. 1 shows an example in which the work W is an existing structure held by the stage 43. Also, in the following, the description will be made using an example in which the work W is an existing structure held by the stage 43.
  • the shaping system 1 can form the three-dimensional structure ST by the laser buildup welding method. That is, it can be said that the modeling system 1 is a 3D printer that forms an object using the layered modeling technology.
  • the additive manufacturing technology is also referred to as rapid prototyping, rapid manufacturing, or additive manufacturing.
  • the modeling system 1 includes a material supply device 3, a modeling device 4, a light source 5, a gas supply device 6, and a control device 7. .
  • the material supply device 3, the modeling device 4, the light source 5, the gas supply device 6, and the control device 7 are housed in a housing C.
  • the modeling apparatus 4 is accommodated in the upper space UC of the housing C, and the housing in which the material supply device 3, the light source 5, the gas supply device 6 and the control device 7 are located below the upper space UC. It is accommodated in the lower space LC of the body C.
  • the arrangement positions of the material supply device 3, the modeling device 4, the light source 5, the gas supply device 6 and the control device 7 in the housing C are not limited to the arrangement positions shown in FIG. 1.
  • the material supply device 3 supplies the modeling material M to the modeling device 4.
  • the material supply device 3 is adapted to the necessary amount so that the amount of the modeling material M required per unit time to form the three-dimensional structure ST is supplied to the formation device 4. Supply the desired amount of build material M.
  • the modeling material M is a material that can be melted by irradiation with light EL having a predetermined intensity or more.
  • a modeling material M for example, at least one of a metallic material and a resinous material can be used.
  • the shaping material M other materials different from metallic materials and resinous materials may be used.
  • the shaping material M is a powdery or granular material. That is, the modeling material M is a granular material.
  • the modeling material M may not be a powder, and for example, a wire-shaped modeling material or a gaseous modeling material may be used.
  • the modeling apparatus 4 processes the modeling material M supplied from the material supply apparatus 3 to form a three-dimensional structure ST.
  • the modeling apparatus 4 includes a modeling head 41, a drive system 42, and a stage 43.
  • the forming head 41 includes an irradiation optical system 411 and a material nozzle (that is, a supply system for supplying the forming material M) 412.
  • the modeling head 41, the drive system 42, and the stage 43 are accommodated in the chamber 44.
  • the irradiation optical system 411 is an optical system (for example, a condensing optical system) for emitting the light EL from the emitting unit 413.
  • the irradiation optical system 411 is optically connected to the light source 5 that emits the light EL via a light transmission member (not shown) such as an optical fiber or a light pipe.
  • the irradiation optical system 411 emits the light EL propagating from the light source 5 through the light transmission member.
  • the irradiation optical system 411 irradiates the light EL from the irradiation optical system 411 downward (that is, on the ⁇ Z side).
  • a stage 43 is disposed below the illumination optical system 411.
  • the irradiation optical system 411 irradiates the light EL toward the work W. Specifically, the irradiation optical system 411 can irradiate the light EL to the irradiation area EA which is set on the workpiece W as an area to which the light EL is irradiated (typically, condensed). Furthermore, under the control of the control device 7, the state of the irradiation optical system 411 can be switched between the state in which the irradiation area EA is irradiated with the light EL and the state in which the irradiation area EA is not irradiated with the light EL.
  • the direction of the light EL emitted from the irradiation optical system 411 is not limited to directly below (that is, coincides with the ⁇ Z-axis direction), for example, even a direction inclined by a predetermined angle with respect to the Z-axis Good.
  • the material nozzle 412 has a supply outlet 414 for supplying the build material M.
  • the material nozzle 412 supplies (specifically, jets, blows, sprays) the build material M from the supply outlet 414.
  • the material nozzle 412 is physically connected to the material supply device 3 which is a supply source of the forming material M via a pipe (not shown) or the like.
  • the material nozzle 412 supplies the modeling material M supplied from the material supply device 3 via a pipe.
  • the material nozzle 412 may pump the modeling material M supplied from the material supply device 3 via a pipe. That is, the modeling material M from the material supply device 3 and a transport gas (for example, an inert gas such as nitrogen or argon) may be mixed and pressure-fed to the material nozzle 412 through a pipe.
  • a transport gas for example, an inert gas such as nitrogen or argon
  • the material nozzle 412 is drawn in a tube shape in FIG. 1, the shape of the material nozzle 412 is not limited to this shape.
  • the material nozzle 412 supplies the build material M downward (ie, on the ⁇ Z side) from the material nozzle 412.
  • a stage 43 is disposed below the material nozzle 412.
  • the material nozzle 412 supplies the forming material M toward the workpiece W.
  • the traveling direction of the forming material M supplied from the material nozzle 412 is a direction inclined by a predetermined angle (for example, an acute angle) with respect to the Z-axis direction, but even on the -Z side (that is, directly below) Good.
  • the material nozzle 412 is aligned with the irradiation optical system 411 such that the modeling material M is supplied toward the irradiation area EA where the irradiation optical system 411 irradiates the light EL. That is, the material nozzle 412 and the irradiation are performed such that the supply area MA and the irradiation area EA set on the workpiece W as the area for the material nozzle 412 to supply the forming material M coincide (or at least partially overlap).
  • the optical system 411 is aligned.
  • the material nozzle 412 may be aligned so as to supply the modeling material M to the molten pool MP formed by the light EL emitted from the irradiation optical system 411.
  • the drive system 42 moves the shaping head 41.
  • the drive system 42 moves the modeling head 41 along at least one of the X axis, the Y axis, and the Z axis.
  • the irradiation area EA moves on the workpiece W along at least one of the X axis and the Y axis.
  • the drive system 42 may move the modeling head 41 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, in addition to at least one of the X axis, the Y axis, and the Z axis.
  • the drive system 42 includes, for example, a motor.
  • the drive system 42 may move the irradiation optical system 411 and the material nozzle 412 separately. Specifically, for example, the drive system 42 may be able to adjust at least one of the position of the ejection portion 413, the orientation of the ejection portion 413, the position of the supply outlet 414, and the orientation of the supply outlet 414. In this case, an irradiation area EA in which the irradiation optical system 411 irradiates the light EL and a supply area MA in which the material nozzle 412 supplies the modeling material M can be separately controlled.
  • the drive system 42 may allow the shaping head 41 to rotate along the rotation axis around the X axis and the rotation axis around the Y axis.
  • the stage 43 can hold the work W. Furthermore, the stage 43 can release the held work W.
  • the irradiation optical system 411 described above irradiates the light EL in at least a part of a period in which the stage 43 holds the work W.
  • the material nozzle 412 described above supplies the build material M in at least a part of a period in which the stage 43 holds the workpiece W.
  • a part of the modeling material M supplied by the material nozzle 412 may scatter or spill out from the surface of the workpiece W to the outside of the workpiece W (for example, to the periphery of the stage 43).
  • the shaping system 1 may be provided with a recovery device for recovering the scattered or spilled build material M around the stage 43.
  • the stage 43 may be provided with a mechanical chuck, a vacuum suction chuck or the like to hold the workpiece W.
  • the light source 5 emits, for example, at least one of infrared light, visible light and ultraviolet light as light EL. However, other types of light may be used as the light EL.
  • the light EL is a laser light.
  • the light source 5 may include a laser light source (for example, a semiconductor laser such as a laser diode (LD: Laser Diode) etc.
  • LD Laser Diode
  • the laser light source a fiber laser, a CO 2 laser, a YAG laser, an excimer laser, etc.
  • the light EL may not be laser light, and the light source 5 may include any light source (for example, at least one of an LED (Light Emitting Diode), a discharge lamp, etc.) .
  • the gas supply device 6 is a supply source of purge gas.
  • the purge gas contains an inert gas. Nitrogen gas or argon gas is mentioned as an example of inert gas.
  • the gas supply device 6 supplies a purge gas into the chamber 44 of the modeling device 4. As a result, the internal space of the chamber 44 becomes a space purged by the purge gas.
  • the gas supply device 6 may be a cylinder in which an inert gas such as nitrogen gas or argon gas is stored. When the inert gas is nitrogen gas, the nitrogen gas is generated from the atmosphere as a raw material. It may be a nitrogen gas generator.
  • the control device 7 controls the operation of the modeling system 1.
  • the control device 7 may include, for example, a central processing unit (CPU) and a memory.
  • the control device 7 controls the emission mode of the light EL by the irradiation optical system 411.
  • the emission mode includes, for example, at least one of the intensity of the light EL and the emission timing of the light EL.
  • the emission mode includes, for example, at least one of the length of emission time of pulsed light and the ratio of emission time to extinction time of pulsed light (so-called duty ratio). It is also good.
  • the control device 7 controls the movement mode of the modeling head 41 by the drive system 42.
  • the movement mode includes, for example, at least one of movement amount, movement speed, movement direction, and movement timing. Furthermore, the control device 7 controls the supply mode of the build material M by the material nozzle 412.
  • the supply mode includes, for example, at least one of the supply amount (in particular, the supply amount per unit time) and the supply timing.
  • the control device 7 may not be provided inside the modeling system 1, and may be provided as a server or the like outside the modeling system 1, for example.
  • a forming operation by the forming system 1 (that is, an operation for forming a three-dimensional structure ST) will be described.
  • the shaping system 1 forms the three-dimensional structure ST by the laser buildup welding method.
  • modeling system 1 may form three-dimensional structure ST by performing existing modeling operation based on a laser build-up welding method.
  • an example of the shaping operation of the three-dimensional structure ST by the laser buildup welding method will be briefly described.
  • the modeling system 1 forms the three-dimensional structure ST on the workpiece W based on three-dimensional model data (for example, CAD (Computer Aided Design) data) of the three-dimensional structure ST to be formed.
  • Contact-type three-dimensional coordinate measuring machine with a probe that can contact the workpiece W Non-contact-type three-dimensional measuring machine (as an example, a pattern projection-type three-dimensional measuring machine, a light cutting-type three-dimensional ⁇ Of-flight 3D measuring machine, moire topographic 3D measuring machine, holographic interference 3D measuring machine, CT (Computed Tomography) 3D measuring machine, MRI (Magnetic resonance imaging) Measurement data of a three-dimensional measuring instrument, etc.
  • the modeling system 1 has a three-dimensional structure.
  • a plurality of layered partial structures hereinafter, referred to as “structural layers”) SL arranged along the Z-axis direction are sequentially formed.
  • a plurality of structural layers SL obtained by slicing the dimensional structure ST along the Z-axis direction are sequentially formed one by one, as a result, it is a laminated structure in which the plurality of structural layers SL are laminated.
  • a three-dimensional structure ST is formed A flow of operations for forming a three-dimensional structure ST by sequentially forming a plurality of structural layers SL one by one will be described below.
  • the shaping system 1 sets the irradiation area EA in a desired area on the modeling surface CS corresponding to the surface of the workpiece W or the surface of the formed structural layer SL under the control of the control device 7 and for the irradiation area EA.
  • the light EL is emitted from the irradiation optical system 411.
  • the area occupied by the light EL emitted from the irradiation optical system 411 on the modeling surface CS may be referred to as an irradiation area EA.
  • the focus position (that is, the light collection position) of the light EL coincides with the modeling surface CS. As a result, as shown in FIG.
  • a molten pool (that is, a pool of metal melted by light EL) MP is formed in a desired region on the modeling surface CS by the light EL emitted from the irradiation optical system 411 Ru. Furthermore, the forming system 1 sets the supply area MA in a desired area on the forming surface CS under the control of the controller 7, and supplies the forming material M from the material nozzle 412 to the supply area MA.
  • the supply area MA is set to the area in which the molten pool MP is formed. For this reason, the shaping system 1 supplies the shaping material M to the molten pool MP from the material nozzle 412, as shown in FIG.
  • the shaping material M supplied to the molten pool MP is melted.
  • the modeling material M melted in the molten pool MP is cooled and solidified again (that is, solidified).
  • the resolidified shaping material M is deposited on the shaping surface CS. That is, a shaped object is formed by the deposit of the modeling material M resolidified.
  • a series of shaping processes including formation of the molten pool MP by such light irradiation EL, supply of the forming material M to the molten pool MP, melting of the supplied forming material M, and resolidification of the molten forming material M,
  • the process is repeated while moving the modeling head 41 relative to the modeling surface CS along the XY plane. That is, when the modeling head 41 moves relative to the modeling surface CS, the irradiation area EA also moves relative to the modeling surface CS. Therefore, a series of formation processing is repeated while moving the irradiation area EA relative to the formation surface CS along the XY plane (that is, in a two-dimensional plane).
  • the modeling system 1 moves the irradiation area EA along the predetermined movement trajectory on the modeling surface CS and at a timing according to the distribution pattern of the area where the modeling object is desired to be formed (that is, the pattern of the structural layer SL).
  • the light EL is applied to the shaped surface CS.
  • the molten pool MP also moves on the modeling surface CS along the movement trajectory according to the movement trajectory of the irradiation area EA.
  • the molten pool MP is sequentially formed on a portion of the region along the movement trajectory of the irradiation region EA on the modeling surface CS where the light EL is irradiated.
  • the supply area MA also moves on the modeling surface CS along the movement locus according to the movement locus of the irradiation area EA. Become.
  • a structural layer SL corresponding to an aggregate of shaped objects by the solidified shaped material M is formed on the shaped surface CS.
  • a structural layer SL corresponding to an aggregate of shaped objects formed on the modeling surface CS in a pattern according to the movement trajectory of the molten pool MP ie, a shape according to the movement trajectory of the molten pool MP in plan view
  • the structural layer SL is formed.
  • irradiation area EA is set to the area which does not want to form a modeling thing, while irradiating light EL to irradiation area EA, supply of modeling material M may be stopped.
  • the modeling material M is supplied to the irradiation area EL, and the irradiation area EL is irradiated with the light EL having an intensity that the molten pool MP can not be used. May be
  • the irradiation area EA is, as shown in FIG. 3A, the movement of the irradiation area EA along the Y-axis direction and X
  • the movement of the irradiation area EA along the axial direction may be repeated along a first movement locus that is repeated.
  • the irradiation area EA is the movement of the irradiation area EA to the + Y side, the movement of the irradiation area EA to the + X side, the movement of the irradiation area EA to the -Y side, and the irradiation area EA.
  • the modeling system 1 irradiates the light EL at a timing when the irradiation area EA is set to the area on which the modeling object is to be formed on the modeling surface CS.
  • the movement amount of the irradiation area EA along the Y-axis direction in particular, the movement amount for one movement until the movement direction of the irradiation area EA switches to the X-axis direction
  • the movement amount of the irradiation area EA along the X-axis direction is larger.
  • the shaping system 1 is configured such that the irradiation area EA is along the Y axis (or one of the X axis and the Y axis that has a large amount of movement of one movement of the irradiation area EA).
  • the light EL is irradiated during the moving period, and the irradiation area EA is along the X axis (or the X axis and the Y axis, or the other of the X axis and the Y axis, which has a small moving amount of one movement of the irradiation area EA).
  • 3A can be said to be a movement locus corresponding to scanning in a so-called raster scan.
  • the possibility that the movement locus of the irradiation area EA intersects on the modeling surface CS is not limited to zero, the movement locus of the irradiation area EA hardly intersects.
  • the irradiation area EA may move along a second movement trajectory along the pattern of the structural layer SL, as shown in FIG. 3 (b). Also in this case, the modeling system 1 irradiates the light EL at the timing when the irradiation area EA is set to the area on which the modeling object is to be formed on the modeling surface CS. However, since the irradiation area EA moves along the second movement locus along the pattern of the structural layer SL, the irradiation area EA substantially corresponds to an area where it is desired to form a shaped object on the modeling surface CS. It can be said that they almost overlap.
  • the shaping system 1 may continue to emit the light EL while the irradiation area EA is moving.
  • the molten pool MP also moves along the second movement trajectory along the pattern of the structural layer SL.
  • a shaping process is performed to grow the shaped object in the direction in which the irradiation area EA moves relative to the structural layer SL.
  • the movement locus shown in FIG. 3B can be said to be a movement locus corresponding to a so-called vector scan.
  • the control device 7 moves the irradiation area EA so that the movement locus of the irradiation area EA does not intersect on the modeling surface CS (in particular, the movement locus of the molten pool MP does not intersect on the modeling surface CS)
  • the trajectory may be set. However, depending on the distribution pattern on the modeling surface CS of the area where it is desired to form a shaped object, the movement locus of the irradiation area EA (in particular, the movement locus of the molten pool MP) may intersect on the modeling surface CS.
  • the irradiation area EA is moved with respect to the modeling surface CS by moving the modeling head 41 (that is, the light EL) with respect to the modeling surface CS, but the modeling surface CS may be moved. , And both the shaping head 41 (i.e., the light EL) and the shaping surface CS may be moved.
  • the modeling system 1 repeatedly performs an operation for forming such a structural layer SL based on three-dimensional model data under the control of the control device 7. Specifically, first, three-dimensional model data is sliced at a lamination pitch to create slice data. In addition, you may use the data which corrected this slice data partially according to the characteristic of the modeling system 1.
  • FIG. The modeling system 1 performs an operation for forming the first structural layer SL # 1 on the modeling surface CS corresponding to the surface of the workpiece W, ie, three-dimensional model data corresponding to the structural layer SL # 1, ie, a structural layer This is performed based on slice data corresponding to SL # 1. As a result, as shown in FIG. 4A, the structural layer SL # 1 is formed on the shaped surface CS.
  • the modeling system 1 sets the surface (that is, the upper surface) of the structural layer SL # 1 to the new modeling surface CS, and then forms the second structural layer SL # 2 on the new modeling surface CS.
  • the control device 7 first controls the drive system 42 so that the modeling head 41 moves along the Z axis. Specifically, the controller 7 controls the drive system 42 so that the irradiation area EA and the supply area MA are set to the surface of the structural layer SL # 1 (that is, the new formed surface CS), + Z.
  • the shaping head 41 is moved toward the side. Thereby, the focus position of light EL corresponds to the new modeling surface CS.
  • modeling system 1 performs an operation similar to the operation of forming structural layer SL # 1 under the control of control device 7, and based on slice data corresponding to structural layer SL # 2, on structural layer SL # 1.
  • a structural layer SL # 2 is formed.
  • the same operation is repeated until all structural layers SL constituting the three-dimensional structure ST to be formed on the work W are formed.
  • a three-dimensional structure ST is formed by a laminated structure in which a plurality of structural layers SL are laminated.
  • the variation suppressing control operation for suppressing the variation in the characteristics of the shaped object (that is, the shaped object constituting each structural layer SL) formed by the shaping operation will be described.
  • the modeling system 1 performs at least one of the first variation suppression operation, the second variation suppression operation, the third variation suppression operation, and the fourth variation suppression operation. Therefore, hereinafter, the first variation suppression operation to the fourth variation suppression operation will be described in order.
  • the height from the shaped surface CS of the shaped object that is, the size in the Z-axis direction or the size in the Z-axis direction
  • substantially the thickness of the shaped object Shall be used. That is, in the following description, the variation suppressing operation for suppressing the variation in the height of the shaped object will be described.
  • any characteristic other than the height of the shaped object may be used as the characteristic of the shaped object.
  • the size of the shaped object along the shaped surface CS (that is, the size of at least one of the X axis direction and the Y axis direction
  • the width may be used.
  • the first variation suppressing operation is performed when the irradiation area EA is set twice or more in the same area on the modeling surface CS during the layer formation period in which one arbitrary structural layer SL is formed on the modeling surface CS. , Corresponds to the operation for suppressing the variation in height of the shaped object.
  • the height for each position in the surface where the structural layer SL is located in any one structural layer SL (the size in the direction intersecting the surface where the structural layer SL is located) It may be an operation for suppressing the variation.
  • the irradiation area EA is a structural layer on the modeling surface CS. It moves on the modeling surface CS along the movement trajectory according to the SL pattern.
  • the movement locus of the irradiation area EA intersects on the shaped surface CS.
  • the irradiation area EA is set twice or more in the area WA1 on the shaped surface CS where the movement locus of the irradiation area EA intersects.
  • the irradiation area EA is set only once in the area WA2 on the modeling surface CS where the movement locus of the irradiation area EA does not intersect while overlapping the movement locus of the irradiation area EA. That is, the formed surface CS includes the area WA1 in which the irradiation area EA is set twice or more during the layer formation period, and the area WA2 in which the irradiation area EA is set only once during the layer formation period.
  • the region WA1 can be set as the region in which the irradiation region EA is set M times (M is an integer of 2 or more) during the layer formation period, and the region WA2 is N times the irradiation region EA during the layer formation period
  • a region may be set (N is an integer of 1 or more and satisfies the relationship of N ⁇ M).
  • the number of modeling processes for the area WA1 is different from the number of modeling processes for the area WA2, and specifically, the number of modeling processes for the area WA1 is larger than the number of modeling processes for the area WA2.
  • the number of modeling processes for the area WA2 is smaller than the number of modeling processes for the area WA1.
  • a series of formation including formation of the molten pool MP by irradiation of light described above, supply of the forming material M to the molten pool MP, melting of the supplied forming material M and resolidification of the molten forming material M
  • the processing may be performed twice or more at different timings in which the area WA1 coincides with at least a part of the irradiation area EA. That is, in the area WA1, there is a possibility that the movement loci of the molten pool MP on the shaped surface CS intersect. On the other hand, in the area WA2, a series of modeling processing is not performed twice or more.
  • a series of modeling processing is performed at most only once. That is, in the area WA2, the movement trajectories of the molten pool MP on the shaped surface CS do not intersect.
  • the layer formation period forming one structural layer SL at least a part of the molten pool MP formed for the second and subsequent modeling processing is formed in the area WA1 by the first modeling processing. It may be formed into a shaped object. That is, at least a part of the molten pool MP formed for the second and subsequent modeling processing may be formed of the modeling material M.
  • the series of shaping processes is performed twice or more in the area WA1 while the series of shaping processes is performed only once in the area WA2.
  • the number of times of shaping processes on the area WA1 and the shaping processes to the area WA2 The following technical issues arise if the number of times is different. Specifically, in the area WA1, more shaping material M may be supplied, melted and re-solidified as compared to the area WA2.
  • the formation formed in the area WA1 There is a possibility that the height of the object and the height of the shaped object formed in the area WA2 do not match.
  • the height h1 of the shaped object formed in the area WA1 is the shaped object formed in the area WA2 as many times as the series of shaping processing is performed May be higher than the height h2.
  • the height of the modeled object may vary.
  • the shaped object formed in the region WA1 is referred to as "the shaped object S1"
  • the shaped object formed in the region WA2 is referred to as the "shaped object S2”.
  • the control device 7 (in other words, the shaping system 1 under control of the control device 7) performs the first variation suppressing operation to obtain the height h1 of the shaped object S1 and the shaped object S2 To reduce the variation with the height h2.
  • the operation “suppressing the variation between the height of one shaped object and the height of another shaped object” is higher in height of one shaped object than in the case where the variation suppressing operation is not performed. Includes an operation to reduce the difference between the height and the height of the other object (that is, to reduce the difference).
  • the action “suppress the variation between the height of one shaped object and the height of another shaped object” makes the motion of matching the height of one shaped object with the height of another shaped object (that is, identical). Including.
  • the size of the shaped object formed in the region WA1 (here, in the X-axis direction)
  • the size, substantially the width) w1 becomes larger than the size w2 of the shaped object formed in the area WA2. That is, when the irradiation area EA is set twice or more in a certain area on the modeling surface CS during the layer formation period, there is a possibility that the size of the modeled object may vary.
  • the size of the shaped object (particularly, the size along the XY plane) can be a characteristic of the shaped object whose variation should be suppressed by the first variation suppressing operation.
  • the first variation suppressing operation is an operation for suppressing the variation in the size in the direction along the surface in each position in the surface where the structural layer SL is located in any one structural layer SL. It may be Conversely, if a series of modeling processes are performed without distinguishing the area WA1 and the area WA2 in a situation where a shaped object having the same characteristic is to be formed in the area WA1 and the area WA2, the area WA1 is formed.
  • any characteristic satisfying the condition that the characteristic of the object and the characteristic of the object formed in the area WA2 may not coincide with each other is the characteristic of the object to suppress the variation by the first variation suppressing operation. It may be used. The same applies to the second to fourth variation suppression operations described below.
  • the controller 7 controls (for example, adjusts, changes or sets, for example, the same applies hereinafter) the supply amount of the modeling material M supplied per unit time with respect to the supply area MA (that is, the irradiation area EA or the molten pool MP).
  • the first variation suppressing operation may be performed to reduce the variation of the height of the shaped object.
  • the supply amount of the modeling material M supplied per unit time with respect to the supply area MA will be referred to as a “supply rate” for convenience of description.
  • a unit of the supply amount of the modeling material M you may use weight or volume.
  • the controller 7 controls the amount of heat transferred from the light EL to the modeling surface CS per unit time via the irradiation area EA (that is, the supply area MA) in addition to or instead of controlling the supply rate. Then, the first variation suppression operation may be performed to suppress the variation of the height of the shaped object.
  • the amount of heat transferred from the light EL to the shaped surface CS per unit time via the irradiation area EA will be referred to as a “heat transfer rate” for the convenience of description.
  • the controller 7 relatively moves the irradiation area EA (that is, the supply area MA or the molten pool MP) relative to the shaped surface CS.
  • FIG. 6A to FIG. 6C is a graph in which the horizontal axis represents time and the vertical axis represents the supply rate of the modeling material M. Since the irradiation area EA moves on the formation surface CS with the passage of time, the horizontal axes of FIGS. 6A to 6C substantially set the irradiation area EA on the formation surface It corresponds to the position. In other words, each of FIG. 6A to FIG. 6C shows the supply rate of the modeling material M to the area portion during the period in which the irradiation area EA is set in the certain area portion on the modeling surface CS. ing.
  • the controller 7 determines that (i) the supply rate for the area WA1 is the same as the supply rate for the area WA2 during the period in which the irradiation area EA is set for the first time in the area WA1. And (ii) the supply rate may be controlled such that the supply rate for the area WA1 is zero during the period in which the irradiation area EA is set for the second time to the area WA1.
  • the supply rate for the area WA1 for which the irradiation area EA is set for the first time is the same as the supply rate for the area WA2, and (ii) the area for which the irradiation area EA is set again
  • the supply rate may be controlled such that the supply rate for WA1 is zero.
  • the control device 7 may control the supply rate so that the supply rate for the area WA1 in which the irradiation area EA is set again is lower than the supply rate for the area WA1 in which the irradiation area EA is set for the first time. .
  • the controller 7 determines that (i) the supply rate for the area WA1 in the period in which the irradiation area EA is set for the second time to the area WA1 is the same as the supply rate for the area WA2, and (ii) the area The supply rate may be controlled so that the supply rate for the area WA1 becomes zero during the period in which the irradiation area EA is set for the first time to WA1. That is, the controller 7 determines that (i) the supply rate for the area WA1 in which the irradiation area EA is set at a certain timing is the same as the supply rate for the area WA2, and (ii) the irradiation area EA at another timing.
  • the supply rate may be controlled such that the supply rate for the area WA1 in which is set is zero. Also in the case where the irradiation area EA is set twice or more in the area WA1 during the layer formation period, the controller 7 similarly (i) supplies the supply rate to the area WA1 in which the irradiation area EA is set at a certain timing The supply rate may be controlled so that it becomes the same as the supply rate for WA2 and (ii) the supply rate for the area WA1 where the irradiation area EA is set is zero at other timing.
  • the control device 7 determines that the supply rate for the area WA1 for which the irradiation area EA is set at a certain timing is the same as the supply rate for the area WA2, and for the area WA1 for which the irradiation area EA is set at other timings.
  • the feed rate may be controlled such that the feed rate is lower than the feed rate for the area WA2.
  • the total amount of the modeling material M supplied to the region WA1 during the layer formation period is the same as the total amount of the modeling material M supplied to the region WA2 during the layer formation period . More specifically, the total amount of the modeling material M supplied to the area WA1 of a certain size during the layer formation period and the total amount of the modeling material M supplied to the area WA2 of the same size during the layer formation period are It will be the same.
  • a value obtained by dividing the total amount of the modeling material M supplied to the region WA1 during the layer formation period by the area of the region WA1 (that is, the supply amount of the modeling material M per unit area) Is the same as the value obtained by dividing the total amount of the modeling material M supplied to the area by the area of the area WA2. Therefore, in the area WA1 and the area WA2, the same amount of the modeling material M is supplied, melted, and resolidified per unit area. As a result, the variation between the height h1 of the three-dimensional object S1 formed in the area WA1 and the height h2 of the three-dimensional object S2 formed in the area WA2 is suppressed.
  • the supply rate of the modeling material M may be controlled in consideration of this non-linear relationship.
  • the supply rate may be controlled in consideration of the non-linear relationship.
  • the control device 7 supplies the forming material M to the area WA1 every time the irradiation area EA is set in the area WA1 (ie, The supply rate may be controlled so that the supply rate to the area WA1 does not become zero).
  • the control device 7 supplies the supply rate to the area WA1 during the period in which the irradiation area EA is set for the first time in the area WA1, and the area WA1 for the period in which the irradiation area EA is set for the second time in the area WA1.
  • the supply rate is controlled so that both of the supply rates for ⁇ ⁇ ⁇ ⁇ ⁇ are smaller than the supply rate for the area WA2. As shown in FIG.
  • the control device 7 supplies the supply rate to the area WA1 during the period in which the irradiation area EA is set for the first time in the area WA1, and the irradiation area EA for the second time in the area WA1.
  • the supply rate may be controlled to be different from the supply rate for the area WA1 in the set period.
  • the control device 7 supplies the supply rate to the area WA1 during the period in which the irradiation area EA is set for the first time in the area WA1, and the irradiation area EA for the second time in the area WA1.
  • the supply rate may be controlled to be the same as the supply rate for the area WA1 during the set period.
  • the layer formation is compared with the case where the supply rate for the area WA1 and the supply rate for the area WA2 are always the same.
  • the difference between the total amount of the modeling material M supplied to the region WA1 during the period and the total amount of the modeling material M supplied to the region WA2 during the layer formation period is reduced.
  • the variation between the height h1 of the three-dimensional object S1 formed in the area WA1 and the height h2 of the three-dimensional object S2 formed in the area WA2 is suppressed.
  • control device 7 controls the supply rate so that the modeling material M is supplied to the area WA1 every time the irradiation area EA is set in the area WA1, the control supplied to the area WA1 during the layer formation period With respect to the area WA1 in the period in which the irradiation area EA is set for the first time in the area WA1, so that the total amount of the material M and the total amount of the forming material M supplied to the area WA2 during the layer formation period become the same.
  • the supply rate and the supply rate to the area WA1 during the period in which the irradiation area EA is set for the second time to the area WA1 may be controlled. As a result, as in the case where the supply rate is controlled as shown in FIG.
  • the total amount of the modeling material M supplied to the area WA1 during the layer formation period and the area WA2 are supplied during the layer formation period It becomes the same as the total amount of the shaping material M.
  • the variation between the height h1 of the three-dimensional object S1 formed in the area WA1 and the height h2 of the three-dimensional object S2 formed in the area WA2 is more appropriately suppressed.
  • the supply rate may be controlled in consideration of this non-linear relationship.
  • the supply rate may be controlled in consideration of the non-linear relationship.
  • the control device 7 supplies the area WA1 in each period in which the irradiation area EA is set in the area WA1.
  • the supply rate may be controlled so that the rate is smaller than the supply rate for the area WA2.
  • the control device 7 controls the region so that the total amount of the modeling material M supplied to the region WA1 during the layer formation period is the same as the total amount of the modeling material M supplied to the region WA2 during the layer formation period.
  • the supply rate to the area WA1 may be controlled in each period in which the irradiation area EA is set to WA1. Note that the supply rate may be controlled so that the total amount of the modeling material M supplied to the region WA1 during the layer formation period and the total amount of the modeling material M supplied to the region WA2 during the layer formation period are different. .
  • the controller 7 may control the supply amount (that is, the injection amount) of the build material M from the material nozzle 412 per unit time to control the supply rate. Specifically, as shown in FIG. 7, as the supply amount of the modeling material M from the material nozzle 412 per unit time increases, the supply rate increases. For this reason, the control device 7 can control the supply rate by controlling the supply amount of the modeling material M from the material nozzle 412 per unit time.
  • the controller 7 controls the material supply device 3 to control the supply amount of the build material M per unit time from the material nozzle 412 so that the unit of the build material M from the material supply device 3 to the material nozzle 412 The supply rate per hour may be controlled.
  • the controller 7 may control the material nozzle 412 in order to control the supply amount of the building material M per unit time from the material nozzle 412.
  • the control device 7 controls the valve to generate the build material from the material nozzle 412.
  • the supply amount per unit time of M may be controlled.
  • the controller 7 supplies at least a part of the shaping material M supplied from the material nozzle 412 to the supply area MA (ie, to control the supply rate.
  • You may control the gas injection apparatus 461 with which the modeling apparatus 4 is equipped, in order to blow off before reaching the irradiation area
  • the gas ejection device 461 ejects an inert gas toward at least a part of the supply path of the build material M between the material nozzle 412 and the supply area MA.
  • the gas ejection device 461 may eject the inert gas along a direction intersecting the direction of the supply path of the build material M between the material nozzle 412 and the supply area MA.
  • the inert gas ejected by the gas ejection device 461 is supplied from the gas supply device 6 to the gas ejection device 461, for example.
  • the gas ejection device 461 ejects an inert gas, as shown in FIG. 8A, at least a part of the modeling material M supplied from the material nozzle 412 reaches the supply area MA. Before, it is blown away from the supply area MA. That is, at least a portion of the modeling material M supplied from the material nozzle 412 does not reach the supply area MA.
  • the gas ejection device 461 does not eject the inert gas, as shown in FIG. 8B, the shaping material M supplied from the material nozzle 412 is blown away from the supply area MA.
  • the modeling material M supplied from the material nozzle 412 reaches the supply area MA.
  • the gas ejection device 461 ejects the inert gas, compared with the case where the gas ejection device 461 does not eject the inert gas, per unit time of the modeling material M with respect to the supply area MA Supply will be reduced. That is, when the gas ejection device 461 ejects the inert gas, the supply rate is smaller than when the gas ejection device 461 does not eject the inert gas.
  • the control device 7 can control the supply rate by controlling the gas injection device 461.
  • the controller 7 can be inserted into or removed from the supply path of the shaping material M between the material nozzle 412 and the supply area MA in order to control the supply rate.
  • the shielding member 462 disposed in the modeling apparatus 4 may be controlled. Specifically, the shielding member 462 is movable relative to the supply path of the modeling material M by a drive system (for example, an actuator etc.) (not shown). Note that the shielding member 462 may be movable along a direction intersecting the direction of the supply path of the build material M between the material nozzle 412 and the supply area MA. With the movement of the shielding member 462, the shielding member 462 is in the non-shielding state (see FIG.
  • the shielding member 462 does not block the supply path of the modeling material M; It is switchable between the shielding state (refer FIG.9 (b)) which has interrupted the supply path.
  • the shielding member 462 is in the non-shielding state, as shown in FIG. 9A, the modeling material M supplied from the material nozzle 412 reaches the supply area MA without being blocked by the shielding member 462 .
  • the shielding member 462 is in the shielding state, as shown in FIG. 9B, before at least a part of the modeling material M supplied from the material nozzle 412 reaches the supply area MA, It is interrupted by the shielding member 462.
  • the control device 7 can control the supply rate of the modeling material M by controlling the shielding member 462.
  • the shielding member 462 may be in a semi-shielding state in which the shielding member 462 blocks a part of the supply path of the modeling material M.
  • the state of the shielding member 462 may be controlled so that the modeling material M is intermittently supplied to one supply area MA.
  • the ratio of the non-shielding state to the shielding state (duty ratio) may be controlled to control the amount of supply of the modeling material M per unit time to the one supply area MA. At this time, the time of each of the unshielded state and the shielded state may be shorter than the unit time.
  • the gas injection device 461 and the shielding member 462 are both supply amount change devices for suppressing at least a part of the modeling material M supplied from the material nozzle 412 from reaching the supply area MA. .
  • the control device 7 optionally controls the supply rate of the modeling material M.
  • the supply amount change device of In addition, an arbitrary supply amount change device may be provided in at least one of the material supply device 3 and the supply path from the material supply device 3 to the supply outlet 414 of the material nozzle 412. As such a supply rate change device, for example, a valve capable of changing the passing flow rate may be used.
  • such a valve capable of changing the passing flow rate may be provided in at least one of the material supply device 3 and the supply passage.
  • a valve for example, a butterfly valve, a gate valve, a globe valve, a ball valve or the like may be used.
  • the controller 7 may control the supply direction (that is, the injection direction) of the build material M from the material nozzle 412 in order to control the supply rate. Specifically, as shown in FIGS. 10A and 10B, the control device 7 controls the direction of the material nozzle 412 with respect to the modeling surface CS to make it possible to form the molding material M from the material nozzle 412.
  • the feed direction may be controlled.
  • the orientation of the material nozzle 412 can be controlled by moving the material nozzle 412 using the drive system 42. However, in this case, the drive system 42 moves the irradiation optical system 411 and the material nozzle 412 separately.
  • the state of the material nozzle 412 can be supplied to the supply area MA (that is, the irradiation area EA or the molten pool MP) so as to supply the modeling material M (see FIG. 10A).
  • the non-supplying state in which the modeling material M can not be supplied toward the supply area MA (that is, the irradiation area EA or the molten pool MP).
  • the modeling material M supplied from the material nozzle 412 does not reach the supply area MA. Therefore, the longer the period in which the material nozzle 412 is in the non-supply state, the smaller the supply amount of the build material M per unit time to the supply area MA. That is, the longer the period in which the material nozzle 412 is in the non-supply state, the lower the supply rate of the build material M. For this reason, the control device 7 can control the supply rate of the build material M by controlling the supply direction of the build material M.
  • the state of the material nozzle 412 may be a half-supply state in which the modeling material M can be supplied toward a part of the supply area MA (that is, the irradiation area EA or the molten pool MP). In this case, the area of the part where the build material is supplied from the material nozzle 412 may be changed to control the supply rate of the build material M.
  • FIGS. 11A to 11C shows the supply rate of the molding material M when the irradiation area EA is set twice in the area WA1 during the layer formation period. Shows a control method of
  • FIGS. 11 (a) to 11 (c) is a graph in which the horizontal axis represents time and the vertical axis represents the heat transfer rate. Since the irradiation area EA moves on the shaped surface CS with the passage of time, the horizontal axes in FIGS. 11A to 11C correspond to the horizontal axes in FIGS. 6A to 6C described above. Similarly, it corresponds to the position where the irradiation area EA is set on the modeling surface CS.
  • the controller 7 determines that (i) the heat transfer rate to the area WA1 during the period in which the irradiation area EA is set for the first time to the area WA1 is the heat transfer rate to the area WA2 and The heat transfer rate may be controlled so that the heat transfer rate with respect to the area WA1 becomes zero during the same period and (ii) the irradiation area EA is set for the second time in the area WA1.
  • the control device 7 applies the light EL to the area WA1 for which (i) the irradiation area EA is set for the first time in the same manner as the area WA2, and (ii) the area for which the irradiation area EA is set again.
  • the modeling apparatus 4 is controlled so as not to irradiate the light EL to the WA1.
  • the control device 7 controls the heat transfer rate so that the heat transfer rate to the area WA1 for which the irradiation area is set for the second time is lower than the heat transfer rate for the area WA1 for which the irradiation area is set for the first time.
  • the control device 7 controls the intensity or energy per unit time of the light EL for the region WA1 for which the irradiation region is set for the second time, or the intensity for unit light of the light EL for the region WA1 for which the irradiation region is set for the first time Alternatively, it may be controlled to be lower than energy.
  • the controller 7 determines that (i) the heat transfer rate to the area WA1 during the period in which the irradiation area EA is set for the second time to the area WA1 is the same as the heat transfer rate to the area WA2;
  • the heat transfer rate may be controlled so that the heat transfer rate to the area WA1 becomes zero during the period in which the irradiation area EA is set to the area WA1 for the first time. That is, in the control device 7, (i) the heat transfer rate to the area WA1 in which the irradiation area EA is set at a certain timing becomes the same as the heat transfer rate to the area WA2, and (ii) the irradiation is performed at other timings.
  • the heat transfer rate may be controlled so that the heat transfer rate to the area WA1 where the area EA is set is zero. Similarly, even when the irradiation area EA is set twice or more in the area WA1 during the layer formation period, the controller 7 (i) sets the heat transfer rate to the area WA1 in which the irradiation area EA is set at a certain timing. The heat transfer rate may be controlled to be the same as the heat transfer rate for the area WA2 and (ii) the heat transfer rate for the area WA1 where the irradiation area EA is set to be zero at other timings. .
  • the control device 7 controls the heat transfer rate so that the heat transfer rate to the area WA1 in which the irradiation area is set for the first time is lower than the heat transfer rate for the area WA1 in which the irradiation area is set for the second time. You may In addition, the control device 7 controls the intensity or energy per unit time of the light EL for the region WA1 for which the irradiation region is set for the first time or the intensity for light unit for the region WA1 for which the irradiation region is set for the second time. Alternatively, it may be controlled to be lower than energy.
  • the heat transfer rate to the area WA1 in which the irradiation area EA is set at a certain timing is the same as the heat transfer rate to the area WA2, and the area in which the irradiation area EA is set at other timings.
  • the heat transfer rate may be controlled such that the heat transfer rate for WA1 is lower than the heat transfer rate for area WA2.
  • the total amount of heat transferred from the light EL to the area WA1 during the layer formation period and the total amount of heat transferred from the light EL to the area WA2 during the layer formation period are It will be the same. More specifically, the total amount of heat transferred from the light EL to the area WA1 of a certain size during the layer formation period and the total amount of heat transferred from the light EL to the area WA2 of the same size during the layer formation period And will be the same.
  • a value obtained by dividing the total amount of heat transferred from the light EL to the region WA1 during the layer formation period by the area of the region WA1 (that is, the amount of heat transferred from the light EL per unit area)
  • the total amount of heat transferred from the light EL to the area WA2 is the same as the value obtained by dividing the area by the area WA2. Therefore, in the area WA1 and the area WA2, the same amount of the modeling material M is supplied, melted, and resolidified per unit area.
  • the reason is that there is a possibility that a larger amount of the modeling material M may be melted as the amount of heat transferred from the light EL increases, and the total amount of heat transferred from the light EL to the area WA1 and the heat from the light EL to the area WA2 Since the total amount of heat applied is the same, the amount of melting of the shaping material M in the area WA1 (specifically, the amount of melting per unit area, the same applies hereinafter) and the melting amount of the shaping material M in the area WA2 are It is because the possibility of becoming the same is relatively high.
  • the heat transfer rate may be controlled in consideration of this non-linear relationship.
  • a molten pool MP having the same size as the area WA2 is formed in the area WA1. This is because there is a possibility that a larger molten pool MP is formed as the amount of heat transferred from the light EL increases, and the total amount of heat transferred from the light EL to the area WA1 and the heat transferred from the light EL to the area WA2 The reason is that the size of the molten pool MP formed in the area WA1 and the size of the molten pool MP formed in the area WA2 are relatively likely to be the same.
  • the variation between the height h1 of the object S1 formed in the area WA1 and the height h2 of the object S2 formed in the area WA2 is suppressed. .
  • a relatively high shaped object may be formed.
  • the size of the molten pool MP formed in the area WA1 and the size of the molten pool MP formed in the area WA2 are the same, the height h1 of the object S1 formed in the area WA1 And the variation in height h2 of the object S2 formed in the area WA2 are suppressed. As a result, the formation accuracy of the three-dimensional structure ST, which is an assembly of three-dimensional objects, is improved.
  • the control device 7 causes the area WA1 to be irradiated with the light EL each time the irradiation area EA is set in the area WA1 (ie, the area
  • the heat transfer rate may be controlled so that the heat transfer rate to WA1 does not become zero.
  • the controller 7 controls the heat transfer rate to the area WA1 during the first setting of the irradiation area EA in the area WA1, and the area during the second setting of the irradiation area EA in the area WA1.
  • the supply rate of the build material M is controlled such that both of the heat transfer rates for WA1 are smaller than the heat transfer rate for the area WA2. As shown in FIG.
  • the controller 7 controls the heat transfer rate to the area WA1 during the first setting of the irradiation area EA in the area WA1, and the second irradiation area EA in the area WA1.
  • the heat transfer rate may be controlled so that the heat transfer rate to the area WA1 is different from the time period in which the ⁇ is set.
  • the control device 7 sets the heat transfer rate to the area WA1 during the first setting of the irradiation area EA in the area WA1 and the second irradiation area EA in the area WA1.
  • the heat transfer rate may be controlled so that the heat transfer rate with respect to the area WA1 in the period in which is set is the same.
  • the heat transfer rate for the area WA1 and the heat transfer rate for the area WA2 are always equal to each other.
  • the difference between the total amount of heat transferred to the region WA1 during the layer formation period and the total amount of heat transferred to the region WA2 during the layer formation period decreases.
  • the variation between the height h1 of the three-dimensional object S1 formed in the area WA1 and the height h2 of the three-dimensional object S2 formed in the area WA2 is suppressed. If the relationship between the heat transfer rate and the heights h1 and h2 of the object is nonlinear, the heat transfer rate may be controlled in consideration of this non-linear relationship.
