JP6636668B1 - 高温部品、高温部品の製造方法及び流量調節方法 - Google Patents

高温部品、高温部品の製造方法及び流量調節方法 Download PDF

Info

Publication number
JP6636668B1
JP6636668B1 JP2019065811A JP2019065811A JP6636668B1 JP 6636668 B1 JP6636668 B1 JP 6636668B1 JP 2019065811 A JP2019065811 A JP 2019065811A JP 2019065811 A JP2019065811 A JP 2019065811A JP 6636668 B1 JP6636668 B1 JP 6636668B1
Authority
JP
Japan
Prior art keywords
cooling
passages
passage
outlet
header portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019065811A
Other languages
English (en)
Other versions
JP2020165359A (ja
Inventor
太郎 徳武
太郎 徳武
竜太 伊藤
竜太 伊藤
飯田 耕一郎
耕一郎 飯田
祥成 脇田
祥成 脇田
秀次 谷川
秀次 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2019065811A priority Critical patent/JP6636668B1/ja
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JP6636668B1 publication Critical patent/JP6636668B1/ja
Application granted granted Critical
Priority to CN202080013401.4A priority patent/CN113474545B/zh
Priority to DE112020000728.6T priority patent/DE112020000728T5/de
Priority to US17/432,211 priority patent/US11702944B2/en
Priority to KR1020217024554A priority patent/KR102546850B1/ko
Priority to PCT/JP2020/006527 priority patent/WO2020202863A1/ja
Priority to TW109105683A priority patent/TWI767191B/zh
Publication of JP2020165359A publication Critical patent/JP2020165359A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/14Micromachining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/312Arrangement of components according to the direction of their main axis or their axis of rotation the axes being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/323Arrangement of components according to their shape convergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/37Arrangement of components circumferential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/516Surface roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