  • the control device 7 controls the heat transfer rate such that the light EL is irradiated to the area WA1 every time the irradiation area EA is set to the area WA1, the heat transmitted to the area WA1 during the layer formation period And the heat transfer rate to the area WA1 during the period when the irradiation area EA is set for the first time in the area WA1 so that the total amount of heat transferred to the area WA2 during the layer formation period becomes the same.
  • the heat transfer rate to the area WA1 may be controlled during the period in which the irradiation area EA is set for the second time in the area WA1. As a result, as in the case where the heat transfer rate is controlled as shown in FIG.
  • the total amount of heat transferred to the area WA1 during the layer formation period and the area WA2 are transmitted during the layer formation period.
  • the total amount of heat is the same.
  • the variation between the height h1 of the shaped object S1 formed in the area WA1 and the height h2 of the shaped object S2 formed in the area WA2 is more appropriately suppressed.
  • the control device 7 similarly heats the area WA1 in each period in which the irradiation area EA is set in the area WA1.
  • the heat transfer rate may be controlled so that the transfer rate is smaller than the heat transfer rate for the area WA2.
  • the control device 7 irradiates the area WA1 with the irradiation area such that the total amount of heat transferred to the area WA1 during the layer formation period is the same as the total amount of heat transmitted to the area WA2 during the layer formation period.
  • the heat transfer rate to the area WA1 may be controlled during each period in which the EA is set.
  • the controller 7 may control the intensity or energy amount per unit area of the light EL on the irradiation area EA in order to control the heat transfer rate. Specifically, as shown in FIG. 12, the heat transfer rate increases as the intensity or energy amount per unit area of the light EL on the irradiation area EA increases. Therefore, the control device 7 can control the heat transfer rate by controlling the intensity or the energy amount per unit area of the light EL on the irradiation area EA.
  • the controller 7 may control the light source 5 in order to control the intensity per unit area of the light EL on the irradiation area EA.
  • the control device 7 may control the intensity of the light EL emitted by the light source 5.
  • the intensity per unit area of the light EL on the irradiation area EA increases as the emission time of the pulse light increases (in other words, as the extinction time of the pulse light decreases). . Therefore, when the light EL is pulse light, for example, the control device 7 may control the duty ratio of the light EL emitted by the light source 5.
  • the control device 7 may control the irradiation optical system 411 in order to control the intensity or energy amount per unit area of the light EL on the irradiation area EA.
  • the control device 7 may control the intensity or the energy amount of the light EL emitted by the irradiation optical system 411.
  • the irradiation optical system 411 may include an optical member for adjusting the intensity or energy amount of the light EL in the irradiation optical system 411.
  • the control device 7 performs irradiation with the irradiation optical system 411 as shown in FIGS. 13 (a) and 13 (b).
  • the light blocking member 471 disposed in the modeling apparatus 4 may be controlled so as to be insertable into and removable from the light path of the light EL between the area EA.
  • the light shielding member 471 is movable with respect to the light path of the light EL by a drive system (for example, an actuator or the like) (not shown). With the movement of the light blocking member 471, the light blocking member 471 is in the light blocking state blocking the light path of the light EL (see FIG.
  • the light shielding member 471 may be controlled by the control device 7 to be in a semi-light shielding state in which a part of the light EL emitted from the irradiation optical system 411 is shielded.
  • the control device 7 may control the ratio between the period in which the light shielding member 471 is in the light shielding state and the period in which the light shielding member 471 is in the non-light shielding state. The longer the period in which the light shielding member 471 is in the light shielding state (in other words, the shorter the period in which the light shielding member 471 is in the non-light shielding state), the smaller the intensity per unit area of the light EL on the irradiation area EA.
  • the light shielding member 471 may be provided inside the irradiation optical system 411, or may be provided in the optical path between the light source 5 and the irradiation optical system 411.
  • the control device 7 may control the focus position (in other words, the defocus amount) of the light EL in order to control the heat transfer rate.
  • the focus position in other words, the defocus amount
  • the intensity or energy amount per unit area of the light EL on the irradiation area EA set on the modeling surface CS increases as the focus position moves away from the modeling surface CS (that is, as the defocus amount increases). It becomes smaller. Therefore, the heat transfer rate decreases as the focus position moves away from the modeling surface CS (that is, as the defocus amount increases). Therefore, the control device 7 can control the heat transfer rate by controlling the focus position.
  • the control device 7 may control the condensing optical element 472 provided in the irradiation optical system 411. FIG.
  • the controller 7 may control the drive system 42 in order to control the focus position. Specifically, the control device 7 moves the modeling head 41 (in particular, the irradiation optical system 411) along the Z axis with respect to the modeling surface CS, to thereby obtain the relative position between the modeling surface CS and the focus position.
  • the controller 7 controls the stage 43 (that is, the modeling surface CS) along the Z axis with respect to the modeling head 41.
  • the relative position between the modeling surface CS and the focus position may be controlled.
  • the relative position between the modeling surface CS and the focus position may be controlled by moving a part of the optical member constituting the irradiation optical system 411.
  • the controller 7 may control the intensity distribution or the energy amount distribution of the light EL in the irradiation area EA in order to control the heat transfer rate.
  • the control of the intensity or energy amount per unit area of the light EL in the irradiation area EA and the control of the focus position described above are one specific example of the control of the intensity distribution of the light EL in the irradiation area EA.
  • the control device 7 may control an optical member for adjusting the intensity distribution included in the irradiation optical system 411.
  • a filter having a required concentration distribution in a plane crossing the optical path of the light EL As an optical member for adjusting the intensity distribution, a filter having a required concentration distribution in a plane crossing the optical path of the light EL, an aspheric optical member having a desired surface shape in a plane crossing the optical path of the light EL
  • a refractive optical member or a reflective optical member For example, at least one of a refractive optical member or a reflective optical member, a diffractive optical element, a spatial light modulator, and the like can be used.
  • the controller 7 may control at least one of the size, the shape, and the position of the irradiation area EA on the shaped surface CS in order to control the heat transfer rate.
  • the control device 7 can control the heat transfer rate by controlling at least one of the size, the shape, and the position of the irradiation area EA on the shaped surface CS.
  • the controller 7 may control any characteristic of the light EL that has a correlation with the intensity of the light EL in order to control the heat transfer rate.
  • the controller 7 may control any characteristic of the light EL correlated with the heat transfer rate to control the heat transfer rate.
  • the arbitrary characteristic of such light EL at least one of the size, the shape, and the position of the irradiation area EA on the shaped surface CS can be mentioned. The reason is that if at least one of the size, the shape, and the position of the irradiation area EA on the modeling surface CS changes, the intensity distribution of the light EL on the modeling surface CS changes.
  • the wavelength of light EL which goes to the modeling surface CS may be sufficient as an example of arbitrary characteristics.
  • the absorptivity of light in the modeling material M is different, so that the heat transfer rate which is the heat quantity transmitted from the light EL to the modeling surface CS changes per unit time.
  • a molten pool is formed in the modeling thing of modeling material M in the modeling processing of the 2nd time or subsequent as mentioned above.
  • the absorptivity of light EL of modeling surface CS and modeling material M from light EL may differ.
  • the heat transfer rate may be controlled in consideration of the absorptivity of the light EL of the portion to which the light EL is irradiated.
  • FIGS. 15 (a) and 15 (b) indicate the moving speed of the irradiation area EA when the irradiation area EA is set twice in the area WA1 during the layer formation period. Shows a control method of
  • the horizontal axis represents time
  • the vertical axis represents the moving speed of the irradiation area EA.
  • the horizontal axis of FIGS. 15A and 15B corresponds to the horizontal axes of FIGS. 6A to 6C described above because the irradiation area EA moves on the shaped surface CS with the passage of time. Similarly, it corresponds to the position where the irradiation area EA is set on the modeling surface CS.
  • the controller 7 controls the moving speed of the irradiation area EA during the first setting of the irradiation area EA in the area WA1 and the second moving time in the area WA1.
  • the irradiation is performed such that the moving speed of the irradiation area EA in the period in which the irradiation area EA is set is faster than the moving speed of the irradiation area EA in the period in which the irradiation area EA is set in the area WA2. Control the moving speed of the area EA.
  • the control device 7 moves the irradiation area EA during the period in which the irradiation area EA is set for the first time in the area WA1, and the second irradiation area EA for the area WA1.
  • the moving speed of the irradiation area EA may be controlled so as to be different from the moving speed of the irradiation area EA during the period in which is set.
  • the control device 7 moves the irradiation area EA during the period in which the irradiation area EA is set for the first time to the area WA1, and the second irradiation area EA for the area WA1.
  • the moving speed of the irradiation area EA may be controlled so that the moving speed of the irradiation area EA is the same during the period in which the value of .alpha.
  • the faster the moving speed of the irradiation area EA the shorter the time in which the irradiation area EA is set in a certain area portion on the modeling surface CS.
  • the shorter the time in which the irradiation area EA is set in a certain area portion on the modeling surface CS the smaller the amount of heat transferred from the light EL to the area portion.
  • the amount of heat transferred from the light EL to a certain area portion on the shaped surface CS decreases, the amount of melting of the modeling material M in the relevant area portion decreases.
  • the moving speed of the irradiation area EA is faster, the moving speed of the supply area MA set at the same position as the irradiation area EA is faster.
  • the difference between the total amount of the forming material M melted in the region WA1 and the total amount of the forming material M melted in the region WA2 during the layer formation period becomes small. More specifically, the difference between the total amount of the forming material M melted in the area WA1 of a certain size during the layer formation period and the total amount of the forming material M melted in the area WA2 of the same size during the layer formation period is It becomes smaller.
  • the control device 7 moves the irradiation area EA so that the total amount of the modeling material M melted in the region WA1 during the layer formation period is the same as the total amount of the modeling material M melting in the region WA2 during the layer formation period.
  • the speed may be controlled. For example, when the irradiation area EA is set N times (where N is an integer of 2 or more) times in the area WA1, the control device 7 performs the process in the area WA1 when a series of modeling processes are performed N times.
  • the irradiation area is set such that the moving speed of the irradiation area EA in each period in which the irradiation area EA is set is N times the moving speed of the irradiation area EA in the period in which the irradiation area EA is set in the area WA2.
  • the moving speed of the EA may be controlled.
  • the control device 7 sets the irradiation area EA in the area WA1.
  • the moving speed of the irradiation area EA is controlled so that the average moving speed of the irradiation area EA in each period is the same as the moving speed of the irradiation area EA in the period in which the irradiation area EA is set in the area WA2. May be As a result, the variation between the height h1 of the shaped object S1 formed in the area WA1 and the height h2 of the shaped object S2 formed in the area WA2 is more appropriately suppressed.
  • the moving speed may be controlled in consideration of the non-linear relationship.
  • the controller 7 may control the drive system 42 to control the moving speed of the irradiation area EA. That is, the control device 7 controls the relative movement speed of the irradiation area EA with respect to the formation surface CS by controlling the movement speed of the formation head 41 (in particular, the movement speed in the direction along the XY plane). Good. As described later, when the modeling apparatus 4 includes a drive system for moving the stage 43, the control device 7 controls the moving speed of the stage 43 (in particular, the moving speed in the direction along the XY plane). Thus, the relative moving speed of the irradiation area EA with respect to the shaped surface CS may be controlled.
  • the control device 7 controls the optical member capable of deflecting the light EL. Then, the relative moving speed of the irradiation area EA with respect to the shaped surface CS may be controlled.
  • the second variation suppressing operation suppresses variations in the height of a shaped object, etc., when there is a region in the shaped surface CS having different characteristics (hereinafter referred to as “thermal characteristics”) to the heat transmitted from the light EL
  • thermal characteristics a region having different thermal characteristics due to the difference in relative moving speed of the irradiation region EA (that is, the supply region MA or the molten pool MP) with respect to the formation surface CS
  • the second variation suppressing operation corresponds to the operation for suppressing the variation in the height of the object.
  • the irradiation area EA moves on the modeling surface CS along the movement locus.
  • the irradiation area EA does not always move at a constant moving speed along the movement trajectory. That is, the moving speed of the irradiation area EA may change during the layer formation period.
  • the moving direction of the irradiation area EA may change at a certain point P3 on the modeling surface CS. In this case, as shown in FIG.
  • the moving speed of the irradiation area EA which was initially constant, gradually decreases as the irradiation area EA approaches the point P3. After that, the moving speed of the irradiation area EA becomes minimum (for example, becomes zero) when the irradiation area EA reaches the point P3. Thereafter, the moving speed of the irradiation area EA gradually increases as the irradiation area EA moves away from the point P3. Thereafter, after the moving speed of the irradiation area EA has increased to some extent, the irradiation area EA moves at a constant moving speed.
  • the time during which the irradiation area EA is set in a certain area portion on the shaped surface CS also changes.
  • the time in which the irradiation area EA is set in a certain area portion on the modeling surface CS changes, the amount of heat transferred from the light EL to the area portion also changes.
  • an area having different thermal characteristics relating to the amount of heat transferred from the light EL is present in the modeling surface CS.
  • the slower the moving speed of the irradiation area EA the longer the time during which the irradiation area EA is set in a certain area portion on the shaped surface CS.
  • the time in which the irradiation area EA is set in a certain area portion on the modeling surface CS is longer, the amount of heat transferred from the light EL to the area portion increases.
  • the amount of melting of the modeling material M in that area portion may change.
  • the height (or any property such as size) of the three-dimensional object formed from the molten modeling material M also changes in that area there's a possibility that. More specifically, as the amount of heat transferred from the light EL to a certain area portion on the modeling surface CS increases, the melting amount of the modeling material M in the relevant area portion may increase. As the melting amount of the modeling material M increases in a certain area portion on the modeling surface CS, the three-dimensional object formed from the melting modeling material M in the area portion may become higher.
  • the irradiation area EA moves at the first moving speed on the modeling surface CS. It can be said that there is an area WA3 and an area WA4 in which the irradiation area EA moves at a second movement speed that is slower than the first movement speed. In this case, if a series of modeling processing is performed without distinguishing the area WA3 and the area WA4 in a situation where a shaped object having the same height is to be formed in the area WA3 and the area WA4, the lower part of FIG.
  • the height of the shaped object formed in the area WA3 and the height of the shaped object formed in the area WA4 do not match.
  • the height of the shaped object formed in the region WA3 is the amount of the shaped object formed in the region WA4 by an amount corresponding to the increase of the heat quantity transmitted from the light EL. It can be higher than height.
  • the control device 7 (in other words, the modeling system 1 under the control of the control device 7) performs the second variation suppressing operation to cause the difference in the moving speed of the irradiation area EA.
  • the variation in the height of the shaped object formed in the region where the thermal characteristics differ is suppressed.
  • the control device 7 suppresses the variation between the height of the shaped object formed in the area WA3 and the height of the shaped object formed in the area WA4.
  • the control device 7 may perform a second variation suppressing operation to suppress the variation in the height of the shaped object by controlling the supply rate of the modeling material M. Specifically, as shown in FIG. 17, the control device 7 may control the supply rate so that the supply rate decreases as the moving speed of the irradiation area EA decreases. That is, the control device 7 may control the supply rate such that the supply rate for the area portion decreases as the moving speed of the irradiation area EA moving in the area portion on the modeling surface CS decreases. As a result, the amount of supply of the modeling material M to the area part decreases in a situation where the shaped object formed in the area part moving at a relatively slow moving speed is relatively high.
  • the melting amount of the modeling material M decreases. For this reason, it is suppressed that the three-dimensional object formed in the area
  • the control device 7 when the moving speed of the irradiation area EA changes as shown in the first graph of FIG. 18 (identical to the graph in the upper part of FIG. 16B), the control device 7 performs the process of FIG.
  • the supply rate may be controlled so that the supply rate changes as shown in the graph of the stage. That is, the control device 7 supplies the supply rate to the area WA3 in which the irradiation area EA moves at a relatively high first moving speed and the supply rate to the area WA4 in which the irradiation area EA moves at a relatively low second movement speed.
  • the feed rate may be controlled to be greater than the rate.
  • a shaped article of a certain height can be formed in the region having different thermal characteristics due to the difference in the moving speed of the irradiation region EA. That is, the variation between the height of the shaped object formed in the region WA3 and the height of the shaped object formed in the region WA4 is suppressed. Note that, in FIG. 18, the supply rate maintained constant regardless of the moving speed of the irradiation area EA and the three-dimensional object formed in that case are indicated by a one-dot chain line as a comparative example.
  • the control device 7 may perform the second variation suppressing operation to suppress the variation in the height of the shaped object by controlling the heat transfer rate in addition to or instead of controlling the supply rate. Specifically, as shown in FIG. 19, the control device 7 may control the heat transfer rate such that the heat transfer rate decreases as the moving speed of the irradiation area EA decreases. That is, the control device 7 may control the heat transfer rate such that the heat transfer rate with respect to the area portion decreases as the moving speed of the irradiation area EA moving in the area portion on the modeling surface CS decreases. . As a result, the amount of heat transferred from the light EL with respect to the area portion decreases in a situation where the shaped object formed in the area portion moving at a relatively slow moving speed becomes relatively high.
  • the amount of heat transferred decreases, the amount of melting of the shaping material M also decreases. For this reason, it is suppressed that the three-dimensional object formed in the area
  • the heat transfer rate may be controlled in consideration of this non-linear relationship.
  • the control device 7 when the moving speed of the irradiation area EA changes, the control device 7 performs the process of FIG.
  • the heat transfer rate may be controlled so that the heat transfer rate changes as shown in the graph of the stage. That is, the controller 7 controls the heat transfer rate to the area WA3 in which the irradiation area EA moves at a relatively high first moving speed, and the heat transfer rate to the area WA4 in which the irradiation area EA moves at a relatively low second movement speed.
  • the heat transfer rate may be controlled to be greater than the heat transfer rate.
  • a shaped article having a certain height can be formed in a region having different thermal characteristics due to the difference in moving speed of the irradiation region EA. That is, the variation between the height of the shaped object formed in the region WA3 and the height of the shaped object formed in the region WA4 is suppressed.
  • the heat transfer rate maintained constant irrespective of the moving speed of the irradiation area EA and the shaped object formed in that case are shown by a dashed dotted line as a comparative example.
  • the specific method for controlling each of the supply rate and the heat transfer rate in the second variation suppressing operation is the specific method for controlling each of the supply rate and the heat transfer rate in the first variation suppressing operation described above. May be the same as the Therefore, the description of a specific method for controlling each of the supply rate and the heat transfer rate is omitted.
  • one of the causes of variations in the height of the shaped object to be suppressed in the second variation suppressing operation is that the relative moving speed of the irradiation area EA (that is, the supply area MA) with respect to the shaped surface CS changes. Is as described above. Then, even if the moving speed of the irradiation area EA is controlled to change from the original moving speed, the controller 7 can form the desired structural layer SL (further, the three-dimensional structure ST).
  • the second variation suppression operation may be performed to control the variation in the height of the shaped object by controlling the moving speed of the irradiation area EA.
  • the second variation suppressing operation for controlling the moving speed of the irradiation area EA is an operation for eliminating the cause of the generation of the variation in the height of the object.
  • the movement speed of the irradiation area EA can not be controlled to be changed from the original movement speed.
  • control device 7 may not control the moving speed of the irradiation area EA in order to perform the second variation suppressing operation for suppressing the variation in the height of the shaped object. If the relationship between the moving speed and the height of the object is nonlinear, the moving speed may be controlled in consideration of this non-linear relationship.
  • the third variation suppressing operation corresponds to an operation for suppressing variations in the height of a shaped object, etc., when there is a region with different thermal characteristics in the modeling surface CS, as in the second variation suppressing operation.
  • the diffusion degree of heat in the existing structure for example, at least one of the workpiece W and the already formed structural layer SL
  • This corresponds to an operation for suppressing the variation in height of the object when there are areas in the modeling surface CS having different thermal characteristics due to the difference.
  • the light EL is irradiated to the shaped surface CS.
  • Heat is transmitted from the light EL to the shaped surface CS.
  • This heat is also transmitted (substantially diffused) to the inside of the existing structure via the shaped surface CS.
  • the degree of diffusion of heat that is, an index indicating ease of diffusion or difficulty
  • the degree of diffusion of heat in the existing structure is uniform. It does not have to be. That is, there is a possibility that a region having different thermal characteristics regarding the diffusion degree of heat transferred from the light EL may exist in the modeling surface CS.
  • the existing structure has surface SF2 in which modeling surface CS is not set.
  • the region WA5 on the shaped surface CS is closer to the surface SF2 than the region WA6 on the shaped surface CS. For this reason, the diffusion path of heat transferred to the area WA5 (that is, the diffusion path inside the existing structure) becomes smaller or smaller than the diffusion path of heat transferred to the area WA6.
  • the heat transmitted to the certain area portion is less likely to be diffused.
  • the area WA5 in which the heat transmitted from the light EL is relatively unlikely to be diffused and the heat transmitted from the light EL are relatively diffused on the shaped surface CS. It can be said that the easy area WA6 exists.
  • the shaped object formed on the certain area portion may be higher.
  • the height h5 of the three-dimensional object S5 formed in the area WA5 and the height h6 of the three-dimensional object S6 formed in the area WA6 do not match.
  • the control device 7 (in other words, the modeling system 1 under the control of the control device 7) performs the third variation suppressing operation to generate heat due to the difference in the degree of heat diffusion. Suppress variations in the height of a shaped object formed in regions having different characteristics. For example, by performing the third variation suppressing operation, the control device 7 suppresses the variation between the height of the shaped object formed in the area WA5 and the height of the shaped object formed in the area WA6.
  • the control device 7 may perform a third variation suppressing operation to suppress the variation in the height of the shaped object by controlling the supply rate of the modeling material M. Specifically, as shown in FIG. 22, the control device 7 may control the supply rate such that the supply rate decreases as heat does not easily diffuse. That is, the control device 7 may control the supply rate such that the supply rate to the area portion decreases as the heat transmitted to the area portion on the modeling surface CS is less likely to be diffused. As a result, the amount of supply of the modeling material M with respect to the said area
  • the supply rate may be controlled in consideration of this non-linear relationship.
  • the control device 7 may perform the third variation suppressing operation to suppress the variation in the height of the shaped object by controlling the heat transfer rate in addition to or instead of controlling the supply rate. Specifically, as shown in FIG. 23, the control device 7 may control the heat transfer rate such that the heat transfer rate decreases as the heat is less likely to diffuse. That is, the control device 7 may control the heat transfer rate such that the heat transfer rate to the area portion decreases as the heat transferred to the area portion on the modeling surface CS is less likely to be diffused. As a result, the amount of heat transferred to the region is reduced under the situation where the shaped object formed in the region where heat is relatively difficult to diffuse is relatively high. As the amount of heat transferred decreases, the amount of melting of the shaping material M also decreases.
  • region part to which heat is relatively hard to spread becomes relatively high.
  • the variation in height of the shaped object formed in the region having different thermal characteristics due to the difference in the degree of heat diffusion is suppressed.
  • the heat transfer rate may be controlled in consideration of this non-linear relationship.
  • the controller 7 controls the relative moving speed of the irradiation area EA with respect to the shaping surface CS in addition to or in place of controlling at least one of the supply rate and the heat transfer rate, A third variation suppressing operation may be performed to reduce the variation.
  • the control device 7 may control the moving speed of the irradiation area EA such that the moving speed of the irradiation area EA is faster as the heat is less likely to diffuse. That is, the control device 7 causes the moving speed of the irradiation area EA to be faster in the case where the irradiation area EA is set in the area part as the heat transmitted to the area part on the modeling surface CS is less likely to be diffused.
  • the moving speed of the irradiation area EA may be controlled.
  • the moving speed of the irradiation area EA in the case where the irradiation area EA is set in a certain area portion on the modeling surface CS is faster, the amount of supply of the modeling material M to the area portion and the transmission from the light EL to the area As described above, the amount of heat to be reduced is smaller. For this reason, as shown in FIG. 24, when the moving speed of the irradiation area EA is controlled, the area part becomes relatively high in the region where heat is relatively difficult to be diffused. The amount of supply of the forming material M with respect to and the amount of heat transferred to the area portion are reduced.
  • the movement metric may be controlled in consideration of this non-linear relationship.
  • the specific method for controlling each of the supply rate, the heat transfer rate and the moving speed of the irradiation area EA in the third variation suppressing operation is the supply rate, the heat transfer rate and the heat transfer rate in the first variation suppressing operation described above. It may be the same as the specific method for controlling each of the moving speeds of the irradiation area EA. Therefore, the description of the specific method for controlling each of the supply rate, the heat transfer rate, and the moving speed of the irradiation area EA will be omitted.
  • the temporal characteristic of heat is taken as an example of the thermal characteristic, it may be another characteristic relating to heat.
  • the fourth variation suppressing operation corresponds to an operation for suppressing variations in the height of a shaped object, etc., when there is a region having different thermal characteristics in the modeling surface CS. .
  • the fourth variation suppressing operation is for suppressing variation in the height of the object when there are areas in the modeling surface CS having different thermal characteristics due to the difference in the frequency of irradiation of the light EL. It corresponds to the operation.
  • the irradiation area EA moves on the modeling surface CS and irradiation is performed to the area on which the modeling object is desired to be formed.
  • the light EL is emitted at the timing when the area EA is set.
  • the pattern of the movement trajectory of the irradiation area EA and the pattern of the structural layer SL that is, the distribution pattern of the area where the object is desired to be formed on the modeling surface CS
  • the light EL is on the modeling surface CS.
  • the frequency with which the light EL is irradiated to a certain area on the modeling surface CS is that the light EL is irradiated to a part of the certain area and then the light EL is irradiated to another part of the certain area next The shorter the time to get it, the higher it gets.
  • the frequency with which the light EL is irradiated to a certain area on the shaped surface CS becomes higher as the number of times the light EL is irradiated per unit area to the certain area increases.
  • the heated area WA7 is cooled by the heat transmitted from the light EL as compared with the area WA8 in which the light EL is irradiated relatively infrequently
  • the area WA7 will be further heated by the heat from the light newly irradiated to the area WA7 before the exposure. That is, in the area WA7 in which the light EL is irradiated relatively frequently, the heat from the light EL is less likely to be dissipated compared to the area WA8 in which the light EL is irradiated relatively infrequently.
  • region part may become high, so that the frequency with which light EL is irradiated to a certain area
  • a series of formation processing is performed without distinction between area WA7 and area WA8 under the situation where a shaped object with the same height should be formed in area WA7 and area WA8, as shown in FIG.
  • the height h7 of the three-dimensional object S7 formed in the area WA7 and the height h8 of the three-dimensional object S8 formed in the area WA8 do not match.
  • the control device 7 (in other words, the modeling system 1 under control of the control device 7) performs the fourth variation suppressing operation to cause the difference in the frequency of the light EL irradiation.
  • the control device 7 suppresses the variation between the height of the shaped object formed in the area WA7 and the height of the shaped object formed in the area WA8.
  • the control device 7 may perform the fourth variation suppressing operation to suppress the variation in the height of the shaped object by controlling the supply rate of the modeling material M. Specifically, as shown in FIG. 26, the control device 7 may control the supply rate so that the supply rate decreases as the frequency of the light EL irradiation increases. That is, the control device 7 may control the supply rate such that the supply rate for the area portion decreases as the frequency with which the light EL is irradiated to the area portion on the modeling surface CS increases. As a result, the amount of supply of the modeling material M to the area part decreases in a situation where the shaped object formed in the area part where the light EL is frequently irradiated is relatively high.
  • the supply amount of the modeling material M decreases, the melting amount of the modeling material M also decreases. For this reason, it is suppressed that the modeling thing formed in the area
  • the supply rate may be controlled in consideration of the nonlinear relationship.
  • the control device 7 may perform a fourth variation suppressing operation that suppresses variation in the height of the shaped object by controlling the heat transfer rate in addition to or instead of controlling the supply rate. Specifically, as shown in FIG. 27, the control device 7 may control the heat transfer rate such that the heat transfer rate decreases as the frequency of the light EL irradiation increases. That is, the control device 7 may control the heat transfer rate such that the heat transfer rate to the area portion decreases as the frequency of the light EL being irradiated to the area portion on the modeling surface CS increases. As a result, the amount of heat transferred to the area portion decreases in a situation where the shaped object formed in the area portion where the light EL is frequently irradiated is relatively high.
  • the amount of heat transferred decreases, the amount of melting of the shaping material M also decreases. For this reason, it is suppressed that the modeling thing formed in the area
  • the heat transfer rate may be controlled in consideration of the nonlinear relationship.
  • the controller 7 controls the relative moving speed of the irradiation area EA with respect to the shaping surface CS in addition to or in place of controlling at least one of the supply rate and the heat transfer rate, A fourth variation suppression operation to suppress variation may be performed. Specifically, as shown in FIG. 28, the control device 7 controls the moving speed of the irradiation area EA so that the moving speed of the irradiation area EA increases as the frequency of the light EL irradiation increases. Good. That is, the control device 7 increases the moving speed of the irradiation area EA in the case where the irradiation area EA is set in the area part as the frequency that the light EL is irradiated to the area part on the modeling surface CS increases.
  • the moving speed of the irradiation area EA may be controlled.
  • the moving speed of the irradiation area EA in the case where the irradiation area EA is set in a certain area portion on the modeling surface CS is faster, the amount of supply of the modeling material M to the area portion and the transmission from the light EL to the area As described above, the amount of heat to be reduced is smaller.
  • the moving speed of the irradiation area EA when the moving speed of the irradiation area EA is controlled, the area formed of the area where the frequency of the light EL irradiation is high is relatively high. The amount of supply of the modeling material M to the portion and the amount of heat transferred to the area portion are reduced.
  • the moving speed may be controlled in consideration of the nonlinear relationship.
  • a specific method for controlling each of the supply rate, the heat transfer rate and the moving speed of the irradiation area EA in the fourth variation suppressing operation is the supply rate, the heat transfer rate and the heat transfer rate in the first variation suppressing operation described above. It may be the same as the specific method for controlling each of the moving speeds of the irradiation area EA. Therefore, the description of the specific method for controlling each of the supply rate, the heat transfer rate, and the moving speed of the irradiation area EA will be omitted.
  • the temporal characteristic of heat is described as an example of the thermal characteristic, but other characteristics relating to heat may be used.
  • the control device 7 measures the variation of the height (or any characteristic such as the size) of the object formed in different regions on the formation surface CS.
  • at least one of the supply rate of the forming material M, the heat transfer rate, and the moving speed of the irradiation area EA with respect to the forming surface CS are controlled.
  • the control device 7 controls the at least one of the supply rate, the heat transfer rate, and the moving speed of the irradiation area EA with respect to the shaped surface CS to form the shaped object
  • the characteristics of the structural layer SL and the three-dimensional structure ST) can be controlled.
  • the control device 7 supplies the supply rate, the heat transfer rate, and the like so that the characteristics of the shaped object (further, the structural layer SL and the three-dimensional structure ST) formed on the shaped surface CS become the desired characteristics.
  • At least one of the moving speed of the irradiation area EA with respect to the modeling surface CS may be controlled. That is, the control device 7 may control at least one of the supply rate, the heat transfer rate, and the moving speed of the irradiation area EA with respect to the shaped surface CS for the purpose different from the purpose of suppressing the variation of the characteristics.
  • the controller 7 controls the supply rate, the heat transfer rate, and At least one of the moving speeds may be controlled.
  • the difference in relative moving speed of the irradiation area EA with respect to the modeling surface CS at least a part of the surface is on the modeling surface CS
  • the difference in the degree of diffusion of heat in the existing structure being set and the difference in the frequency with which the light EL is irradiated are described.
  • areas with different thermal properties may be present on the shaped surface CS.
  • the shaped object with different characteristics is formed. there is a possibility.
  • control device 7 may perform the variation suppressing operation for suppressing the variation of the height of the shaped object formed in the region where the thermal characteristics are different due to other causes different from the above-described causes.
  • the control device 7 may perform the variation suppressing operation for suppressing the variation of the height of the shaped object formed in the region where the thermal characteristics are different due to other causes different from the above-described causes.
  • regions from which a thermal characteristic differs exists in modeling surface CS the case where the kind of material, density, etc. differ for every place of modeling surface CS is mentioned.
  • the marking operation is configured from an aggregate of the objects by forming the objects distributed in a predetermined distribution pattern on the object surface CS using the above-described object formation operation. This is an operation for forming the mark SM on the modeling surface CS.
  • the mark SM may include a mark regarding a symbol having a predetermined meaning on a plane along the formation surface CS.
  • the symbols include, for example, at least one of a symbol meaning any character, a symbol meaning any number, a symbol meaning any figure, a symbol meaning any mark, and a symbol having any other meaning. It may be For example, FIG. 29 shows that on the shaped surface CS, the mark SM1 for the symbol indicating N in the alphabet, the mark SM2 for the symbol indicating the exclamation mark, and the mark SM3 for the symbol indicating the circular figure are formed on the shaped surface CS. An example is shown.
  • the mark SM is a structure protruding in a convex shape from the modeling surface CS.
  • the mark SM may be a structure including a single structural layer SL. That is, the mark SM may be composed of a single structural layer SL.
  • the height of the mark SM (that is, the length from the shaped surface CS to the upper surface (that is, the surface on the + Z side) of the mark SM, and so forth) is the same as the height of the structural layer SL.
  • the mark SM may be a structure including a plurality of stacked structural layers SL. That is, the mark SM may be composed of a plurality of stacked structural layers SL.
  • the height of the mark SM is the same as the height of the stacked structural layers SL. Therefore, the height of the mark SM typically increases as the number of structural layers SL constituting the mark SM increases.
  • the maximum value of the height of the mark SM does not exceed the minimum value of the size of the mark SM in the direction along the formation surface CS. That is, the height of the highest portion of the mark SM does not exceed the size of the narrowest portion of the mark SM.
  • the maximum value hm1 of the height of the mark SM1 does not exceed the minimum value wm1 of the size of the mark SM1 in the direction along the modeling surface CS.
  • the maximum value hm2 of the height of the mark SM2 does not exceed the minimum value wm2 of the size of the mark SM2 in the direction along the shaping surface CS.
  • a mark SM may be formed in which the maximum value of the height exceeds the minimum value of the size of the mark SM in the direction along the modeling surface CS.
  • the control device 7 first acquires coordinate data on the mark SM to be formed on the formed surface CS.
  • the coordinate data is data indicating a position at which the mark SM is distributed on the modeling surface CS (that is, a position at which a mark formation area to form a three-dimensional object forming the mark SM is distributed). Since the modeling surface CS is a plane, the coordinate data corresponds to data associated (or associated) with the position where the mark SM is distributed on the two-dimensional coordinate system. Examples of such coordinate data include at least one of font data (for example, bitmap font data and the like) and image data (for example, bitmap image data and the like).
  • the controller 7 may obtain coordinate data from another device that provides coordinate data.
  • the control device 7 may generate coordinate data by the control device 7 itself.
  • the control device 7 first acquires symbol information indicating a symbol corresponding to the mark SM to be formed on the modeling surface CS.
  • the control device 7 acquires, as symbol information, information on the operation content of the user who designates the symbol from an input device that can be operated by the user to input the symbol to be formed on the modeling surface CS.
  • the control device 7 converts the acquired symbol information into coordinate data.
  • the control device 7 converts the symbol indicated by the symbol information into a symbol pattern on a two-dimensional plane, and specifies the coordinates on the two-dimensional plane of the area in which the symbol pattern is distributed.
  • the control device 7 can acquire coordinate data indicating the specified coordinates.
  • the control device 7 After acquiring the coordinate data, the control device 7 forms the mark SM by performing the forming operation based on the coordinate data. Specifically, the control device 7 forms at least one structural layer SL based on the coordinate data to form the mark SM configured of the structural layer SL.
  • the controller 7 moves the irradiation area EA along the Y-axis direction and the movement of the irradiation area EA along the X-axis direction.
  • the modeling apparatus 4 is controlled so that the light EL is irradiated at the timing when the mark formation area indicated by the coordinate data and the irradiation area EA overlap. Good.
  • the irradiation area EA may be moved to raster scan on the modeling surface CS.
  • the control device 7 controls the shaping device 4 so as to irradiate the light EL while moving the irradiation area EA along the distribution pattern of the mark formation area indicated by the coordinate data. You may In other words, the irradiation area EA may be moved to perform vector scan on the modeling surface CS.
  • the structural layer SL of a pattern corresponding to the mark SM that is, a pattern corresponding to the movement trajectory of the molten pool MP
  • the control device 7 may perform the above-described variation suppressing operation in at least a part of the period in which the marking operation is performed. That is, the control device 7 performs the above-described variation suppressing operation in at least a part of the period in which the marking operation is performed, thereby to set the characteristics (for example, at least one of the height and the size) of the mark SM formed by the marking operation. ) May be suppressed.
  • the control device 7 performs the first variation suppressing operation described above. You may go.
  • the device 7 may perform the second variation suppressing operation described above. For example, in at least a part of a period during which marks SM are formed, regions having different thermal characteristics due to differences in the degree of diffusion of heat in the existing structure in which at least a portion of the surface is set on modeling surface CS When it exists in CS, the controller 7 may perform the third variation suppressing operation described above.
  • the control device 7 A fourth variation suppression operation may be performed.
  • the shaping system 1 includes, as an example of the characteristic control operation, a size control operation that controls the size of the mark SM, a height control operation that controls the height of the mark SM, a surface of the mark SM (in particular, the mark SM). And at least one of a shape control operation of controlling the shape of the upper surface of the convex structure constituting the light source and a color tone control operation of controlling the color tone of the mark SM. Therefore, hereinafter, the size control operation, the height control operation, the shape control operation, and the color tone control operation will be described in order.
  • the shaping system 1 may perform a characteristic control operation to control other characteristics of the mark SM.
  • the size control operation is a characteristic control operation for controlling the size of the mark SM (in particular, the size in at least one of the X-axis direction and the Y-axis direction, for example, the width).
  • the size of the mark SM may be the size in the in-plane direction of the shaped surface CS.
  • the shaping system 1 can form a mark SM of a desired size by performing a size control operation under the control of the control device 7. Furthermore, by performing the size control operation under the control of the control device 7, the modeling system 1 can form a plurality of marks SM each having the same symbol but different in size. Furthermore, the shaping system 1 can form the mark SM while changing the size of the mark SM during the formation of the mark SM by performing the size control operation under the control of the control device 7.
  • each of FIGS. 31 (a) to 31 (d) shows a mark SM11 related to a linear figure formed on the modeling surface CS and a mark SM12 related to a circular figure.
  • the control device 7 sets the size (specifically, the size in the Y-axis direction and the width) of the mark SM11 to the desired first size wm11, and the mark SM12 The size control operation is performed so that the size of the target is the desired second size wm12.
  • the size of the mark SM11 becomes a desired third size wm13 smaller than the first size wm11, and the size of the mark SM12 is larger than the second size wm12.
  • the size control operation is performed so as to obtain the large fourth desired size wm14.
  • the control device 7 has the same size of one part of the mark SM11 and the other part of the mark SM11 different from the one part. In other words, it can be said that the size control operation is performed so that the size of the mark SM11 is not changed during formation of the mark SM11.
  • the control device 7 sets the size of the mark SM11 from the first size wm11 to the fifth size wm11 along the longitudinal direction of the mark SM11 (that is, the X axis direction).
  • the size control operation is performed so as to continuously change to the size wm15 (in this case, to be larger).
  • the control device 7 changes the size of the mark SM11 stepwise or discretely from the first size wm11 to the fifth size wm15 along the longitudinal direction of the mark SM11 ((d)
  • the size control operation is performed to increase the size).
  • the control device 7 differs in the size of one part of the mark SM11 from the size of the other part of the mark SM11 different from the one part. It can also be said that the size control operation is performed so as to be as it is (that is, to change the size while forming the mark SM11).
  • the controller 7 may control the size of the mark SM by controlling the heat transfer rate. Specifically, as the heat transfer rate to a certain area portion of the modeling surface CS increases, the amount of heat transferred from the light EL to the relevant area portion increases. As the amount of heat transferred to a certain area portion of the shaped surface CS increases, the size of the molten pool MP formed in the relevant area portion increases. The larger the size of the molten pool MP in the area portion of the modeling surface CS, the larger the size of the shaped object formed in the area portion. The larger the size of the shaped object formed in the area portion of the modeling surface CS, the larger the size of the mark SM configured from the shaped object. That is, as shown in FIG.
  • the controller 7 can control the size of the mark SM by controlling the heat transfer rate.
  • the specific method for controlling the heat transfer rate in the characteristic control operation including the size control operation may be the same as the specific method for controlling the heat transfer rate in the above-described variation suppressing operation. Therefore, in the description of the characteristic control operation, the description of the specific method for controlling the heat transfer rate is omitted.
  • the heat transfer rate may be controlled in consideration of this non-linear relationship.
  • the control device 7 may control the size of the mark SM by controlling the relative moving speed of the irradiation area EA with respect to the modeling surface CS. Specifically, the slower the moving speed of the irradiation area EA in a certain area portion of the shaped surface CS, the longer the time in which the irradiation area EA is set in a certain area portion on the shaped surface CS. As the time in which the irradiation area EA is set in a certain area portion on the modeling surface CS is longer, the amount of heat transferred from the light EL to the area portion increases.
  • the control device 7 can control the size of the mark SM by controlling the moving speed of the irradiation area EA.
  • the specific method for controlling the moving speed of the irradiation area EA in the characteristic control operation including the size control operation is the same as the specific method for controlling the moving speed of the irradiation area EA in the above-described variation suppressing operation. It may be.
  • the description of a specific method for controlling the moving speed of the irradiation area EA will be omitted.
  • the moving speed may be controlled in consideration of this non-linear relationship.
  • the controller 7 may control the size of the mark SM by controlling the size of the irradiation area EA. Specifically, as the size of the irradiation area EA set in a certain area portion on the modeling surface CS increases, the size of the area actually irradiated with the light EL in the relevant area portion increases. The size of the molten pool MP formed in the area part becomes large, so that the size of the area to which light EL is actually irradiated in a certain area part on modeling side CS becomes large. The larger the size of the molten pool MP in a certain area portion of the modeling surface CS, the larger the size of the three-dimensional object (and the size of the mark SM) formed in the certain area portion. That is, as shown in FIG.
  • the controller 7 can control the size of the mark SM by controlling the size of the irradiation area EA.
  • the size of the irradiation area EA may be controlled in consideration of this non-linear relationship.
  • the controller 7 may control the irradiation optical system 411 in order to control the size of the irradiation area EA.
  • the control device 7 may control the size of the irradiation area EA by controlling the optical member provided in the irradiation optical system 411 in order to control the size of the irradiation area EA.
  • a condensing optical element capable of changing at least one of the shape and the size of an opening through which light EL can pass, and a surface intersecting the optical axis of the irradiation optical system 411 That is, at least one of a light forming member and the like capable of variably setting the region through which the light EL can pass and the region through which the light EL can be blocked in the plane crossing the propagation direction of the light EL.
  • the size of the irradiation area EA may also change.
  • the size of the irradiation area EA may be controlled by controlling the relative position of the formed surface CS with respect to the irradiation optical system 411 by controlling
  • a certain mark SM may be composed of a plurality of linear structures LP.
  • the mark SM constituted by such a plurality of linear structures LP is light while moving the irradiation area EA along the Y-axis direction. It may be formed when the operation of irradiating the EL and the operation of moving the irradiation area EA along the X-axis direction without irradiating the light EL are repeated.
  • the plurality of linear structures LP formed to extend in the Y-axis direction by irradiating the light EL while moving the irradiation area EA along the Y-axis direction extend along the X-axis direction.
  • marks SM corresponding to an assembly of the plurality of linear structures LP can be formed.
  • the control device 7 controls the number of the plurality of linear structures LP that configure the mark SM so that the size of the mark SM is (In particular, the size along the direction in which a plurality of linear structures LP are arranged) may be controlled.
  • the smaller the number of linear structures LP constituting the mark SM the smaller the size of the mark SM.
  • FIGS. 35 (a) and 35 (b) are composed of N2 (where N2 ⁇ N1) linear structures LP rather than the size wm16 of the mark SM composed of N1 linear structures LP. In this example, the size wm17 of the mark SM is reduced.
  • the control device 7 controls the lengths of the plurality of linear structures LP that constitute the mark SM, thereby forming the mark SM.
  • the size (in particular, the size along the longitudinal direction or the stretching direction of the plurality of linear structures LP) may be controlled.
  • the shorter the length of the plurality of linear structures LP constituting the mark SM the smaller the size of the mark SM.
  • 35 (c) and 35 (d) are relatively larger than the size wm18 of the mark SM composed of the linear structure LP relatively long (specifically, the length is wm18).
  • An example is shown in which the size wm19 of the mark SM composed of a short (specifically, the length is wm19 (where wm19 ⁇ wm18)) linear structure LP is reduced.
  • the control device 7 may control by combining at least two of the control of the supply rate of the modeling material M, the control of the heat transfer rate, the control of the moving speed, and the control of the number of linear structures.
  • the height control operation is a characteristic control operation for controlling the height of the mark SM.
  • the shaping system 1 can form the mark SM of a desired height by performing the characteristic control operation under the control of the control device 7. Furthermore, the shaping system 1 can form a plurality of marks SM each having the same symbol but different heights by performing the height control operation under the control of the control device 7. Furthermore, the shaping system 1 can form the mark SM while changing the height of the mark SM during the formation of the mark SM by performing the height control operation under the control of the control device 7.
  • each of FIGS. 36 (a) to 36 (d) shows a mark SM relating to a linear figure formed on the modeling surface CS.
  • the control device 7 performs the height control operation so that the height of the mark SM becomes the desired first height hm21.
  • the control device 7 performs the height control operation so that the height of the mark SM becomes the desired second height hm22 higher than the first height hm21.
  • the control device 7 determines that the height of one portion of the mark SM is the same as the height of the other portion of the mark SM different from the one portion.
  • the height control operation is performed so that the height does not change during formation of the mark SM.
  • the height of the mark SM in the control device 7, the height of the mark SM is greater than the first height hm21 to the first height hm21 along the longitudinal direction of the mark SM (that is, the X axis direction).
  • the height control operation is performed so as to continuously change to the high third height hm23 (here, to be higher).
  • the height of the mark SM changes stepwise or discretely from the first height hm21 to the third height hm23 along the longitudinal direction of the mark SM.
  • the height control operation is performed so as to be high (here, to be high).
  • the control device 7 is formed by moving the irradiation area EA (that is, the molten pool MP) along the Y axis direction on the shaped surface CS.
  • the height of each portion constituting the mark SM extending in the Y-axis direction (that is, the height along the Z-axis direction intersecting the Y-axis direction) is the position along the Y-axis direction of each portion
  • the height control operation is performed differently depending on the situation. In the example shown in FIGS.
  • the control device 7 differs in the height of one part of the mark SM from the height of the other part of the mark SM different from the one part. It can be said that the height control operation is performed so as to be as it is (that is, to change the height during formation of the mark SM).
  • the controller 7 may perform the height control operation so that the height of the mark SM changes continuously along the longitudinal direction of the mark SM.
  • the controller 7 may control the height of the mark SM by controlling the supply rate of the build material M. Specifically, the supply rate of the modeling material M to the area portion increases as the supply rate to the area portion of the modeling surface CS increases. As the supply amount of the modeling material M to the area portion of the modeling surface CS increases, the melting amount of the modeling material M in the area portion increases. As the melting amount of the modeling material M in a region of the modeling surface CS increases, the shaped object formed in the region becomes higher. The higher the three-dimensional object formed in the area portion of the modeling surface CS, the higher the mark SM composed of the three-dimensional object. That is, as shown in FIG. 37, the larger the supply rate, the higher the mark SM.
  • the control device 7 can control the height of the mark SM by controlling the supply rate.
  • the specific method for controlling the supply rate in the characteristic control operation including the height control operation may be the same as the specific method for controlling the supply rate in the above-described variation suppressing operation. Therefore, in the description of the characteristic control operation, the description of a specific method for controlling the supply rate is omitted. If the relationship between the supply rate and the height of the mark SM is non-linear, the supply rate may be controlled in consideration of this non-linear relationship.
  • the controller 7 may control the height of the mark SM by controlling the heat transfer rate. Specifically, as the heat transfer rate to a certain area portion of the modeling surface CS increases, the amount of heat transferred from the light EL to the relevant area portion increases. As the amount of heat transferred to a certain area portion of the shaped surface CS increases, the melting amount of the modeling material M in the relevant area portion may increase. As the melting amount of the modeling material M increases in a certain area portion on the modeling surface CS, the shaped object (further, the mark SM) formed in the relevant area portion becomes higher. That is, as shown in FIG. 38, the larger the heat transfer rate, the higher the mark SM. Therefore, the controller 7 can control the height of the mark SM by controlling the heat transfer rate. If the relationship between the heat transfer rate and the height of the mark SM is non-linear, the heat transfer rate may be controlled in consideration of this non-linear relationship.
  • the controller 7 may control the height of the mark SM by controlling the relative moving speed of the irradiation area EA with respect to the modeling surface CS. Specifically, as described above, as the moving speed of the irradiation area EA in a certain area portion of the formed surface CS decreases, the amount of heat transferred from the light EL to the area portion increases. The greater the amount of heat transferred to a certain area portion on the shaped surface CS, the higher the shaped object (further, the mark SM) formed in the relevant area portion. That is, as shown in FIG. 39, the slower the moving speed of the irradiation area EA, the higher the mark SM.
  • control device 7 can control the height of the mark SM by controlling the moving speed of the irradiation area EA. If the relationship between the moving speed and the height of the mark SM is non-linear, the moving speed may be controlled in consideration of this non-linear relationship.
  • the mark SM may be a structure including a plurality of stacked structural layers SL.
  • the control device 7 may control the height of the mark SM by controlling the number of the plurality of structural layers SL configuring the mark SM (that is, the number of stacked structural layers SL). Specifically, as shown in FIGS. 40 (a) and 40 (b), the smaller the number of structural layers SL constituting the mark SM, the lower the mark SM.
  • FIGS. 40 (a) and 40 (b) show a mark composed of L2 (where L2> L1) structural layers SL more than the height hm24 of the mark SM composed of L1 structural layers SL. An example in which the height wm 25 of the SM is increased is shown.
  • the control device 7 may control at least two of the control of the supply rate of the modeling material M, the control of the heat transfer rate, the control of the moving speed, and the control of the number of stacks in combination.
  • the shape control operation is a characteristic control operation for controlling the shape of the surface of the mark SM (in particular, the upper surface of the convex structure forming the mark SM).
  • the shaping system 1 can form the mark SM whose surface shape has a desired shape by performing the shape control operation under the control of the control device 7. For example, as shown in FIG. 41 (a), even if the control device 7 performs the shape control operation so as to form a mark SM whose surface includes a flat surface (in particular, a flat surface parallel to the modeling surface CS). Good. For example, as shown in FIG.
  • the control device 7 may perform the shape control operation so that the surface forms a mark SM including a curved surface.
  • the control device 7 may perform the shape control operation so that the surface forms a mark SM including a flat surface inclined with respect to the modeling surface CS.
  • the control device 7 may control the shape of the surface of the mark SM by performing the same operation as the above-described size control operation to control the size of the object forming the mark SM.
  • the control device 7 may control the shape of the surface of the mark SM by performing the same operation as the height control operation described above to control the height of the object forming the mark SM.
  • the control device 7 performs the same operation as a normal shaping operation for forming the three-dimensional structure ST having a desired shape, thereby forming the mark SM whose surface has a desired shape. Good.
  • modeling system 1 controls at least one of the shape of the surface of mark SM and the height of mark SM to virtually connect the surface of mark SM formed on modeling surface CS.
  • the shape of the connection surface VS (in particular, the shape of the cross section including the Z axis which is the stacking direction of the structural layer SL) may be controlled.
  • the modeling system 1 forms a plurality of marks SM in which the shape of the connection surface VS has a desired shape by performing at least one of the shape control operation and the height control operation under the control of the control device 7. Can. For example, as shown in FIG.
  • the control device 7 performs a shape control operation such that the coupling surface VS forms a mark SM including a plane (in particular, a plane parallel to the modeling surface CS). May be For example, as shown in FIG. 42 (b), the control device 7 may perform at least one of the shape control operation and the height control operation such that the connecting surface VS forms a mark SM including a curved surface. For example, as shown in FIG. 42C, the control device 7 performs the shape control operation and the height control operation so that the connecting surface VS forms the mark SM including a flat surface inclined with respect to the modeling surface CS. At least one may be performed.
  • the mark SM is a convex structure protruding from the modeling surface CS.
  • the mark SM can be used as a seal for transferring an imprint corresponding to the pattern of the mark SM to the object TG when the surface of the mark SM is pressed against the object TG.
  • FIG. 43 (a) shows an example in which a mark SM having a pattern in which N and C of alphabets are inverted is formed on a modeling surface CS corresponding to the surface of a workpiece W. After applying a paint to the surface of such a mark SM, when the surface of the mark SM is pressed against the target surface TGS of the target object TG, as shown in FIG. Is transferred to the target surface TGS.
  • the control device 7 may perform the shape control operation so as to control the shape of the coupling surface VS based on the characteristics of the object TG. Specifically, based on the shape of the target surface TGS (specifically, the shape of a cross section including an axis intersecting the target surface TGS) on the surface of the target object TG, the control device 7 A shape control operation may be performed to control the shape of the connection surface VS. In this case, the control device 7 may control the shape of the connection surface VS so that the shape of the connection surface VS and the shape of the target surface TGS have a complementary relationship. For example, as shown in FIG.
  • the control device 7 forms a mark SM in which the connecting surface VS is a flat surface having a complementary relationship with the target surface TGS.
  • the shape control operation may be performed. For example, as shown in FIG. 44 (b), when the target surface TGS has a concave curved surface, as shown in FIG. 44 (b), the mark SM having a convex curved surface with a connecting surface VS complementary to the target surface TGS.
  • Shape control operations may be performed to form For example, as shown in FIG. 44C, in the case where the target surface TGS is a convex flat surface, as shown in FIG.
  • the mark SM which is a concave flat surface in which the connecting surface VS has a complementary relationship with the target surface TGS.
  • Shape control operations may be performed to form
  • the surface of the mark SM can be appropriately pressed against the target surface TGS of the target object TG as compared with the case where the shape control operation is not performed.
  • a gap is hardly formed between the surface of the mark SM and the target surface TGS.
  • an imprint corresponding to the pattern of the marks MS can be appropriately transferred to the target surface TGS.
  • control device 7 When controlling the shape of the connection surface VS based on the characteristics of the object TG, the control device 7 acquires characteristic information on the characteristics of the object TG, and the shape of the connection surface VS based on the acquired characteristic information. May be controlled. Control device 7 may acquire the measurement result of the measuring device which measures the characteristic of subject TG as characteristic information. In this case, the measurement apparatus may be provided in the modeling system 1 or may be provided separately from the modeling system 1. Alternatively, the control device 7 may obtain the characteristic information from another device having the characteristic information.
  • the characteristic of the target TG is the shape of the target surface TGS, but the characteristic of the target TG may be the hardness, elasticity, etc. of the target TG.
  • the color tone control operation is a characteristic control operation for controlling the color tone of the mark SM (in particular, the color tone of the surface of the mark SM).
  • the shaping system 1 can form the mark SM of the desired color tone by performing the color tone control operation under the control of the control device 7. Furthermore, by performing the color tone control operation under the control of the control device 7, the modeling system 1 can form a plurality of marks SM each having the same symbol but different in color tone. Furthermore, the shaping system 1 can form the mark SM while changing the color tone of the mark SM during the formation of the mark SM by performing the color tone control operation under the control of the control device 7.
  • the controller 7 may control the color tone of the mark SM by controlling the characteristics of the specific gas in the inner space of the chamber 44.
  • the controller 7 may control the color tone of the mark SM by controlling the characteristics of the specific gas in the space around the molten pool MP located in the internal space of the chamber 44.
  • the control device 7 may control the characteristics of the specific gas such that the characteristics of the specific gas become the desired characteristics capable of setting the color tone of the mark SM to the desired color tone.
  • the specific gas includes a predetermined gas that affects the color tone of the mark SM. Oxygen gas is mentioned as an example of such a specific gas.
  • the characteristics of the specific gas may include the concentration of the specific gas (that is, the concentration of the specific gas in the inner space of the chamber 44 (in particular, the space around the molten pool MP of the inner space)).
  • the controller 7 determines the concentration of the specific gas in the purge gas (that is, the specific in the purge gas).
  • concentration of a specific gas in the internal space of the chamber 44 may be controlled by controlling the gas content).
  • the controller 7 may control the concentration of the specific gas in the inner space of the chamber 44 by controlling the flow rate of at least one of the purge gas and the specific gas supplied to the inner space of the chamber 44. Instead of controlling the concentration of the specific gas in the entire internal space of the chamber 44, the concentration of the specific gas may be controlled only in the space around the molten pool MP.
  • the control device 7 forms a second mark SM22 different from the characteristic of the specific gas in the period in which the first mark SM21 is formed and the first mark SM21.
  • the characteristics of the particular gas may be controlled such that they differ from the characteristics of the particular gas during the time period.
  • the color tone of the first mark SM21 is different from the color tone of the second mark SM22.
  • the control device 7 has the characteristics of the specific gas in the period in which the first portion SM21-1 of the first marks SM21 is formed, and the first mark SM21.
  • the characteristic of the specific gas may be controlled such that the characteristic of the specific gas is different from the characteristic of the specific gas in the period of forming the second portion SM21-2 different from the first portion SM21-1.
  • the color tone of the first portion SM21-1 of the first mark SM21 is different from the color tone of the second portion SM21-2 of the first mark SM21.
  • control device 7 performs the characteristic control operation to control the characteristic of the mark SM formed by the marking operation.
  • the control device 7 performs the above-mentioned characteristic control operation in order to control at least one characteristic of the shaped object formed by the forming operation, the structural layer SL, and the three-dimensional structure ST as well as the mark SM. It is also good. That is, the control device 7 may perform the above-described size control operation to control the size of at least one of the three-dimensional object, the structural layer SL, and the three-dimensional structure ST.
  • the control device 7 may perform the height control operation described above in order to control the height of at least one of the shaped object, the structural layer SL, and the three-dimensional structure ST.
  • the control device 7 may perform the shape control operation described above in order to control the shape of at least one of the shaped object, the structural layer SL, and the three-dimensional structure ST.
  • the control device 7 may perform the color tone control operation described above in order to control the color tone of at least one of the shaped object, the structural layer SL, and the three-dimensional structure ST.
  • the shaping system 1 may perform a processing operation for processing at least a part of the surface of at least one of the three-dimensional structure ST and the mark SM.
  • the mark SM formed by the marking operation is one specific example of the three-dimensional structure ST formed by the forming operation. Therefore, in the description of the processing operation, the three-dimensional structure ST means at least one of the three-dimensional structure ST and the mark SM.
  • the modeling system 1 polishes at least a part of the surface of the three-dimensional structure ST (in particular, the upper surface of the topmost structural layer SL constituting the three-dimensional structure ST) as an example of the processing operation.
  • a polishing operation may be performed.
  • the polishing operation will be described below.
  • the surface to be polished by the polishing operation is referred to as a polishing target surface PS.
  • the shaping system 1 performs the polishing operation for polishing at least a part of the side surfaces of the one or more structural layers SL (the surface facing in the direction intersecting the direction in which the structural layers SL are stacked) the three-dimensional structure. You may go.
  • the polishing operation for polishing the polishing target surface PS smoothes the polishing target surface PS and raises the flatness of the polishing target surface PS as compared to “before performing the polishing operation” (that is, And / or an operation of reducing (ie, reducing) the surface roughness of the surface to be polished PS.
  • the color tone of the surface PS to be polished may change as compared with that before the surface PS to be polished is polished. Therefore, “the polishing operation of polishing the surface PS to be polished” may include "an operation of changing the color tone of the surface PS to be polished as compared with before the polishing operation".
  • the polishing operation of polishing the surface PS to be polished may include “the operation of changing at least one of the reflectance and the diffusivity of the surface PS to be polished as compared with before the polishing operation”.
  • Such a surface to be polished PS can be made smooth (or flat or the surface roughness can be made smooth) by polishing by a polishing operation. It may be).
  • the three-dimensional structure ST is formed by melting and then solidifying the powdery or granular shaping material M. For this reason, at least a part of the surface of the three-dimensional structure ST may be adhered with the non-melted forming material M.
  • the surface to which the modeling material M which has not been melted is attached may be a relatively rough surface which can be smoothed by the polishing operation.
  • the surface to which the modeling material M that has resolidified in an unintended shape is attached can be a relatively rough surface that can be smoothed by the polishing operation.
  • the modeling head 41 is moved along at least one of the X axis and the Y axis (that is, along the XY plane) during the formation of each structural layer SL. Do.
  • the surface of the structural layer SL along the XY plane (thus, the surface of the three-dimensional structural layer ST)
  • Regular or irregular asperities may appear depending on the movement pattern (typically, the pitch of movement).
  • the surface where regular or irregular asperities appear can be a relatively rough surface that can be smoothed by the polishing operation.
  • the shaping system 1 irradiates the light EL onto the polishing target surface PS under the control of the control device 7. That is, in the present embodiment, the surface to be polished PS is polished by the light EL.
  • the control device 7 sets the irradiation area EA in a certain area on the surface PS to be polished, and the light from the irradiation optical system 411 is applied to the irradiation area EA. Irradiate the EL.
  • FIG. 46 (a) shows an example where the surface to be polished PS is a surface on which regular or irregular asperities to be polished by the polishing operation appear.
  • the control device 7 moves the shaping head 41 as necessary to set the irradiation area EA in a desired area portion on the surface PS to be polished.
  • the irradiation area EA is irradiated with the light EL, as shown in FIG. 46 (b)
  • the modeling material M in the area portion of the surface to be polished PS where the irradiation area EA is set is melted again by the light EL.
  • the shaping material M solidified so as to form the unevenness is melted, the surface (that is, the interface) of the melted shaping material M approaches a flat surface or a flat surface by at least one of the weight and surface tension of the molten shaping material M become.
  • the smoothness of the surface (that is, the interface) of the molten modeling material M is improved. Thereafter, when the light EL is not irradiated to the molten molding material M with the movement of the molding head 41, the molten molding material M is cooled and solidified (that is, solidified) again. As a result, as shown in FIG. 46 (c), the shaping material M resolidified so as to have a smooth surface (or an improved flatness and / or a reduced surface roughness) is obtained. , And the surface of the three-dimensional structure ST. Thus, the surface PS to be polished is polished by the polishing operation.
  • the control device 7 performs a series of polishing processes including melting of the molding material M by such light irradiation EL and resolidification of the molten molding material M relative to the three-dimensional structure ST with respect to the molding head 41. Repeat while moving. That is, the control device 7 repeatedly performs a series of polishing processes while moving the irradiation area EA relative to the surface PS to be polished. Specifically, for example, the control device 7 may repeat the series of polishing processes while repeating the movement of the irradiation area EA along the Y-axis direction and the movement of the irradiation area EA along the X-axis direction.
  • the control device 7 may repeat the series of polishing processes while moving the irradiation area EA along the movement locus corresponding to the scan in the raster scan described with reference to FIG. 3A.
  • the control device 7 irradiates the light EL during a period in which the irradiation area EA is moving along one of the X-axis and the Y-axis that has a large amount of movement for one movement.
  • the light EL is irradiated during a period in which the irradiation area EA is moving along the other of the X-axis and the Y-axis, which has a smaller moving amount for one movement. do not do.
  • the control device 7 may repeatedly perform a series of polishing processes while moving the irradiation area EA along the movement trajectory corresponding to the scan in the vector scan described with reference to FIG. 3B.
  • the control device 7 emits the light EL in the forming operation.
  • the irradiation area EA is such that the movement direction of the irradiation area EA during the period and the movement direction of the irradiation area EA during the period during which the light EL is irradiated in the polishing operation intersect (that is, they become different). You may move Specifically, as shown in FIGS.
  • the control device 7 may set the moving direction of the irradiation area EA in the polishing operation such that the moving direction of the irradiation area EA in the period during which the light EL is irradiated in the polishing operation is the X axis direction.
  • the moving direction of the irradiation area EA during the period in which the light EL is irradiated in the shaping operation is the X axis direction
  • the moving direction of the irradiation area EA in the period during which the light EL is irradiated in the polishing operation may be set such that the Y axis direction is the Y axis direction.
  • the shaping system 1 smoothes the surface to be polished PS on which the unevenness generated due to the movement pattern (typically, the pitch of movement) of the forming head 41 occurs during the forming operation ( In particular, it is possible to properly polish so as to remove the unevenness from the surface PS to be polished.
  • the moving direction of the irradiation area EA in the period during which the light EL is irradiated in the shaping operation and the movement direction of the irradiation area EA in the period during which the light EL is irradiation in the polishing operation are not orthogonal to each other. Good.
  • the control device 7 emits the light EL in the forming operation.
  • the irradiation area EA is set so that the movement direction of the irradiation area EA in the period being kept and the movement direction of the irradiation area EA in the period during which the light EL is irradiated in the polishing operation are aligned (that is, the same). You may move it. Even in this case, there is no change in that the surface PS to be polished can be polished.
  • the control device 7 irradiates the light EL in the polishing operation with one movement amount of the irradiation area EA during the period in which the light EL is not irradiated in the modeling operation (that is, the movement pitch).
  • the irradiation area EA may be moved such that the movement amount of the irradiation area EA during one period not being different is different.
  • the control device 7 has a smaller moving amount of the irradiation area EA in the period in which the light EL is not irradiated in the polishing operation than the movement amount of the irradiation region EA in the period in which the light EL is not irradiated in the modeling operation.
  • the irradiation area EA may be moved so that For example, specifically, as shown in FIGS. 48 (a) and 48 (b), the moving amount of the irradiation area EA during the period in which the light EL is not irradiated in the modeling operation is the first moving amount P1.
  • the control device 7 controls the irradiation area EA so that the movement amount of the irradiation area EA during the period in which the light EL is not irradiated in the polishing operation becomes the second movement amount P2 smaller than the first movement amount P1.
  • the shaping system 1 can appropriately polish the polishing target surface PS on which the unevenness generated due to the movement pattern of the forming head 41 exists during the forming operation so as to smooth the unevenness.
  • the movement pitch of the irradiation area EA in the period in which the light EL is not irradiated in the polishing operation is large relative to the movement pitch of the irradiation area EA in the period in which the light EL is not irradiated in the shaping operation. It may also be small or small.
  • the controller 7 is configured such that the size of the irradiation area EA in the period during which the light EL is irradiated in the modeling operation and the size of the irradiation area EA in the period during which the light EL is irradiation in the polishing operation are different.
  • the size of the irradiation area EA may be controlled.
  • the control device 7 causes the irradiation area EA to be larger than the irradiation area EA in the polishing operation during the period in which the light EL is irradiated in the polishing operation.
  • the size of the EA may be controlled.
  • the control device 7 causes the irradiation area EA to be smaller than the irradiation area EA in the polishing operation during the period in which the light EL is irradiated in the polishing operation.
  • the size of the EA may be controlled. You may move Even in this case, the shaping system 1 appropriately polishes the polishing target surface PS on which the unevenness generated due to the movement pattern of the forming head 41 exists during the forming operation so as to smooth the unevenness. Can.
  • the specific method for controlling the size of the irradiation area EA may be the same as the specific method for controlling the size of the irradiation area EA in the above-described size control operation.
  • control device 7 causes the irradiation area EA to be smaller than the irradiation area EA in the polishing operation during the period in which the light EL is irradiated in the shaping operation.
  • the size of the EA may be controlled.
  • the modeling system 1 a differs from the modeling system 1 in that the modeling system 1 a includes the modeling apparatus 4 a instead of the modeling apparatus 4.
  • the modeling apparatus 4 a differs from the modeling apparatus 4 in that the modeling apparatus 4 a includes an irradiation optical system 411 a which is a condensing optical system instead of the irradiation optical system 411.
  • the irradiation optical system 411a emits light in that the optical characteristics are set (in other words, designed or adjusted) in advance so as to suppress the variation between the height h1 of the object S1 and the height h2 of the object S2. It differs from the optical system 411.
  • the other components of the shaping system 1 a may be the same as those of the shaping system 1.
  • the optical characteristics of the irradiation optical system 411a are set in advance so as to suppress the variation between the height h1 of the object S1 and the height h2 of the object S2.
  • the depth of focus is used as the optical characteristic of the irradiation optical system 411a. Therefore, the focal depth of the irradiation optical system 411a is set in advance so as to suppress the variation between the height h1 of the object S1 and the height h2 of the object S2.
  • the focal depth has a correlation with the numerical aperture (NA: Numerical Aperture) which is another example of the optical characteristic of the irradiation optical system 411a.
  • the numerical aperture of the irradiation optical system 411a is set in advance so as to suppress the variation between the height h1 of the object S1 and the height h2 of the object S2.
  • the depth of focus may refer to a range in the optical axis direction (the light traveling direction) in which the intensity or energy amount per unit area of the light EL is larger than the intensity capable of melting the modeling material M .
  • the focal depth of the irradiation optical system 411a is set based on the design height (that is, the thickness) h0 of the structural layer SL formed by the modeling system 1a. Specifically, as shown in FIG. 49, the depth of focus of the irradiation optical system 411a is 2 (in other words, the width along the Z axis) of the design height h0 of the structural layer SL It is set to satisfy the first condition of being less than double.
  • the depth of focus of the irradiation optical system 411a can not simultaneously locate two or more stacked structural layers SL within the range of the depth of focus (that is, part of two or more stacked structural layers SL) Is set so as to satisfy the first condition of “out of the range of the depth of focus”.
  • the irradiation area EA is set twice in the area WA1.
  • the first irradiation area EA is set in the area WA1
  • a shaped object SOa whose height ha matches the height h0 is formed in the area WA1.
  • Ru is set in the area WA1
  • there is a possibility that a new formed object SOb is formed on the formed object SOa already formed in the area WA1.
  • the depth of focus is less than twice the height h0, as shown in FIG.
  • the height hb is the height It becomes smaller than h0. This is because in the area out of the range of the depth of focus, the build material M does not melt due to the lack of intensity of the light EL.
  • the shaped object is formed on the shaped surface CS. Furthermore, since the modeling material M melts in the range of the depth of focus of the irradiation optical system 411a, the shaped object is formed in the range of the depth of focus. Therefore, as shown in FIGS. 51 (a) and 51 (b), the shaped object is an example shown in FIG. 51 (a) and FIG. 51 (b) with the modeling surface CS and the object surface side of the irradiation optical system 411a. , And is on the + Z side, and is formed between it and the boundary UB of the range of the focal depth at the upper side. Then, in order to form on the modeling surface CS the same shaped object as the designed height h0 of the structural layer SL, as shown in FIGS.
  • FIG. 51A shows an example in which the distance between the shaped surface CS and the boundary UB matches the height h0. In this case, a shaped object having a height h0 is formed on the shaped surface CS.
  • FIG. 51 (b) shows an example in which the distance between the modeling surface CS and the boundary UB is larger than the height h0. In this case, a shaped object having a height of at least h0 is formed on the shaped surface CS. Incidentally, as shown in FIG.
  • the state in which the distance between the modeling surface CS and the boundary UB coincides with the height h0 is equivalent to the state in which the focus position of the light EL is set to the modeling surface CS. is there.
  • the focus position of the light EL is higher than that of the modeling surface CS in the irradiation optical system 411a. It is equivalent to the state set to the position shifted to the object plane side.
  • the distance between the modeling surface CS and the boundary UB should be the height h0 or more. I can not As a result, it becomes impossible to form a shaped object having a height h0 on the shaped surface CS. For this reason, the focal depth of the irradiation optical system 411a may be set so as to satisfy the second condition that the size of the focal depth is equal to or greater than the design height h0 of the structural layer SL.
  • the modeling system 1a may also perform the first variation suppressing operation.
  • the modeling system 1b according to the second modification differs from the modeling system 1 in that the modeling apparatus 1b is replaced with the modeling apparatus 4b.
  • the modeling device 4 b differs from the modeling device 4 in that the modeling device 4 b includes the drive system 45 b.
  • the other components of the shaping system 1 a may be the same as those of the shaping system 1.
  • the drive system 45 b moves the stage 43.
  • the drive system 45 b moves the stage 43 along at least one of the X axis, the Y axis, and the Z axis.
  • the drive system 45 b may move the stage 43 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, in addition to at least one of the X axis, the Y axis, and the Z axis.
  • Drive system 45 b includes, for example, a motor and the like.
  • the control device 7 can control the relative moving speed of the irradiation area EA with respect to the modeling surface CS by controlling the drive system 45 b in addition to or instead of the drive system 42.
  • the modeling system 1 c in the third modification differs from the modeling system 1 in that the modeling system 1 c includes a modeling apparatus 4 c instead of the modeling apparatus 4.
  • the modeling apparatus 4 c differs from the modeling apparatus 4 in that the modeling apparatus 4 c includes an illumination optical system 411 c instead of the illumination optical system 411.
  • the illumination optical system 411c differs from the illumination optical system 411 in that the illumination optical system 411c includes an optical system 491c capable of deflecting the light EL as shown in FIG. 53 (a).
  • the other components of the shaping system 1 a may be the same as those of the shaping system 1.
  • the optical system 491c includes a focus lens 4911c, a galvano mirror 4912c, and an f ⁇ lens 4913c.
  • the light EL is applied to the shaped surface CS (and, optionally, the surface PS to be polished) via the focus lens 4911 c, the galvano mirror 4912 c, and the f ⁇ lens 4913 c.
  • the focus lens 4911 c is composed of one or more lenses, and the light collection position of the light EL (that is, the focal position of the optical system 491 c) is adjusted by adjusting the position along the optical axis direction of at least a part of the lenses. It is an optical element for adjusting.
  • the galvano mirror 4912 c deflects the light EL so that the light EL scans the formed surface CS (that is, the irradiation area EA moves on the formed surface CS).
  • the galvano mirror 4912 c includes an X scan mirror 4912 X and a Y scan mirror 4912 Y.
  • the X scanning mirror 4912X reflects the light EL toward the Y scanning mirror 4912Y.
  • the X scanning mirror 4912X can swing or rotate in the ⁇ Y direction (that is, the rotation direction around the Y axis).
  • the light EL scans the shaped surface CS along the X axis direction.
  • the irradiation area EA moves along the X-axis direction on the shaped surface CS.
  • the Y scanning mirror 4912Y reflects the light EL toward the f ⁇ lens 4913c.
  • the Y scanning mirror 4912Y can swing or rotate in the ⁇ X direction (that is, the rotation direction around the X axis).
  • the light EL scans the shaped surface CS along the Y axis direction by the swing or rotation of the Y scanning mirror 4912Y. Due to the swing or rotation of the Y scanning mirror 4912Y, the irradiation area EA moves along the Y-axis direction on the shaped surface CS.
  • the f ⁇ lens 4913c is an optical element for condensing the light EL from the galvano mirror 4912c on the modeling surface CS.
  • control device 7 controls the optical system 491 c (in particular, the galvano mirror 4912 c) in addition to or instead of the drive system 42 to move the irradiation area EA relative to the modeling surface CS.
  • the speed can be controlled.
  • the material nozzle 412 for supplying the modeling material M is shaped into the molten pool MP formed by the irradiation area EA on the modeling surface CS according to the position of the irradiation area EA on the modeling surface CS. It may be movable along at least one of the X-axis, the Y-axis and the Z-axis so that the material M can be supplied.
  • the forming head 41 provided in the forming system 1 emits both the light EL used for the forming operation and the light EL used for the polishing operation.
  • the optical path in the irradiation optical system 411 of the light EL during the shaping operation is the same as the optical path in the irradiation optical system 411 of the light EL during the polishing operation .
  • the shaping system 1d of the fourth modification includes the polishing head 41d for emitting the light EL used for the polishing operation separately from the shaping head 41 for emitting the light EL used for the modeling operation.
  • the modeling system 1 d differs from the modeling system 1 in that the modeling system 1 d includes the modeling apparatus 4 d instead of the modeling apparatus 4.
  • the modeling apparatus 4d differs from the modeling apparatus 4 in that the modeling apparatus 4d includes a polishing head 41d and a drive system 42d.
  • the other components of the shaping system 1 d may be the same as those of the shaping system 1.
  • the modeling device 4d of the fourth modified example will be further described with reference to FIG.
  • the same referential mark is attached
  • the modeling apparatus 4d includes a polishing head 41d and a driving system 42d in addition to the modeling head 41, the driving system 42, and the stage 43 described above.
  • the polishing head 41 d includes an irradiation optical system 411 d.
  • the irradiation optical system 411 d is an optical system (for example, a condensing optical system) for emitting the light ELd from the emitting unit 413 d.
  • the irradiation optical system 411 d is optically connected to the light source 5 that emits light EL via a light transmission member (not shown) such as an optical fiber or a light pipe.
  • the irradiation optical system 411 d emits light EL propagating from the light source 5 through the light transmission member as light ELd.
  • the light EL emitted from the light source 5 is branched into two light ELs by the light branching device disposed between the light source 5 and the modeling device 4 d or in the modeling device 4 d, and one light EL is transmitted to the modeling head 41.
  • the other light EL propagates to the polishing head 41d.
  • the irradiation optical system 411 d irradiates the light ELd downward (ie, on the ⁇ Z side) from the irradiation optical system 411 d.
  • the stage 43 is disposed below the irradiation optical system 411 d.
  • the irradiation optical system 411d irradiates the light ELd toward the three-dimensional structure ST. Specifically, the irradiation optical system 411 d irradiates the light ELd on the circular (or other arbitrary shape) irradiation area EAd set on the polishing target surface PS as an area to which the light ELd is irradiated.
  • the irradiation area EAd is set to a position different from the irradiation area EA to which the light EL from the modeling head 41 is irradiated, but may be set to the same position.
  • the irradiation area EAd does not overlap the irradiation area EA, but may at least partially overlap. Furthermore, under the control of the control device 7, the state of the irradiation optical system 411d can be switched between the state in which the irradiation area EAd is irradiated with the light ELd and the state in which the irradiation area EAd is not irradiated with the light ELd.
  • the drive system 42d moves the polishing head 41d. Specifically, the drive system 42 d moves the polishing head 41 d along each of the X axis, the Y axis, and the Z axis.
  • the structure of the drive system 42 d may be the same as the structure of the drive system 42. Therefore, the detailed description of the structure of the drive system 42d is omitted.
  • the polishing head 41 d Since the polishing head 41 d is prepared separately from the shaping head 41, the polishing head 41 d emits the light ELd from a direction different from that of the shaping head 41. That is, the light ELd propagates in the optical path different from the optical path of the light EL and is irradiated to the surface PS to be polished. For this reason, the polishing head 41d can emit the light ELd in at least a part of the period in which the shaping head 41 is emitting the light EL. That is, the modeling system 1d can perform the modeling operation and the polishing operation in parallel.
  • the surface to be polished PS is irradiated with the light ELd to the surface to be polished PS which is at least a part of the surface of another portion of the three-dimensional structure ST already formed in the other region on the shaped surface CS.
  • the modeling system 1d of the fourth modification improves the throughput for forming the polished three-dimensional structure ST while receiving the same effects as the effects that the above-described modeling system 1 can receive. Can.
  • the modeling apparatus 4d includes the polishing head 41d separately from the modeling head 41, the modeling system 1d may perform the polishing operation after the three-dimensional structure ST is formed by the modeling operation. . Even in this case, the modeling system 1d of the fourth modified example is still able to receive the same effects as the effects that can be received by the above-described modeling system 1.
  • the modeling system 1d may include the light source 5d that emits the light ELd used in the polishing operation separately from the light source 5 that emits the light EL used in the modeling operation.
  • the light source 5d may emit light ELd having the same characteristics (for example, intensity, wavelength, polarization, etc.) as the light EL emitted by the light source 5d.
  • the light source 5d may emit light ELd having characteristics (for example, intensity, wavelength, polarization, etc.) different from the light EL emitted by the light source 5.
  • the light source 5 d may emit an energy beam of a type different from that of the light EL emitted by the light source 5.
  • the shaping system 1 includes the single shaping head 41.
  • the modeling system 1 e of the fifth modification includes a plurality of modeling heads 41.
  • the modeling system 1 e is different from the modeling system 1 in that the modeling system 1 e includes the modeling apparatus 4 e instead of the modeling apparatus 4.
  • the modeling apparatus 4 e differs from the modeling apparatus 4 in that the modeling apparatus 4 e includes a plurality of modeling heads 41.
  • the other components of the shaping system 1 e may be the same as those of the shaping system 1.
  • the modeling device 4e of the fifth modified example will be further described with reference to FIG.
  • the same referential mark is attached
  • the modeling apparatus 4d includes a plurality of modeling heads 41.
  • the plurality of forming heads 41 are assembled to the support frame 48 e so as to be linearly arranged along one of the X axis and the Y axis (in the example shown in FIG. 55, the Y axis).
  • the drive system 42 moves the support frame 48 e along at least one of the X axis, the Y axis, and the Z axis. That is, the drive system 42 moves the plurality of modeling heads 41 collectively along at least one of the X axis, the Y axis, and the Z axis.
  • the three-dimensional structure ST can be formed by simultaneously irradiating a plurality of lights EL on the modeling surface CS.
  • the throughput for forming the three-dimensional structure ST is improved. That is, the modeling system 1e of the fifth modification can improve the throughput for forming the three-dimensional structure ST, while receiving the same effect as the effect that can be received by the above-described modeling system 1.
  • the plurality of modeling heads 41 may not be assembled to the support frame 48 e.
  • the modeling apparatus 4 d may include a plurality of drive systems 42 for moving the plurality of modeling heads 41 respectively.
  • the shaped surface CS itself is not limited to a plane, that is, the shaped surface CS itself may have different heights (position in the Z-axis direction) depending on the position on the shaped surface CS.
  • modeling surface CS may be a curved surface.
  • the height of the upper surface of the structural layer SL # 1 in the Z-axis direction is the structural layer so that the upper surface of the structural layer SL # 1 formed on the upper part of the curved surface CS follows the XY plane.
  • the height according to the position in the X-axis direction and the position in the Y-axis direction of the object may be different so as to be constant regardless of the position in the X-axis direction and the Y-axis direction of SL # 1.
  • the formed surface CS may be uneven, and also in this case, the upper surface of the structural layer SL # 1 formed on the upper part of the uneven formed surface CS is XY.
  • the height of the upper surface of the structural layer SL # 1 in the Z-axis direction is constant regardless of the position of the structural layer SL # 1 in the X-axis direction and the Y-axis direction.
  • the height according to the position in the X-axis direction and the position in the Y-axis direction of the object may be different.
  • the modeling surface CS may be the upper surface of the structural layer SL # 1.
  • the upper surface of the three-dimensional object SL # 1 (and the structural layer SL # 2) can be made flat regardless of the surface shape of the shaped surface CS.
  • the upper surface of the structural layer SL # 1 (and further, the structural layer SL # 2) may be a predetermined curved surface.
  • the height from the modeling surface CS of the shaped object is made different depending on the position of the shaped object.
  • the height from the modeling surface CS of the shaped object may not be different (may be constant) depending on the position of the shaped object.
  • the structure layer SL # 2 having a height different from the height (size in the Z-axis direction (lamination direction)) of the already formed structure layer SL # 1 is formed of the structure layer SL # 1. It may be shaped on top. In this case, the accuracy of the height in the stacking direction (Z-axis direction) of the three-dimensional structure ST finally formed can be made high.
  • the material nozzle 412 for supplying the forming material M is on the workpiece W, and hence on the forming surface CS from the state where the supply area MA is positioned at the outside position of the workpiece W.
  • Supply of the modeling material M may be continued in a period (hereinafter, referred to as a first period) until the supply area MA is positioned at the formation start position SP.
  • a first period a period (hereinafter, referred to as a first period) until the supply area MA is positioned at the formation start position SP.
  • the supply per unit time at the formation start position SP The amount can be stabilized.
  • the modeling material MA may collide with the modeling surface CS from the material nozzle 412 to damage the modeling surface CS.
  • the gas injection device 461 described in FIG. 8 may be provided. Then, in the first period, gas is ejected from the gas ejection device 461 in a direction crossing the supply path of the forming material M, and the forming material M that should go from the material nozzle 412 to the supply area MA It may be directed outward. Then, as shown in FIG.
  • the gas ejection operation of the gas ejection device 461 is performed. It is possible to stop the supply of the build material M from the material nozzle 412 to the supply area MA.
  • the irradiation of the light EL by the irradiation optical system 411 to the irradiation area EA may be started.
  • the supply amount per unit time of the modeling material M in a 1st period can be made smaller than the supply amount per unit time of the modeling material M in the 2nd period which is forming the modeling thing.
  • the forming material M which should go from the material nozzle 412 to the supply area MA, is directed to the outside of the workpiece W and eventually to the forming surface CS by using the gas injection device 461.
  • the shielding member 462 may be used, and the supply direction (injection direction) of the supply nozzle 412 described with reference to FIG. 10 may be changed.
  • the control device 7 can optionally control the supply rate of the modeling material M.
  • the supply amount change device may be controlled.
  • the optional supply changing device may be the supply changing device 3a provided in the material supply device 3 as shown in FIG. 59, and the material supply device 3 to the material nozzle 412 as shown in FIG.
  • the supply amount adjustment device 481 may be provided in the supply path leading to the supply outlet 414 of For example, a valve capable of changing the passing flow rate may be used as such supply amount change devices 3a and 481.
  • the supply amount changing devices 3a and 481 shown in FIGS. 59 and 60, respectively, are used as arbitrary supply amount changing devices different from the gas injection device 461 and the shielding member 462 described with reference to FIGS. 8 and 9. be able to.
  • the light EL is irradiated multiple times to form a plurality of shaped objects aligned in the predetermined direction.
  • the heights of those shaped objects may be different from each other.
  • FIG. 61A with respect to the area WA9 and the area WA10 aligned along the same scanning line of raster scan, among the supply rate of the modeling material M, the heat transfer rate, the moving speed of the irradiation area EA, etc. At least one may be different.
  • this operation for example, as shown in FIG. 61 (b), it is possible to model three-dimensional objects having different heights from the model surface CS in the Z-axis direction.
  • the heights of the plurality of shaped objects formed by one movement of the irradiation area EA are mutually changed.
  • the height (the height from the shaped surface CS in the Z-axis direction) may be changed between For example, as shown in FIG.
  • One may be different.
  • this operation for example, as shown in FIG. 62 (b), it is possible to model a three-dimensional object having different heights from the modeling surface CS in the Z-axis direction.
  • the marking operation on the modeling surface CS is taken as an example, but the ninth modification can be applied even when the modeling surface CS itself is a surface of a layered object. .
  • the modeling apparatus 4 melts the modeling material M by irradiating the modeling material M with the light EL.
  • the modeling apparatus 4 may irradiate a desired energy beam to the modeling material M to form the molten pool MP, and melt the modeling material M in the molten pool MP.
  • the modeling apparatus 4 may be provided with a beam irradiation apparatus capable of irradiating an arbitrary energy beam in addition to or instead of the irradiation optical system 411.
  • the optional energy beam includes, but is not limited to, charged particle beam such as electron beam, ion beam or electromagnetic wave.
  • the shaping system 1 can form the three-dimensional structure ST by the laser buildup welding method.
  • the modeling system 1 forms the three-dimensional structure ST from the modeling material M by another method capable of forming the three-dimensional structure ST by irradiating the modeling material M with the light EL (or any laser beam).
  • You may As other methods, for example, powder bed fusion bonding method (Powder Bed Fusion) such as powder sinter layered manufacturing method (SLS: Selective Laser Sintering), binder injection method (Binder Jetting), or laser metal fusion method (LMF: Laser Metal Fusion).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