【課題】過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる高温部品を提供する。【解決手段】一実施形態に係る高温部品は、ターボ機械に用いられ、冷却媒体による冷却を必要とする高温部品であって、前記冷却媒体が流通可能な複数の冷却通路と、前記複数の冷却通路の下流端が接続されたヘッダ部と、前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路と、を備え、前記1以上の出口通路の数は、前記複数の冷却通路の数未満であり、前記1以上の出口通路の各々の最小流路断面積は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積以上であり、前記1以上の出口通路の各々の最小流路断面積の和は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積の和より小さい。【選択図】図4

Description

本開示は、高温部品、高温部品の製造方法及び流量調節方法に関する。
例えば、ガスタービン等、高温の作動ガスが内部を流れる機械では、その機械を構成する部品には、冷却媒体による冷却を必要とする高温部品が含まれる。このような高温部品の冷却構造として、部品の内部に冷却空気が流通可能な複数の配送チャネル(冷却通路)に冷却空気を流通させることで高温部品の冷却を行うことが知られている(例えば特許文献1参照)。
特開2015−48848号公報
ガスタービン等のように高温の作動ガスによって作動する機械では、一般的に、冷却によって熱が奪われることは機械の熱効率の低下につながる。そのため、出来るだけ少ない冷却媒体で効率的に高温部品を冷却することが望ましい。したがって、冷却通路における流路断面積は必要以上に大きくしない方がよい。
しかし、流路断面積が小さいと、高温部品の製造上の制約から冷却通路の寸法精度が低下する傾向があるため、冷却通路における冷却空気の流量の精度が低下するおそれがある。
冷却通路における冷却空気の流量の精度が低下して、冷却空気の流量が設計上の流量より多くなると、冷却空気に必要以上に熱が奪われて、機械の熱効率が低下するおそれがある。また、冷却空気の流量が設計上の流量より少なくなると、冷却不足によって高温部品が損傷するおそれがある。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる高温部品を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る高温部品は、
ターボ機械に用いられ、冷却媒体による冷却を必要とする高温部品であって、
前記冷却媒体が流通可能な複数の冷却通路と、
前記複数の冷却通路の下流端が接続されたヘッダ部と、
前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路と、
を備え、
前記1以上の出口通路の数は、前記複数の冷却通路の数未満であり、
前記1以上の出口通路の各々の最小流路断面積は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積以上であり、
前記1以上の出口通路の各々の最小流路断面積の和は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積の和より小さい。
複数の冷却通路の各々において、それぞれを流れる冷却媒体の流量を複数の冷却通路の各々の流路断面積で決定しようとすると、上述したように、流路断面積が小さいと、高温部品の製造上の制約から冷却通路の寸法精度が低下する傾向があるため、冷却通路における冷却媒体の流量の精度が低下するおそれがある。
これに対して、上記(1)の構成によれば、1以上の出口通路の各々の最小流路断面積の和がヘッダ部と冷却通路との接続部における複数の冷却通路の各々の流路断面積の和より小さいので、複数の冷却通路における冷却媒体の流量を出口通路の最小流路断面積によって規定できる。これにより、複数の冷却通路のそれぞれでは、冷却媒体の流量調整のために流路断面積を必要以上に小さくしなくてもよくなるので、冷却通路の寸法精度が向上し、複数の冷却通路同士での冷却媒体の流量のばらつきを抑制できる。したがって、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる。
また、上記(1)の構成によれば、1以上の出口通路の各々の最小流路断面積がヘッダ部と冷却通路との接続部における複数の冷却通路の各々の流路断面積以上であるので、出口通路の寸法精度が確保し易くなるとともに、出口通路において異物の詰まりも起こし難くなる。
さらに、上記(1)の構成によれば、1以上の出口通路の数が複数の冷却通路の数未満であるので、冷却媒体の流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることができ、高温部品の製造コストを抑制できる。