適切な造形物を形成する造形システムを提供する。 造形システムは、照射系により対象物にエネルギビームを照射しつつ、供給系によりエネルギビームの照射領域に造形材料を供給することにより造形物を形成する造形処理を行う造形装置と、エネルギビームと対象物との相対的な位置を変更可能な変更装置とを備え、対象物の第1の領域に行われる造形処理の条件と、対象物の第2の領域に行われる造形処理の条件とを異ならせる。

Description

造形システム及び造形方法
 本発明は、例えば、造形物を形成する造形システム及び造形方法の技術分野に関する。
 特許文献1には、粉状の材料をエネルギビームで溶融した後に、溶融した材料を再固化させることで造形物を形成する造形装置が記載されている。このような造形装置では、適切な造形物を形成することが技術的課題となる。
米国特許出願公開第2017/014909号明細書
 第1の態様によれば、照射系により対象物にエネルギビームを照射しつつ、供給系により前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行う造形装置と、前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置とを備え、前記対象物の第1の領域に行われる前記造形処理の条件と、前記対象物の第2の領域に行われる前記造形処理の条件とを異ならせる造形システムが提供される。
 第2の態様によれば、照射系により対象物にエネルギビームを照射しつつ、供給系により前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行う造形装置と、前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置とを備え、前記対象物のうち前記照射領域が複数回設定される第1の領域に行われる前記造形処理の条件と、前記対象物のうち前記照射領域が前記第1の領域に設定される回数より少ない回数設定される第2の領域に行われる前記造形処理の条件とを異ならせる造形システムが提供される。
 第3の態様によれば、照射系により対象物にエネルギビームを照射しつつ、供給系により前記エネルギビームの照射領域に前記造形材料を供給することにより前記エネルギビームと前記対象物との相対的な位置の変更方向に造形物を成長させて造形処理を行う造形装置と、前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置とを備え、第1タイミングにおいて前記造形処理を行った前記エネルギビームと前記対象物との相対的な位置関係に、第2タイミングにおいて前記造形処理を行うときの前記エネルギビームと前記対象物との相対的な位置関係がなるとき、第2タイミングにおける前記造形処理の条件を第1タイミングにおける前記造形処理の条件と変える造形システムが提供される。
 第4の態様によれば、照射系により対象物に光学系を介してエネルギビームを照射しつつ、供給系により前記エネルギビームの照射領域に前記造形材料を供給することにより層状構造物が複数積層された積層構造物を形成する造形処理を行う造形装置と、前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置とを備え、前記光学系の焦点深度の大きさは、前記層状構造物の1つの層の厚さより大きく2つの層の厚さより小さい造形システムが提供される。
 第5の態様によれば、照射系により対象物上の照射領域にエネルギビームを照射しつつ、供給系により前記照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行う造形装置と、前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置と、を備え、前記エネルギビームの照射領域と前記対象物との相対的な位置を第1の方向に変更する第1期間の後に、前記第1の方向と交差する第2の方向に前記エネルギビームの照射領域と前記対象物との相対的な位置を変更し、次いで、第2期間において前記エネルギビームの照射領域と前記対象物との相対的な位置を前記第1の方向と平行な方向に変更し、前記第1期間と前記第2期間の少なくとも一方の少なくとも一部で前記造形処理を行う造形システムが提供される。
 第6の態様によれば、対象物にエネルギビームを照射しつつ、前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行うことと、前記エネルギビームの照射領域と前記対象物との相対的な位置を変更することと、前記対象物の第1の領域に行われる前記造形処理の条件と、前記対象物の第2の領域に行われる前記造形処理の条件とを異ならせることとを含む造形方法が提供される。
 第7の態様によれば、対象物にエネルギビームを照射しつつ、前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行うことと、前記エネルギビームの照射領域と前記対象物との相対的な位置を変更することと、前記対象物のうち前記照射領域が複数回設定される第1の領域に行われる前記造形処理の条件と、前記対象物のうち前記照射領域が前記第1の領域に設定される回数より少ない回数設定される第2の領域に行われる前記造形処理の条件とを異ならせることとを含む造形方法が提供される。
 第8の態様によれば、対象物にエネルギビームを照射しつつ、前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行うことと、前記エネルギビームの照射領域と前記対象物との相対的な位置を変更することと、第1タイミングにおいて前記造形処理を行った前記エネルギビームと前記対象物との相対的な位置関係に、第2タイミングにおいて前記造形処理を行うときの前記エネルギビームと前記対象物との相対的な位置関係がなるとき、第2タイミングにおける前記造形処理の条件を第1タイミングにおける前記造形処理の条件と異ならせることとを含む造形方法が提供される。
 第9の態様によれば、対象物にエネルギビームを照射することと、前記対象物に造形材料を供給することと、前記対象物に前記エネルギビームを照射しつつ、前記エネルギビームの照射領域に前記造形材料を供給することにより層状構造物が複数積層された積層構造物を形成する造形処理を行うこととを含み、前記エネルギビームを照射することは、焦点深度の大きさが前記層状構造物の1つの層の厚さより大きく2つの層の厚さより小さい光学系を介して前記エネルギビームを照射することを含む造形方法が提供される。
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
図1は、本実施形態の造形システムの構造を示す断面図である。 図2(a)から図2(c)の夫々は、ワーク上のある領域において光を照射し且つ造形材料を供給した場合の様子を示す断面図である。 図3(a)及び図3(b)の夫々は、造形面上での照射領域の移動軌跡を示す平面図である。 図4(a)から図4(c)の夫々は、3次元構造物を形成する過程を示す断面図である。 図5(a)は、造形面上における照射領域の移動経路を示す平面図であり、図5(b)は、照射領域の移動経路が交差する領域に形成される造形物及び照射領域の移動経路が交差しない領域に形成される造形物を示す断面図であり、図5(c)は、照射領域の移動経路が交差する領域に形成される造形物及び照射領域の移動経路が交差しない領域に形成される造形物を示す平面図である。 図6(a)から図6(c)の夫々は、造形物の高さのばらつきを抑制するように制御される造形材料の供給レートを示すグラフである。 図7は、造形材料の供給レートと材料ノズルからの造形材料の供給量との関係を示すグラフである。 図8(a)は、ガス噴出装置が不活性ガスを噴出している場合の造形材料の供給態様を示す断面図であり、図8(b)は、ガス噴出装置が不活性ガスを噴出していない場合の造形材料の供給態様を示す断面図である。 図9(a)は、遮蔽部材が非遮蔽状態にある場合の造形材料の供給態様を示す断面図であり、図9(b)は、遮蔽部材が遮蔽状態にある場合の造形材料の供給態様を示す断面図である。 図10(a)は、材料ノズルが供給状態にある場合の造形材料の供給態様を示す断面図であり、図10(b)は、材料ノズルが非供給状態にある場合の造形材料の供給態様を示す断面図である。 図11(a)から図11(c)の夫々は、造形物の高さのばらつきを抑制するように制御される熱伝達レートを示すグラフである。 図12は、熱伝達レートと照射領域上での光の強度との関係を示すグラフである。 図13(a)は、遮光部材が遮光状態にある場合の光の照射態様を示す断面図であり、図13(b)は、遮光部材が非遮光状態にある場合の光の照射態様を示す断面図である。 図14(a)は、フォーカス位置が造形面上に設定されている場合の光の照射態様を示す断面図であり、図14(b)は、フォーカス位置が造形面から離れた位置に設定されている場合の光の照射態様を示す断面図である。 図15(a)及び図15(b)の夫々は、造形物の高さのばらつきを抑制するように制御される照射領域の移動速度を示すグラフである。 図16(a)は、造形面上における照射領域の移動経路を示す平面図であり、図16(b)は、照射領域の移動速度と造形物の高さとの関係を示すグラフである。 図17は、造形物の高さのばらつきを抑制するように、照射領域の移動速度に基づいて制御される造形材料の供給レートを示すグラフである。 図18は、照射領域の移動速度と造形材料の供給レートと造形物の高さとの関係を示すグラフである。 図19は、造形物の高さのばらつきを抑制するように、照射領域の移動速度に基づいて制御される熱伝達レートを示すグラフである。 図20は、照射領域の移動速度と熱伝達レートと造形物の高さとの関係を示すグラフである。 図21(a)は、既存構造物における熱が相対的に拡散されにくい領域及び熱が相対的に拡散されやすい領域の位置の一例を示す斜視図であり、図21(b)は、熱が相対的に拡散されにくい領域に形成される造形物及び熱が相対的に拡散されやすい領域に形成される造形物を示す断面図である。 図22は、造形物の高さのばらつきを抑制するように、熱の拡散度合いに基づいて制御される造形材料の供給レートを示すグラフである。 図23は、造形物の高さのばらつきを抑制するように、熱の拡散度合いに基づいて制御される熱伝達レートを示すグラフである。 図24は、造形物の高さのばらつきを抑制するように、熱の拡散度合いに基づいて制御される照射領域の移動速度を示すグラフである。 図25(a)は、光ELが相対的に高頻度に照射される領域及び光ELが相対的に低頻度に照射される領域の位置の一例を示す斜視図であり、図25(b)は、光ELが相対的に高頻度に照射される領域に形成される造形物及び光ELが相対的に低頻度に照射される領域に形成される造形物を示す断面図である。 図26は、造形物の高さのばらつきを抑制するように、光が照射される頻度に基づいて制御される造形材料の供給レートを示すグラフである。 図27は、造形物の高さのばらつきを抑制するように、光が照射される頻度に基づいて制御される熱伝達レートを示すグラフである。 図28は、造形物の高さのばらつきを抑制するように、光が照射される頻度に基づいて制御される照射領域の移動速度を示すグラフである。 図29は、造形面に形成されるマークを示す平面図及び断面図である。 図30(a)及び図30(b)の夫々は、図29に示すマークを形成する場合における造形面上での照射領域の移動軌跡を示す平面図である。 図31(a)から図31(d)の夫々は、サイズ制御動作によってサイズが制御されたマークを示す平面図である。 図32は、熱伝達レートとマークのサイズとの関係を示すグラフである。 図33は、照射領域の移動速度とマークのサイズとの関係を示すグラフである。 図34は、照射領域のサイズとマークのサイズとの関係を示すグラフである。 図35(a)及び図35(b)の夫々は、マークのサイズとマークを構成する線状構造物の数との間の関係を示す平面図であり、図35(c)から図35(d)の夫々は、マークのサイズとマークを構成する線状構造物の長さとの間の関係を示す平面図である。 図36(a)から図36(d)の夫々は、高さ制御動作によって高さが制御されたマークを示す平面図である。 図37は、供給レートとマークの高さとの関係を示すグラフである。 図38は、熱伝達レートとマークの高さとの関係を示すグラフである。 図39は、照射領域の移動速度とマークの高さとの関係を示すグラフである。 図40(a)及び図40(b)の夫々は、マークの高さとマークを構成する構造層の数との間の関係を示す断面図である。 図41(a)から図41(c)の夫々は、形状制御動作によって表面の形状が制御されたマークを示す断面図である。 図42(a)から図42(c)の夫々は、形状制御動作によって連結面の形状が制御されたマークを示す断面図である。 図43(a)は、印章として対象物に押し付けられるマークを示す平面図及び断面図であり、図43(b)は、マークが押し付けられた対象物に転写された印影を示す平面図である。 図44(a)から図44(c)の夫々は、対象物の対象面と相補の関係になるように連結面の形状が制御されたマークを示す断面図である。 図45(a)は、複数のマークを形成している期間における特定ガスの特性の制御態様の一例を示すグラフであり、図45(b)は、図45(a)に示す制御態様で特定ガスの特性が制御された場合に形成される複数のマークを示す平面図であり、図45(c)は、単一のマークを形成している期間における特定ガスの特性の制御態様の一例を示すグラフであり、図45(d)は、図45(c)に示す制御態様で特定ガスの特性が制御された場合に形成されるマークを示す平面図である。 図46(a)から図46(c)の夫々は、研磨動作が行われている過程での研磨対象面の状態を示す断面図である。 図47(a)は、造形動作が行われている期間中の照射領域の移動経路を示す平面図であり、図47(b)は、研磨動作が行われている期間中の照射領域の移動経路を示す平面図である。 図48(a)は、造形動作が行われている期間中の照射領域の移動経路を示す平面図であり、図48(b)は、研磨動作が行われている期間中の照射領域の移動経路を示す平面図である。 図49は、第1変形例の造形システムが備える照射光学系の焦点深度を示す断面図である 図50(a)は、造形面上のある領域部分に照射領域が設定された場合に、第1変形例の造形システムによって形成される構造層を示す断面図であり、図50(b)は、図50(a)に示す領域部分と同じ領域部分に再び照射領域が設定された場合に、第1変形例の造形システムによって形成される構造層を示す断面図である。 図51(a)及び図51(b)の夫々は、造形面と照射光学系の焦点深度の範囲との間の位置関係を示す断面図である。 図52は、第2変形例の造形システムの構造を示す断面図である。 図53(a)は、第3変形例の造形システムが備える照射光学系の構造を示す断面図であり、図53(b)は、第3変形例の照射光学系が備える光学系の構造を示す斜視図である。 図54は、第4変形例の造形システムが備える造形装置の構造を示す断面図である。 図55は、第5変形例の造形システムが備える造形装置の構造を示す断面図である。 図56は、第6変形例によって造形される造形物の構成を示す断面図である。 図57は、第7変形例によって造形される造形物の構成を示す断面図である。 図58は、第8変形例の動作を示す断面図である。 図59は、第8変型例で用いられる供給量変更装置の一例を示す断面図である。 図60は、第8変型例で用いられる供給量変更装置の一例を示す断面図である。 図61(a)は、造形面上での照射領域の移動軌跡を示す平面図であり、図61(b)は、図61(a)に示す移動軌跡に沿って照射領域が移動した場合に形成される造形物の一部を示す断面図である。 図62(a)は、造形面上での照射領域の移動軌跡を示す平面図であり、図62(b)は、図62(a)に示す移動軌跡に沿って照射領域が移動した場合に形成される造形物の一部を示す断面図である。
 以下、図面を参照しながら、処理装置、処理方法、マーキング方法、造形システム及び造形方法の実施形態について説明する。以下では、レーザ肉盛溶接法(LMD:Laser Metal Deposition)により、造形材料Mを用いた付加加工を行うことで3次元構造物STを形成するための処理を実行可能な造形システム1を用いて、処理装置、処理方法、マーキング方法、造形システム及び造形方法の実施形態を説明する。尚、レーザ肉盛溶接法(LMD)は、ダイレクト・メタル・デポジション、ダイレクト・エナジー・デポジション、レーザクラッディング、レーザ・エンジニアード・ネット・シェイピング、ダイレクト・ライト・ファブリケーション、レーザ・コンソリデーション、シェイプ・デポジション・マニュファクチャリング、ワイヤ-フィード・レーザ・デポジション、ガス・スルー・ワイヤ、レーザ・パウダー・フージョン、レーザ・メタル・フォーミング、セレクティブ・レーザ・パウダー・リメルティング、レーザ・ダイレクト・キャスティング、レーザ・パウダー・デポジション、レーザ・アディティブ・マニュファクチャリング、レーザ・ラピッド・フォーミングと称してもよい。
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、造形システム1を構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。
 (1)造形システム1の構造
 初めに、図1を参照しながら、本実施形態の造形システム1の全体構造について説明する。図1は、本実施形態の造形システム1の構造の一例を示す断面図である。
 造形システム1は、3次元構造物ST(つまり、3次元方向のいずれの方向においても大きさを持つ3次元の物体であり、立体物)を形成可能である。造形システム1は、3次元構造物STを形成するための基礎(つまり、母材)となるワークW上に、3次元構造物STを形成可能である。造形システム1は、ワークWに付加加工を行うことで、3次元構造物STを形成可能である。ワークWが後述するステージ43である場合には、造形システム1は、ステージ43上に、3次元構造物STを形成可能である。ワークWがステージ43によって保持されている既存構造物である場合には、造形システム1は、既存構造物上に、3次元構造物STを形成可能である。この場合、造形システム1は、既存構造物と一体化された3次元構造物STを形成してもよい。既存構造物と一体化された3次元構造物STを形成する動作は、既存構造物に新たな構造物を付加する動作と等価である。或いは、造形システム1は、既存構造物と分離可能な3次元構造物STを形成してもよい。尚、図1は、ワークWが、ステージ43によって保持されている既存構造物である例を示している。また、以下でも、ワークWがステージ43によって保持されている既存構造物である例を用いて説明を進める。
 上述したように、造形システム1は、レーザ肉盛溶接法により3次元構造物STを形成可能である。つまり、造形システム1は、積層造形技術を用いて物体を形成する3Dプリンタであるとも言える。尚、積層造形技術は、ラピッドプロトタイピング(Rapid Prototyping)、ラピッドマニュファクチャリング(Rapid Manufacturing)、又は、アディティブマニュファクチャリング(Additive Manufacturing)とも称される。
 3次元構造物STを形成するために、造形システム1は、図1に示すように、材料供給装置3と、造形装置4と、光源5と、ガス供給装置6と、制御装置7とを備える。材料供給装置3と、造形装置4と、光源5と、ガス供給装置6と、制御装置7とは、筐体C内に収容されている。図1に示す例では、造形装置4が、筐体Cの上部空間UCに収容され、材料供給装置3、光源5、ガス供給装置6及び制御装置7が、上部空間UCの下方に位置する筐体Cの下部空間LCに収容される。但し、材料供給装置3、造形装置4、光源5、ガス供給装置6及び制御装置7の夫々の筐体C内での配置位置が図1に示す配置位置に限定されることはない。
 材料供給装置3は、造形装置4に造形材料Mを供給する。材料供給装置3は、造形装置4が3次元構造物STを形成するために単位時間あたりに必要とする分量の造形材料Mが造形装置4に供給されるように、当該必要な分量に応じた所望量の造形材料Mを供給する。
 造形材料Mは、所定強度以上の光ELの照射によって溶融可能な材料である。このような造形材料Mとして、例えば、金属性の材料及び樹脂性の材料の少なくとも一方が使用可能である。但し、造形材料Mとして、金属性の材料及び樹脂性の材料とは異なるその他の材料が用いられてもよい。造形材料Mは、粉状の又は粒状の材料である。つまり、造形材料Mは、粉粒体である。但し、造形材料Mは、粉粒体でなくてもよく、例えばワイヤ状の造形材料やガス状の造形材料が用いられてもよい。
 造形装置4は、材料供給装置3から供給される造形材料Mを加工して3次元構造物STを形成する。造形材料Mを加工するために、造形装置4は、造形ヘッド41と、駆動系42と、ステージ43とを備える。更に、造形ヘッド41は、照射光学系411と、材料ノズル(つまり造形材料Mを供給する供給系)412とを備えている。造形ヘッド41と、駆動系42と、ステージ43とは、チャンバ44内に収容されている。
 照射光学系411は、射出部413から光ELを射出するための光学系(例えば、集光光学系)である。具体的には、照射光学系411は、光ELを発する光源5と、光ファイバやライトパイプ等の不図示の光伝送部材を介して光学的に接続されている。照射光学系411は、光伝送部材を介して光源5から伝搬してくる光ELを射出する。照射光学系411は、照射光学系411から下方(つまり、-Z側)に向けて光ELを照射する。照射光学系411の下方には、ステージ43が配置されている。ステージ43にワークWが搭載されている場合には、照射光学系411は、ワークWに向けて光ELを照射する。具体的には、照射光学系411は、光ELが照射される(典型的には、集光される)領域としてワークW上に設定される照射領域EAに光ELを照射可能である。更に、照射光学系411の状態は、制御装置7の制御下で、照射領域EAに光ELを照射する状態と、照射領域EAに光ELを照射しない状態との間で切替可能である。尚、照射光学系411から射出される光ELの方向は真下(つまり、-Z軸方向と一致)には限定されず、例えば、Z軸に対して所定の角度だけ傾いた方向であってもよい。
 材料ノズル412は、造形材料Mを供給する供給アウトレット414を有する。材料ノズル412は、供給アウトレット414から造形材料Mを供給(具体的には、噴射、噴出、吹き付ける)する。材料ノズル412は、造形材料Mの供給源である材料供給装置3と、不図示のパイプ等を介して物理的に接続されている。材料ノズル412は、パイプを介して材料供給装置3から供給される造形材料Mを供給する。材料ノズル412は、パイプを介して材料供給装置3から供給される造形材料Mを圧送してもよい。即ち、材料供給装置3からの造形材料Mと搬送用の気体(例えば、窒素やアルゴン等の不活性ガス)とを混合してパイプを介して材料ノズル412に圧送してもよい。尚、図1において材料ノズル412は、チューブ状に描かれているが、材料ノズル412の形状は、この形状に限定されない。材料ノズル412は、材料ノズル412から下方(つまり、-Z側)に向けて造形材料Mを供給する。材料ノズル412の下方には、ステージ43が配置されている。ステージ43にワークWが搭載されている場合には、材料ノズル412は、ワークWに向けて造形材料Mを供給する。尚、材料ノズル412から供給される造形材料Mの進行方向はZ軸方向に対して所定の角度(一例として鋭角)だけ傾いた方向であるが、-Z側(つまり、真下)であってもよい。
 本実施形態では、材料ノズル412は、照射光学系411が光ELを照射する照射領域EAに向けて造形材料Mを供給するように、照射光学系411に対して位置合わせされている。つまり、材料ノズル412が造形材料Mを供給する領域としてワークW上に設定される供給領域MAと照射領域EAとが一致する(或いは、少なくとも部分的に重複する)ように、材料ノズル412と照射光学系411とが位置合わせされている。尚、照射光学系411から射出された光ELによって形成される溶融池MPに、材料ノズル412が造形材料Mを供給するように位置合わせされていてもよい。
 駆動系42は、造形ヘッド41を移動させる。駆動系42は、X軸、Y軸及びZ軸の少なくともいずれかに沿って造形ヘッド41を移動させる。造形ヘッド41がX軸及びY軸の少なくとも一方に沿って移動すると、照射領域EAは、ワークW上をX軸及びY軸の少なくとも一方に沿って移動する。更に、駆動系42は、X軸、Y軸及びZ軸の少なくともいずれかに加えて、θX方向、θY方向及びθZ方向の少なくとも一つに沿って造形ヘッド41を移動させてもよい。駆動系42は、例えば、モータ等を含む。尚、駆動系42は、照射光学系411と材料ノズル412とを別々に移動させてもよい。具体的には、例えば、駆動系42は、射出部413の位置、射出部413の向き、供給アウトレット414の位置及び供給アウトレット414の向きの少なくとも一つを調整可能であってもよい。この場合、照射光学系411が光ELを照射する照射領域EAと、材料ノズル412が造形材料Mを供給する供給領域MAとが別々に制御可能となる。尚、駆動系42は、造形ヘッド41をX軸回りの回転軸、Y軸回りの回転軸に沿って回転可能にしてもよい。
 ステージ43は、ワークWを保持可能である。更に、ステージ43は、保持したワークWをリリース可能である。上述した照射光学系411は、ステージ43がワークWを保持している期間の少なくとも一部において光ELを照射する。更に、上述した材料ノズル412は、ステージ43がワークWを保持している期間の少なくとも一部において造形材料Mを供給する。尚、材料ノズル412が供給した造形材料Mの一部は、ワークWの表面からワークWの外部へと(例えば、ステージ43の周囲へと)散乱する又はこぼれ落ちる可能性がある。このため、造形システム1は、ステージ43の周囲に、散乱した又はこぼれ落ちた造形材料Mを回収する回収装置を備えていてもよい。尚、ステージ43は、ワークWを保持するために、機械的なチャックや真空吸着チャック等を備えていてもよい。
 光源5は、例えば、赤外光、可視光及び紫外光のうちの少なくとも一つを、光ELとして射出する。但し、光ELとして、その他の種類の光が用いられてもよい。光ELは、レーザ光である。この場合、光源5は、レーザ光源(例えば、レーザダイオード(LD:Laser Diode)等の半導体レーザを含んでいてもよい。レーザ光源としては、ファイバ・レーザやCOレーザ、YAGレーザ、エキシマレーザ等であってもよい。但し、光ELはレーザ光でなくてもよいし、光源5は任意の光源(例えば、LED(Light Emitting Diode)及び放電ランプ等の少なくとも一つ)を含んでいてもよい。
 ガス供給装置6は、パージガスの供給源である。パージガスは、不活性ガスを含む。不活性ガスの一例として、窒素ガス又はアルゴンガスがあげられる。ガス供給装置6は、造形装置4のチャンバ44内にパージガスを供給する。その結果、チャンバ44の内部空間は、パージガスによってパージされた空間となる。尚、ガス供給装置6は、窒素ガスやアルゴンガス等の不活性ガスが格納されたボンベであってもよく、不活性ガスが窒素ガスである場合には、大気を原料として窒素ガスを発生する窒素ガス発生装置であってもよい。
 制御装置7は、造形システム1の動作を制御する。制御装置7は、例えば、CPU(Central Processing Unit)や、メモリを含んでいてもよい。特に、本実施形態では、制御装置7は、照射光学系411による光ELの射出態様を制御する。射出態様は、例えば、光ELの強度及び光ELの射出タイミングの少なくとも一方を含む。光ELがパルス光である場合には、射出態様は、例えば、パルス光の発光時間の長さ及びパルス光の発光時間と消光時間との比(いわゆる、デューティ比)の少なくとも一方を含んでいてもよい。更に、制御装置7は、駆動系42による造形ヘッド41の移動態様を制御する。移動態様は、例えば、移動量、移動速度、移動方向及び移動タイミングの少なくとも一つを含む。更に、制御装置7は、材料ノズル412による造形材料Mの供給態様を制御する。供給態様は、例えば、供給量(特に、単位時間当たりの供給量)及び供給タイミングの少なくとも一方を含む。尚、制御装置7は、造形システム1の内部に設けられていなくてもよく、例えば、造形システム1外にサーバ等として設けられていてもよい。
 (2)造形システム1による造形動作
 続いて、造形システム1による造形動作(つまり、3次元構造物STを形成するための動作)について説明する。上述したように、造形システム1は、レーザ肉盛溶接法により3次元構造物STを形成する。このため、造形システム1は、レーザ肉盛溶接法に準拠した既存の造形動作を行うことで、3次元構造物STを形成してもよい。以下、レーザ肉盛溶接法による3次元構造物STの造形動作の一例について簡単に説明する。
 造形システム1は、形成するべき3次元構造物STの3次元モデルデータ(例えば、CAD(Computer Aided Design)データ)等に基づいて、ワークW上に3次元構造物STを形成する。3次元モデルデータとして、造形システム1内に設けられた計測装置45で計測された立体物の計測データ、造形システム1とは別に設けられた3次元形状計測機、例えばワークWに対して移動可能でワークWに接触可能なプローブを有する接触型の3次元座標測定機や、非接触型の3次元計測機(一例としてパターン投影方式の3次元計測機、光切断方式の3次元計測機、タイム・オブ・フライト方式の3次元計測機、モアレトポグラフィ方式の3次元計測機、ホログラフィック干渉方式の3次元計測機、CT(Computed Tomography)方式の3次元計測機、MRI(Magnetic resonance imaging)方式の3次元計測機等の計測データを用いてもよい。尚、3次元モデルデータとしては、例えばSTL(Stereo Lithography)フォーマット、VRML(Virtual Reality Modeling Language)フォーマット、AMF(Additive Manufacturing File Format)、IGES(Initial Graphics Exchange Specification)フォーマット、VDA-FS(Association of German Automotive Manufactures-Surfaces Interface)フォーマット、HP/GL(Hewlett-Packard Graphics Language)フォーマット、ビットマップフォーマット等を用いることができる。造形システム1は、3次元構造物STを形成するために、例えば、Z軸方向に沿って並ぶ複数の層状の部分構造物(以下、“構造層”と称する)SLを順に形成していく。例えば、造形システム1は、3次元構造物STをZ軸方向に沿って輪切りにすることで得られる複数の構造層SLを1層ずつ順に形成していく。その結果、複数の構造層SLが積層された積層構造体である3次元構造物STが形成される。以下、複数の構造層SLを1層ずつ順に形成していくことで3次元構造物STを形成する動作の流れについて説明する。
 まず、各構造層SLを形成する動作について説明する。造形システム1は、制御装置7の制御下で、ワークWの表面又は形成済みの構造層SLの表面に相当する造形面CS上の所望領域に照射領域EAを設定し、当該照射領域EAに対して照射光学系411から光ELを照射する。尚、照射光学系411から照射される光ELが造形面CS上に占める領域を照射領域EAと称してもよい。本実施形態においては、光ELのフォーカス位置(つまり、集光位置)が造形面CSに一致している。その結果、図2(a)に示すように、照射光学系411から射出された光ELによって造形面CS上の所望領域に溶融池(つまり、光ELによって溶融した金属のプール)MPが形成される。更に、造形システム1は、制御装置7の制御下で、造形面CS上の所望領域に供給領域MAを設定し、当該供給領域MAに対して材料ノズル412から造形材料Mを供給する。ここで、上述したように照射領域EAと供給領域MAとが一致しているため、供給領域MAは、溶融池MPが形成された領域に設定されている。このため、造形システム1は、図2(b)に示すように、溶融池MPに対して、材料ノズル412から造形材料Mを供給する。その結果、溶融池MPに供給された造形材料Mが溶融する。造形ヘッド41の移動に伴って溶融池MPに光ELが照射されなくなると、溶融池MPにおいて溶融した造形材料Mは、冷却されて再度固化(つまり、凝固)する。その結果、図2(c)に示すように、再固化した造形材料Mが造形面CS上に堆積される。つまり、再固化した造形材料Mの堆積物による造形物が形成される。
 このような光の照射ELによる溶融池MPの形成、溶融池MPへの造形材料Mの供給、供給された造形材料Mの溶融及び溶融した造形材料Mの再固化を含む一連の造形処理が、造形面CSに対して造形ヘッド41をXY平面に沿って相対的に移動させながら繰り返される。つまり、造形面CSに対して造形ヘッド41が相対的に移動すると、造形面CSに対して照射領域EAもまた相対的に移動する。従って、一連の造形処理が、造形面CSに対して照射領域EAをXY平面に沿って(つまり、二次元平面内において)相対的に移動させながら繰り返される。この際、光ELは、造形面CS上において造形物を形成したい領域に設定された照射領域EAに対して選択的に照射される一方で、造形面CS上において造形物を形成したくない領域に設定された照射領域EAに対して選択的に照射されない(造形物を形成したくない領域には照射領域EAが設定されないとも言える)。つまり、造形システム1は、造形面CS上を所定の移動軌跡に沿って照射領域EAを移動させながら、造形物を形成したい領域の分布パターン(つまり、構造層SLのパターン)に応じたタイミングで光ELを造形面CSに照射する。その結果、溶融池MPもまた、照射領域EAの移動軌跡に応じた移動軌跡に沿って造形面CS上を移動することになる。具体的には、溶融池MPは、造形面CS上において、照射領域EAの移動軌跡に沿った領域のうち光ELが照射された部分に順次形成される。更に、上述したように照射領域EAと供給領域MAとが一致しているため、供給領域MAもまた、照射領域EAの移動軌跡に応じた移動軌跡に沿って造形面CS上を移動することになる。その結果、造形面CS上に、凝固した造形材料Mによる造形物の集合体に相当する構造層SLが形成される。つまり、溶融池MPの移動軌跡に応じたパターンで造形面CS上に形成された造形物の集合体に相当する構造層SL(つまり、平面視において、溶融池MPの移動軌跡に応じた形状を有する構造層SL)が形成される。なお、造形物を形成したくない領域に照射領域EAが設定されている場合、光ELを照射領域EAに照射するとともに、造形材料Mの供給を停止してもよい。また、造形物を形成したくない領域に照射領域EAが設定されている場合に、造形材料Mを照射領域ELに供給するとともに、溶融池MPができない強度の光ELを照射領域ELに照射してもよい。
 造形面CS上にある一つの構造層SLを形成している層形成期間中において、照射領域EAは、図3(a)に示すように、Y軸方向に沿った照射領域EAの移動とX軸方向に沿った照射領域EAの移動とが繰り返される第1の移動軌跡に沿って移動してもよい。図3(a)に示す例では、照射領域EAは、照射領域EAの+Y側への移動、照射領域EAの+X側への移動、照射領域EAの-Y側への移動及び照射領域EAの+X側への移動が繰り返される移動軌跡に沿って移動する。この場合、造形システム1は、造形面CS上で造形物を形成したい領域に照射領域EAが設定されたタイミングで、光ELを照射する。特に、図3(a)に示す例では、照射領域EAのY軸方向に沿った移動量(特に、照射領域EAの移動方向がX軸方向に切り替わるまでの1回の移動分の移動量)が、照射領域EAのX軸方向に沿った移動量よりも多い。この場合には、造形システム1は、照射領域EAがY軸(或いは、X軸及びY軸のうち、照射領域EAの1回の移動分の移動量が多いいずれか一方の軸)に沿って移動している期間中に光ELを照射し、照射領域EAがX軸(或いは、X軸及びY軸のうち、照射領域EAの1回の移動分の移動量が少ないいずれか他方)に沿って移動している期間中に光ELを照射しない。尚、図3(a)に示す移動軌跡は、いわゆるラスタスキャンでの走査に対応する移動軌跡であると言える。この場合には、照射領域EAの移動軌跡が造形面CS上で交差する可能性がゼロとは限らないものの、照射領域EAの移動軌跡が交差することはほとんどない。
 或いは、層形成期間中において、照射領域EAは、図3(b)に示すように、構造層SLのパターンに沿った第2の移動軌跡に沿って移動してもよい。この場合も、造形システム1は、造形面CS上で造形物を形成したい領域に照射領域EAが設定されたタイミングで、光ELを照射する。但し、照射領域EAが構造層SLのパターンに沿った第2の移動軌跡に沿って移動しているため、照射領域EAは、実質的には、造形面CS上で造形物を形成したい領域と概ね重なっているとも言える。従って、造形システム1は、照射領域EAが移動している期間中は光ELを照射し続けてもよい。この場合、溶融池MPもまた、構造層SLのパターンに沿った第2の移動軌跡に沿って移動することになる。結果、照射領域EAが構造層SLと相対的に移動する方向に造形物を成長させる造形処理が行われる。尚、図3(b)に示す移動軌跡は、いわゆるベクタースキャンでの走査に対応する移動軌跡であると言える。この場合には、制御装置7は、照射領域EAの移動軌跡が造形面CS上で交差しない(特に、溶融池MPの移動軌跡が造形面CS上で交差しない)ように、照射領域EAの移動軌跡を設定してもよい。但し、造形物を形成したい領域の造形面CS上での分布パターンによっては、照射領域EAの移動軌跡(特に、溶融池MPの移動軌跡)が造形面CS上で交差する可能性がある。
 尚、上述では、造形面CSに対して造形ヘッド41(すなわち光EL)を移動させることにより、造形面CSに対して照射領域EAを移動させたが、造形面CSを移動させてもよいし、造形ヘッド41(すなわち光EL)と造形面CSの両方を動かしてもよい。
 造形システム1は、このような構造層SLを形成するための動作を、制御装置7の制御下で、3次元モデルデータに基づいて繰り返し行う。具体的には、まず、3次元モデルデータを積層ピッチでスライス処理してスライスデータを作成する。尚、造形システム1の特性に応じてこのスライスデータを一部修正したデータを用いてもよい。造形システム1は、ワークWの表面に相当する造形面CS上に1層目の構造層SL#1を形成するための動作を、構造層SL#1に対応する3次元モデルデータ、即ち構造層SL#1に対応するスライスデータに基づいて行う。その結果、造形面CS上には、図4(a)に示すように、構造層SL#1が形成される。その後、造形システム1は、構造層SL#1の表面(つまり、上面)を新たな造形面CSに設定した上で、当該新たな造形面CS上に2層目の構造層SL#2を形成する。構造層SL#2を形成するために、制御装置7は、まず、造形ヘッド41がZ軸に沿って移動するように駆動系42を制御する。具体的には、制御装置7は、駆動系42を制御して、照射領域EA及び供給領域MAが構造層SL#1の表面(つまり、新たな造形面CS)に設定されるように、+Z側に向かって造形ヘッド41を移動させる。これにより、光ELのフォーカス位置が新たな造形面CSに一致する。その後、造形システム1は、制御装置7の制御下で、構造層SL#1を形成する動作と同様の動作で、構造層SL#2に対応するスライスデータに基づいて、構造層SL#1上に構造層SL#2を形成する。その結果、図4(b)に示すように、構造層SL#2が形成される。以降、同様の動作が、ワークW上に形成するべき3次元構造物STを構成する全ての構造層SLが形成されるまで繰り返される。その結果、図4(c)に示すように、複数の構造層SLが積層された積層構造物によって、3次元構造物STが形成される。
 (3)ばらつき抑制動作
 続いて、造形動作によって形成される造形物(つまり、各構造層SLを構成する造形物)の特性のばらつきを抑制するためのばらつき抑制制御動作について説明する。本実施形態では、造形システム1は、第1のばらつき抑制動作、第2のばらつき抑制動作、第3のばらつき抑制動作及び第4のばらつき抑制動作の少なくとも一つを行う。このため、以下では、第1のばらつき抑制動作から第4のばらつき抑制動作について順に説明する。
 尚、以下の説明では、造形物の特性として、造形物の造形面CSからの高さ(つまり、Z軸方向のサイズ又はZ軸方向の大きさであり、実質的には、造形物の厚み)を用いるものとする。つまり、以下の説明では、造形物の高さのばらつきを抑制するためのばらつき抑制動作について説明する。但し、造形物の特性として、造形物の高さ以外の任意の特性が用いられてもよい。例えば、造形物の特性として、造形物の造形面CSからの高さに加えて又は代えて、造形面CSに沿った造形物のサイズ(つまり、X軸方向及びY軸方向の少なくとも一方のサイズであり、例えば、幅)が用いられてもよい。
 (3-1)第1のばらつき抑制動作
 はじめに、第1のばらつき抑制動作について説明する。第1のばらつき抑制動作は、造形面CS上に任意の一つの構造層SLを形成している層形成期間中に造形面CS上の同じ領域に2回以上照射領域EAが設定される場合に、造形物の高さのばらつきを抑制するための動作に相当する。尚、第1のばらつき抑制動作は、任意の一つの構造層SLにおける当該構造層SLが位置する面内の位置ごとの高さ(構造層SLが位置する面と交差する方向の大きさ)のばらつきを抑制するための動作としてもよい。
 具体的には、図5(a)に示すように、造形面CS上にある一つの構造層SLを形成している層形成期間中において、照射領域EAは、造形面CS上での構造層SLのパターンに応じた移動軌跡に沿って、造形面CS上を移動する。ここで、構造層SLのパターンによっては、造形面CS上で照射領域EAの移動軌跡が交差する可能性がある。図5(a)に示す例では、造形面CS上の領域WA1において、照射領域EAの移動軌跡が交差している。照射領域EAの移動軌跡が交差する造形面CS上の領域WA1には、照射領域EAが2回以上設定される。一方で、照射領域EAの移動軌跡と重なる一方で照射領域EAの移動軌跡が交差しない造形面CS上の領域WA2には、照射領域EAが1回だけ設定される。つまり、造形面CSは、層形成期間中に照射領域EAが2回以上設定される領域WA1と、層形成期間中に照射領域EAが1回だけ設定される領域WA2とを含む。尚、領域WA1は、層形成期間中に照射領域EAがM回(Mは2以上の整数)設定される領域とすることができ、領域WA2は、層形成期間中に照射領域EAがN回(Nは1以上の整数であり、N<Mの関係を満たす)設定される領域とすることができる。言い換えると、領域WA1に対する造形処理の回数は領域WA2に対する造形処理の回数と異なり、具体的には、領域WA1に対する造形処理の回数は領域WA2に対する造形処理の回数よりも多い。更に言い換えると、領域WA2に対する造形処理の回数は領域WA1に対する造形処理の回数よりも少ない。
 領域WA1では、上述した光の照射ELによる溶融池MPの形成、溶融池MPへの造形材料Mの供給、供給された造形材料Mの溶融及び溶融した造形材料Mの再固化を含む一連の造形処理が、領域WA1が照射領域EAの少なくとも一部と一致する異なるタイミングで2回以上行われる可能性がある。つまり、領域WA1では、造形面CS上での溶融池MPの移動軌跡が交差する可能性がある。一方で、領域WA2では、一連の造形処理が2回以上行われることはない。領域WA2では、領域WA2が照射領域EAの少なくとも一部と一致するタイミングで、一連の造形処理が多くても1回行われるだけである。つまり、領域WA2では、造形面CS上での溶融池MPの移動軌跡が交差することはない。尚、一つの構造層SLを形成している層形成期間中において、2回目以降の造形処理のために形成される溶融池MPの少なくとも一部は、1回目の造形処理により領域WA1に形成された造形物に形成されてもよい。すなわち、2回目以降の造形処理のために形成される溶融池MPの少なくとも一部は、造形材料Mで形成されてもよい。
 領域WA1において一連の造形処理が2回以上行われる一方で領域WA2において一連の造形処理が1回だけ行われる、別の言い方をすると、領域WA1への造形処理の回数と領域WA2への造形処理の回数とが異なると、以下に示す技術的課題が生ずる。具体的には、領域WA1では、領域WA2と比較して、より多くの造形材料Mが供給、溶融及び再固化される可能性がある。このため、領域WA1と領域WA2とに同じ高さの造形物を形成するべき状況下で領域WA1と領域WA2とを区別することなく一連の造形処理が行われると、領域WA1に形成される造形物の高さと領域WA2に形成される造形物の高さとが一致しない可能性がある。典型的には、図5(b)に示すように、領域WA1に形成される造形物の高さh1は、一連の造形処理が行われる回数が多い分だけ、領域WA2に形成される造形物の高さh2よりも高くなる可能性がある。つまり、層形成期間中に造形面CS上のある領域に2回以上照射領域EAが設定される場合に造形物の高さがばらつく可能性がある。尚、以下では、説明の簡略化のため、領域WA1に形成される造形物を、“造形物S1”と称し、領域WA2に形成される造形物を、“造形物S2”と称する。
 そこで、本実施形態では、制御装置7(言い換えれば、制御装置7の制御下にある造形システム1)は、第1のばらつき抑制動作を行うことで、造形物S1の高さh1と造形物S2の高さh2とのばらつきを抑制する。尚、本実施形態において、「一の造形物の高さと他の造形物の高さとのばらつきを抑制する」動作は、ばらつき抑制動作が行われない場合と比較して、一の造形物の高さと他の造形物の高さとの差分を小さくする(つまり、差を低減する)動作を含む。「一の造形物の高さと他の造形物の高さとのばらつきを抑制する」動作は、一の造形物の高さと他の造形物の高さとを一致させる(つまり、同一にする)動作を含む。
 尚、図5(c)に示すように、領域WA1と領域WA2とに同じサイズの造形物を形成するべき状況下で、領域WA1に形成される造形物のサイズ(ここでは、X軸方向のサイズであり、実質的には幅)w1が、領域WA2に形成される造形物のサイズw2よりも大きくなる可能性もある。つまり、層形成期間中に造形面CS上のある領域に2回以上照射領域EAが設定される場合に造形物のサイズがばらつく可能性がある。このため、上述したように、造形物のサイズ(特に、XY平面に沿ったサイズ)は、第1のばらつき抑制動作によってばらつきを抑制するべき造形物の特性となり得る。この場合、第1のばらつき抑制動作は、任意の一つの構造層SLにおける当該構造層SLが位置する面内の位置ごとの、当該面に沿った方向の大きさのばらつきを抑制するための動作としてもよい。逆に言えば、領域WA1と領域WA2とに同じ特性の造形物を形成するべき状況下で領域WA1と領域WA2とを区別することなく一連の造形処理が行われると、領域WA1に形成される造形物の特性と領域WA2に形成される造形物の特性とが一致しなくなる可能性があるという条件を満たす任意の特性が、第1のばらつき抑制動作によってばらつきを抑制するべき造形物の特性として用いられてもよい。以下に説明する第2から第4のばらつき抑制動作についても同様である。
 制御装置7は、供給領域MA(つまり、照射領域EA又は溶融池MP)に対して単位時間当たりに供給される造形材料Mの供給量を制御する(例えば、調整、変更又は設定する、以下同じ)ことで、造形物の高さのばらつきを抑制する第1のばらつき抑制動作を行ってもよい。以下、供給領域MAに対して単位時間当たりに供給される造形材料Mの供給量を、説明の便宜上、“供給レート”と称する。尚、造形材料Mの供給量の単位として重量又は体積を用いてもよい。制御装置7は、供給レートを制御することに加えて又は代えて、照射領域EA(つまり、供給領域MA)を介して単位時間当たりに光ELから造形面CSに伝達される熱量を制御することで、造形物の高さのばらつきを抑制する第1のばらつき抑制動作を行ってもよい。以下、照射領域EAを介して単位時間当たりに光ELから造形面CSに伝達される熱量を、説明の便宜上、“熱伝達レート”と称する。制御装置7は、供給レート及び熱伝達レートの少なくとも一方を制御することに加えて又は代えて、造形面CSに対する照射領域EA(つまり、供給領域MA又は溶融池MP)の相対的な移動速度を制御することで、造形物の高さのばらつきを抑制する第1のばらつき抑制動作を行ってもよい。以下、供給レートを制御する第1のばらつき抑制動作、熱伝達レートを制御する第1のばらつき抑制動作及び照射領域EAの移動速度を制御する第1のばらつき抑制動作について順に説明する。
 (3-1-1)造形材料Mの供給レートを制御する第1のばらつき抑制動作
 はじめに、図6(a)から図6(c)を参照しながら、造形材料Mの供給レートを制御する第1のばらつき抑制動作について説明する。尚、説明の簡略化のために、図6(a)から図6(c)の夫々は、層形成期間中において領域WA1に照射領域EAが2回設定される場合における造形材料Mの供給レートの制御方法を示している。
 図6(a)から図6(c)の夫々は、横軸が時間を示し且つ縦軸が造形材料Mの供給レートを示すグラフである。時間の経過と共に照射領域EAが造形面CS上で移動するため、図6(a)から図6(c)の横軸は、実質的には、造形面上で照射領域EAが設定されている位置に対応している。つまり、図6(a)から図6(c)の夫々は、造形面CS上のある領域部分に照射領域EAが設定されている期間中の、当該領域部分に対する造形材料Mの供給レートを示している。
 図6(a)に示すように、制御装置7は、(i)領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートが、領域WA2に対する供給レートと同じになり、且つ、(ii)領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートがゼロになるように、供給レートを制御してもよい。言い換えれば、制御装置7は、(i)照射領域EAが初めて設定された領域WA1に対する供給レートが、領域WA2に対する供給レートと同じになり、且つ、(ii)照射領域EAが再度設定された領域WA1に対する供給レートがゼロになるように、供給レートを制御してもよい。尚、制御装置7は、照射領域EAが再度設定された領域WA1に対する供給レートが、照射領域EAが初めて設定された領域WA1に対する供給レートよりも低くなるように、供給レートを制御してもよい。
 或いは、制御装置7は、(i)領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートが、領域WA2に対する供給レートと同じになり、且つ、(ii)領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートがゼロになるように、供給レートを制御してもよい。つまり、制御装置7は、(i)あるタイミングで照射領域EAが設定された領域WA1に対する供給レートが、領域WA2に対する供給レートと同じになり、且つ、(ii)それ以外のタイミングで照射領域EAが設定された領域WA1に対する供給レートがゼロになるように、供給レートを制御してもよい。層形成期間中において領域WA1に照射領域EAが2回以上設定される場合においても同様に、制御装置7は、(i)あるタイミングで照射領域EAが設定された領域WA1に対する供給レートが、領域WA2に対する供給レートと同じになり、且つ、(ii)それ以外のタイミングで照射領域EAが設定された領域WA1に対する供給レートがゼロになるように、供給レートを制御してもよい。尚、制御装置7は、あるタイミングで照射領域EAが設定された領域WA1に対する供給レートが、領域WA2に対する供給レートと同じになり、且つそれ以外のタイミングで照射領域EAが設定された領域WA1に対する供給レートが、領域WA2に対する供給レートよりも低くなるように、供給レートを制御してもよい。
 このように供給レートが制御された結果、層形成期間中に領域WA1に供給された造形材料Mの総量と、層形成期間中に領域WA2に供給された造形材料Mの総量とが同じになる。より具体的には、層形成期間中にある大きさの領域WA1に供給された造形材料Mの総量と、層形成期間中に同じ大きさの領域WA2に供給された造形材料Mの総量とが同じになる。つまり、層形成期間中に領域WA1に供給された造形材料Mの総量を領域WA1の面積で除した値(つまり、単位面積当たりの造形材料Mの供給量)と、層形成期間中に領域WA2に供給された造形材料Mの総量を領域WA2の面積で除した値とが同じになる。このため、領域WA1及び領域WA2では、単位面積当たりで同じ量の造形材料Mが供給、溶融及び再固化される。その結果、領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきが抑制される。つまり、造形材料Mの供給レートが制御されなかった場合と比較して、造形物S1の高さh1と造形物S2の高さh2との差分が小さくなる。典型的には、造形物S1の高さh1と造形物S2の高さh2とが一致する。その結果、造形物の集合体である3次元構造物STの形成精度が向上する。尚、供給レートと層形成期間中に各領域WA1、WA2に供給された造形材料Mの総量との関係が非線形である場合には、この非線形な関係を考慮して供給レートを制御すればよい。また、供給レートと造形物の高さh1、h2との関係が非線形である場合には、この非線形な関係を考慮して供給レートを制御すればよい。
 或いは、図6(b)及び図6(c)に示すように、制御装置7は、領域WA1に照射領域EAが設定されるたびに領域WA1に造形材料Mが供給されるように(つまり、領域WA1への供給レートがゼロにならないように)、供給レートを制御してもよい。この場合、制御装置7は、領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する供給レート及び領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートの双方が、領域WA2に対する供給レートよりも小さくなるように、供給レートを制御する。尚、制御装置7は、図6(b)に示すように、領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートと領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートとが異なるように、供給レートを制御してもよい。或いは、制御装置7は、図6(c)に示すように、領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートと領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートとが同一になるように、供給レートを制御してもよい。図6(b)又は図6(c)に示すように供給レートが制御された場合には、領域WA1に対する供給レートと領域WA2に対する供給レートとが常に同一である場合と比較して、層形成期間中に領域WA1に供給された造形材料Mの総量と、層形成期間中に領域WA2に供給された造形材料Mの総量との差分が小さくなる。その結果、領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきが抑制される。
 制御装置7は、領域WA1に照射領域EAが設定されるたびに領域WA1に造形材料Mが供給されるように供給レートを制御する場合には、層形成期間中に領域WA1に供給された造形材料Mの総量と、層形成期間中に領域WA2に供給された造形材料Mの総量とが同じになるように、領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する供給レート及び領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する供給レートを制御してもよい。その結果、図5(a)に示すように供給レートが制御された場合と同様に、層形成期間中に領域WA1に供給された造形材料Mの総量と、層形成期間中に領域WA2に供給された造形材料Mの総量とが同じになる。領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきがより適切に抑制される。尚、供給レートと層形成期間中に各領域WA1、WA2に供給された造形材料Mの総量との関係が非線形である場合には、この非線形な関係を考慮して供給レートを制御すればよい。また、供給レートと造形物の高さh1、h2との関係が非線形である場合には、この非線形な関係を考慮して供給レートを制御すればよい。
 尚、層形成期間中において領域WA1に照射領域EAが2回以上設定される場合においても同様に、制御装置7は、領域WA1に照射領域EAが設定されている各期間中の領域WA1に対する供給レートが、領域WA2に対する供給レートよりも小さくなるように、供給レートを制御してもよい。更に、制御装置7は、層形成期間中に領域WA1に供給された造形材料Mの総量と、層形成期間中に領域WA2に供給された造形材料Mの総量とが同じになるように、領域WA1に照射領域EAが設定されている各期間中の領域WA1に対する供給レートを制御してもよい。尚、層形成期間中に領域WA1に供給された造形材料Mの総量と、層形成期間中に領域WA2に供給された造形材料Mの総量とが、異なるように供給レートを制御してもよい。
 続いて、図7から図10を参照して、造形材料Mの供給レートを制御するための具体的方法について説明する。
 制御装置7は、供給レートを制御するために、材料ノズル412からの造形材料Mの単位時間当たりの供給量(つまり、噴射量)を制御してもよい。具体的には、図7に示すように、材料ノズル412からの造形材料Mの単位時間当たりの供給量が多くなるほど、供給レートは大きくなる。このため、制御装置7は、材料ノズル412からの造形材料Mの単位時間当たりの供給量を制御することで、供給レートを制御することができる。材料ノズル412からの造形材料Mの単位時間当たりの供給量を制御するために、制御装置7は、材料供給装置3を制御して、材料供給装置3から材料ノズル412への造形材料Mの単位時間当たりの供給量を制御してもよい。或いは、材料ノズル412からの造形材料Mの単位時間当たりの供給量を制御するために、制御装置7は、材料ノズル412を制御してもよい。例えば、材料ノズル412内の造形材料Mの供給経路中に配置されるバルブを材料ノズル412が備えている場合には、制御装置7は、当該バルブを制御して、材料ノズル412からの造形材料Mの単位時間当たりの供給量を制御してもよい。
 制御装置7は、図8(a)及び図8(b)に示すように、供給レートを制御するために、材料ノズル412から供給される造形材料Mの少なくとも一部を供給領域MA(つまり、照射領域EA又は溶融池MP)に到達する前に吹き飛ばすために造形装置4が備えるガス噴出装置461を制御してもよい。具体的には、ガス噴出装置461は、材料ノズル412と供給領域MAとの間における造形材料Mの供給経路の少なくとも一部に向けて、不活性ガスを噴出する。尚、ガス噴出装置461は、材料ノズル412と供給領域MAとの間における造形材料Mの供給経路の方向と交差する方向に沿って不活性ガスを噴出してもよい。ガス噴出装置461が噴出する不活性ガスは、例えば、ガス供給装置6からガス噴出装置461に供給される。ガス噴出装置461が不活性ガスを噴出している場合には、図8(a)に示すように、材料ノズル412から供給される造形材料Mの少なくとも一部は、供給領域MAに到達される前に、供給領域MAから離れるように吹き飛ばされる。つまり、材料ノズル412から供給される造形材料Mの少なくとも一部は、供給領域MAに到達しない。一方で、ガス噴出装置461が不活性ガスを噴出していない場合には、図8(b)に示すように、材料ノズル412から供給される造形材料Mは、供給領域MAから離れるように吹き飛ばされることはない。つまり、材料ノズル412から供給される造形材料Mは、供給領域MAに到達する。その結果、ガス噴出装置461が不活性ガスを噴出している場合には、ガス噴出装置461が不活性ガスを噴出していない場合と比較して、供給領域MAに対する造形材料Mの単位時間当たりの供給量が少なくなる。つまり、ガス噴出装置461が不活性ガスを噴出している場合には、ガス噴出装置461が不活性ガスを噴出していない場合と比較して、供給レートは小さくなる。このため、制御装置7は、ガス噴出装置461を制御することで、供給レートを制御することができる。
 制御装置7は、図9(a)及び図9(b)に示すように、供給レートを制御するために、材料ノズル412と供給領域MAとの間における造形材料Mの供給経路に挿脱可能に造形装置4に配置される遮蔽部材462を制御してもよい。具体的には、遮蔽部材462は、不図示の駆動系(例えば、アクチュエータ等)によって、造形材料Mの供給経路に対して移動可能である。尚、遮蔽部材462は、材料ノズル412と供給領域MAとの間における造形材料Mの供給経路の方向と交差する方向に沿って移動可能であってもよい。遮蔽部材462の移動に伴い、遮蔽部材462の状態は、遮蔽部材462が造形材料Mの供給経路を遮っていない非遮蔽状態(図9(a)参照)と、遮蔽部材462が造形材料Mの供給経路を遮っている遮蔽状態(図9(b)参照)との間で切替可能である。遮蔽部材462が非遮蔽状態にある場合には、図9(a)に示すように、材料ノズル412から供給される造形材料Mは、遮蔽部材462によって遮られることなく、供給領域MAに到達する。一方で、遮蔽部材462が遮蔽状態にある場合には、図9(b)に示すように、材料ノズル412から供給される造形材料Mの少なくとも一部は、供給領域MAに到達する前に、遮蔽部材462によって遮られる。つまり、材料ノズル412から供給される造形材料Mの少なくとも一部は、供給領域MAに到達しない。その結果、遮蔽部材462が遮蔽状態にある場合には、遮蔽部材462が非遮蔽状態にある場合と比較して、供給領域MAに対する造形材料Mの単位時間当たりの供給量が少なくなる。つまり、遮蔽部材462が遮蔽状態にある場合には、遮蔽部材462が非遮蔽状態にある場合と比較して、供給レートは小さくなる。このため、制御装置7は、遮蔽部材462を制御することで、造形材料Mの供給レートを制御することができる。尚、遮蔽部材462の状態は、遮蔽部材462が造形材料Mの供給経路の一部を遮る半遮蔽状態であってもよい。また、一箇所の供給領域MAに間欠的に造形材料Mが供給されるように遮蔽部材462の状態を制御してもよい。この場合、非遮蔽状態と遮蔽状態との比(デューティ比)を制御して、当該一箇所の供給領域MAに対する造形材料Mの単位時間当たりの供給量を制御してもよい。このとき、非遮蔽状態と遮蔽状態との各々の時間は、単位時間よりも短くなってもよい。
 尚、ガス噴出装置461及び遮蔽部材462は、いずれも、材料ノズル412から供給される造形材料Mの少なくとも一部が供給領域MAに到達することを抑制するための供給量変更装置であると言える。このため、ガス噴出装置461及び遮蔽部材462とは異なる任意の供給量変更装置を造形装置4が備えている場合には、制御装置7は、造形材料Mの供給レートを制御するために、任意の供給量変更装置を制御してもよい。尚、任意の供給量変更装置は、材料供給装置3及び材料供給装置3から材料ノズル412の供給アウトレット414に至る供給路のうち少なくとも一方に設けられてもよい。このような供給量変更装置としては、例えば通過流量を変更可能なバルブを用いてもよい。また、このような通過流量を変更可能なバルブは、材料供給装置3内及び供給路の少なくとも一方に設けられてもよい。このようなバルブとして、例えばバタフライバルブ、ゲートバルブ、グローブバルブ、ボールバルブ等を用いてもよい。
 制御装置7は、供給レートを制御するために、材料ノズル412からの造形材料Mの供給方向(つまり、噴射方向)を制御してもよい。具体的には、図10(a)及び図10(b)に示すように、制御装置7は、造形面CSに対する材料ノズル412の向きを制御することで、材料ノズル412からの造形材料Mの供給方向を制御してもよい。材料ノズル412の向きは、駆動系42を用いて材料ノズル412を移動させることで制御可能である。但し、この場合には、駆動系42は、照射光学系411と材料ノズル412とを別々に移動させる。材料ノズル412の向きの制御に伴い、材料ノズル412の状態は、供給領域MA(つまり、照射領域EA又は溶融池MP)に向けて造形材料Mを供給可能な供給状態(図10(a)参照)と、供給領域MA(つまり、照射領域EA又は溶融池MP)に向けて造形材料Mを供給不可能な非供給状態(図10(b)参照)との間で切替可能である。材料ノズル412が供給状態にある場合には、図10(a)に示すように、材料ノズル412から供給される造形材料Mは、供給領域MAに到達する。一方で、材料ノズル412が非供給状態にある場合には、図10(b)に示すように、材料ノズル412から供給される造形材料Mは、供給領域MAに到達しない。従って、材料ノズル412が非供給状態にある期間が長くなればなるほど、供給領域MAに対する造形材料Mの単位時間当たりの供給量が少なくなる。つまり、材料ノズル412が非供給状態にある期間が長くなればなるほど、造形材料Mの供給レートは小さくなる。このため、制御装置7は、造形材料Mの供給方向を制御することで、造形材料Mの供給レートを制御することができる。尚、材料ノズル412の状態は、供給領域MA(つまり、照射領域EA又は溶融池MP)の一部に向けて造形材料Mを供給可能な半供給状態であってもよい。この場合、材料ノズル412から造形材料が供給される上記一部の面積を変更して、造形材料Mの供給レートを制御してもよい。
 (3-1-2)熱伝達レートを制御する第1のばらつき抑制動作
 続いて、図11(a)から図11(c)を参照しながら、熱伝達レートを制御する第1のばらつき抑制動作について説明する。尚、説明の簡略化のために、図11(a)から図11(c)の夫々は、層形成期間中において領域WA1に照射領域EAが2回設定される場合における造形材料Mの供給レートの制御方法を示している。
 図11(a)から図11(c)の夫々は、横軸が時間を示し且つ縦軸が熱伝達レートを示すグラフである。時間の経過と共に照射領域EAが造形面CS上で移動するため、図11(a)から図11(c)の横軸は、上述した図6(a)から図6(c)の横軸と同様に、造形面CS上で照射領域EAが設定されている位置に対応している。
 図11(a)に示すように、制御装置7は、(i)領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートが、領域WA2に対する熱伝達レートと同じになり、且つ、(ii)領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートがゼロになるように、熱伝達レートを制御してもよい。言い換えれば、制御装置7は、(i)照射領域EAが初めて設定された領域WA1に対する熱伝達レートが、領域WA2に対する熱伝達レートと同じになり、且つ、(ii)照射領域EAが再度設定された領域WA1に対する熱伝達レートがゼロになるように、熱伝達レートを制御してもよい。尚、熱伝達レートがゼロになる状態は、光ELが照射されない状態と等価である。従って、制御装置7は、(i)照射領域EAが初めて設定された領域WA1に対して、領域WA2と同じように光ELを照射し、且つ、(ii)照射領域EAが再度設定された領域WA1に光ELを照射しないように、造形装置4を制御しているとも言える。尚、制御装置7は、2回目に照射領域が設定された領域WA1に対する熱伝達レートが1回目に照射領域が設定された領域WA1に対する熱伝達レートよりも低くなるように、熱伝達レートを制御してもよい。また、制御装置7は、2回目に照射領域が設定された領域WA1に対する光ELの単位時間当たりの強度又はエネルギが1回目に照射領域が設定された領域WA1に対する光ELの単位時間当たりの強度又はエネルギよりも低くなるように制御してもよい。
 或いは、制御装置7は、(i)領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートが、領域WA2に対する熱伝達レートと同じになり、且つ、(ii)領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートがゼロになるように、熱伝達レートを制御してもよい。つまり、制御装置7は、(i)あるタイミングで照射領域EAが設定された領域WA1に対する熱伝達レートが、領域WA2に対する熱伝達レートと同じになり、且つ、(ii)それ以外のタイミングで照射領域EAが設定された領域WA1に対する熱伝達レートがゼロになるように、熱伝達レートを制御してもよい。層形成期間中において領域WA1に照射領域EAが2回以上設定される場合においても同様に、制御装置7は、(i)あるタイミングで照射領域EAが設定された領域WA1に対する熱伝達レートが、領域WA2に対する熱伝達レートと同じになり、且つ、(ii)それ以外のタイミングで照射領域EAが設定された領域WA1に対する熱伝達レートがゼロになるように、熱伝達レートを制御してもよい。尚、制御装置7は、1回目に照射領域が設定された領域WA1に対する熱伝達レートが2回目に照射領域が設定された領域WA1に対する熱伝達レートよりも低くなるように、熱伝達レートを制御してもよい。また、制御装置7は、1回目に照射領域が設定された領域WA1に対する光ELの単位時間当たりの強度又はエネルギが2回目に照射領域が設定された領域WA1に対する光ELの単位時間当たりの強度又はエネルギよりも低くなるように制御してもよい。また、制御装置7は、あるタイミングで照射領域EAが設定された領域WA1に対する熱伝達レートが、領域WA2に対する熱伝達レートと同じになり、且つそれ以外のタイミングで照射領域EAが設定された領域WA1に対する熱伝達レートが領域WA2に対する熱伝達レートよりも低くなるように、熱伝達レートを制御してもよい。
 このように熱伝達レートが制御された結果、層形成期間中に光ELから領域WA1に伝達された熱の総量と、層形成期間中に光ELから領域WA2に伝達された熱の総量とが同じになる。より具体的には、層形成期間中に光ELからある大きさの領域WA1に伝達された熱の総量と、層形成期間中に光ELから同じ大きさの領域WA2に伝達された熱の総量とが同じになる。つまり、層形成期間中に光ELから領域WA1に伝達された熱の総量を領域WA1の面積で除した値(つまり、単位面積当たりに光ELから伝達された熱量)と、層形成期間中に光ELから領域WA2に伝達された熱の総量を領域WA2の面積で除した値とが同じになる。このため、領域WA1及び領域WA2では、単位面積当たりで同じ量の造形材料Mが供給、溶融及び再固化される。なぜならば、光ELから伝達される熱量が多くなるほど多くの量の造形材料Mが溶融される可能性があるところ、光ELから領域WA1に伝達された熱の総量と光ELから領域WA2に伝達された熱の総量とが同じであるがゆえに、領域WA1における造形材料Mの溶融量(具体的には、単位面積当たりの溶融量、以下同じ)と領域WA2における造形材料Mの溶融量とが同じになる可能性が相対的に高いからである。その結果、上述した供給レートが制御される場合と同様に、領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきが抑制される。その結果、造形物の集合体である3次元構造物STの形成精度が向上する。尚、熱伝達レートと造形物の高さh1、h2との関係が非線形である場合には、この非線形な関係を考慮して熱伝達レートを制御すればよい。
 熱伝達レートが制御される場合には更に、領域WA1では、領域WA2と同じ大きさの溶融池MPが形成される。なぜならば、光ELから伝達される熱量が多くなるほど大きな溶融池MPが形成される可能性があるところ、光ELから領域WA1に伝達された熱の総量と光ELから領域WA2に伝達された熱の総量とが同じであるがゆえに、領域WA1に形成される溶融池MPの大きさと領域WA2に形成される溶融池MPの大きさとが同じになる可能性が相対的に高いからである。その結果、上述した供給レートが制御される場合と同様に、領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきが抑制される。というのも、溶融池MPが大きくなるほど、溶融池MPで溶融した後に再固化した造形材料Mの幅(造形面CSに沿った方向のサイズ)が大きくなる可能性がある。このため、仮に、相対的に大きい溶融池MP及び相対的に小さい溶融池MPに同じ分量の造形材料Mが供給されるとすると、相対的に大きい溶融池MPが形成された部分には、相対的に幅が大きくなったことに起因して相対的に低い造形物が形成される一方で、相対的に小さい溶融池MPが形成された部分には、相対的に幅が小さくなったことに起因して相対的に高い造形物が形成される可能性がある。しかるに、本実施形態では、領域WA1に形成される溶融池MPの大きさと領域WA2に形成される溶融池MPの大きさとが同じになるため、領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきが抑制される。その結果、造形物の集合体である3次元構造物STの形成精度が向上する。
 或いは、図11(b)及び図11(c)に示すように、制御装置7は、領域WA1に照射領域EAが設定されるたびに領域WA1に光ELが照射されるように(つまり、領域WA1に対する熱伝達レートがゼロにならないように)、熱伝達レートを制御してもよい。この場合、制御装置7は、領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レート及び領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートの双方が、領域WA2に対する熱伝達レートよりも小さくなるように、造形材料Mの供給レートを制御する。尚、制御装置7は、図11(b)に示すように、領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートと領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートとが異なるように、熱伝達レートを制御してもよい。或いは、制御装置7は、図11(c)に示すように、領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートと領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートとが同一になるように、熱伝達レートを制御してもよい。図11(b)又は図11(c)に示すように熱伝達レートが制御された場合には、領域WA1に対する熱伝達レートと領域WA2に対する熱伝達レートとが常に同一である場合と比較して、層形成期間中に領域WA1に伝達された熱の総量と、層形成期間中に領域WA2に伝達された熱の総量との差分が小さくなる。その結果、領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきが抑制される。尚、熱伝達レートと造形物の高さh1、h2との関係が非線形である場合には、この非線形な関係を考慮して熱伝達レートを制御すればよい。
 制御装置7は、領域WA1に照射領域EAが設定されるたびに領域WA1に光ELが照射されるように熱伝達レートを制御する場合には、層形成期間中に領域WA1に伝達された熱の総量と、層形成期間中に領域WA2に伝達された熱の総量とが同じになるように、領域WA1に1回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レート及び領域WA1に2回目に照射領域EAが設定されている期間中の領域WA1に対する熱伝達レートを制御してもよい。その結果、図11(a)に示すように熱伝達レートが制御された場合と同様に、層形成期間中に領域WA1に伝達された熱の総量と、層形成期間中に領域WA2に伝達された熱の総量とが同じになる。その結果、領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきがより適切に抑制される。
 尚、層形成期間中において領域WA1に照射領域EAが2回以上設定される場合においても同様に、制御装置7は、領域WA1に照射領域EAが設定されている各期間中の領域WA1に対する熱伝達レートが、領域WA2に対する熱伝達レートよりも小さくなるように、熱伝達レートを制御してもよい。更に、制御装置7は、層形成期間中に領域WA1に伝達された熱の総量と、層形成期間中に領域WA2に伝達された熱の総量とが同じになるように、領域WA1に照射領域EAが設定されている各期間中の領域WA1に対する熱伝達レートを制御してもよい。
 続いて、図12から図14を参照して、熱伝達レートを制御するための具体的方法について説明する。
 制御装置7は、熱伝達レートを制御するために、照射領域EA上での光ELの単位面積当たりの強度又はエネルギ量を制御してもよい。具体的には、図12に示すように、照射領域EA上での光ELの単位面積当たりの強度又はエネルギ量が大きくなるほど、熱伝達レートは大きくなる。このため、制御装置7は、照射領域EA上での光ELの単位面積当たりの強度又はエネルギ量を制御することで、熱伝達レートを制御することができる。
 照射領域EA上での光ELの単位面積当たりの強度を制御するために、制御装置7は、光源5を制御してもよい。例えば、制御装置7は、光源5が射出する光ELの強度を制御してもよい。光ELがパルス光である場合には、パルス光の発光時間が長くなるほど(言い換えれば、パルス光の消光時間が短くなるほど)、照射領域EA上での光ELの単位面積当たりの強度が大きくなる。このため、光ELがパルス光である場合には、例えば、制御装置7は、光源5が射出する光ELのデューティ比を制御してもよい。
 照射領域EA上での光ELの単位面積当たりの強度又はエネルギ量を制御するために、制御装置7は、照射光学系411を制御してもよい。例えば、制御装置7は、照射光学系411が射出する光ELの強度又はエネルギ量を制御してもよい。この場合、照射光学系411は、照射光学系411内で光ELの強度又はエネルギ量を調整するための光学部材を備えていてもよい。
 照射領域EA上での光ELの単位面積当たりの強度又はエネルギ量を制御するために、制御装置7は、図13(a)及び図13(b)に示すように、照射光学系411と照射領域EAとの間における光ELの光路に挿脱可能に造形装置4に配置される遮光部材471を制御してもよい。具体的には、遮光部材471は、不図示の駆動系(例えば、アクチュエータ等)によって、光ELの光路に対して移動可能である。遮光部材471の移動に伴い、遮光部材471の状態は、光ELの光路を遮っている遮光状態(図13(a)参照)と、光ELの光路を遮っていない非遮光状態(図13(b)参照)との間で切替可能である。遮光部材471が遮光状態にある場合には、図13(a)に示すように、照射光学系411から射出した光ELは、遮光部材471によって遮られる。光ELが透過できない材料から遮光部材471が形成されている場合には、光ELは、照射領域EAに到達しない。光ELの一部が透過可能な材料から遮光部材471が形成されている場合には、光ELの一部が、照射領域EAに到達しない。つまり、遮光部材471によって強度が減衰した光ELが、照射領域EAに照射される。一方で、遮光部材471が非遮光状態にある場合には、図13(b)に示すように、照射光学系411から射出した光ELは、遮光部材471によって遮られることなく、照射領域EAに到達する。その結果、遮光部材471が遮光状態にある場合には、遮光部材471が非遮光状態にある場合と比較して、照射領域EA上での光ELの単位面積当たりの強度が小さくなる。尚、遮光部材471は、照射光学系411から射出した光ELの一部を遮蔽する半遮光状態となるように、制御装置7によって制御されてもよい。尚、制御装置7は、遮光部材471が遮光状態にある期間と遮光部材471が非遮光状態にある期間との比を制御してもよい。遮光部材471が遮光状態にある期間が長くなるほど(言い換えれば、遮光部材471が非遮光状態にある期間が短くなるほど)、照射領域EA上での光ELの単位面積当たりの強度が小さくなる。また、遮光部材471は、照射光学系411の内部に設けられていてもよく、光源5と照射光学系411との間の光路に設けられてもよい。
 制御装置7は、熱伝達レートを制御するために、光ELのフォーカス位置(言い換えれば、デフォーカス量)を制御してもよい。具体的には、フォーカス位置が造形面CSから離れるほど(つまり、デフォーカス量が大きくなるほど)、造形面CSに設定される照射領域EA上での光ELの単位面積当たりの強度又はエネルギ量が小さくなる。従って、フォーカス位置が造形面CSから離れるほど(つまり、デフォーカス量が大きくなるほど)、熱伝達レートは小さくなる。このため、制御装置7は、フォーカス位置を制御することで、熱伝達レートを制御することができる。フォーカス位置を制御するために、図14(a)及び図14(b)に示すように、制御装置7は、照射光学系411が備える集光光学素子472を制御してもよい。尚、図14(a)は、フォーカス位置が造形面CS上に設定されているがゆえに、照射領域EA上での光ELの単位面積当たりの強度又はエネルギ量が相対的に大きい状態を示している。一方で、図14(b)は、フォーカス位置が造形面CSから離れた位置に設定されているがゆえに、照射領域EA上での光ELの単位面積当たりの強度又はエネルギ量が相対的に小さい状態を示している。或いは、フォーカス位置を制御するために、制御装置7は、駆動系42を制御してもよい。具体的には、制御装置7は、造形面CSに対してZ軸に沿って造形ヘッド41(特に、照射光学系411)を移動させることで、造形面CSとフォーカス位置との間の相対位置を制御してもよい。後述するように、ステージ43を移動させる駆動系を造形装置4が備えている場合には、制御装置7は、造形ヘッド41に対してZ軸に沿ってステージ43(つまり、造形面CS)を移動させることで、造形面CSとフォーカス位置との間の相対位置を制御してもよい。尚、照射光学系411を構成する光学部材の一部を移動させることで、造形面CSとフォーカス位置との間の相対位置を制御してもよい。
 制御装置7は、熱伝達レートを制御するために、照射領域EA内での光ELの強度分布又はエネルギ量分布を制御してもよい。尚、上述した照射領域EA内での光ELの単位面積当たりの強度又はエネルギ量の制御及びフォーカス位置の制御は、照射領域EA内での光ELの強度分布の制御の一具体例である。照射領域EA内での光ELの強度分布を制御するために、制御装置7は、照射光学系411が備える強度分布を調整するための光学部材を制御してもよい。強度分布を調整するための光学部材としては、光ELの光路を横切る面内で所要の濃度分布を有するフィルタ、光ELの光路を横切る面内で所要の面形状を有する非球面な光学部材(例えば、屈折型の光学部材又は反射型の光学部材)、回折光学素子及び空間光変調器等の少なくとも一つを用いることができる。
 制御装置7は、熱伝達レートを制御するために、造形面CS上での照射領域EAの大きさ、形状及び位置の少なくとも一つを制御してもよい。造形面CS上での照射領域EAの大きさ、形状及び位置の少なくとも一つが変わると、造形面CS上での光ELの強度分布又はエネルギ量分布が変わる。従って、制御装置7は、造形面CS上での照射領域EAの大きさ、形状及び位置の少なくとも一つを制御することで、熱伝達レートを制御することができる。
 制御装置7は、熱伝達レートを制御するために、光ELの強度と相関を有する光ELの任意の特性を制御してもよい。制御装置7は、熱伝達レートを制御するために、熱伝達レートと相関を有する光ELの任意の特性を制御してもよい。このような光ELの任意の特性の一例として、造形面CS上での照射領域EAの大きさ、形状及び位置の少なくとも一つがあげられる。なぜならば、造形面CS上での照射領域EAの大きさ、形状及び位置の少なくとも一つが変わると、造形面CS上での光ELの強度分布が変わるからである。また、任意の特性の一例としては、造形面CSに向かう光ELの波長であってもよい。光ELの波長が異なると、造形材料Mでの光の吸収率が異なってくるため、単位時間当たりに光ELから造形面CSに伝達される熱量である熱伝達レートが変わる。尚、上述したように、2回目以降の造形処理においては、造形材料Mの造形物に溶融池が形成されることも考えられる。その場合、光ELから造形面CSと造形材料Mの光ELの吸収率が異なる可能性がある。例えば、造形面CSを形成する材料と造形材料Mとが異なる場合には、光ELから造形面CSと造形材料Mの光ELの吸収率が異なる可能性がある。このような場合も光ELの照射される部分の光ELの吸収率などを考慮して、熱伝達レートを制御してもよい。
 (3-1-3)照射領域EAの移動速度を制御する第1のばらつき抑制動作
 続いて、図15(a)及び図15(b)を参照しながら、照射領域EAの移動速度を制御する第1のばらつき抑制動作について説明する。尚、説明の簡略化のために、図15(a)及び図15(b)の夫々は、層形成期間中において領域WA1に照射領域EAが2回設定される場合における照射領域EAの移動速度の制御方法を示している。
 図15(a)及び図15(b)の夫々は、横軸が時間を示し且つ縦軸が照射領域EAの移動速度を示すグラフである。時間の経過と共に照射領域EAが造形面CS上で移動するため、図15(a)及び図15(b)の横軸は、上述した図6(a)から図6(c)の横軸と同様に、造形面CS上で照射領域EAが設定されている位置に対応している。
 図15(a)から図15(b)に示すように、制御装置7は、領域WA1に1回目に照射領域EAが設定されている期間中の照射領域EAの移動速度及び領域WA1に2回目に照射領域EAが設定されている期間中の照射領域EAの移動速度の双方が、領域WA2に照射領域EAが設定されている期間中の照射領域EAの移動速度よりも速くなるように、照射領域EAの移動速度を制御する。尚、制御装置7は、図15(a)に示すように、領域WA1に1回目に照射領域EAが設定されている期間中の照射領域EAの移動速度と領域WA1に2回目に照射領域EAが設定されている期間中の照射領域EAの移動速度とが異なるように、照射領域EAの移動速度を制御してもよい。或いは、制御装置7は、図15(b)に示すように、領域WA1に1回目に照射領域EAが設定されている期間中の照射領域EAの移動速度と領域WA1に2回目に照射領域EAが設定されている期間中の照射領域EAの移動速度とが同じになるように、照射領域EAの移動速度を制御してもよい。
 ここで、照射領域EAの移動速度が速くなるほど、造形面CS上のある領域部分に照射領域EAが設定されている時間が短くなる。造形面CS上のある領域部分に照射領域EAが設定されている時間が短くなるほど、当該領域部分に対して光ELから伝達される熱量が少なくなる。造形面CS上のある領域部分に対して光ELから伝達される熱量が少なくなるほど、当該領域部分における造形材料Mの溶融量が減る。更に、照射領域EAの移動速度が速くなるほど、照射領域EAと同じ位置に設定される供給領域MAの移動速度が速くなる。供給領域MAの移動速度が速くなるほど、造形面CS上のある領域部分に供給領域MAが設定されている時間が短くなる。造形面CS上のある領域部分に供給領域MAが設定されている時間が短くなるほど、当該領域部分に対する造形材料光ELの供給量が少なくなる。造形面CS上のある領域部分に対する造形材料ELの供給量が少なくなるほど、当該領域部分における造形材料Mの溶融量が減る。このため、図15(a)又は図15(b)に示すように照射領域EAの移動速度が制御されると、照射領域EAの移動速度が常に一定である場合と比較して、層形成期間中に領域WA1で溶融した造形材料Mの総量と、層形成期間中に領域WA2で溶融した造形材料Mの総量との差分が小さくなる。より具体的には、層形成期間中にある大きさの領域WA1で溶融した造形材料Mの総量と、層形成期間中に同じ大きさの領域WA2で溶融した造形材料Mの総量との差分が小さくなる。つまり、層形成期間中に領域WA1で溶融した造形材料Mの総量を領域WA1の面積で除した値(つまり、単位面積当たりの造形材料Mの溶融量)と、層形成期間中に領域WA2で溶融した造形材料Mの総量を領域WA2の面積で除した値の差分が小さくなる。その結果、領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきが抑制される。
 制御装置7は、層形成期間中に領域WA1で溶融する造形材料Mの総量と、層形成期間中に領域WA2で溶融する造形材料Mの総量とが同じになるように、照射領域EAの移動速度を制御してもよい。例えば、領域WA1に照射領域EAがN(但し、Nは2以上の整数)回設定されることに起因して一連の造形処理がN回行われる場合には、制御装置7は、領域WA1に照射領域EAが設定されている各期間中の照射領域EAの移動速度が、領域WA2に照射領域EAが設定されている期間中の照射領域EAの移動速度のN倍になるように、照射領域EAの移動速度を制御してもよい。或いは、例えば、領域WA1に照射領域EAがN回設定されることに起因して一連の造形処理がN回行われる場合には、制御装置7は、領域WA1に照射領域EAが設定されている各期間中の照射領域EAの移動速度の平均が、領域WA2に照射領域EAが設定されている期間中の照射領域EAの移動速度と同じになるように、照射領域EAの移動速度を制御してもよい。その結果、領域WA1に形成される造形物S1の高さh1と領域WA2に形成される造形物S2の高さh2とのばらつきがより適切に抑制される。尚、照射領域EAの移動速度と造形物の高さh1、h2との関係が非線形である場合には、この非線形な関係を考慮して移動速度を制御すればよい。
 制御装置7は、照射領域EAの移動速度を制御するために、駆動系42を制御してもよい。つまり、制御装置7は、造形ヘッド41の移動速度(特に、XY平面に沿った方向の移動速度)を制御することで、造形面CSに対する照射領域EAの相対的な移動速度を制御してもよい。後述するように、ステージ43を移動させる駆動系を造形装置4が備えている場合には、制御装置7は、ステージ43の移動速度(特に、XY平面に沿った方向の移動速度)を制御することで、造形面CSに対する照射領域EAの相対的な移動速度を制御してもよい。後述するように、照射光学系411が光ELを偏向可能な光学部材(例えば、ガルバノスキャナ等)を備えている場合には、制御装置7は、光ELを偏向可能な光学部材を制御することで、造形面CSに対する照射領域EAの相対的な移動速度を制御してもよい。
 (3-2)第2のばらつき抑制動作
 続いて、第2のばらつき抑制動作について説明する。第2のばらつき抑制動作は、光ELから伝達される熱に対する特性(以降、“熱特性”と称する)が異なる領域が造形面CSに存在する場合に、造形物の高さなどのばらつきを抑制するための動作に相当する。特に、第2のばらつき抑制動作は、造形面CSに対する照射領域EA(つまり、供給領域MA又は溶融池MP)の相対的な移動速度の違いに起因して熱特性が異なる領域が造形面CSに存在する場合に、造形物の高さのばらつきを抑制するための動作に相当する。
 具体的には、図16(a)に示すように、造形面CS上にある一つの構造層SLを形成している層形成期間中において、造形面CS上での構造層SLのパターンに応じた移動軌跡に沿って照射領域EAが造形面CS上を移動することは上述したとおりである。ここで、照射領域EAは、移動軌跡に沿って常に一定の移動速度で移動するとは限らない。つまり、照射領域EAの移動速度は、層形成期間中に変わる可能性がある。例えば、図16(a)に示すように、造形面CS上のある地点P3において、照射領域EAの移動方向が変わる可能性がある。この場合、図16(b)に示すように、当初は一定であった照射領域EAの移動速度は、照射領域EAが地点P3に近づくにつれて徐々に減少していく。その後、照射領域EAの移動速度は、照射領域EAが地点P3に到達した時点で最小になる(例えば、ゼロになる)。その後、照射領域EAの移動速度は、照射領域EAが地点P3から遠ざかるにつれて徐々に増加していく。その後、照射領域EAの移動速度がある程度増加した後には、照射領域EAは、一定の移動速度で移動する。
 このように照射領域EAの移動速度が変化すると、造形面CS上のある領域部分に照射領域EAが設定されている時間もまた変化する。造形面CS上のある領域部分に照射領域EAが設定されている時間が変化すると、当該領域部分に対して光ELから伝達される熱量もまた変化する。このため、照射領域EAの移動速度が変化する場合には、光ELから伝達される熱量に関する熱特性が異なる領域が造形面CSに存在することになる。より具体的には、照射領域EAの移動速度が遅くなるほど、造形面CS上のある領域部分に照射領域EAが設定されている時間が長くなる。造形面CS上のある領域部分に照射領域EAが設定されている時間が長くなるほど、当該領域部分に対して光ELから伝達される熱量が多くなる。
 造形面CS上のある領域部分に光ELから伝達される熱量が変化すると、当該領域部分における造形材料Mの溶融量が変化する可能性がある。造形面CS上のある領域部分における造形材料Mの溶融量が変化すると、当該領域部分において溶融した造形材料Mから形成される造形物の高さ(或いは、サイズ等の任意の特性)もまた変化する可能性がある。より具体的には、造形面CS上のある領域部分に光ELから伝達される熱量が多くなるほど、当該領域部分における造形材料Mの溶融量が多くなる可能性がある。造形面CS上のある領域部分に造形材料Mの溶融量が多くなるほど、当該領域部分において溶融した造形材料Mから形成される造形物が高くなる可能性がある。このため、造形面CSに一定の高さの造形物を形成するべき状況下で照射領域EAの移動速度の変化を考慮することなく一連の造形処理が行われると、図16(b)の下部に示すように、照射領域EAの移動速度に応じて高さが異なる造形物が形成される可能性がある。より具体的には、造形面CS上のある領域部分を移動する照射領域EAの移動速度が遅くなるほど、当該領域部分に形成される造形物が高くなる可能性がある。
 一例として、照射領域EAの移動速度が変わる場合には、図16(a)及び図16(b)に示すように、造形面CS上には、照射領域EAが第1の移動速度で移動する領域WA3と、照射領域EAが第1の移動速度よりも遅い第2の移動速度で移動する領域WA4とが存在すると言える。この場合、領域WA3と領域WA4とに同じ高さの造形物を形成するべき状況下で領域WA3と領域WA4とを区別することなく一連の造形処理が行われると、図16(b)の下部に示すように、領域WA3に形成される造形物の高さと領域WA4に形成される造形物の高さとが一致しない可能性がある。典型的には、図16(b)に示すように、領域WA3に形成される造形物の高さは、光ELから伝達される熱量が多くなる分だけ、領域WA4に形成される造形物の高さよりも高くなる可能性がある。
 そこで、本実施形態では、制御装置7(言い換えれば、制御装置7の制御下にある造形システム1)は、第2のばらつき抑制動作を行うことで、照射領域EAの移動速度の違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきを抑制する。例えば、制御装置7は、第2のばらつき抑制動作を行うことで、領域WA3に形成される造形物の高さと領域WA4に形成される造形物の高さとのばらつきを抑制する。