(2)幾つかの実施形態では、上記(1)の構成において、前記ヘッダ部における上流側内壁部と下流側内壁部との離間距離は、前記出口通路の流路断面積が最小となる領域における等価直径の1倍以上3倍以下である。
上流側内壁部、すなわち複数の冷却通路の下流端とヘッダ部との接続位置と、下流側内壁部、すなわち1以上の出口通路の上流端とヘッダ部との接続位置とが接近しすぎていると、冷却通路の下流端と出口通路の上流端との距離が小さい冷却通路と大きい冷却通路とで冷却媒体の流量の差が大きくなってしまう。
これに対して、上記(2)の構成によれば、上流側内壁部、すなわち複数の冷却通路の下流端とヘッダ部との接続位置と、下流側内壁部、すなわち1以上の出口通路の上流端とヘッダ部との接続位置とが少なくとも上記等価直径の1倍以上離れていることで、複数の冷却通路同士での冷却媒体の流量のばらつきを抑制できる。
また、ヘッダ部では、複数の冷却通路の下流端が接続されていることから、ヘッダ部における空間容積が大きくなり、ヘッダ部における冷却媒体の流速が低下するので、冷却媒体への熱伝達率が低下する。そのため、ヘッダ部では冷却能力が低下するおそれがあるため、上流側内壁部と下流側内壁部との離間距離は大きくない方がよい。
その点、上記(2)の構成によれば、上流側内壁部と下流側内壁部との離間距離が上記等価直径の3倍以下であるので、高温部品において冷却能力が不足する領域が生じることを抑制できる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、前記1以上の出口通路は、前記出口通路の流路断面積が下流側に向かって漸減する流路断面積縮小部を含む。
上記(3)の構成によれば、流路断面積縮小部の下流側から出口通路の延在方向と直交する方向の大きさを調節することで、出口通路における最小流路断面積の調節が容易となる。したがって、出口通路の下流側における出口通路の延在方向と直交する方向の寸法を管理すれば、冷却媒体の流量を管理できるので、流路断面積の精度、すなわち通路の寸法精度を確保すべき領域を狭くすることができ、高温部品の製造コストを抑制できる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、
前記1以上の出口通路の内壁面は、前記出口通路の流路断面積が最小となる領域において、中心線平均粗さRaが10μm以下の粗度を有し、
前記複数の冷却通路の内壁面は、中心線平均粗さRaが10μm以上20μm以下の粗度を有する。
上記(4)の構成によれば、複数の冷却通路の内壁面が上記の粗度を有するので、冷却通路における冷却性能を向上できる。また、上記(4)の構成によれば、出口通路の流路断面積が最小となる領域における出口通路の内壁面が上記の粗度を有するので、出口通路における圧力損失のばらつきを抑制できるとともに、出口通路において異物が通過し易くなり、出口通路が閉塞するリスクを低減できる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、前記複数の冷却通路を形成する壁部は、前記冷却通路の下流端において角部が面取りされている。
複数の冷却通路を形成する壁部は、伝熱性能向上の観点から必要に応じて壁部の厚さをできるだけ小さくする場合がある。このような場合に、冷却通路の下流端において角部が面取りされていないような形状にしようとすると、例えば精密鋳造法や金属積層造形法によって高温部品を形成する際や、その後の熱処理の際に、該角部の形状が崩れてしまうおそれがある。該角部の形状が崩れてしまうと、冷却通路を流通する冷却媒体の流れに悪影響を及ぼして、冷却性能を低下させるおそれがある。
これに対して、上記(5)の構成によれば、冷却通路の下流端において角部が面取りされているので、上述したような該角部の形状が崩れてしまうことによる悪影響を抑制できる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、前記出口通路の数は、1である。
上述したように、冷却媒体の流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることが望ましい。その点、上記(6)の構成によれば、出口通路の数が1であるので、通路の寸法精度を確保すべき箇所を少なくすることができ、高温部品の製造コストを抑制できる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
前記高温部品は、複数の分割体が周方向に沿って環状に配設されて構成されるガスタービンの分割環であり、
前記複数の分割体は、燃焼ガスが流れる燃焼ガス流路に面する内表面をそれぞれ有し、