 制御装置7は、造形材料Mの供給レートを制御することで、造形物の高さのばらつきを抑制する第2のばらつき抑制動作を行ってもよい。具体的には、図17に示すように、制御装置7は、照射領域EAの移動速度が遅くなるほど供給レートが小さくなるように、供給レートを制御してもよい。つまり、制御装置7は、造形面CS上のある領域部分を移動する照射領域EAの移動速度が遅くなるほど、当該領域部分に対する供給レートが小さくなるように、供給レートを制御してもよい。その結果、照射領域EAが相対的に遅い移動速度で移動する領域部分に形成される造形物が相対的に高くなる状況下において、当該領域部分に対する造形材料Mの供給量が少なくなる。造形材料Mの供給量が少なくなると、造形材料Mの溶融量もまた少なくなる。このため、照射領域EAが相対的に遅い移動速度で移動する領域部分に形成される造形物が相対的に高くなることが抑制される。その結果、照射領域EAの移動速度の違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきが抑制される。尚、移動速度と造形物の高さとの関係が非線形である場合には、この非線形な関係を考慮して供給レートを制御すればよい。
 一例として、図18の1段目のグラフ(図16(b)の上部のグラフと同一)に示すように照射領域EAの移動速度が変化する場合には、制御装置7は、図18の2段目のグラフに示すように供給レートが変化するように、供給レートを制御してもよい。つまり、制御装置7は、照射領域EAが相対的に早い第1の移動速度で移動する領域WA3に対する供給レートが、照射領域EAが相対的に遅い第2の移動速度で移動する領域WA4に対する供給レートよりも大きくなるように、供給レートを制御してもよい。その結果、図18の3段目に示すように、照射領域EAの移動速度の違いに起因して熱特性が異なる領域に、一定の高さの造形物が形成可能となる。つまり、領域WA3に形成される造形物の高さと領域WA4に形成される造形物の高さとのばらつきが抑制される。尚、図18では、照射領域EAの移動速度に関わらず一定に維持された供給レート及びその場合に形成される造形物を、比較例として一点鎖線で示している。
 制御装置7は、供給レートを制御することに加えて又は変えて、熱伝達レートを制御することで、造形物の高さのばらつきを抑制する第2のばらつき抑制動作を行ってもよい。具体的には、図19に示すように、制御装置7は、照射領域EAの移動速度が遅くなるほど熱伝達レートが小さくなるように、熱伝達レートを制御してもよい。つまり、制御装置7は、造形面CS上のある領域部分を移動する照射領域EAの移動速度が遅くなるほど、当該領域部分に対する熱伝達レートが小さくなるように、熱伝達レートを制御してもよい。その結果、照射領域EAが相対的に遅い移動速度で移動する領域部分に形成される造形物が相対的に高くなる状況下において、当該領域部分に対して光ELから伝達される熱量が少なくなる。伝達される熱量が少なくなると、造形材料Mの溶融量もまた少なくなる。このため、照射領域EAが相対的に遅い移動速度で移動する領域部分に形成される造形物が相対的に高くなることが抑制される。その結果、照射領域EAの移動速度の違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきが抑制される。尚、移動速度と造形物の高さとの関係が非線形である場合には、この非線形な関係を考慮して熱伝達レートを制御すればよい。
 一例として、図20の1段目のグラフ(図16(b)の上部のグラフと同一)に示すように照射領域EAの移動速度が変化する場合には、制御装置7は、図20の2段目のグラフに示すように熱伝達レートが変化するように、熱伝達レートを制御してもよい。つまり、制御装置7は、照射領域EAが相対的に早い第1の移動速度で移動する領域WA3に対する熱伝達レートが、照射領域EAが相対的に遅い第2の移動速度で移動する領域WA4に対する熱伝達レートよりも大きくなるように、熱伝達レートを制御してもよい。その結果、図20の3段目に示すように、照射領域EAの移動速度の違いに起因して熱特性が異なる領域に、一定の高さの造形物が形成可能となる。つまり、領域WA3に形成される造形物の高さと領域WA4に形成される造形物の高さとのばらつきが抑制される。尚、図20では、照射領域EAの移動速度に関わらず一定に維持された熱伝達レート及びその場合に形成される造形物を、比較例として一点鎖線で示している。
 尚、第2のばらつき抑制動作において供給レート及び熱伝達レートの夫々を制御するための具体的方法は、上述した第1のばらつき抑制動作において供給レート及び熱伝達レートの夫々を制御するための具体的方法と同じであってもよい。このため、供給レート及び熱伝達レートの夫々を制御するための具体的方法についての説明は省略する。
 また、第2のばらつき抑制動作において抑制するべき造形物の高さのばらつきが生ずる原因の一つが、造形面CSに対する照射領域EA(つまり、供給領域MA)の相対的な移動速度が変化することであることは上述したとおりである。そうすると、照射領域EAの移動速度を制御して本来の移動速度から変えたとしても所望の構造層SL(更には、3次元構造物ST)を形成することができる場合には、制御装置7は、照射領域EAの移動速度を制御することで、造形物の高さのばらつきを抑制する第2のばらつき抑制動作を行ってもよい。この場合、照射領域EAの移動速度が制御されることで、造形物の高さのばらつきが生ずる原因(つまり、造形物の高さのばらつきが生ずるという技術的課題)そのものが解消される。このため、照射領域EAの移動速度を制御する第2のばらつき抑制動作は、造形物の高さのばらつきが生ずる原因を排除するための動作であるとも言える。一方で、照射領域EAの移動軌跡のパターンによっては、照射領域EAの移動速度を制御して本来の移動速度から変えることができない可能性がある。この場合には、制御装置7は、造形物の高さのばらつきを抑制する第2のばらつき抑制動作を行うために、照射領域EAの移動速度を制御しなくてもよい。尚、移動速度と造形物の高さとの関係が非線形である場合には、この非線形な関係を考慮して移動速度を制御すればよい。
 (3-3)第3のばらつき抑制動作
 続いて、第3のばらつき抑制動作について説明する。第3のばらつき抑制動作は、第2のばらつき抑制動作と同様に、熱特性が異なる領域が造形面CSに存在する場合に、造形物の高さなどのばらつきを抑制するための動作に相当する。但し、第3のばらつき抑制動作は、表面の少なくとも一部が造形面CSに設定されている既存構造物(例えば、ワークW及び既に形成済みの構造層SLの少なくとも一方)における熱の拡散度合いの違いに起因して熱特性が異なる領域が造形面CSに存在する場合に、造形物の高さのばらつきを抑制するための動作に相当する。
 具体的には、3次元構造物STが形成される場合には、造形面CSに光ELが照射されることは上述したとおりである。造形面CSには、光ELから熱が伝達される。この熱は、造形面CSを介して既存構造物の内部にも伝達(実質的には、拡散)される。ここで、既存構造物の特性(例えば、構造、材質及び形状の少なくとも一方)によっては、既存構造物における熱の拡散度合い(つまり、拡散のしやすさ又はしにくさを示す指標)が均一であるとは限らない。つまり、光ELから伝達される熱の拡散度合いに関する熱特性が異なる領域が造形面CSに存在する可能性がある。例えば、造形面CS上には、光ELから伝達された熱が相対的に拡散されにくい領域と、光ELから伝達された熱が相対的に拡散されやすい領域とが存在する可能性がある。
 例えば、図21(a)に示すように、既存構造物は、造形面CSが設定される表面SF1に加えて、造形面CSが設定されない表面SF2を有する。この場合、造形面CS上のある領域部分と表面SF2との近接度合いに応じて、造形面CS上のある領域部分に伝達された熱の拡散度合いを推定可能である。具体的には、図21(a)に示すように、造形面CS上の領域WA5は、造形面CS上の領域WA6よりも表面SF2に近い。このため、領域WA5に伝達された熱の拡散経路(つまり、既存構造物の内部の拡散経路)は、領域WA6に伝達された熱の拡散経路よりも小さく又は少なくなる。従って、造形面CS上のある領域部分と造形面CSが設定されない表面SF2との間の距離が短くなるほど、当該領域部分に伝達された熱が拡散されにくくなる。尚、図21(a)に示す例では、造形面CS上には、光ELから伝達された熱が相対的に拡散されにくい領域WA5と、光ELから伝達された熱が相対的に拡散されやすい領域WA6とが存在しているとも言える。
 熱が相対的に拡散されにくい領域WA5では、熱が相対的に拡散されやすい領域WA6と比較して、熱が相対的に長い時間蓄積される。その結果、領域WA5では、熱が相対的に長い時間蓄積される分だけ、領域WA6よりも多くの造形材料Mが溶融する可能性がある。このため、造形面CSに一定の高さの造形物を形成するべき状況下で熱の拡散度合いの違いを考慮することなく一連の造形処理が行われると、熱の拡散度合いの違いに応じて高さが異なる造形物が形成される可能性がある。より具体的には、造形面CS上のある領域部分に伝達された熱が拡散されにくくなるほど、当該領域部分に形成される造形物が高くなる可能性がある。一例として、例えば、領域WA5と領域WA6とに同じ高さの造形物を形成するべき状況下で領域WA5と領域WA5とを区別することなく一連の造形処理が行われると、図21(b)に示すように、領域WA5に形成される造形物S5の高さh5と領域WA6に形成される造形物S6の高さh6とが一致しない可能性がある。
 そこで、本実施形態では、制御装置7(言い換えれば、制御装置7の制御下にある造形システム1)は、第3のばらつき抑制動作を行うことで、熱の拡散度合いの違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきを抑制する。例えば、制御装置7は、第3のばらつき抑制動作を行うことで、領域WA5に形成される造形物の高さと領域WA6に形成される造形物の高さとのばらつきを抑制する。
 制御装置7は、造形材料Mの供給レートを制御することで、造形物の高さのばらつきを抑制する第3のばらつき抑制動作を行ってもよい。具体的には、図22に示すように、制御装置7は、熱が拡散しにくくなるほど供給レートが小さくなるように、供給レートを制御してもよい。つまり、制御装置7は、造形面CS上のある領域部分に伝達された熱が拡散されにくくなるほど、当該領域部分に対する供給レートが小さくなるように、供給レートを制御してもよい。その結果、熱が相対的に拡散しにくい領域部分に形成される造形物が相対的に高くなる状況下において、当該領域部分に対する造形材料Mの供給量が少なくなる。造形材料Mの供給量が少なくなると、造形材料Mの溶融量もまた少なくなる。このため、熱が相対的に拡散しにくい領域部分に形成される造形物が相対的に高くなることが抑制される。その結果、熱の拡散度合いの違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきが抑制される。尚、熱の拡散度合いと造形物の高さとの関係が非線形である場合には、この非線形な関係を考慮して供給レートを制御すればよい。
 制御装置7は、供給レートを制御することに加えて又は変えて、熱伝達レートを制御することで、造形物の高さのばらつきを抑制する第3のばらつき抑制動作を行ってもよい。具体的には、図23に示すように、制御装置7は、熱が拡散しにくくなるほど熱伝達レートが小さくなるように、熱伝達レートを制御してもよい。つまり、制御装置7は、造形面CS上のある領域部分に伝達された熱が拡散されにくくなるほど、当該領域部分に対する熱伝達レートが小さくなるように、熱伝達レートを制御してもよい。その結果、熱が相対的に拡散しにくい領域部分に形成される造形物が相対的に高くなる状況下において、当該領域部分に対して伝達される熱量が少なくなる。伝達される熱量が少なくなると、造形材料Mの溶融量もまた少なくなる。このため、熱が相対的に拡散しにくい領域部分に形成される造形物が相対的に高くなることが抑制される。その結果、熱の拡散度合いの違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきが抑制される。尚、熱の拡散度合いと造形物の高さとの関係が非線形である場合には、この非線形な関係を考慮して熱伝達レートを制御すればよい。
 制御装置7は、供給レート及び熱伝達レートの少なくとも一方を制御することに加えて又は変えて、造形面CSに対する照射領域EAの相対的な移動速度を制御することで、造形物の高さのばらつきを抑制する第3のばらつき抑制動作を行ってもよい。具体的には、図24に示すように、制御装置7は、熱が拡散しにくくなるほど照射領域EAの移動速度が速くなるように、照射領域EAの移動速度を制御してもよい。つまり、制御装置7は、造形面CS上のある領域部分に伝達された熱が拡散されにくくなるほど、当該領域部分に照射領域EAが設定されている場合の照射領域EAの移動速度が速くなるように、照射領域EAの移動速度を制御してもよい。造形面CS上のある領域部分に照射領域EAが設定されている場合の照射領域EAの移動速度が速くなるほど、当該領域部分に対する造形材料Mの供給量及び当該領域部分に対して光ELから伝達される熱量が少なくなることは、既に上述したとおりである。このため、図24に示すように照射領域EAの移動速度が制御されると、熱が相対的に拡散しにくい領域部分に形成される造形物が相対的に高くなる状況下において、当該領域部分に対する造形材料Mの供給量及び当該領域部分に対して伝達される熱量が少なくなる。このため、熱が相対的に拡散しにくい領域部分に形成される造形物が相対的に高くなることが抑制される。その結果、熱の拡散度合いの違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきが抑制される。尚、熱の拡散度合いと造形物の高さとの関係が非線形である場合には、この非線形な関係を考慮して移動測度を制御すればよい。
 尚、第3のばらつき抑制動作において供給レート、熱伝達レート及び照射領域EAの移動速度の夫々を制御するための具体的方法は、上述した第1のばらつき抑制動作において供給レート、熱伝達レート及び照射領域EAの移動速度の夫々を制御するための具体的方法と同じであってもよい。このため、供給レート、熱伝達レート及び照射領域EAの移動速度の夫々を制御するための具体的方法についての説明は省略する。
 尚、第3のばらつき抑制動作の説明においては、熱特性として熱の経時的な特性を例に挙げて説明したが、熱に関する他の特性であってもよい。
 (3-4)第4のばらつき抑制動作
 続いて、第4のばらつき抑制動作について説明する。第4のばらつき抑制動作は、第2のばらつき抑制動作と同様に、熱特性が異なる領域が造形面CSに存在する場合に、造形物の高さなどのばらつきを抑制するための動作に相当する。但し、第4のばらつき抑制動作は、光ELが照射される頻度の違いに起因して熱特性が異なる領域が造形面CSに存在する場合に、造形物の高さのばらつきを抑制するための動作に相当する。
 具体的には、3次元構造物STを構成する各構造層SLが形成される場合には、造形面CS上で照射領域EAが移動し且つ造形面CS上で造形物を形成したい領域に照射領域EAが設定されたタイミングで光ELが照射されることは上述したとおりである。ここで、照射領域EAの移動軌跡のパターン及び構造層SLのパターン(つまり、造形面CS上で造形物を形成したい領域の分布パターン)の少なくとも一方によっては、造形面CS上に、光ELが照射される頻度が異なる領域が存在する可能性がある。例えば、図25(a)に示すように、造形面CS上に、光ELが相対的に高頻度に照射される領域WA7と、光ELが相対的に低頻度に照射される領域WA8とが存在する可能性がある。
 尚、造形面CS上のある領域に光ELが照射される頻度は、当該ある領域の一部に光ELが照射されてから次に当該ある領域の別の一部に光ELが照射されるまでの時間が短くなるほど、高くなる。造形面CS上のある領域に光ELが照射される頻度は、当該ある領域に単位時間当たりに光ELが照射される回数が多くなるほど、高くなる。造形面CS上のある領域に光ELが照射される頻度は、当該ある領域に単位面積当たりに光ELが照射される回数が多くなるほど、高くなる。
 光ELが相対的に高頻度に照射される領域WA7では、光ELが相対的に低頻度に照射される領域WA8と比較して、光ELから伝達される熱によって加熱した領域WA7が冷却される前に新たに領域WA7に照射された光からの熱によって更に領域WA7が加熱される可能性が高くなる。つまり、光ELが相対的に高頻度に照射される領域WA7では、光ELが相対的に低頻度に照射される領域WA8と比較して、光ELからの熱が放熱されにくくなる。言い換えれば、光ELが相対的に高頻度に照射される領域WA7では、光ELが相対的に低頻度に照射される領域WA8と比較して、光ELからの熱が相対的に長い時間蓄積される。その結果、領域WA7では、熱が相対的に長い時間蓄積される分だけ、領域WA8よりも多くの造形材料Mが溶融する可能性がある。このため、造形面CSに一定の高さの造形物を形成するべき状況下で光ELが照射される頻度の違いを考慮することなく一連の造形処理が行われると、光ELが照射される頻度の違いに応じて高さが異なる造形物が形成される可能性がある。より具体的には、造形面CS上のある領域に光ELが照射される頻度が高くなるほど、当該領域部分に形成される造形物が高くなる可能性がある。一例として、例えば、領域WA7と領域WA8とに同じ高さの造形物を形成するべき状況下で領域WA7と領域WA8とを区別することなく一連の造形処理が行われると、図25(b)に示すように、領域WA7に形成される造形物S7の高さh7と領域WA8に形成される造形物S8の高さh8とが一致しない可能性がある。
 そこで、本実施形態では、制御装置7(言い換えれば、制御装置7の制御下にある造形システム1)は、第4のばらつき抑制動作を行うことで、光ELが照射される頻度の違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきを抑制する。例えば、制御装置7は、第4のばらつき抑制動作を行うことで、領域WA7に形成される造形物の高さと領域WA8に形成される造形物の高さとのばらつきを抑制する。
 制御装置7は、造形材料Mの供給レートを制御することで、造形物の高さのばらつきを抑制する第4のばらつき抑制動作を行ってもよい。具体的には、図26に示すように、制御装置7は、光ELが照射される頻度が高くなるほど供給レートが小さくなるように、供給レートを制御してもよい。つまり、制御装置7は、造形面CS上のある領域部分に光ELが照射される頻度が高くなるほど、当該領域部分に対する供給レートが小さくなるように、供給レートを制御してもよい。その結果、光ELが照射される頻度が高い領域部分に形成される造形物が相対的に高くなる状況下において、当該領域部分に対する造形材料Mの供給量が少なくなる。造形材料Mの供給量が少なくなると、造形材料Mの溶融量もまた少なくなる。このため、光ELが照射される頻度が高い領域部分に形成される造形物が相対的に高くなることが抑制される。その結果、光ELが照射される頻度の違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきが抑制される。尚、光ELが照射される頻度と造形物の高さとの関係が非線形である場合には、その非線形な関係を考慮して供給レートを制御してもよい。
 制御装置7は、供給レートを制御することに加えて又は変えて、熱伝達レートを制御することで、造形物の高さのばらつきを抑制する第4のばらつき抑制動作を行ってもよい。具体的には、図27に示すように、制御装置7は、光ELが照射される頻度が高くなるほど熱伝達レートが小さくなるように、熱伝達レートを制御してもよい。つまり、制御装置7は、造形面CS上のある領域部分に光ELが照射される頻度が高くなるほど、当該領域部分に対する熱伝達レートが小さくなるように、熱伝達レートを制御してもよい。その結果、光ELが照射される頻度が高い領域部分に形成される造形物が相対的に高くなる状況下において、当該領域部分に対して伝達される熱量が少なくなる。伝達される熱量が少なくなると、造形材料Mの溶融量もまた少なくなる。このため、光ELが照射される頻度が高い領域部分に形成される造形物が相対的に高くなることが抑制される。その結果、光ELが照射される頻度の違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきが抑制される。尚、光ELが照射される頻度と造形物の高さとの関係が非線形である場合には、その非線形な関係を考慮して熱伝達レートを制御してもよい。
 制御装置7は、供給レート及び熱伝達レートの少なくとも一方を制御することに加えて又は変えて、造形面CSに対する照射領域EAの相対的な移動速度を制御することで、造形物の高さのばらつきを抑制する第4のばらつき抑制動作を行ってもよい。具体的には、図28に示すように、制御装置7は、光ELが照射される頻度が高くなるほど照射領域EAの移動速度が速くなるように、照射領域EAの移動速度を制御してもよい。つまり、制御装置7は、造形面CS上のある領域部分に光ELが照射される頻度が高くなるほど、当該領域部分に照射領域EAが設定されている場合の照射領域EAの移動速度が速くなるように、照射領域EAの移動速度を制御してもよい。造形面CS上のある領域部分に照射領域EAが設定されている場合の照射領域EAの移動速度が速くなるほど、当該領域部分に対する造形材料Mの供給量及び当該領域部分に対して光ELから伝達される熱量が少なくなることは、既に上述したとおりである。このため、図28に示すように照射領域EAの移動速度が制御されると、光ELが照射される頻度が高い領域部分に形成される造形物が相対的に高くなる状況下において、当該領域部分に対する造形材料Mの供給量及び当該領域部分に対して伝達される熱量が少なくなる。このため、光ELが照射される頻度が高いい領域部分に形成される造形物が相対的に高くなることが抑制される。その結果、光ELが照射される頻度の違いに起因して熱特性が異なる領域に形成される造形物の高さのばらつきが抑制される。尚、光ELが照射される頻度と造形物の高さとの関係が非線形である場合には、その非線形な関係を考慮して移動速度を制御してもよい。
 尚、第4のばらつき抑制動作において供給レート、熱伝達レート及び照射領域EAの移動速度の夫々を制御するための具体的方法は、上述した第1のばらつき抑制動作において供給レート、熱伝達レート及び照射領域EAの移動速度の夫々を制御するための具体的方法と同じであってもよい。このため、供給レート、熱伝達レート及び照射領域EAの移動速度の夫々を制御するための具体的方法についての説明は省略する。
 尚、第4のばらつき抑制動作の説明においては、熱特性として熱の経時的な特性を例に挙げて説明したが、熱に関する他の特性であってもよい。
 (3-5)ばらつき抑制動作の変形例
 上述した説明では、制御装置7は、造形面CS上の異なる領域に形成される造形物の高さ(或いは、サイズ等の任意の特性)のばらつきを抑制するために、造形材料Mの供給レート、熱伝達レート及び造形面CSに対する照射領域EAの移動速度の少なくとも一つを制御している。しかしながら、逆に言えば、制御装置7は、供給レート、熱伝達レート及び造形面CSに対する照射領域EAの移動速度の少なくとも一つを制御することで、造形面CS上に形成される造形物(更には、構造層SL及び3次元構造物ST)の特性を制御することができる。このため、制御装置7は、造形面CS上に形成される造形物(更には、構造層SL及び3次元構造物ST)の特性が所望の特性となるように、供給レート、熱伝達レート及び造形面CSに対する照射領域EAの移動速度の少なくとも一つを制御してもよい。つまり、制御装置7は、特性のばらつきを抑制する目的とは異なる目的で、供給レート、熱伝達レート及び造形面CSに対する照射領域EAの移動速度の少なくとも一つを制御してもよい。例えば、制御装置7は、後述するマーキング動作で形成されるマークの特性(例えば、高さ及びサイズの少なくとも一方)を制御するために、供給レート、熱伝達レート及び造形面CSに対する照射領域EAの移動速度の少なくとも一つを制御してもよい。
 上述した説明では、熱特性が異なる複数の領域が造形面CSに存在する原因の一例として、造形面CSに対する照射領域EAの相対的な移動速度の違い、表面の少なくとも一部が造形面CSに設定されている既存構造物における熱の拡散度合いの違い、及び、光ELが照射される頻度の違いについて説明している。しかしながら、その他の理由で、熱特性が異なる領域が造形面CSに存在する可能性もある。この場合においても、熱特性が異なる領域に同じ特性の造形物を形成するべき状況下で熱特性の違いを考慮することなく一連の造形処理が行われると特性がばらついた造形物が形成される可能性がある。このため、制御装置7は、上述した原因とは異なるその他の原因で熱特性が異なる領域に形成される造形物の高さのばらつきを抑制するためのばらつき抑制動作を行ってもよい。尚、熱特性が異なる複数の領域が造形面CSに存在する場合として、造形面CSの場所ごとに材料の種類や密度等が異なる場合が挙げられる。
 (4)マーキング動作
 続いて、上述した造形動作を用いて造形面CSにマークSMを形成するためのマーキング動作について説明する。
 (4-1)マーキング動作の概要
 マーキング動作は、上述した造形動作を用いて造形面CS上に所定の分布パターンで分布する造形物を形成することで、当該造形物の集合体から構成されるマークSMを造形面CSに形成するための動作である。
 マークSMは、造形面CSに沿った平面上で所定の意味を有する記号に関するマークを含んでいてもよい。記号は、例えば、任意の文字を意味する記号、任意の数字を意味する記号、任意の図形を意味する記号、任意の印を意味する記号及びその他何らかの意味を有する記号の少なくとも一つを含んでいてもよい。例えば、図29は、造形面CS上に、アルファベットのNを意味する記号に関するマークSM1、感嘆符を意味する記号に関するマークSM2及び円形の図形を意味する記号に関するマークSM3が造形面CS上に形成されている例を示している。
 マークSMは、図29の下部に示すように、造形面CSから凸状に突き出た構造物である。マークSMは、単一の構造層SLを含む構造物であってもよい。つまり、マークSMは、単一の構造層SLから構成されていてもよい。この場合、マークSMの高さ(つまり、造形面CSからマークSMの上面(つまり、+Z側の面)までの長さ、以下同じ)は、構造層SLの高さと同じになる。或いは、マークSMは、積層された複数の構造層SLを含む構造物であってもよい。つまり、マークSMは、積層された複数の構造層SLから構成されていてもよい。この場合、マークSMの高さは、積層された複数の構造層SLの高さと同じになる。従って、マークSMの高さは、典型的には、マークSMを構成する構造層SLの数が増えるほど高くなる。
 但し、マークSMの高さの最大値は、造形面CSに沿った方向におけるマークSMのサイズの最小値を超えない。つまり、マークSMのうち最も高い部分の高さは、マークSMのうち最も細い部分のサイズを超えない。例えば、図29に示す例では、マークSM1の高さの最大値hm1は、造形面CSに沿った方向におけるマークSM1のサイズの最小値wm1を超えない。マークSM2の高さの最大値hm2は、造形面CSに沿った方向におけるマークSM2のサイズの最小値wm2を超えない。但し、高さの最大値が造形面CSに沿った方向におけるマークSMのサイズの最小値を超えているマークSMが形成されてもよい。
 このようなマークSMを形成するために、制御装置7は、まず、造形面CSに形成するべきマークSMに関する座標データを取得する。座標データは、造形面CS上でマークSMが分布する位置(つまり、マークSMを構成する造形物を形成するべきマーク形成領域が分布する位置)を示すデータである。造形面CSが平面であることから、座標データは、2次元座標系上でマークSMが分布する位置に対応付けられた(或いは、関連付けられた)データに相当する。このような座標データの一例として、フォントデータ(例えば、ビットマップフォントデータ等)及び画像データ(例えば、ビットマップ画像データ等)のうちの少なくとも一方があげられる。制御装置7は、座標データを提供する他の装置から座標データを取得してもよい。或いは、制御装置7は、制御装置7自身で座標データを生成してもよい。この場合、制御装置7は、まず、造形面CSに形成するべきマークSMに対応する記号を示す記号情報を取得する。例えば、制御装置7は、造形面CSに形成したい記号を入力するためにユーザが操作可能な入力装置から、当該記号を指定するユーザの操作内容に関する情報を、記号情報として取得する。その後、制御装置7は、取得した記号情報を、座標データに変換する。例えば、制御装置7は、記号情報が示す記号を、二次元平面上での記号パターンに変換し、当該記号パターンが分布する領域の2次元平面上での座標を特定する。その結果、制御装置7は、特定した座標を示す座標データを取得することができる。
 座標データを取得した後、制御装置7は、座標データに基づいて造形動作を行うことで、マークSMを形成する。具体的には、制御装置7は、座標データに基づいて少なくとも一つの構造層SLを形成することで、当該構造層SLから構成されるマークSMを形成する。各構造層SLを形成する場合には、制御装置7は、図30(a)に示すように、Y軸方向に沿った照射領域EAの移動とX軸方向に沿った照射領域EAの移動とを繰り返すように造形面CSに対して照射領域EAを移動させながら、座標データが示すマーク形成領域と照射領域EAとが重なるタイミングで光ELを照射するように、造形装置4を制御してもよい。言い換えると、照射領域EAを造形面CS上でラスタスキャンするように移動させてもよい。或いは、制御装置7は、図30(b)に示すように、座標データが示すマーク形成領域の分布パターンに沿って照射領域EAを移動させながら光ELを照射するように、造形装置4を制御してもよい。言い換えると、照射領域EAを造形面CS上でベクタースキャンするように移動させてもよい。いずれにせよ、造形面CS上には、マークSMに応じたパターン(つまり、溶融池MPの移動軌跡に応じたパターン)の構造層SLが形成される。
 尚、制御装置7は、マーキング動作を行っている期間の少なくとも一部において、上述したばらつき抑制動作を行ってもよい。つまり、制御装置7は、マーキング動作を行っている期間の少なくとも一部において、上述したばらつき抑制動作を行うことで、マーキング動作によって形成されるマークSMの特性(例えば、高さ及びサイズの少なくとも一方)のばらつきを抑制してもよい。例えば、マークSMを形成する期間の少なくとも一部において、造形面CS上の同じ領域に2回以上照射領域EAが設定される場合には、制御装置7は、上述した第1のばらつき抑制動作を行ってもよい。例えば、マークSMを形成する期間の少なくとも一部において、造形面CSに対する照射領域EAの相対的な移動速度の違いに起因して熱特性が異なる領域が造形面CSに存在する場合には、制御装置7は、上述した第2のばらつき抑制動作を行ってもよい。例えば、マークSMを形成する期間の少なくとも一部において、表面の少なくとも一部が造形面CSに設定されている既存構造物における熱の拡散度合いの違いに起因して熱特性が異なる領域が造形面CSに存在する場合には、制御装置7は、上述した第3のばらつき抑制動作を行ってもよい。例えば、マークSMを形成する期間の少なくとも一部において、光ELが照射される頻度の違いに起因して熱特性が異なる領域が造形面CSに存在する場合には、制御装置7は、上述した第4のばらつき抑制動作を行ってもよい。
 (4-2)マークSMの特性を制御するための特性制御動作
 続いて、マーキング動作によって形成されるマークSMの特性を制御するための特性制御動作について説明する。本実施形態では、造形システム1は、特性制御動作の一例として、マークSMのサイズを制御するサイズ制御動作、マークSMの高さを制御する高さ制御動作、マークSMの表面(特に、マークSMを構成する凸状の構造物の上面)の形状を制御する形状制御動作、及び、マークSMの色調を制御する色調制御動作の少なくとも一つを行う。このため、以下では、サイズ制御動作、高さ制御動作、形状制御動作及び色調制御動作について順に説明する。尚、造形システム1は、マークSMのその他の特性を制御するための特性制御動作を行ってもよい。
 (4-2-1)サイズ制御動作
 はじめに、サイズ制御動作について説明する。サイズ制御動作は、マークSMのサイズ(特に、X軸方向及びY軸方向の少なくとも一方のサイズであり、例えば、幅)を制御するための特性制御動作である。尚、マークSMのサイズは、造形面CSの面内方向におけるサイズであってもよい。造形システム1は、制御装置7の制御下で、サイズ制御動作を行うことで、所望のサイズのマークSMを形成することができる。更には、造形システム1は、制御装置7の制御下で、サイズ制御動作を行うことで、夫々同じ記号を示しながらもサイズが異なる複数のマークSMを形成することができる。更には、造形システム1は、制御装置7の制御下で、サイズ制御動作を行うことで、マークSMの形成中にマークSMのサイズを変えながらマークSMを形成することができる。
 例えば、図31(a)から図31(d)は、いずれも、造形面CSに形成された線状の図形に関するマークSM11及び円形の図形に関するマークSM12を示している。図31(a)に示す例では、制御装置7は、マークSM11のサイズ(具体的には、Y軸方向のサイズであり、幅)が、所望の第1サイズwm11になり、且つ、マークSM12のサイズが、所望の第2サイズwm12になるように、サイズ制御動作を行っている。図31(b)に示す例では、制御装置7は、マークSM11のサイズが、第1サイズwm11よりも小さい所望の第3サイズwm13になり、且つ、マークSM12のサイズが、第2サイズwm12よりも大きい所望の第4サイズwm14になるように、サイズ制御動作を行っている。尚、図31(a)及び図31(b)に示す例では、制御装置7は、マークSM11の一の部分のサイズと、一の部分とは異なるマークSM11の他の部分のサイズとが同じになるように(つまり、マークSM11の形成中にサイズを変えないように)、サイズ制御動作を行っているとも言える。図31(c)に示す例では、制御装置7は、マークSM11の長手方向(つまり、X軸方向)に沿って、マークSM11のサイズが第1サイズwm11から第1サイズwm11よりも大きい第5サイズwm15にまで連続的に変化する(ここでは、大きくなる)ように、サイズ制御動作を行っている。図31(d)に示す例では、制御装置7は、マークSM11の長手方向に沿って、マークSM11のサイズが第1サイズwm11から第5サイズwm15にまで段階的に又は離散的に変化する(ここでは、大きくなる)ように、サイズ制御動作を行っている。尚、図31(c)及び図31(d)に示す例では、制御装置7は、マークSM11の一の部分のサイズと、一の部分とは異なるマークSM11の他の部分のサイズとが異なるものとなるように(つまり、マークSM11の形成中にサイズを変えるように)、サイズ制御動作を行っているとも言える。
 制御装置7は、熱伝達レートを制御することで、マークSMのサイズを制御してもよい。具体的には、造形面CSのある領域部分に対する熱伝達レートが大きくなるほど、当該領域部分に光ELから伝達される熱量が大きくなる。造形面CSのある領域部分に伝達される熱量が多くなるほど、当該領域部分に形成される溶融池MPのサイズが大きくなる。造形面CSのある領域部分における溶融池MPのサイズが大きくなるほど、当該領域部分に形成される造形物のサイズが大きくなる。造形面CSのある領域部分に形成される造形物のサイズが大きくなるほど、当該造形物から構成されるマークSMのサイズも大きくなる。つまり、図32に示すように、熱伝達レートが大きくなるほど、マークSMのサイズも大きくなる。従って、制御装置7は、熱伝達レートを制御することで、マークSMのサイズを制御することができる。尚、サイズ制御動作を含む特性制御動作において熱伝達レートを制御するための具体的方法は、上述したばらつき抑制動作において熱伝達レートを制御するための具体的方法と同じであってもよい。従って、特性制御動作の説明においては、熱伝達レートを制御するための具体的方法についての説明は省略する。尚、熱伝達レートとマークSMのサイズとの関係が非線形な関係となる場合には、この非線形な関係を考慮して熱伝達レートを制御してもよい。
 制御装置7は、造形面CSに対する照射領域EAの相対的な移動速度を制御することで、マークSMのサイズを制御してもよい。具体的には、造形面CSのある領域部分における照射領域EAの移動速度が遅くなるほど、造形面CS上のある領域部分に照射領域EAが設定されている時間が長くなる。造形面CS上のある領域部分に照射領域EAが設定されている時間が長くなるほど、当該領域部分に対して光ELから伝達される熱量が多くなる。造形面CS上のある領域部分に伝達される熱量が多くなるほど、当該領域部分に形成される造形物のサイズ(更には、マークSMのサイズ)が大きくなる。つまり、図33に示すように、照射領域EAの移動速度が遅くなるほど、マークSMのサイズも大きくなる。従って、制御装置7は、照射領域EAの移動速度を制御することで、マークSMのサイズを制御することができる。尚、サイズ制御動作を含む特性制御動作において照射領域EAの移動速度を制御するための具体的方法は、上述したばらつき抑制動作において照射領域EAの移動速度を制御するための具体的方法と同じであってもよい。従って、特性制御動作の説明においては、照射領域EAの移動速度を制御するための具体的方法についての説明は省略する。尚、移動速度とマークSMのサイズとの関係が非線形な関係となる場合には、この非線形な関係を考慮して移動速度を制御してもよい。
 制御装置7は、照射領域EAのサイズを制御することで、マークSMのサイズを制御してもよい。具体的には、造形面CS上のある領域部分に設定される照射領域EAのサイズが大きくなるほど、当該領域部分において光ELが実際に照射される領域のサイズが大きくなる。造形面CS上のある領域部分において光ELが実際に照射される領域のサイズが大きくなるほど、当該領域部分に形成される溶融池MPのサイズが大きくなる。造形面CSのある領域部分における溶融池MPのサイズが大きくなるほど、当該領域部分に形成される造形物のサイズ(更には、マークSMのサイズ)が大きくなる。つまり、図34に示すように、照射領域EAのサイズが大きくなるほど、マークSMのサイズも大きくなる。従って、制御装置7は、照射領域EAのサイズを制御することで、マークSMのサイズを制御することができる。尚、照射領域EAのサイズとマークSMのサイズとの関係が非線形な関係となる場合には、この非線形な関係を考慮して照射領域EAのサイズを制御してもよい。
 照射領域EAのサイズを制御するために、制御装置7は、照射光学系411を制御してもよい。例えば、制御装置7は、照射領域EAのサイズを制御するために照射光学系411が備えている光学部材を制御することで、照射領域EAのサイズを制御してもよい。このような光学部材の一例として、集光光学素子、光ELが通過可能な開口の形状及び大きさの少なくとも一方を変更可能な絞り部材、並びに、照射光学系411の光軸に交差する面(つまり、光ELの伝搬方向に交差する面)内において光ELが通過可能な領域と光ELを遮光可能な領域とを可変に設定可能な光成形部材等の少なくとも一つがあげられる。或いは、照射光学系411に対する造形面CSの相対的な位置(特に、Z軸方向における相対的な位置)が変わると照射領域EAのサイズもまた変わり得るがゆえに、制御装置7は、駆動系42を制御して照射光学系411に対する造形面CSの相対的な位置を制御することで、照射領域EAのサイズを制御してもよい。
 図35(a)から図35(b)に示すように、あるマークSMが、複数の線状構造物LPから構成されることがある。このような複数の線状構造物LPから構成されるマークSMは、例えば、図5(a)及び図30(a)に示すように、Y軸方向に沿って照射領域EAを移動させながら光ELを照射する動作と光ELを照射することなくX軸方向に沿って照射領域EAを移動させる動作とが繰り返される場合に形成される可能性がある。具体的には、Y軸方向に沿って照射領域EAを移動させながら光ELを照射することでY軸方向に延伸するように形成される複数の線状構造物LPが、X軸方向に沿って隙間なく又は隙間を空けて形成されると、当該複数の線状構造物LPの集合体に相当するマークSMが形成可能である。
 このようにマークSMが複数の線状構造物LPから構成される場合には、制御装置7は、マークSMを構成する複数の線状構造物LPの数を制御することで、マークSMのサイズ(特に、複数の線状構造物LPが並ぶ方向に沿ったサイズ)を制御してもよい。具体的には、図35(a)及び図35(b)に示すように、マークSMを構成する複数の線状構造物LPの数が少なくなるほど、マークSMのサイズが小さくなる。図35(a)及び図35(b)は、N1本の線状構造物LPから構成されるマークSMのサイズwm16よりも、N2(但し、N2<N1)本の線状構造物LPから構成されるマークSMのサイズwm17が小さくなる例を示している。
 このようにマークSMが複数の線状構造物LPから構成される場合には、制御装置7は、マークSMを構成する複数の線状構造物LPの長さを制御することで、マークSMのサイズ(特に、複数の線状構造物LPの長手方向又は延伸方向に沿ったサイズ)を制御してもよい。具体的には、図35(c)及び図35(d)に示すように、マークSMを構成する複数の線状構造物LPの長さが短くなるほど、マークSMのサイズが小さくなる。図35(c)及び図35(d)は、相対的に長い(具体的には、長さがwm18となる)線状構造物LPから構成されるマークSMのサイズwm18よりも、相対的に短い(具体的には、長さがwm19(但し、wm19<wm18)となる)線状構造物LPから構成されるマークSMのサイズwm19が小さくなる例を示している。
 尚、制御装置7は、造形材料Mの供給レートの制御、熱伝達レートの制御、移動速度の制御及び線状構造物の数の制御のうち少なくとも2つを組み合わせて制御してもよい。
 (4-2-2)高さ制御動作
 続いて、高さ制御動作について説明する。高さ制御動作は、マークSMの高さを制御するための特性制御動作である。造形システム1は、制御装置7の制御下で、特性制御動作を行うことで、所望の高さのマークSMを形成することができる。更には、造形システム1は、制御装置7の制御下で、高さ制御動作を行うことで、夫々同じ記号を示しながらも高さが異なる複数のマークSMを形成することができる。更には、造形システム1は、制御装置7の制御下で、高さ制御動作を行うことで、マークSMの形成中のマークSMの高さを変えながらマークSMを形成することができる。
 例えば、図36(a)から図36(d)は、いずれも、造形面CSに形成された線状の図形に関するマークSMを示している。図36(a)に示す例では、制御装置7は、マークSMの高さが所望の第1高さhm21になるように、高さ制御動作を行っている。図36(b)に示す例では、制御装置7は、マークSMの高さが、第1高さhm21よりも高い所望の第2高さhm22になるように、高さ制御動作を行っている。尚、図36(a)及び図36(b)に示す例では、制御装置7は、マークSMの一の部分の高さと、一の部分とは異なるマークSMの他の部分の高さとが同じになるように(つまり、マークSMの形成中に高さを変えないように)、高さ制御動作を行っているとも言える。図36(c)に示す例では、制御装置7は、マークSMの長手方向(つまり、X軸方向)に沿って、マークSMの高さが第1高さhm21から第1高さhm21よりも高い第3高さhm23にまで連続的に変化する(ここでは、高くなる)ように、高さ制御動作を行っている。図36(d)に示す例では、制御装置7は、マークSMの長手方向に沿ってマークSMの高さが第1高さhm21から第3高さhm23にまで段階的に又は離散的に変化する(ここでは、高くなる)ように、高さ制御動作を行っている。特に、図36(c)及び図36(d)に示す例では、制御装置7は、造形面CS上で照射領域EA(つまり、溶融池MP)をY軸方向に沿って移動させることで形成されるY軸方向に延伸するマークSMを構成する各部分の高さ(つまり、Y軸方向に交差するZ軸方向に沿った高さ)が、当該各部分のY軸方向に沿った位置に応じて異なるように、高さ制御動作を行っている。尚、図36(c)及び図36(d)に示す例では、制御装置7は、マークSMの一の部分の高さと、一の部分とは異なるマークSMの他の部分の高さとが異なるものとなるように(つまり、マークSMの形成中に高さを変えるように)、高さ制御動作を行っているとも言える。尚、制御装置7は、マークSMの長手方向に沿ってマークSMの高さが連続的に変化するように、高さ制御動作を行ってもよい。
 制御装置7は、造形材料Mの供給レートを制御することで、マークSMの高さを制御してもよい。具体的には、造形面CSのある領域部分に対する供給レートが大きくなるほど、当該領域部分に対する造形材料Mの供給量が多くなる。造形面CSのある領域部分に対する造形材料Mの供給量が多くなるほど、当該領域部分における造形材料Mの溶融量が多くなる。造形面CSのある領域部分における造形材料Mの溶融量が多くなるほど、当該領域部分に形成される造形物が高くなる。造形面CSのある領域部分に形成される造形物が高くなるほど、当該造形物から構成されるマークSMも高くなる。つまり、図37に示すように、供給レートが大きくなるほど、マークSMが高くなる。従って、制御装置7は、供給レートを制御することで、マークSMの高さを制御することができる。尚、高さ制御動作を含む特性制御動作において供給レートを制御するための具体的方法は、上述したばらつき抑制動作において供給レートを制御するための具体的方法と同じであってもよい。従って、特性制御動作の説明においては、供給レートを制御するための具体的方法についての説明は省略する。尚、供給レートとマークSMの高さとの関係が非線形な関係である場合には、この非線形な関係を考慮して供給レートを制御してもよい。
 制御装置7は、熱伝達レートを制御することで、マークSMの高さを制御してもよい。具体的には、造形面CSのある領域部分に対する熱伝達レートが大きくなるほど、当該領域部分に光ELから伝達される熱量が大きくなる。造形面CSのある領域部分に伝達される熱量が多くなるほど、当該領域部分における造形材料Mの溶融量が多くなる可能性がある。造形面CS上のある領域部分に造形材料Mの溶融量が多くなるほど、当該領域部分に形成される造形物(更には、マークSM)が高くなる。つまり、図38に示すように、熱伝達レートが大きくなるほど、マークSMが高くなる。従って、制御装置7は、熱伝達レートを制御することで、マークSMの高さを制御することができる。尚、熱伝達レートとマークSMの高さとの関係が非線形な関係である場合には、この非線形な関係を考慮して熱伝達レートを制御してもよい。
 制御装置7は、造形面CSに対する照射領域EAの相対的な移動速度を制御することで、マークSMの高さを制御してもよい。具体的には、上述したように、造形面CSのある領域部分における照射領域EAの移動速度が遅くなるほど、当該領域部分に対して光ELから伝達される熱量が多くなる。造形面CS上のある領域部分に伝達される熱量が多くなるほど、当該領域部分に形成される造形物(更には、マークSM)が高くなる。つまり、図39に示すように、照射領域EAの移動速度が遅くなるほど、マークSMが高くなる。従って、制御装置7は、照射領域EAの移動速度を制御することで、マークSMの高さを制御することができる。尚、移動速度とマークSMの高さとの関係が非線形な関係である場合には、この非線形な関係を考慮して移動速度を制御してもよい。
 上述したように、マークSMは、積層された複数の構造層SLを含む構造物である場合がある。この場合には、制御装置7は、マークSMを構成する複数の構造層SLの数(つまり、構造層SLの積層数)を制御することで、マークSMの高さを制御してもよい。具体的には、図40(a)及び図40(b)に示すように、マークSMを構成する複数の構造層SLの数が少なくなるほど、マークSMが低くなる。図40(a)及び図40(b)は、L1個の構造層SLから構成されるマークSMの高さhm24よりも、L2(但し、L2>L1)個の構造層SLから構成されるマークSMの高さwm25が高くなる例を示している。
 尚、制御装置7は、造形材料Mの供給レートの制御、熱伝達レートの制御、移動速度の制御及び積層数の制御のうち少なくとも2つを組み合わせて制御してもよい。