前記複数の冷却通路は、前記複数の分割体のそれぞれの内部に形成され、
前記1以上の出口通路は、前記複数の分割体のそれぞれにおける軸方向の下流側端部で前記燃焼ガス中に開口する。
上記(7)の構成によれば、ガスタービンの分割環が上記(1)乃至(6)の何れかの構成を備えることで、1以上の出口通路の各々の最小流路断面積の和がヘッダ部と冷却通路との接続部における複数の冷却通路の各々の流路断面積の和より小さくなるので、複数の冷却通路における冷却媒体の流量を出口通路の最小流路断面積によって規定できる。これにより、複数の冷却通路のそれぞれでは、冷却媒体の流量調整のために流路断面積を必要以上に小さくしなくてもよくなるので、冷却通路の寸法精度が向上し、複数の冷却通路同士での冷却媒体の流量のばらつきを抑制できる。したがって、分割環において過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる。
また、上記(7)の構成によれば、1以上の出口通路の各々の最小流路断面積がヘッダ部と冷却通路との接続部における複数の冷却通路の各々の流路断面積以上であるので、分割環において出口通路の寸法精度が確保し易くなるとともに、出口通路において異物の詰まりも起こし難くなる。
さらに、上記(7)の構成によれば、1以上の出口通路の数が複数の冷却通路の数未満であるので、冷却媒体の流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることができ、分割環の製造コストを抑制できる。
(8)本発明の少なくとも一実施形態に係る高温部品の製造方法は、
ターボ機械に用いられ、冷却媒体による冷却を必要とする高温部品の製造方法であって、
前記冷却媒体が流通可能な複数の冷却通路を形成するステップと、
前記複数の冷却通路の下流端が接続されたヘッダ部を形成するステップと、
前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路を形成するステップと、
を備え、
前記1以上の出口通路の数は、前記複数の冷却通路の数未満であり、
前記1以上の出口通路の各々の最小流路断面積は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積以上であり、
前記1以上の出口通路の各々の最小流路断面積の和は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積の和より小さい。
上記(8)の方法によれば、1以上の出口通路の各々の最小流路断面積の和がヘッダ部と冷却通路との接続部における複数の冷却通路の各々の流路断面積の和より小さくなるので、複数の冷却通路における冷却媒体の流量を出口通路の最小流路断面積によって規定できる。これにより、複数の冷却通路のそれぞれでは、冷却媒体の流量調整のために流路断面積を必要以上に小さくしなくてもよくなるので、冷却通路の寸法精度が向上し、複数の冷却通路同士での冷却媒体の流量のばらつきを抑制できる。したがって、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる。
また、上記(8)の方法によれば、1以上の出口通路の各々の最小流路断面積をヘッダ部と冷却通路との接続部における複数の冷却通路の各々の流路断面積以上とすることができるので、出口通路の寸法精度が確保し易くなるとともに、出口通路において異物の詰まりも起こし難くなる。
さらに、上記(8)の方法によれば、1以上の出口通路の数が複数の冷却通路の数未満となるので、冷却媒体の流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることができ、高温部品の製造コストを抑制できる。
(9)幾つかの実施形態では、上記(8)の方法において、前記1以上の出口通路を形成するステップは、前記出口通路の流路断面積が下流側に向かって漸減する流路断面積縮小部を含むように前記1以上の出口通路を形成する。
上記(9)の方法によれば、流路断面積縮小部において出口通路における最小流路断面積を有するように出口通路を形成することで、冷却媒体の流量の管理上、流路断面積縮小部において最も下流側の領域の寸法精度を管理すればよいこととなるので、流路断面積の精度、すなわち通路の寸法精度を確保すべき領域を狭くすることができ、高温部品の製造コストを抑制できる。
(10)幾つかの実施形態では、上記(8)又は(9)の方法において、
前記1以上の出口通路を形成するステップは、金属積層造形法又は精密鋳造法によって、前記1以上の出口通路を形成し、
前記1以上の出口通路の内壁面の少なくとも一部に機械加工を施すステップ