 (4-2-3)形状制御動作
 続いて、形状制御動作について説明する。形状制御動作は、マークSMの表面(特に、マークSMを構成する凸状の構造物の上面)の形状を制御するための特性制御動作である。造形システム1は、制御装置7の制御下で、形状制御動作を行うことで、表面の形状が所望の形状となるマークSMを形成することができる。例えば、図41(a)に示すように、制御装置7は、表面が平面(特に、造形面CSに対して平行な平面)を含むマークSMを形成するように、形状制御動作を行ってもよい。例えば、図41(b)に示すように、制御装置7は、表面が曲面を含むマークSMを形成するように、形状制御動作を行ってもよい。例えば、図41(c)に示すように、制御装置7は、表面が造形面CSに対して傾斜した平面を含むマークSMを形成するように、形状制御動作を行ってもよい。
 制御装置7は、上述したサイズ制御動作と同様の動作を行ってマークSMを構成する造形物のサイズを制御することで、マークSMの表面の形状を制御してもよい。制御装置7は、上述した高さ制御動作と同様の動作を行ってマークSMを構成する造形物の高さを制御することで、マークSMの表面の形状を制御してもよい。制御装置7は、所望の形状の3次元構造物STを形成するための通常の造形動作と同様の動作を行うことで、表面の形状が所望の形状となっているマークSMを形成してもよい。
 造形システム1は、制御装置7の下で、マークSMの表面の形状及びマークSMの高さのうち少なくとも一方を制御して、造形面CS上に形成されたマークSMの表面を結ぶ仮想的な連結面VSの形状(特に、構造層SLの積層方向であるZ軸を含む断面の形状)を制御してもよい。造形システム1は、制御装置7の制御下で、形状制御動作及び高さ制御動作のうちの少なくとも一方を行うことで、連結面VSの形状が所望の形状となる複数のマークSMを形成することができる。例えば、図42(a)に示すように、制御装置7は、連結面VSが平面(特に、造形面CSに対して平行な平面)を含むマークSMを形成するように、形状制御動作を行ってもよい。例えば、図42(b)に示すように、制御装置7は、連結面VSが曲面を含むマークSMを形成するように、形状制御動作及び高さ制御動作のうち少なくとも一方を行ってもよい。例えば、図42(c)に示すように、制御装置7は、連結面VSが造形面CSに対して傾斜した平面を含むマークSMを形成するように、形状制御動作及び高さ制御動作のうち少なくとも一方を行ってもよい。
 上述したように、マークSMは、造形面CSから突き出た凸状の構造物である。この場合、マークSMは、マークSMの表面が対象物TGに押し付けられることでマークSMのパターンに対応する印影を対象物TGに対して転写するための印章として使用可能である。例えば、図43(a)は、ワークWの表面に相当する造形面CS上に、アルファベットのNとCとが反転したパターンを有するマークSMが形成されている例を示している。このようなマークSMの表面に塗料を塗布した後、当該マークSMの表面を対象物TGの対象面TGSに押し付けると、図43(b)に示すように、アルファベットのNとCとを含む印影が対象面TGSに転写される。
 このようにマークSMが対象物に押し付けられる場合には、制御装置7は、対象物TGの特性に基づいて連結面VSの形状を制御するように、形状制御動作を行ってもよい。具体的には、制御装置7は、対象物TGの表面のうちマークSMが押し付けられる対象面TGSの形状(具体的には、対象面TGSに交差する軸を含む断面の形状)に基づいて、連結面VSの形状を制御するように、形状制御動作を行ってもよい。この場合、制御装置7は、連結面VSの形状と対象面TGSの形状とが相補の関係になるように、連結面VSの形状を制御してもよい。例えば、図44(a)に示すように、制御装置7は、対象面TGSが平面となる場合において、連結面VSが対象面TGSと相補の関係を有する平面となるマークSMを形成するように、形状制御動作を行ってもよい。例えば、図44(b)に示すように、制御装置7は、対象面TGSが凹状の曲面となる場合において、連結面VSが対象面TGSと相補の関係を有する凸状の曲面となるマークSMを形成するように、形状制御動作を行ってもよい。例えば、図44(c)に示すように、制御装置7は、対象面TGSが凸状の平面となる場合において、連結面VSが対象面TGSと相補の関係を有する凹状の平面となるマークSMを形成するように、形状制御動作を行ってもよい。このように形状制御動作が行われると、形状制御動作が行われない場合と比較して、マークSMの表面を対象物TGの対象面TGSに対して適切に押し付けることができる。具体的には、マークSMの表面を対象面TGSに押し付けた際に、マークSMの表面と対象面TGSとの間に隙間ができにくくなる。その結果、対象面TGSがどのよう形状であっても、マークMSのパターンに応じた印影が対象面TGSに適切に転写可能となる。
 対象物TGの特性に基づいて連結面VSの形状を制御する場合には、制御装置7は、対象物TGの特性に関する特性情報を取得し、当該取得した特性情報に基づいて連結面VSの形状を制御してもよい。制御装置7は、対象物TGの特性を計測する計測装置の計測結果を、特性情報として取得してもよい。この場合、計測装置は、造形システム1が備えていてもよいし、造形システム1とは別個に用意されてもよい。或いは、制御装置7は、特性情報を保有する他の装置から、特性情報を取得してもよい。
 尚、上述の説明では、対象物TGの特性は対象面TGSの形状であったが、対象物TGの特性は対象物TGの硬度、弾性等であってもよい。
 (4-2-4)色調制御動作
 続いて、色調制御動作について説明する。色調制御動作は、マークSMの色調(特に、マークSMの表面の色調)を制御するための特性制御動作である。造形システム1は、制御装置7の制御下で、色調制御動作を行うことで、所望の色調のマークSMを形成することができる。更には、造形システム1は、制御装置7の制御下で、色調制御動作を行うことで、夫々同じ記号を示しながらも色調が異なる複数のマークSMを形成することができる。更には、造形システム1は、制御装置7の制御下で、色調制御動作を行うことで、マークSMの形成中にマークSMの色調を変えながらマークSMを形成することができる。
 制御装置7は、チャンバ44の内部空間における特定ガスの特性を制御することで、マークSMの色調を制御してもよい。特に、制御装置7は、チャンバ44の内部空間に位置する溶融池MPの周囲の空間における特定ガスの特性を制御することで、マークSMの色調を制御してもよい。この場合、制御装置7は、特定ガスの特性が、マークSMの色調を所望の色調に設定することが可能な所望の特性となるように、特定ガスの特性を制御してもよい。特定ガスは、マークSMの色調に対して影響を及ぼす所定の気体を含む。このような特定ガスの一例として、酸素ガスがあげられる。
 特定ガスの特性は、特定ガスの濃度(つまり、チャンバ44の内部空間(特に、当該内部空間のうちの溶融池MPの周囲の空間)における特定ガスの濃度)を含んでいてもよい。特定ガスがパージガスに含まれている(つまり、ガス供給装置6が、特定ガスを含むパージガスを供給する)場合には、制御装置7は、パージガス中での特定ガスの濃度(つまり、パージガスにおける特定ガスの含有量)を制御することで、チャンバ44の内部空間における特定ガスの濃度を制御してもよい。特定ガスがパージガスに含まれていない(つまり、ガス供給装置6がパージガスとは別の供給経路を介して特定ガスを供給する又はガス供給装置6とは異なる装置が特定ガスを供給する)場合には、制御装置7は、チャンバ44の内部空間に供給されるパージガス及び特定ガスの少なくとも一方の流量を制御することで、チャンバ44の内部空間における特定ガスの濃度を制御してもよい。尚、チャンバ44の内部空間全体における特定ガスの濃度の制御に変えて、溶融池MPの周囲の空間のみにおける特定ガスの濃度の制御を行ってもよい。
 制御装置7は、図45(a)に示すように、第1のマークSM21を形成している期間中の特定ガスの特性と、第1のマークSM21とは異なる第2のマークSM22を形成している期間中の特定ガスの特性とが異なるように、特定ガスの特性を制御してもよい。この場合、図45(b)に示すように、第1マークSM21の色調は、第2マークSM22の色調とは異なるものとなる。制御装置7は、図45(c)に示すように、第1のマークSM21のうちの第1部分SM21-1を形成している期間中の特定ガスの特性と、第1のマークSM21のうちの第1部分SM21-1とは異なる第2部分SM21-2を形成している期間中の特定ガスの特性とが異なるように、特定ガスの特性を制御してもよい。この場合、図45(d)に示すように、第1マークSM21の第1部分SM21-1の色調は、第1マークSM21の第2部分SM21-2の色調とは異なるものとなる。
 (4-2-5)特性制御動作の変形例
 上述した説明では、制御装置7は、マーキング動作によって形成されたマークSMの特性を制御するために、特性制御動作を行っている。しかしながら、制御装置7は、マークSMに限らず、造形動作によって形成された造形物、構造層SL及び3次元構造物STの少なくとも一つの特性を制御するために、上述した特性制御動作を行ってもよい。つまり、制御装置7は、造形物、構造層SL及び3次元構造物STの少なくとも一つのサイズを制御するために、上述したサイズ制御動作を行ってもよい。制御装置7は、造形物、構造層SL及び3次元構造物STの少なくとも一つの高さを制御するために、上述した高さ制御動作を行ってもよい。制御装置7は、造形物、構造層SL及び3次元構造物STの少なくとも一つの形状を制御するために、上述した形状制御動作を行ってもよい。制御装置7は、造形物、構造層SL及び3次元構造物STの少なくとも一つの色調を制御するために、上述した色調制御動作を行ってもよい。
 (5)加工動作(研磨動作)
 造形システム1は、3次元構造物ST及びマークSMの少なくとも一方の表面の少なくとも一部を加工するための加工動作を行ってもよい。尚、マーキング動作によって形成したマークSMは、造形動作によって形成した3次元構造物STの一具体例である。このため、加工動作に説明においては、3次元構造物STは、3次元構造物ST及びマークSMの少なくとも一方を意味するものとする。
 本実施形態では、造形システム1は、加工動作の一例として、3次元構造物STの表面(特に、3次元構造物STを構成する最上層の構造層SLの上面)の少なくとも一部を研磨するための研磨動作を行ってもよい。以下、研磨動作について説明する。尚、以下では、説明の便宜上、研磨動作によって研磨される面を、研磨対象面PSと称する。尚、造形システム1は、3次元構造物を1以上の構造層SLの側面(構造層SLが積層される方向と交差する方向を向いた面)の少なくとも一部を研磨するための研磨動作を行ってもよい。
 本実施形態では、「研磨対象面PSを研磨する研磨動作」は、「研磨動作を行う前と比較して、研磨対象面PSを滑らかにする、研磨対象面PSの平坦度を上げる(つまり、平坦にする)、及び/又は、研磨対象面PSの表面粗さを細かくする(つまり、小さくする)動作」を含む。尚、研磨対象面PSが研磨されると、研磨対象面PSが研磨される前と比較して、研磨対象面PSの色調が変わる可能性がある。従って、「研磨対象面PSを研磨する研磨動作」は、「研磨動作を行う前と比較して、研磨対象面PSの色調を変える動作」を含んでいてもよい。研磨対象面PSが研磨されると、研磨対象面PSが研磨される前と比較して、研磨対象面PSの反射率(例えば、任意の光に対する反射率)及び拡散率(例えば、任意の光に対する拡散率)の少なくとも一方が変わる可能性がある。従って、「研磨対象面PSを研磨する研磨動作」は、「研磨動作を行う前と比較して、研磨対象面PSの反射率及び拡散率の少なくとも一方を変える動作」を含んでいてもよい。
 このような研磨対象面PSは、研磨動作によって研磨することで滑らかに(或いは、平坦に又は表面粗さを細かくする)ことが可能な相対的に粗い面(つまり、凹凸が形成されている面)となっている可能性がある。例えば、上述したように、本実施形態では、粉状の又は粒状の造形材料Mを溶融した後に再固化させることで3次元構造物STが形成される。このため、3次元構造物STの表面の少なくとも一部には、溶融しなかった造形材料Mが付着している可能性がある。この場合、溶融しなかった造形材料Mが付着している面は、研磨動作によって滑らかにすることが可能な相対的に粗い面となり得る。更には、3次元構造物STの表面の少なくとも一部には、意図しなかった形状で再固化してしまった造形材料Mが付着している可能性がある。この場合、意図しなかった形状で再固化してしまった造形材料Mが付着している面は、研磨動作によって滑らかにすることが可能な相対的に粗い面となり得る。例えば、上述したように、本実施形態では、各構造層SLが形成される期間中において、造形ヘッド41は、X軸及びY軸の少なくとも一方に沿って(つまり、XY平面に沿って)移動する。この場合、造形面CSに対する造形ヘッド41の相対的な移動態様によっては、XY平面に沿った構造層SLの表面(ひいては、3次元構造層STの表面)の少なくとも一部に、造形ヘッド41の移動パターン(典型的には、移動のピッチ)に応じた規則的な又は不規則な凹凸が現れる可能性がある。この場合、規則的な又は不規則な凹凸が現れる面は、研磨動作によって滑らかにすることが可能な相対的に粗い面となり得る。
 このような研磨対象面PSを研磨するために、造形システム1は、制御装置7の制御下で、研磨対象面PSに光ELを照射する。つまり、本実施形態では、光ELで研磨対象面PSを研磨する。具体的には、制御装置7は、図46(a)に示すように、研磨対象面PS上のある領域部分に照射領域EAを設定し、当該照射領域EAに対して照射光学系411から光ELを照射する。尚、図46(a)は、研磨対象面PSが、研磨動作によって研磨するべき規則的な又は不規則な凹凸が現れる面である例を示している。このとき、制御装置7は、必要に応じて、造形ヘッド41を移動させて、研磨対象面PS上の所望の領域部分に照射領域EAを設定する。照射領域EAに光ELが照射されると、図46(b)に示すように、研磨対象面PSのうち照射領域EAが設定された領域部分内の造形材料Mが、光ELによって再度溶融する。凹凸を形成するように固化していた造形材料Mが溶融すると、溶融した造形材料Mの自重及び表面張力の少なくとも一方により、溶融した造形材料Mの表面(つまり、界面)が平面に近づく又は平面になる。つまり、溶融した造形材料Mの表面(つまり、界面)の滑らかさが向上する。その後、造形ヘッド41の移動に伴って溶融した造形材料Mに光ELが照射されなくなると、溶融した造形材料Mは、冷却されて再度固化(つまり、凝固)する。その結果、図46(c)に示すように、滑らかになった(或いは、平坦度が向上した、及び/又は、表面粗さが細かくなった)表面を有するように再固化した造形材料Mが、3次元構造物STの表面を構成することになる。このように、研磨動作によって研磨対象面PSが研磨される。
 制御装置7は、このような光の照射ELによる造形材料Mの溶融及び溶融した造形材料Mの再固化を含む一連の研磨処理を、造形ヘッド41を3次元構造物STに対して相対的に移動させながら繰り返し行う。つまり、制御装置7は、一連の研磨処理を、研磨対象面PSに対して照射領域EAを相対的に移動させながら繰り返し行う。具体的には、例えば、制御装置7は、Y軸方向に沿った照射領域EAの移動とX軸方向に沿った照射領域EAの移動と繰り返しながら、一連の研磨処理を繰り返し行ってもよい。つまり、制御装置7は、図3(a)を参照して説明したラスタスキャンでの走査に対応する移動軌跡に沿って照射領域EAを移動させながら、一連の研磨処理を繰り返し行ってもよい。この場合、制御装置7は、X軸及びY軸のうち1回の移動分の移動量が多いいずれか一方の軸に沿って照射領域EAが移動している期間中に光ELを照射して研磨対象面PSを研磨する一方で、X軸及びY軸のうち1回の移動分の移動量が少ないいずれか他方の軸に沿って照射領域EAが移動している期間中に光ELを照射しない。但し、制御装置7は、図3(b)を参照して説明したベクタースキャンでの走査に対応する移動軌跡に沿って照射領域EAを移動させながら、一連の研磨処理を繰り返し行ってもよい。
 造形動作(或いは、マーキング動作)及び研磨動作の双方において照射領域EAがラスタスキャンでの走査に対応する移動軌跡に沿って移動する場合には、制御装置7は、造形動作において光ELが照射されている期間中の照射領域EAの移動方向と、研磨動作において光ELが照射されている期間中の照射領域EAの移動方向とが交差する(つまり、異なるものとなる)ように、照射領域EAを移動させてもよい。具体的には、図47(a)及び図47(b)に示すように、造形動作において光ELが照射されている期間中の照射領域EAの移動方向がY軸方向である場合には、制御装置7は、研磨動作において光ELが照射されている期間中の照射領域EAの移動方向がX軸方向になるように、研磨動作中の照射領域EAの移動方向を設定してもよい。或いは、造形動作において光ELが照射されている期間中の照射領域EAの移動方向がX軸方向である場合には、研磨動作において光ELが照射されている期間中の照射領域EAの移動方向がY軸方向になるように、研磨動作中の照射領域EAの移動方向を設定してもよい。その結果、造形システム1は、造形動作時に造形ヘッド41の移動パターン(典型的には、移動のピッチ)に起因して生じた凹凸が存在する研磨対象面PSを、当該凹凸を滑らかにする(特に、研磨対象面PSから当該凹凸を除去する)ように適切に研磨することができる。尚、造形動作において光ELが照射されている期間中の照射領域EAの移動方向と、研磨動作において光ELが照射されている期間中の照射領域EAの移動方向とは直交していなくてもよい。
 或いは、造形動作(或いは、マーキング動作)及び研磨動作の双方において照射領域EAがラスタスキャンでの走査に対応する移動軌跡に沿って移動する場合において、制御装置7は、造形動作において光ELが照射されている期間中の照射領域EAの移動方向と、研磨動作において光ELが照射されている期間中の照射領域EAの移動方向とが揃う(つまり、同じになる)ように、照射領域EAを移動させてもよい。この場合であっても、研磨対象面PSを研磨することができることに変わりはない。但し、この場合には、制御装置7は、造形動作において光ELが照射されていない期間中の照射領域EAの1回分の移動量(つまり、移動のピッチ)と、研磨動作において光ELが照射されていない期間中の照射領域EAの1回分の移動量とが異なるものとなるように、照射領域EAを移動させてもよい。特に、制御装置7は、造形動作において光ELが照射されていない期間中の照射領域EAの移動量よりも、研磨動作において光ELが照射されていない期間中の照射領域EAの移動量が小さくなるように、照射領域EAを移動させてもよい。例えば、具体的には、図48(a)及び図48(b)に示すように、造形動作において光ELが照射されていない期間中の照射領域EAの移動量が第1移動量P1である場合には、制御装置7は、研磨動作において光ELが照射されていない期間中の照射領域EAの移動量が第1移動量P1よりも小さい第2移動量P2となるように、照射領域EAを移動させてもよい。その結果、造形システム1は、造形動作時に造形ヘッド41の移動パターンに起因して生じた凹凸が存在する研磨対象面PSを、当該凹凸を滑らかにするように適切に研磨することができる。尚、造形動作において光ELが照射されていない期間中の照射領域EAの移動のピッチに対して、研磨動作において光ELが照射されていない期間中の照射領域EAの移動のピッチは、大きくてもよく、また小さくてもよい。
 制御装置7は、造形動作において光ELが照射されている期間中の照射領域EAの大きさと、研磨動作において光ELが照射されている期間中の照射領域EAの大きさとが異なるものとなるように、照射領域EAのサイズを制御してもよい。例えば、制御装置7は、造形動作において光ELが照射されている期間中の照射領域EAが、研磨動作において光ELが照射されている期間中の照射領域EAよりも大きくなるように、照射領域EAのサイズを制御してもよい。例えば、制御装置7は、造形動作において光ELが照射されている期間中の照射領域EAが、研磨動作において光ELが照射されている期間中の照射領域EAよりも小さくなるように、照射領域EAのサイズを制御してもよい。を移動させてもよい。この場合であっても、造形システム1は、造形動作時に造形ヘッド41の移動パターンに起因して生じた凹凸が存在する研磨対象面PSを、当該凹凸を滑らかにするように適切に研磨することができる。尚、照射領域EAのサイズを制御するための具体的方法は、上述したサイズ制御動作において照射領域EAのサイズを制御するための具体的方法と同じであってもよい。尚、制御装置7は、造形動作において光ELが照射されている期間中の照射領域EAが、研磨動作において光ELが照射されている期間中の照射領域EAよりも小さくなるように、照射領域EAのサイズを制御してもよい。
 (6)変形例
 (6-1)第1変形例
 はじめに、造形システム1の第1変形例について説明する。上述した説明では、層形成期間中に照射領域EAが2回以上設定される領域WA1に形成される造形物S1の高さh1と、層形成期間中に照射領域EAが1回設定される領域WA2に形成される造形物S2の高さh2とのばらつきを抑制するために、制御装置7が第1のばらつき抑制動作を行っている。一方で、第1変形例における造形システム1aは、第1のばらつき抑制動作を行わなくても造形物S1の高さh1と造形物S2の高さh2とのばらつきを抑制することができる。
 具体的には、造形システム1aは、造形装置4に代えて造形装置4aを備えているという点で、造形システム1とは異なる。造形装置4aは、集光光学系である照射光学系411aを照射光学系411に代えて備えているという点で、造形装置4とは異なる。照射光学系411aは、造形物S1の高さh1と造形物S2の高さh2とのばらつきを抑制するように光学特性が予め設定(言い換えれば、設計又は調整)されているという点で、照射光学系411とは異なる。造形システム1aのその他の構成要件は、造形システム1と同じであってもよい。
 照射光学系411aの光学特性は、造形物S1の高さh1と造形物S2の高さh2とのばらつきを抑制するように予め設定されている。本実施形態では、照射光学系411aの光学特性として、焦点深度を用いる。従って、照射光学系411aの焦点深度は、造形物S1の高さh1と造形物S2の高さh2とのばらつきを抑制するように予め設定されている。焦点深度は、照射光学系411aの光学特性の他の一例である開口数(NA:Numerical Aperture)と相関を有する。従って、照射光学系411aの開口数が、造形物S1の高さh1と造形物S2の高さh2とのばらつきを抑制するように、予め設定されているともいえる。尚、本説明における焦点深度とは、光ELの単位面積当たりの強度又はエネルギ量が造形材料Mを溶融できる強度よりも大きくなる、光軸方向(光の進行方向)における範囲を指してもよい。
 照射光学系411aの焦点深度は、造形システム1aが形成する構造層SLの設計上の高さ(つまり、厚さ)h0に基づいて設定されている。具体的には、照射光学系411aの焦点深度は、図49に示すように、焦点深度の大きさ(言い換えれば、Z軸に沿った幅)が構造層SLの設計上の高さh0の2倍未満になるという第1条件を満たすように、設定されている。つまり、照射光学系411aの焦点深度は、積層された2つ以上の構造層SLが焦点深度の範囲内に同時に位置することができない(つまり、積層された2つ以上の構造層SLの一部が焦点深度の範囲から外れる)という第1条件を満たすように、設定されている。
 このような条件が満たされている場合において、領域WA1に照射領域EAが2回設定される状況を想定する。この場合、領域WA1に1回目の照射領域EAが設定されると、図50(a)に示すように、当該領域WA1に、その高さhaが高さh0に一致する造形物SOaが形成される。その後、領域WA1に2回目の照射領域EAが設定されると、当該領域WA1に既に形成された造形物SOa上に、新たな造形物SObが形成される可能性がある。しかしながら、焦点深度の大きさが高さh0の2倍未満であるため、図50(b)に示すように、仮に新たな造形物SObが形成されたとしても、その高さhbは、高さh0よりも小さくなる。なぜなら、焦点深度の範囲から外れた領域では、光ELの強度不足によって造形材料Mが溶融しないからである。一方で、第1条件が満たされていない場合には、領域WA1に2回目の照射領域EAが設定されると、造形物SOa上に、高さhbが高さh0に一致する造形物SObが形成される可能性がある。このため、第1条件が満たされている場合には、第1条件が満たされていない場合と比較して、領域WA1に形成される造形物S1の高さh1(=造形物SOaの高さhaと造形物SObの高さhbとの総和)と領域WA2に形成される造形物S2の高さh2(=造形物SOaの高さha)とのばらつきが抑制される。つまり、造形システム1aは、上述したように造形材料Mの供給レート、光ELから伝達される熱に関する熱伝達レート及び照射領域EAの移動速度の少なくとも一つを制御しなくても、造形物S1の高さh1と造形物S2の高さh2とのばらつきを適切に抑制することができる。
 造形物は、造形面CS上に形成される。更に、造形材料Mが照射光学系411aの焦点深度の範囲内において溶融するがゆえに、造形物は、焦点深度の範囲内に形成される。従って、造形物は、図51(a)及び図51(b)に示すように、造形面CSと、照射光学系411aの物体面側(図51(a)及び図51(b)に示す例では、+Z側であり、上側)における焦点深度の範囲の境界UBとの間に形成される。そうすると、構造層SLの設計上の高さh0と同じ造形物を造形面CS上に形成するためには、図51(a)及び図51(b)に示すように、造形面CSと境界UBとの間の間隔が高さh0以上となるように、造形面CSに対して照射光学系413が位置合わせされていてもよい。図51(a)は、造形面CSと境界UBとの間の間隔が高さh0と一致する例を示している。この場合には、造形面CS上に、高さがh0となる造形物が形成される。一方で、図51(b)は、造形面CSと境界UBとの間の間隔が高さh0より大きくなる例を示している。この場合には、造形面CS上に、高さが少なくともh0となる造形物が形成される。尚、図51(a)に示すように、造形面CSと境界UBとの間の間隔が高さh0と一致する状態は、光ELのフォーカス位置が造形面CSに設定される状態と等価である。同様に、図51(b)に示すように、造形面CSと境界UBとの間の間隔が高さh0より大きくなる状態は、光ELのフォーカス位置が造形面CSよりも照射光学系411aの物体面側にシフトした位置に設定される状態と等価である。
 但し、照射光学系411aの焦点深度の大きさが、構造層SLの設計上の高さh0未満になってしまうと、造形面CSと境界UBとの間の間隔を高さh0以上にすることができない。その結果、造形面CS上に、高さがh0となる造形物を形成することができなくなってしまう。このため、照射光学系411aの焦点深度は、焦点深度の大きさが構造層SLの設計上の高さh0以上になるという第2条件も合わせて満たすように、設定されていてもよい。
 尚、第1変形例において、造形システム1aは第1のばらつき抑制動作も併せて行ってもよい。
 (6-2)第2変形例
 続いて、図52を参照しながら、造形システム1の第2変形例について説明する。第2変形例における造形システム1bは、造形装置4に代えて造形装置4bを備えているという点で、造形システム1とは異なる。造形装置4bは、駆動系45bを備えているという点で、造形装置4とは異なる。造形システム1aのその他の構成要件は、造形システム1と同じであってもよい。
 駆動系45bは、ステージ43を移動させる。駆動系45bは、X軸、Y軸及びZ軸の少なくともいずれかに沿ってステージ43を移動させる。駆動系45bは、X軸、Y軸及びZ軸の少なくともいずれかに加えて、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ43を移動させてもよい。駆動系45bは、例えば、モータ等を含む。ステージ43が移動すると、ステージ43が保持しているワークW(更には、ワークW上の構造層SL)が、造形ヘッド41に対して移動する。つまり、ワークW又は構造層SLの表面の少なくとも一部である造形面CSが、造形ヘッド41から光ELが照射される照射領域EA(つまり、造形ヘッド41から造形材料Mが供給される供給領域MA)に対して移動する。従って、第2変形例では、制御装置7は、駆動系42に加えて又は代えて駆動系45bを制御することで、造形面CSに対する照射領域EAの相対的な移動速度を制御可能である。
 (6-3)第3変形例
 続いて、図53(a)及び図53(b)を参照しながら、造形システム1の第3変形例について説明する。第3変形例における造形システム1cは、造形装置4に代えて造形装置4cを備えているという点で、造形システム1とは異なる。造形装置4cは、照射光学系411に代えて照射光学系411cを備えているという点で、造形装置4とは異なる。照射光学系411cは、図53(a)に示すように、光ELを偏向可能な光学系491cを備えているという点で、照射光学系411とは異なる。造形システム1aのその他の構成要件は、造形システム1と同じであってもよい。
 図53(b)に示すように、光学系491cは、フォーカスレンズ4911cと、ガルバノミラー4912cと、fθレンズ4913cとを備える。光ELは、フォーカスレンズ4911cと、ガルバノミラー4912cと、fθレンズ4913cとを介して、造形面CS(更には、必要に応じて研磨対象面PS)に照射される。
 フォーカスレンズ4911cは、1以上のレンズで構成され、その少なくとも一部のレンズの光軸方向に沿った位置を調整することで、光ELの集光位置(つまり、光学系491cの焦点位置)を調整するための光学素子である。ガルバノミラー4912cは、光ELが造形面CSを走査する(つまり、照射領域EAが造形面CS上を移動する)ように、光ELを偏向する。ガルバノミラー4912cは、X走査ミラー4912Xと、Y走査ミラー4912Yとを備える。X走査ミラー4912Xは、光ELをY走査ミラー4912Yに向けて反射する。X走査ミラー4912Xは、θY方向(つまり、Y軸周りの回転方向)に揺動又は回転可能である。X走査ミラー4912Xの揺動又は回転により、光ELは、造形面CSをX軸方向に沿って走査する。X走査ミラー4912Xの揺動又は回転により、照射領域EAは、造形面CS上をX軸方向に沿って移動する。Y走査ミラー4912Yは、光ELをfθレンズ4913cに向けて反射する。Y走査ミラー4912Yは、θX方向(つまり、X軸周りの回転方向)に揺動又は回転可能である。Y走査ミラー4912Yの揺動又は回転により、光ELは、造形面CSをY軸方向に沿って走査する。Y走査ミラー4912Yの揺動又は回転により、照射領域EAは、造形面CS上をY軸方向に沿って移動する。fθレンズ4913cは、ガルバノミラー4912cからの光ELを造形面CS上に集光するための光学素子である。
 従って、第3変形例では、制御装置7は、駆動系42に加えて又は代えて光学系491c(特に、ガルバノミラー4912c)を制御することで、造形面CSに対する照射領域EAの相対的な移動速度を制御可能である。
 尚、第3変形例において、造形材料Mを供給する材料ノズル412は、照射領域EAの造形面CS上での位置に応じて、照射領域EAが造形面CS上に形成する溶融池MPに造形材料Mを供給することができるように、X軸、Y軸及びZ軸の少なくとも一つに沿って移動可能であってもよい。
 (6-4)第4変形例
 続いて、造形システム1の第4変形例について説明する。上述した説明では、造形システム1が備える造形ヘッド41は、造形動作に用いられる光EL及び研磨動作に用いられる光ELの双方を射出する。つまり、造形動作が行われている期間中の光ELの照射光学系411内での光路は、研磨動作が行われている期間中の光ELの照射光学系411内での光路と同じになる。一方で、第4変形例の造形システム1dは、造形動作に用いられる光ELを射出する造形ヘッド41とは別個に、研磨動作に用いられる光ELを射出する研磨ヘッド41dを備えている。
 具体的には、造形システム1dは、造形装置4に代えて造形装置4dを備えているという点で、造形システム1とは異なる。造形装置4dは、研磨ヘッド41d及び駆動系42dを備えているという点で、造形装置4とは異なる。造形システム1dのその他の構成要件は、造形システム1と同じであってもよい。このため、以下、図54を参照しながら、第4変形例の造形装置4dについて更に説明する。尚、造形システム1が備える構成要件と同じ構成要件については、同一の参照符号を付してその詳細な説明を省略する。
 図54に示すように、造形装置4dは、上述した造形ヘッド41、駆動系42、ステージ43に加えて、研磨ヘッド41d及び駆動系42dを備えている。研磨ヘッド41dは、照射光学系411dを備えている。
 照射光学系411dは、射出部413dから光ELdを射出するための光学系(例えば、集光光学系)である。具体的には、照射光学系411dは、光ELを発する光源5と、光ファイバやライトパイプ等の不図示の光伝送部材を介して光学的に接続されている。照射光学系411dは、光伝送部材を介して光源5から伝搬してくる光ELを、光ELdとして射出する。つまり、光源5が発した光ELは、光源5と造形装置4dとの間又は造形装置4d内に配置された光分岐器によって2つの光ELに分岐され、一方の光ELが造形ヘッド41に伝搬し、他方の光ELが研磨ヘッド41dに伝搬する。照射光学系411dは、照射光学系411dから下方(つまり、-Z側)に向けて光ELdを照射する。照射光学系411dの下方には、ステージ43が配置されている。ステージ43に3次元構造物STが搭載されている場合には、照射光学系411dは、3次元構造物STに向けて光ELdを照射する。具体的には、照射光学系411dは、光ELdが照射される領域として研磨対象面PS上に設定される円形の(或いは、その他任意の形状の)照射領域EAdに光ELdを照射する。照射領域EAdは、造形ヘッド41からの光ELが照射される照射領域EAとは異なる位置に設定されるが、同じ位置に設定されてもよい。照射領域EAdは、照射領域EAと重複することはないが、少なくとも部分的に重複していてもよい。更に、照射光学系411dの状態は、制御装置7の制御下で、照射領域EAdに光ELdを照射する状態と、照射領域EAdに光ELdを照射しない状態との間で切替可能である。
 駆動系42dは、研磨ヘッド41dを移動させる。具体的には、駆動系42dは、X軸、Y軸及びZ軸の夫々に沿って研磨ヘッド41dを移動させる。尚、駆動系42dの構造は、駆動系42の構造と同一であってもよい。従って、駆動系42dの構造についての詳細な説明は省略する。
 研磨ヘッド41dが造形ヘッド41とは別個に用意されるため、研磨ヘッド41dは、造形ヘッド41とは異なる方向から光ELdを照射する。つまり、光ELdは、光ELの光路とは異なる光路を伝搬して研磨対象面PSに照射される。このため、研磨ヘッド41dは、造形ヘッド41が光ELを照射している期間の少なくとも一部において、光ELdを照射することができる。つまり、造形システム1dは、造形動作と研磨動作とを並行して行うことができる。言い換えると、造形システム1dは、造形動作が行われる時間帯(又は時期)と研磨動作が行われる時間帯(又は時期)とをそれらの少なくとも一部が重なった状態とすること、或いは造形動作が行われるタイミングと研磨動作が行われるタイミングとの少なくとも一部を重ねることができる。具体的には、造形システム1dは、造形ヘッド41が光ELを造形面CS上の一の領域に照射することで3次元構造物STの一部を形成している期間の少なくとも一部において、造形面CS上の他の領域に既に形成済みの3次元構造物STの他の一部の表面の少なくとも一部である研磨対象面PSに光ELdを照射することで、当該研磨対象面PSを研磨することができる。その結果、3次元構造物STを形成し且つ研磨するためのスループットが向上する。つまり、第4変形例の造形システム1dは、上述した造形システム1が享受可能な効果と同様の効果を享受しつつも、研磨された3次元構造物STを形成するためのスループットを向上させることができる。
 但し、造形装置4dが造形ヘッド41とは別個に研磨ヘッド41dを備える場合であっても、造形システム1dは、造形動作によって3次元構造物STが形成された後に、研磨動作を行ってもよい。この場合であっても、第4変形例の造形システム1dは、上述した造形システム1が享受可能な効果と同様の効果を享受することができることに変わりはない。
 尚、図54では、共通の光源5が射出した光ELが造形ヘッド41及び研磨ヘッド41dに伝搬されている。しかしながら、造形システム1dは、造形動作で用いられる光ELを射出する光源5とは別個に、研磨動作で用いられる光ELdを射出する光源5dを備えていてもよい。光源5dは、光源5dが射出する光ELと同じ特性(例えば、強度や、波長や、偏光等)の光ELdを射出してもよい。光源5dは、光源5が射出する光ELと異なる特性(例えば、強度や、波長や、偏光等)の光ELdを射出してもよい。光源5dは、光源5が射出する光ELとは異なる種類のエネルギビームを射出してもよい。
 (6-5)第5変形例
 続いて、造形システム1の第5変形例について説明する。上述した説明では、造形システム1は、単一の造形ヘッド41を備えている。一方で、第5変形例の造形システム1eは、複数の造形ヘッド41を備えている。具体的には、造形システム1eは、造形装置4に代えて造形装置4eを備えているという点で、造形システム1とは異なる。造形装置4eは、複数の造形ヘッド41を備えているという点で、造形装置4とは異なる。造形システム1eのその他の構成要件は、造形システム1と同じであってもよい。このため、以下、図55を参照しながら、第5変形例の造形装置4eについて更に説明する。尚、造形システム1が備える構成要件と同じ構成要件については、同一の参照符号を付してその詳細な説明を省略する。
 図55に示すように、造形装置4dは、複数の造形ヘッド41を備えている。複数の造形ヘッド41は、X軸及びY軸のいずれか一方(図55に示す例では、Y軸)に沿って直線状に並ぶように支持フレーム48eに組みつけられている。駆動系42は、X軸、Y軸及びZ軸の少なくともいずれかに沿って支持フレーム48eを移動させる。つまり、駆動系42は、X軸、Y軸及びZ軸の少なくともいずれかに沿って複数の造形ヘッド41をまとめて移動させる。
 このような第5変形例の造形システム1eによれば、複数の光ELを造形面CSに同時に照射して3次元構造物STを形成することができる。このため、その結果、3次元構造物STを形成するためのスループットが向上する。つまり、第5変形例の造形システム1eは、上述した造形システム1が享受可能な効果と同様の効果を享受しつつも、3次元構造物STを形成するためのスループットを向上させることができる。
 尚、複数の造形ヘッド41は、支持フレーム48eに組み付けられていなくてもよい。この場合、造形装置4dは、複数の造形ヘッド41を夫々移動させるための複数の駆動系42を備えていてもよい。
 (6-6)第6変形例
 上述した説明では、造形物の造形面CSからの高さを造形物の位置に応じて異ならせるとき、造形面CSは平面である場合を例として説明している。しかしながら、造形面CS自体は、平面には限定されない、即ち、造形面CS自体は造形面CS上での位置に応じて異なる高さ(Z軸方向の位置)であってもよい。例えば、図56(a)に示すように、造形面CSが曲面であってもよい。このとき、曲面状の造形面CSの上部に造形される構造層SL#1の上面がXY平面に沿うように、言い換えると、構造層SL#1の上面のZ軸方向の高さが構造層SL#1のX軸方向及びY軸方向の位置によらずに一定となるように、造形物のX軸方向の位置及びY軸方向の位置に応じた高さが異なっていてもよい。また、図56(b)に示すように、造形面CSが凹凸状であってもよい、このときにも、凹凸状の造形面CSの上部に造形される構造層SL#1の上面がXY平面に沿うように、言い換えると、構造層SL#1の上面のZ軸方向の高さが構造層SL#1のX軸方向及びY軸方向の位置によらずに一定となるように、造形物のX軸方向の位置及びY軸方向の位置に応じた高さが異なっていてもよい。また、図56(c)に示すように、造形面CSは、構造層SL#1の上面であってもよい。いずれの場合にも、造形面CSの面形状によらずに、造形物SL#1(更には、構造層SL#2)の上面を平らにすることができる。この場合において構造層SL#1(更には、構造層SL#2)の上面を所定の曲面としてもよい。
 (6-7)第7変形例
 上述した説明では、造形物の造形面CSからの高さを造形物の位置に応じて異ならせている。しかしながら、造形物の造形面CSからの高さは造形物の位置に応じて異ならっていなくてもよい(一定であってもよい)。例えば、図57に示すように、既に造形された構造層SL#1の高さ(Z軸方向(積層方向)のサイズ)と異なる高さの構造層SL#2を、構造層SL#1の上に造形してもよい。この場合、最終的に造形される3次元構造物STの積層方向(Z軸方向)の高さの精度を高精度にすることができる。
 (6-8)第8変形例
 造形材料Mを供給する供給する材料ノズル412は、ワークWの外側の位置に供給領域MAが位置している状態から、ワークW上、ひいては造形面CS上の造形開始位置SPに供給領域MAが位置している状態までの間の期間(以下、第1期間と称する)において、造形材料Mを供給し続けてもよい。材料ノズル412から造形材料Mの供給を開始した時点から供給される単位時間当たりの供給量が安定する時点までの間が長くかかるような場合には、造形開始位置SPでの単位時間当たりの供給量を安定させることができる。
 このとき、材料ノズル412から造形面CSに造形材料MAが衝突して、造形面CSを傷つける恐れがある。この場合には、図58(a)に示すように、図8において説明したガス噴出装置461を設けてもよい。そして、第1期間においてガス噴出装置461から、造形材料Mの供給経路を横切る方向からガスを噴出させ、材料ノズル412から供給領域MAへ向かうはずの造形材料MをワークW、ひいては造形面CSの外側へ向けてもよい。そして、図58(b)に示すように、材料ノズル412による供給領域MAが造形開始位置SPに位置した後の期間(以下、第2期間と称する)では、ガス噴出装置461のガス噴出動作を停止して、材料ノズル412からの造形材料Mの供給領域MAへの供給が開始されるようにしてもよい。ここで、材料ノズル412による供給領域MAが造形開始位置SPに位置した時点から、照射光学系411による光ELの照射領域EAへの照射を開始してもよい。
 尚、第1期間における造形材料Mの単位時間当たりの供給量は、造形物を形成している第2期間における造形材料Mの単位時間当たりの供給量よりも小さくすることができる。また、上述の説明では、ガス噴出装置461を用いて、材料ノズル412から供給領域MAへ向かうはずの造形材料MをワークW、ひいては造形面CSの外側へ向けたが、図9を用いて説明した遮蔽部材462を使用してもよく、図10を用いて説明した供給ノズル412の供給方向(噴射方向)を変えてもよい。また、ガス噴出装置461及び遮蔽部材462とは異なる任意の供給量変更装置を造形装置4が備えている場合には、制御装置7は、造形材料Mの供給レートを制御するために、任意の供給量変更装置を制御してもよい。尚、任意の供給量変更装置は、図59に示すように材料供給装置3内に設けられた供給量変更装置3aであってもよく、図60に示すように材料供給装置3から材料ノズル412の供給アウトレット414に至る供給路に設けられた供給量調整装置481であってもよい。このような供給量変更装置3a及び481としては、例えば通過流量を変更可能なバルブを用いてもよい。尚、図59及び図60に夫々示した供給量変更装置3a及び481は、図8及び図9を用いて説明した、ガス噴出装置461及び遮蔽部材462とは異なる任意の供給量変更装置として用いることができる。
 (6-9)第9変形例
 図30を用いて説明した例では、Y軸方向に沿った照射領域EAの1回分の移動(つまり、移動方向が変わるまでの移動であり、ラスタスキャンにおける1本の走査線に沿った移動)に着目すると、照射領域EAのY軸方向に沿った移動の際にマーク形成領域と照射領域EAとが重なるタイミングで光ELを照射し、その1回分の移動(更には、その1回分の移動中に行われる複数回の光ELの照射)で造形される造形物の高さは同じになっている。しかしながら、照射領域EAの所定方向(例えば、Y軸方向又はX軸方向等の造形面CS内の方向)の移動時に光ELを複数回照射して、所定方向に並んだ複数の造形物を造形する場合、それらの造形物の高さ(Z軸方向の造形面CSからの高さ)は互いに異なっていてもよい。例えば、図61(a)において、ラスタスキャンの同じ走査線に沿って並ぶ領域WA9と領域WA10とに対して、造形材料Mの供給レート、熱伝達レート、及び照射領域EAの移動速度等のうち少なくとも1つを異なるものとしてもよい。この動作により、例えば図61(b)に示すように、Z軸方向において造形面CSからの高さが互いに異なる造形物を造形することができる。
 また、上述の例では、照射領域EAの1回分の移動(つまり、ラスタスキャンにおける1本の走査線に沿った移動)で造形される複数の造形物の高さを互いに変えたが、複数の走査線に沿って照射領域EAを移動させるラスタスキャンにおける、互いに異なる走査線に沿った照射領域EAの移動(更には、移動中に行われる造形材料Mの供給)によって造形される複数の造形物の間で高さ(Z軸方向の造形面CSからの高さ)を変えてもよい。例えば、図62(a)に示すように、互いに異なる走査線上に並ぶ領域WA9と領域WA11とに対して、造形材料Mの供給レート、熱伝達レート、及び照射領域EAの移動速度等のうち少なくとも1つを異なるものとしてもよい。この動作により、例えば図62(b)に示すように、Z軸方向において造形面CSからの高さが互いに異なる造形物を造形することができる。
 尚、第9変形例では、造形面CSに対するマーキング動作を例に挙げたが、この第9変形例は、造形面CS自体が積層造形された造形物の面である場合であっても適用できる。
 (6-10)その他の変形例
 上述した説明では、造形装置4は、造形材料Mに光ELを照射することで、造形材料Mを溶融させている。しかしながら、造形装置4は、任意のエネルギビームを造形材料Mに照射して溶融池MPを形成し、その溶融池MPで造形材料Mを溶融させてもよい。この場合、造形装置4は、照射光学系411に加えて又は代えて、任意のエネルギビームを照射可能なビーム照射装置を備えていてもよい。任意のエネルギビームは、限定されないが、電子ビーム、イオンビーム等の荷電粒子ビーム又は電磁波を含む。
 上述した説明では、造形システム1は、レーザ肉盛溶接法により3次元構造物STを形成可能である。しかしながら、造形システム1は、造形材料Mに光EL(或いは、任意のレーザビーム)を照射することで3次元構造物STを形成可能なその他の方式により造形材料Mから3次元構造物STを形成してもよい。その他の方式として、例えば、粉末焼結積層造形法(SLS:Selective Laser Sintering)等の粉末床溶融結合法(Powder Bed Fusion)、結合材噴射法(Binder Jetting)又は、レーザメタルフュージョン法(LMF:Laser Metal Fusion)があげられる。
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う処理装置、処理方法、マーキング方法、造形システム及び造形方法もまた本発明の技術的範囲に含まれるものである。
 1 造形システム
 3 材料供給装置
 4 造形装置
 41 造形ヘッド
 411 照射光学系
 412 材料ノズル
 42 駆動系
 43 ステージ
 5 光源
 W ワーク
 M 造形材料
 SL 構造層
 CS 造形面
 EA 照射領域
 MA 供給領域
 MP 溶融池

Claims (67)

  1.  照射系により対象物にエネルギビームを照射しつつ、供給系により前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行う造形装置と、
     前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置と
     を備え、
     前記対象物の第1の領域に行われる前記造形処理の条件と、前記対象物の第2の領域に行われる前記造形処理の条件とを異ならせる
     造形システム。
  2.  前記条件を異ならせることにより、前記第1の領域に形成される前記造形物の特性と、前記第2の領域に形成される前記造形物の特性との差を低減する
     請求項1に記載の造形システム。
  3.  前記第1の領域では、前記照射領域の少なくとも一部と一致した状態で前記造形処理が複数回行われ、
     前記第2の領域では、前記照射領域の少なくとも一部と一致した状態で前記造形処理が1回行われる
     請求項1又は2に記載の造形システム。
  4.  前記第1の領域には、前記照射領域が複数回設定され、
     前記第2の領域には、前記照射領域が前記第1の領域に設定される回数より少ない回数設定される
     請求項1から3のいずれか一項に記載の造形システム。
  5.  照射系により対象物にエネルギビームを照射しつつ、供給系により前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行う造形装置と、
     前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置と
     を備え、
     前記対象物のうち前記照射領域が複数回設定される第1の領域に行われる前記造形処理の条件と、前記対象物のうち、前記照射領域が前記第1の領域に設定される回数より少ない回数設定される第2の領域に行われる前記造形処理の条件とを異ならせる
     造形システム。
  6.  第1タイミングで前記第1の領域に行われる前記造形処理の条件は、前記第1タイミングとは異なる第2タイミングで前記第1の領域に行われる前記造形処理の条件と同じであって、且つ、前記第1及び第2タイミングの夫々で前記第1の領域に行われる前記造形処理の条件は、前記第2の領域に行われる前記造形処理の条件と異なる
     請求項3から5のいずれか一項に記載の造形システム。
  7.  前記造形処理の条件は、前記照射領域への前記造形材料の供給量を含む
     請求項1から6のいずれか一項に記載の造形システム。
  8.  前記第1の領域に前記造形処理を行う場合における前記供給量が、前記第2の領域に前記造形処理を行う場合における前記供給量よりも少ない
     請求項7に記載の造形システム。
  9.  前記第1の領域に前記造形領域が複数回設定された場合における前記供給量の総和が、前記第2の領域に前記造形領域が設定された場合における前記供給量と同じになる
     請求項7又は8に記載の造形システム。
  10.  前記造形処理の条件は、前記エネルギビームから前記対象物のうち前記照射領域が設定された領域部分への熱の伝達量を含む
     請求項1から9に記載の造形システム。
  11.  前記第1の領域に前記造形領域が設定された場合における前記伝達量が、前記第2の領域に前記造形領域が設定された場合における前記伝達量よりも少ない
     請求項10に記載の造形システム。
  12.  前記第1の領域に前記造形領域が複数回設定された場合における前記伝達量の総和が、前記第2の領域に前記造形領域が設定された場合における前記伝達量と同じになる
     請求項10又は11に記載の造形システム。
  13.  前記造形処理の条件は、前記照射領域と前記対象物との相対的な移動速度を含む
     請求項1から12のいずれか一項に記載の造形システム。
  14.  前記第1の領域に前記造形処理を行う場合における前記移動速度が、前記第2の領域に前記造形処理を行う場合における前記移動速度よりも速い
     請求項13に記載の造形システム。
  15.  第1タイミングで前記第1の領域に行われる前記造形処理の条件は、前記第1タイミングとは異なる第2タイミングで前記第1の領域に行われる前記造形処理の条件と異なる
     請求項1から13のいずれか一項に記載の造形システム。
  16.  前記第1タイミングで前記第1の領域に行われる前記造形処理の条件が、前記第2の領域に行われる前記造形処理の条件と同じであって、且つ、前記第2タイミングでは前記第1の領域に前記造形処理が行われない
     請求項15に記載の造形システム。
  17.  前記造形処理の条件は、前記照射領域への前記造形材料の供給量を含む
     請求項15又は16に記載の造形システム。
  18.  前記第2タイミングで前記第1の領域に前記造形処理を行う場合における前記供給量は、前記第1タイミングで前記第1の領域に前記造形処理を行う場合における前記供給量よりも少ない
     請求項17に記載の造形システム。
  19.  前記第1タイミングで前記第1の領域に前記造形処理を行う場合における前記供給量は、前記第2の領域に前記造形処理を行う場合における前記供給量と同じであり、且つ、前記第2タイミングで前記第1の領域に前記造形処理を行う場合における前記供給量はゼロである
     請求項17又は18に記載の造形システム。
  20.  前記第1の領域に前記照射領域が複数回設定された場合における前記供給量の総和が、前記第2の領域に前記造形処理を行う場合における前記供給量と同じである
     請求項17から19のいずれか一項に記載の造形システム。
  21.  前記造形処理の条件は、前記エネルギビームから前記対象物のうち前記照射領域が設定された領域部分への熱の伝達量を含む
     請求項15から20に記載の造形システム。
  22.  前記第2タイミングで前記第1の領域に前記造形処理を行う場合における前記伝達量は、前記第1タイミングで前記第1の領域に前記造形処理を行う場合における前記伝達量よりも少ない
     請求項21に記載の造形システム。
  23.  前記第1タイミングで前記第1の領域に前記造形処理を行う場合における前記伝達量は、前記第2の領域に前記造形処理を行う場合における前記伝達量と同じであって、且つ、前記第2タイミングで前記第1の領域に前記造形処理を行う場合における前記伝達量はゼロである
     請求項21又は22に記載の造形システム。
  24.  前記第1の領域に前記照射領域が複数回設定された場合における前記伝達量の総和は、前記第2の領域に前記造形処理を行う場合における前記伝達量と同じである
     請求項21から23のいずれか一項に記載の造形システム。
  25.  前記造形処理の条件は、前記照射領域と前記対象物との相対的な移動速度を含む
     請求項15から24のいずれか一項に記載の造形システム。
  26.  前記第2タイミングで前記第1の領域に前記造形処理を行う場合における前記移動速度は、前記第1タイミングで前記第1の領域に前記造形処理を行う場合における前記移動速度と異なる
     請求項25に記載の造形システム。
  27.  前記対象物の所定の面に沿って前記照射領域を移動させながら前記造形処理を行うことで、前記面上に前記造形物の集合体である層状構造物を形成し、
     前記第1の領域は、前記層状構造物が形成されている第1期間中に前記照射領域が複数回設定される領域を含み、
     前記第2の領域は、前記第1期間中に前記照射領域が設定される回数が、前記第1期間中に前記照射領域が前記第1の領域に設定される回数より少ない領域を含む
     請求項1から26のいずれか一項に記載の造形システム。
  28.  前記層状構造物が形成された後に、前記層状構造物の表面に沿って前記照射領域を移動させながら前記造形処理を行うことで、前記層状構造物が複数積層された積層構造物を形成し、
     前記第1の領域は、前記複数の層状構造物のうちの一の層状構造物が形成される第2期間中に前記照射領域が複数回設定される領域を含み、
     前記第2の領域は、前記第2期間中に前記照射領域が設定される回数が、前記第2期間中に前記照射領域が前記第1の領域に設定される回数より少ない領域を含む
     請求項27に記載の造形システム。
  29.  前記第1の領域の前記エネルギビームからの熱の伝達特性は、前記第2の領域の前記エネルギビームからの熱の伝達特性と異なる
     請求項1から28のいずれか一項に記載の造形システム。
  30.  前記照射領域が前記第1の領域に設定されている場合の前記対象物に対する前記照射領域の相対的な移動速度と、前記照射領域が前記第2の領域に設定されている場合の前記移動速度とが異なる
     請求項1から29のいずれか一項に記載の造形システム。
  31.  前記エネルギビームから前記第1の領域に伝達された熱の拡散特性と、前記エネルギビームから前記第2の領域に伝達された熱の拡散特性とが異なる
     請求項1から30のいずれか一項に記載の造形システム。
  32.  前記照射領域は、前記対象物の表面の少なくとも一部であり、
     前記第1の領域は、前記第2の領域よりも、前記照射領域が設定されない前記対象物の他の表面に近接した領域を含む
     請求項1から31のいずれか一項に記載の造形システム。
  33.  照射系により対象物にエネルギビームを照射しつつ、供給系により前記エネルギビームの照射領域に前記造形材料を供給することにより前記エネルギビームと前記対象物との相対的な位置の変更方向に造形物を成長させて造形処理を行う造形装置と、
     前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置と
     を備え、
     第1タイミングにおいて前記造形処理を行った前記エネルギビームと前記対象物との相対的な位置関係に、第2タイミングにおいて前記造形処理を行うときの前記エネルギビームと前記対象物との相対的な位置関係がなるとき、第2タイミングにおける前記造形処理の条件を第1タイミングにおける前記造形処理の条件と変える
     造形システム。
  34.  前記造形処理の条件は、前記照射領域への前記造形材料の供給量を含む
     請求項1から33のいずれか一項に記載の造形システム。
  35.  前記造形処理の条件は、前記エネルギビームから前記対象物のうち前記照射領域が設定された領域部分への熱の伝達量を含む
     請求項1から34のいずれか一項に記載の造形システム。
  36.  前記造形処理の条件は、前記照射領域の前記対象物に対する相対的な移動速度を含む
     請求項1から35のいずれか一項に記載の造形システム。
  37.  前記供給系を制御して前記供給量を制御する
     請求項7から9、17から20及び34のいずれか一項に記載の造形システム。
  38.  前記供給系が供給する前記造形材料の量を制御して前記供給量を制御する
     請求項37に記載の造形システム。
  39.  前記供給系からの前記造形材料の供給方向を制御して前記供給量を制御する
     請求項37又は38に記載の造形システム。
  40.  前記供給系は、前記造形材料を所望方向に向けて供給する供給ノズルを備え、
     前記供給ノズルの向きを制御して前記供給方向を制御する
     請求項39に記載の造形システム。
  41.  前記供給系から供給される前記造形材料の少なくとも一部が前記造形領域に到達することを抑制する供給抑制装置を更に備える、
     請求項1から40のいずれか一項に記載の造形システム。
  42.  前記供給抑制装置は、前記供給系から供給される前記造形材料の少なくとも一部に気体を吹き付けて吹き飛ばす第1装置、及び、前記供給系と前記照射領域との間に挿脱可能に配置され且つ前記造形材料を遮る遮蔽部材を含む第2装置の少なくとも一方を含む
     請求項41に記載の造形システム。
  43.  前記エネルギビームの特性を制御して前記伝達量を制御する
     請求項10から12、21から24及び35のいずれかに記載の造形システム。
  44.  前記造形処理の条件は、前記エネルギビームの特性を含む請求項1から42のいずれか一項記載の造形システム。
  45.  前記エネルギビームの特性は、前記エネルギビームの単位面積当たりの強度又はエネルギ、前記エネルギビームのフォーカス位置、前記エネルギビームのデフォーカス量及び前記エネルギビームの強度分布を含む
     請求項43又は44に記載の造形システム。
  46.  前記照射系は、エネルギビーム源からの前記エネルギビームを照射し、
     前記エネルギビーム源を制御して前記エネルギビームの特性を制御する
     請求項43から45のいずれか一項に記載の造形システム。
  47.  前記照射系は、光学系を介して前記エネルギビームを照射し、
     前記光学系を制御して前記エネルギビームの特性を制御する
     請求項43から46のいずれか一項に記載の造形システム。
  48.  前記光学系は、前記エネルギビームを集光する集光光学素子、及び、前記エネルギビームを少なくとも部分的に遮光可能に前記エネルギビームの光路に配置される遮光素子の少なくとも一つを含む
     請求項47に記載の造形システム。
  49.  前記照射系の移動態様を制御して前記エネルギビームの特性を制御する
     請求項43から48のいずれか一項に記載の造形システム。
  50.  前記造形物の特性は、前記対象物の表面からの高さ及び前記対象物の表面に沿った方向における前記造形物のサイズを含む
     請求項2から49のいずれか一項に記載の造形システム。
  51.  前記照射系は、光学系を介して前記エネルギビームを射出し、
     前記造形物の集合体である層状構造物を複数積層して積層構造物を形成し、
     前記光学系の焦点深度の大きさは、前記層状構造物の一つの層の厚さより大きく2つの層の厚さより小さい
     請求項1から50のいずれか一項に記載の造形システム。
  52.  前記第2の領域は前記第1の領域と同じ領域である請求項1から51のいずれか一項に記載の造形システム。
  53.  前記第2の領域は前記第1の領域と異なる領域である請求項1から51のいずれか一項に記載の造形システム。
  54.  対象物に光学系を介してエネルギビームを照射しつつ、供給系により前記エネルギビームの照射領域に前記造形材料を供給することにより層状構造物が複数積層された積層構造物を形成する造形処理を行う造形装置と、
     前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置と
     を備え、
     前記光学系の焦点深度の大きさは、前記層状構造物の1つの層の厚さ以上であり且つ2つの層の厚さより小さい
     造形システム。
  55.  前記エネルギビームのフォーカス位置は、前記対象物の表面又は前記対象物の表面よりも前記光学系の物体面側に設定される
     請求項53又は54に記載の造形システム。
  56.  前記焦点深度が小さくなるほど、前記フォーカス位置を前記物体面側にシフトさせる
     請求項53に記載の造形システム。
  57.  前記光学系の物体面側における前記焦点深度の範囲の境界面と前記対象物の表面との間の距離が、前記層状構造物の1つの層の厚さと同一又はよりも大きい
     請求項53から54のいずれか一項に記載の造形システム。
  58.  前記エネルギビームの照射領域と前記対象物との相対的な位置を第1の方向に変更する第1期間の後に、前記第1の方向と交差する第2の方向に前記エネルギビームの照射領域と前記対象物との相対的な位置を変更し、次いで、第2期間において前記エネルギビームの照射領域と前記対象物との相対的な位置を前記第1の方向と平行な方向に変更し、前記第1期間と前記第2期間の少なくとも一方の少なくとも一部で前記造形処理を行う
     請求項1から57のいずれか一項に造形システム。
  59.  照射系により対象物上の照射領域にエネルギビームを照射しつつ、供給系により前記照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行う造形装置と、
     前記エネルギビームと前記対象物との相対的な位置を変更可能な変更装置と、
     を備え、
     前記エネルギビームの照射領域と前記対象物との相対的な位置を第1の方向に変更する第1期間の後に、前記第1の方向と交差する第2の方向に前記エネルギビームの照射領域と前記対象物との相対的な位置を変更し、次いで、第2期間において前記エネルギビームの照射領域と前記対象物との相対的な位置を前記第1の方向と平行な方向に変更し、前記第1期間と前記第2期間の少なくとも一方の少なくとも一部で前記造形処理を行う
     造形システム。
  60. 前記第1期間における前記照射領域と前記対象物の相対的な移動の方向と、前記第2期間における前記照射領域と前記対象物の相対的な移動の方向とは逆向きである
    請求項58又は59に記載の造形システム。
  61. 前記第1期間における前記照射領域と前記対象物の相対的な移動距離と、前記第1期間における前記照射領域と前記対象物の相対的な移動距離はほぼ同じである
    請求項58から60のいずれか一項に記載の造形システム。
  62. 前記エネルギビームの照射領域が前記対象物の造形面においてラスタ走査するように前記変更装置を制御する
    請求項58から61のいずれか一項に記載の造形システム。
  63.  対象物にエネルギビームを照射しつつ、前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行うことと、
     前記エネルギビームの照射領域と前記対象物との相対的な位置を変更することと、
     前記対象物の第1の領域に行われる前記造形処理の条件と、前記対象物の第2の領域に行われる前記造形処理の条件とを異ならせることと
     を含む造形方法。
  64.  対象物にエネルギビームを照射しつつ、前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行うことと、
     前記エネルギビームの照射領域と前記対象物との相対的な位置を変更することと、
     前記対象物のうち前記照射領域が複数回設定される第1の領域に行われる前記造形処理の条件と、前記対象物のうち前記照射領域が前記第1の領域に設定される回数より少ない回数設定される第2の領域に行われる前記造形処理の条件とを異ならせることと
     を含む造形方法。
  65.  前記条件を異ならせることにより、前記第1の領域に形成される前記造形物の特性と、前記第2の領域に形成される前記造形物の特性との差を低減すること
     を含む請求項63又は64に記載の造形方法。
  66.  対象物にエネルギビームを照射しつつ、前記エネルギビームの照射領域に前記造形材料を供給することにより造形物を形成する造形処理を行うことと、
     前記エネルギビームの照射領域と前記対象物との相対的な位置を変更することと、
     第1タイミングにおいて前記造形処理を行った前記エネルギビームと前記対象物との相対的な位置関係に、第2タイミングにおいて前記造形処理を行うときの前記エネルギビームと前記対象物との相対的な位置関係がなるとき、第2タイミングにおける前記造形処理の条件を第1タイミングにおける前記造形処理の条件と変えることと
     を含む造形方法。
  67.  対象物にエネルギビームを照射することと、
     前記対象物に造形材料を供給することと、
     前記対象物に前記エネルギビームを照射しつつ、前記エネルギビームの照射領域に前記造形材料を供給することにより層状構造物が複数積層された積層構造物を形成する造形処理を行うことと
     を含み、
     前記エネルギビームを照射することは、焦点深度の大きさが前記層状構造物の1つの層の厚さより大きく2つの層の厚さより小さい光学系を介して前記エネルギビームを照射することを含む造形方法。
PCT/JP2017/044624 2017-12-12 2017-12-12 造形システム及び造形方法 WO2019116455A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PCT/JP2017/044624 WO2019116455A1 (ja) 2017-12-12 2017-12-12 造形システム及び造形方法
JP2019559455A JPWO2019116455A1 (ja) 2017-12-12 2017-12-12 造形システム及び造形方法
JP2019559622A JPWO2019117076A1 (ja) 2017-12-12 2018-12-10 造形システム、造形方法、コンピュータプログラム、記録媒体及び制御装置
PCT/JP2018/045281 WO2019117076A1 (ja) 2017-12-12 2018-12-10 造形システム、造形方法、コンピュータプログラム、記録媒体及び制御装置
US16/770,909 US11577466B2 (en) 2017-12-12 2018-12-10 Build system, build method, computer program, control apparatus to build an object utilizing an irradiation optical system
EP18888827.5A EP3725453A4 (en) 2017-12-12 2018-12-10 MOLDING SYSTEM, MOLDING METHOD, COMPUTER PROGRAM, RECORDING MEDIUM AND CONTROL DEVICE
CN202211167553.7A CN115415552A (zh) 2017-12-12 2018-12-10 造型系统、造型方法及计算机程序
CN201880080527.6A CN111465467B (zh) 2017-12-12 2018-12-10 造型系统
TW107144700A TW201934221A (zh) 2017-12-12 2018-12-12 造型系統、造型方法、電腦程式、記錄媒體及控制裝置
US18/085,787 US20230122763A1 (en) 2017-12-12 2022-12-21 Build system, build method, computer program, recording medium and control apparatus
JP2023030865A JP2023085256A (ja) 2017-12-12 2023-03-01 造形システム及び造形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044624 WO2019116455A1 (ja) 2017-12-12 2017-12-12 造形システム及び造形方法

Publications (1)

Publication Number Publication Date
WO2019116455A1 true WO2019116455A1 (ja) 2019-06-20

Family

ID=66819064

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/044624 WO2019116455A1 (ja) 2017-12-12 2017-12-12 造形システム及び造形方法
PCT/JP2018/045281 WO2019117076A1 (ja) 2017-12-12 2018-12-10 造形システム、造形方法、コンピュータプログラム、記録媒体及び制御装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045281 WO2019117076A1 (ja) 2017-12-12 2018-12-10 造形システム、造形方法、コンピュータプログラム、記録媒体及び制御装置

Country Status (6)

Country Link
US (2) US11577466B2 (ja)
EP (1) EP3725453A4 (ja)
JP (3) JPWO2019116455A1 (ja)
CN (2) CN111465467B (ja)
TW (1) TW201934221A (ja)
WO (2) WO2019116455A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922339A (zh) * 2020-09-04 2020-11-13 杭州德迪智能科技有限公司 粉末床3d打印方法及设备
TWI781454B (zh) * 2020-10-06 2022-10-21 國立中央大學 鋼構件塗裝路徑智慧規劃方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246450A (ja) * 2004-03-05 2005-09-15 Sumitomo Heavy Ind Ltd レーザ加工方法及びレーザ加工装置並びに強度調節器
JP2006272916A (ja) * 2005-03-30 2006-10-12 Jsr Corp 光造形方法
JP2015196249A (ja) * 2014-03-31 2015-11-09 株式会社東芝 積層造形物の製造方法
JP2015231688A (ja) * 2014-06-09 2015-12-24 株式会社ミマキエンジニアリング 3次元造形物の製造方法
WO2016075801A1 (ja) * 2014-11-14 2016-05-19 株式会社ニコン 造形装置及び造形方法
JP2017019018A (ja) * 2016-08-26 2017-01-26 技術研究組合次世代3D積層造形技術総合開発機構 加工ノズル、加工ヘッド、加工装置、加工方法および加工プログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3750709T2 (de) * 1986-06-03 1995-03-16 Cubital Ltd Gerät zur Entwicklung dreidimensionaler Modelle.
US5352405A (en) * 1992-12-18 1994-10-04 Dtm Corporation Thermal control of selective laser sintering via control of the laser scan
JP2007029977A (ja) * 2005-07-26 2007-02-08 Mitsubishi Heavy Ind Ltd レーザ加工装置
JP5616769B2 (ja) * 2010-12-13 2014-10-29 株式会社日立製作所 レーザ加工ヘッド及び肉盛溶接方法
US20140099476A1 (en) * 2012-10-08 2014-04-10 Ramesh Subramanian Additive manufacture of turbine component with multiple materials
WO2014074954A2 (en) * 2012-11-08 2014-05-15 Suman Das Systems and methods for fabricating three-dimensional objects
US20150096963A1 (en) 2013-10-04 2015-04-09 Gerald J. Bruck Laser cladding with programmed beam size adjustment
US9457556B2 (en) * 2013-12-26 2016-10-04 Mimaki Engineering Co., Ltd. Manufacturing method of shaped object
JP2015199195A (ja) 2014-04-04 2015-11-12 株式会社松浦機械製作所 三次元造形装置
JP6030597B2 (ja) * 2014-04-04 2016-11-24 株式会社松浦機械製作所 三次元造形装置及び三次元形状造形物の製造方法
JP6114718B2 (ja) 2014-06-17 2017-04-12 川崎重工業株式会社 軸対称体および軸対称製品の製造方法
JP6887755B2 (ja) * 2016-02-16 2021-06-16 株式会社神戸製鋼所 積層制御装置、積層制御方法及びプログラム
WO2017180116A1 (en) * 2016-04-13 2017-10-19 Gkn Aerospace North America Inc. System and method of additive manufacturing
JP6412049B2 (ja) 2016-04-14 2018-10-24 ファナック株式会社 金属粉を供給しながらレーザを照射する加工部を移動させて積層造形を行う積層造形加工方法及び積層造形加工装置
JP6862193B2 (ja) * 2017-01-25 2021-04-21 キヤノン株式会社 三次元造形物の製造方法、および三次元造形装置
DE102017202725B3 (de) * 2017-02-21 2018-07-19 SLM Solutions Group AG Vorrichtung und Verfahren zum Kalibrieren eines Bestrahlungssystems, das zum Herstellen eines dreidimensionalen Werkstücks verwendet wird
EP3378584B1 (en) * 2017-03-24 2021-10-27 SLM Solutions Group AG Device and method for producing a three-dimensional workpiece
TWI719261B (zh) * 2017-09-29 2021-02-21 國立中興大學 利用光學讀寫頭之積層製造裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246450A (ja) * 2004-03-05 2005-09-15 Sumitomo Heavy Ind Ltd レーザ加工方法及びレーザ加工装置並びに強度調節器
JP2006272916A (ja) * 2005-03-30 2006-10-12 Jsr Corp 光造形方法
JP2015196249A (ja) * 2014-03-31 2015-11-09 株式会社東芝 積層造形物の製造方法
JP2015231688A (ja) * 2014-06-09 2015-12-24 株式会社ミマキエンジニアリング 3次元造形物の製造方法
WO2016075801A1 (ja) * 2014-11-14 2016-05-19 株式会社ニコン 造形装置及び造形方法
JP2017019018A (ja) * 2016-08-26 2017-01-26 技術研究組合次世代3D積層造形技術総合開発機構 加工ノズル、加工ヘッド、加工装置、加工方法および加工プログラム

Also Published As

Publication number Publication date
WO2019117076A1 (ja) 2019-06-20
US20230122763A1 (en) 2023-04-20
JPWO2019116455A1 (ja) 2020-12-24
EP3725453A4 (en) 2021-09-29
CN111465467B (zh) 2022-09-30
JPWO2019117076A1 (ja) 2020-12-24
JP2023085256A (ja) 2023-06-20
EP3725453A1 (en) 2020-10-21
US11577466B2 (en) 2023-02-14
CN115415552A (zh) 2022-12-02
US20210170692A1 (en) 2021-06-10
CN111465467A (zh) 2020-07-28
TW201934221A (zh) 2019-09-01

Similar Documents

Publication Publication Date Title
WO2019116454A1 (ja) 処理装置、処理方法、マーキング方法、及び、造形方法
KR102359288B1 (ko) 광빔을 사용하는 적층 제조를 위한 방법 및 시스템
JP6306907B2 (ja) 立体造形物の製造方法及び製造装置
JP2021152215A (ja) 複数ビーム付加的製造
JP7380769B2 (ja) 処理装置及び処理方法、加工方法、並びに、造形装置及び造形方法
JP2023085256A (ja) 造形システム及び造形方法
JP7010308B2 (ja) 処理装置及び処理方法
WO2016052087A1 (ja) 立体造形装置、立体造形物の製造方法および成形装置
WO2024057496A1 (ja) 加工システム、データ構造及び加工方法
WO2022003870A1 (ja) 加工システム及び光学装置
JP2022058392A (ja) 処理装置及び処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934464

Country of ref document: EP

Kind code of ref document: A1