をさらに備える。
上記(10)の方法によれば、出口通路を機械加工だけによって形成する場合と比べて、高温部品の製造コストを抑制できる。また、上記(10)の方法によれば、出口通路を金属積層造形法又は精密鋳造法だけによって形成する場合と比べて、出口通路の内壁面の寸法精度を向上でき、冷却媒体の流量の調節精度を向上できる。さらに、上記(10)の方法によれば、出口通路の内壁面の寸法を冷却媒体の流量を確認しながら調節できるので、冷却媒体の流量の過不足を抑制できる。
(11)幾つかの実施形態では、上記(10)の方法において、前記機械加工を施すステップは、前記1以上の出口通路をドリルによって切削する。
上記(11)の方法によれば、ドリルの直径によって出口通路の内壁面の寸法を規定できるので、製造が容易となる。
(12)本発明の少なくとも一実施形態に係る流量調節方法は、
ターボ機械に用いられ、冷却媒体による冷却を必要とする高温部品の内部を流れる前記冷却媒体の流量調節方法であって、
前記冷却媒体が流通可能な複数の冷却通路を形成するステップと、
前記複数の冷却通路の下流端が接続されたヘッダ部を形成するステップと、
金属積層造形法又は精密鋳造法によって、前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路を形成するステップと、
前記1以上の出口通路をドリルによって切削するステップと、
を備える。
上記(12)の方法によれば、ドリルの直径によって出口通路の内壁面の寸法を規定できるので、冷却媒体の流量調節が容易となる。したがって、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることが容易となる。
(13)幾つかの実施形態では、上記(12)の方法において、
前記高温部品は、1の前記ヘッダ部と、該ヘッダ部に下流端が接続された少なくとも2以上の前記冷却通路と、該ヘッダ部に接続された1以上の前記出口通路とを含む冷却通路グループを複数含み、
前記複数の冷却通路を形成するステップは、前記複数の冷却通路グループに含まれる各々の前記冷却通路を形成し、
前記ヘッダ部を形成するステップは、前記複数の冷却通路グループに含まれる各々の前記ヘッダ部を形成し、
前記1以上の出口通路を形成するステップは、前記複数の冷却通路グループに含まれる各々の前記出口通路を形成し、
前記1以上の出口通路をドリルによって切削するステップは、前記複数の冷却通路グループに含まれる各々の前記出口通路をドリルによって切削する。
上記(13)の方法によれば、ドリルの直径によって各出口通路の内壁面の寸法を規定できるので、複数の冷却通路グループ同士の冷却媒体の流量のばらつきの抑制が容易となる。
本発明の少なくとも一実施形態によれば、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる高温部品を提供できる。
ガスタービンの全体構成を表す概略図である。 タービンのガス流路を表す断面図である。 幾つかの実施形態に係る分割体を径方向外側から見た模式的な平面図、及び、周方向に沿ってロータの回転方向下流側から回転方向上流側に向かって見た模式的な側面図である。 図3におけるA4−A4矢視断面図である。 図4におけるヘッダ部近傍の拡大図である。 幾つかの実施形態に係る分割体を金属積層造形法で作成する場合の作成手順の一例を示すフローチャートである。 出口通路切削工程について説明するための図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
以下の説明では、ガスタービンに用いられる高温部品を例に挙げて、幾つかの実施形態に係る高温部品について説明する。
図1は、ガスタービンの全体構成を表す概略図であり、図2は、タービンのガス流路を表す断面図である。
本実施形態において、図1に示すように、ガスタービン10は、圧縮機11と燃焼器12とタービン13がロータ14により同軸上に配置されて構成され、ロータ14の一端部に発電機15が連結されている。なお、以下の説明では、ロータ14の軸線が延びる方向を軸方向Da、このロータ14の軸線を中心とした周方向を周方向Dcとし、ロータ14の軸線Axに対して垂直な方向を径方向Drとする。また、周方向Dcのうち、ロータ14の回転方向を回転方向Rとして表す。
圧縮機11は、空気取入口から取り込まれた空気AIが複数の静翼及び動翼を通過して圧縮されることで高温・高圧の圧縮空気ACを生成する。燃焼器12は、この圧縮空気ACに対して所定の燃料FLを供給し、燃焼することで高温・高圧の燃焼ガスFGが生成される。タービン13は、燃焼器12で生成された高温・高圧の燃焼ガスFGが複数の静翼及び動翼を通過することでロータ14を駆動回転し、このロータ14に連結された発電機15を駆動する。
また、図2に示すように、タービン13にて、タービン静翼(静翼)21は、翼型部23のハブ側が内側シュラウド25に固定され、先端側が外側シュラウド27に固定されて構成されている。タービン動翼(動翼)41は、翼型部43の基端部がプラットフォーム45に固定されて構成されている。そして、外側シュラウド27と動翼41の先端部側に配置される分割環50とが遮熱環35を介して車室(タービン車室)30に支持され、内側シュラウド25がサポートリング31に支持されている。そのため、燃焼ガスFGが通過する燃焼ガス流路32は、内側シュラウド25と、外側シュラウド27と、プラットフォーム45と、分割環50により囲まれた空間として軸方向Daに沿って形成される。
なお、内側シュラウド25、外側シュラウド27及び分割環50は、ガスパス面形成部材として機能する。ガスパス面形成部材とは、燃焼ガス流路32を区画すると共に燃焼ガスFGが接触するガスパス面を有するものである。
燃焼器12、動翼41(例えばプラットフォーム45)、静翼21(例えば内側シュラウド25や外側シュラウド27)及び分割環50等は、燃焼ガスFGが接触する高温環境下で使用される高温部品であり、冷却媒体による冷却を必要とする。以下の説明では、高温部品の冷却構造の例として、分割環50の冷却構造について説明する。
図3は、幾つかの実施形態に係る分割環50を構成する分割体51の一つを径方向Dr外側から見た模式的な平面図、及び、周方向Dcに沿ってロータ14の回転方向R下流側から回転方向R上流側に向かって見た模式的な側面図である。図4は、図3におけるA4−A4矢視断面図である。なお、図3では、分割体51の構造を簡略化して描いている。したがって、例えば図3では、分割体51を遮熱環35に取り付けるためのフック等の記載を省略している。
幾つかの実施形態に係る分割環50は、周方向Dcに環状に形成された複数の分割体51から構成される。各分割体51は、内部に冷却流路が形成された本体52を主要な構成品とする。図2に示すように、分割体51は、径方向Drの内表面52aが燃焼ガスFGが流れる燃焼ガス流路32に面するように配置される。分割体51の径方向Dr内側には、一定の隙間を設けて、ロータ14を中心に回転する動翼41が配置されている。高温の燃焼ガスFGによる熱損傷を防止するため、分割体51には、軸方向Daに延在する複数の軸方向通路(冷却通路)60が形成されている。
冷却通路60は、周方向Dcに並列させて複数配設されている。
幾つかの実施形態では、冷却通路60における周方向Dcを冷却通路60の幅方向と呼ぶ。また、幾つかの実施形態では、冷却通路60において該幅方向に直交する径方向Drを冷却通路60の高さ方向と呼ぶ。
図示はしないが、一実施形態に係るガスタービン10では、幾つかの実施形態に係る各分割体51には、外表面52b側から冷却空気CAが供給されるように構成されている。分割体51に供給された冷却空気CAは、冷却通路60を流通し、燃焼ガスFG中に排出する過程で、分割体51の本体52を対流冷却している。
以下、幾つかの実施形態に係る分割体51の冷却構造について説明する。
幾つかの実施形態に係る冷却通路60のそれぞれは、上流端が冷却空気マニホールド55に接続されている。幾つかの実施形態に係る冷却通路60のそれぞれの内部には、冷却通路60を途中から複数の分岐流路63に分割する仕切壁70が形成されている。幾つかの実施形態では、仕切壁70は、冷却通路60を途中から冷却通路60の幅方向に一対の分岐流路63に分割する。
幾つかの実施形態に係る冷却通路60、すなわち、仕切壁70よりも上流側の区間、及び、分岐流路63において、冷却通路60の延在方向から見たときの冷却通路60の流路の断面形状は、矩形であってもよく、円形であってもよく、矩形以外の多角形であってもよく、楕円形であってもよい。また、冷却通路60における仕切壁70よりも上流側の区間と分岐流路63とで、流路の断面形状の種類が異なっていてもよい。すなわち、仕切壁70よりも上流側の区間における流路の断面形状が矩形であり、分岐流路63における流路の断面形状が円形であってもよい。また、分岐流路63における流路の断面形状は、円や楕円を仕切壁70で2分割したような形状であってもよい。
冷却通路60は、冷却通路60の内壁面を冷却することで分割体51を冷却する。そのため、冷却通路60は、冷却通路60の等価直径の5倍以上の長さを有する。なお、冷却通路60の等価直径とは、冷却通路60の断面形状が円形以外の形状である場合に、冷却空気CAの流動の点から等価となる円形の流路に置き換えたときの流路の直径である。
複数の分岐流路63のそれぞれは、下流端65がヘッダ部80に接続されている。幾つかの実施形態では、例えば、それぞれ隣り合う3つの冷却通路60における6つの分岐流路63の下流端65が1つのヘッダ部80の上流側内壁部81に接続されている。幾つかの実施形態では、分割体51には、複数のヘッダ部80が形成されている。
各ヘッダ部80は、軸方向Daで対向する一対の壁部である上流側内壁部81及び下流側内壁部82と、周方向Dcで対向する一対の壁部である側方内壁部83、84と、径方向Dr対向する一対の壁部である不図示の内壁部とによって囲まれた、直方体状の空間部である。
各ヘッダ部80の下流側内壁部82には、ヘッダ部80に流入した冷却空気CAをヘッダ部80の外部、すなわち分割体51の外部に排出するための少なくとも1以上の出口通路110が形成されている。なお、図3に示す実施形態では、ヘッダ部80には、下流側内壁部82における周方向Dcの中央近傍に1つの出口通路110が形成されている。出口通路110は、分割体51における軸方向Daの下流側端部53で燃焼ガスFG中に開口する。
幾つかの実施形態では、分割体51は、1つのヘッダ部80と、該ヘッダ部80に下流端が接続された3つの冷却通路60と、該ヘッダ部80に接続された1つの出口通路110とを含む冷却通路グループ6を複数含む。
分割体51の外部から分割体51に供給される冷却空気CAは、冷却空気マニホールド55に供給された後、冷却空気マニホールド55から各冷却通路60に分配される。各冷却通路60に分配された冷却空気CAは、仕切壁70で分割されて、各分岐流路63に流れ込む。各分岐流路63に流れ込んだ冷却空気CAは、各ヘッダ部80で集められて、出口通路110から分割体51の外部に排出される。
ガスタービン10等のように高温の作動ガスによって作動する機械では、一般的に、冷却によって熱が奪われることは機械の熱効率の低下につながる。そのため、出来るだけ少ない冷却媒体で効率的に高温部品を冷却することが望ましい。したがって、冷却通路60における流路断面積は必要以上に大きくしない方がよい。
しかし、流路断面積が小さいと、高温部品である分割体51の製造上の制約から冷却通路60の寸法精度が低下する傾向があるため、冷却通路60における冷却空気CAの流量の精度が低下するおそれがある。
冷却通路60における冷却空気CAの流量の精度が低下して、冷却空気CAの流量が設計上の流量より多くなると、冷却空気CAに必要以上に熱が奪われて、ガスタービン10の熱効率が低下するおそれがある。また、冷却空気CAの流量が設計上の流量より少なくなると、冷却不足によって分割体51が損傷するおそれがある。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる高温部品を提供することを目的とする。
そこで、幾つかの実施形態では、分割体51における冷却構造を以下で述べるような構成とすることで、過剰な冷却を抑制しつつ、冷却能力が不足しないようにしている。
図5は、図4におけるヘッダ部80近傍の拡大図である。
幾つかの実施形態では、図3〜図5に示すように、分割体51において、1つのヘッダ部80に接続されている出口通路110の数は、1つのヘッダ部80に接続されている複数の冷却通路60の数未満である。例えば、幾つかの実施形態では、図3〜図5に示すように、1つのヘッダ部80に対して、仕切壁70で分割された6つの冷却通路60(6つの分岐流路63)と、1つの出口通路110とが接続されている。
幾つかの実施形態では、図5によく示すように、出口通路110は、上流側領域111と下流側領域115とを有する。上流側領域111には、下流側に向かって流路断面積が漸減する流路断面積縮小部113が形成されている。下流側領域115には、流路断面積が最も小さくなる最小流路断面積部117が形成されている。
幾つかの実施形態では、出口通路110の延在方向から見たときの出口通路110の流路の断面形状は、上流側領域111及び下流側領域115において円形である。しかし、出口通路110の流路の断面形状は、上流側領域111及び下流側領域115において矩形であってもよく、矩形以外の多角形であってもよく、楕円形であってもよい。また、上流側領域111と下流側領域115とで、流路の断面形状の種類が異なっていてもよい。すなわち、上流側領域111における流路の断面形状が矩形であり、下流側領域115における流路の断面形状が円形であってもよい。
なお、下流側領域115における流路の断面形状が円形以外である場合も考慮して、以下の説明では、下流側領域115(最小流路断面積部117)において流路の大きさについて言及する場合、最小流路断面積部117の等価直径によって説明する。
最小流路断面積部117の等価直径とは、最小流路断面積部117の断面形状が円形以外の形状である場合に、冷却空気CAの流動の点から等価となる円形の流路に置き換えたときの最小流路断面積部117の直径である。なお、最小流路断面積部117の断面形状が円形である場合、最小流路断面積部117の等価直径とは、最小流路断面積部117の直径である。
幾つかの実施形態では、分割体51において、出口通路110の最小流路断面積SBminは、ヘッダ部80と冷却通路60との接続部67における複数の冷却通路60(分岐流路63)の各々の流路断面積SA以上である。
幾つかの実施形態では、図3〜図5に示すように、分割体51において、出口通路110の最小流路断面積SBminは、1つのヘッダ部80に接続されている複数の冷却通路60(分岐流路63)の接続部67における各々の流路断面積SAの和ΣSAより小さい。
なお、1つのヘッダ部80に対して2以上の出口通路110が接続されていた場合、1つのヘッダ部80に接続されている出口通路110の各々の最小流路断面積SBminは、接続部67における複数の冷却通路60の各々の流路断面積SA以上である。
また、1つのヘッダ部80に対して2以上の出口通路110が接続されていた場合、1つのヘッダ部80に接続されている出口通路110の各々の最小流路断面積SBminの和ΣSBminは、1つのヘッダ部80に接続されている複数の冷却通路60の接続部67における各々の流路断面積SAの和ΣSAより小さい。
後述するように、分割体51は、例えば金属積層造形法や精密鋳造法によって形成できる。そのため、冷却通路60の流路断面積SAが小さいと、分割体51の製造上の制約から冷却通路60の寸法精度が低下する傾向がある。
複数の冷却通路60の各々において、それぞれを流れる冷却空気CAの流量を複数の冷却通路60の各々の流路断面積SAで決定しようとすると、流路断面積SAが小さいと、上述したように冷却通路60の寸法精度が低下して冷却通路60における冷却空気CAの流量の精度が低下するおそれがある。
これに対して、幾つかの実施形態に係る分割体51によれば、1以上の出口通路110の各々の最小流路断面積SBminの和ΣSBminが接続部67における複数の冷却通路60の各々の流路断面積SAの和ΣSAより小さいので、複数の冷却通路60における冷却空気CAの流量を出口通路110の最小流路断面積SBminによって規定できる。これにより、複数の冷却通路60のそれぞれでは、冷却空気CAの流量調整のために流路断面積SAを必要以上に小さくしなくてもよくなるので、冷却通路60の寸法精度が向上し、複数の冷却通路60同士での冷却空気CAの流量のばらつきを抑制できる。したがって、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる。
また、幾つかの実施形態に係る分割体51によれば、1以上の出口通路110の各々の最小流路断面積SBminが接続部67における複数の冷却通路60の各々の流路断面積SA以上であるので、出口通路110の径方向の寸法精度が確保し易くなるとともに、出口通路110において異物の詰まりも起こし難くなる。
さらに、幾つかの実施形態に係る分割体51によれば、1以上の出口通路110の数が複数の冷却通路60の数未満であるので、冷却空気CAの流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることができ、分割体51の製造コストを抑制できる。
幾つかの実施形態では、図5に示すように、分割体51において、ヘッダ部80における上流側内壁部81と下流側内壁部82との離間距離Ld、すなわち、ヘッダ部80の上流側端部と下流側端部との長さは、出口通路110の流路断面積が最小となる領域である下流側領域115における等価直径DBminの1倍以上3倍以下である。
上流側内壁部81、すなわち複数の冷却通路60の下流端65とヘッダ部80との接続位置と、下流側内壁部82、すなわち出口通路110の上流端110aとヘッダ部80との接続位置とが接近しすぎていると、冷却通路60の下流端65と出口通路110の上流端110aとの距離が小さい冷却通路60と大きい冷却通路60とで冷却空気CAの流量の差が大きくなってしまう。
これに対して、幾つかの実施形態に係る分割体51によれば、上流側内壁部81と下流側内壁部82とが少なくとも上記等価直径DBminの1倍以上離れていることで、複数の冷却通路60同士での冷却空気CAの流量のばらつきを抑制できる。
また、ヘッダ部80では、複数の冷却通路60の下流端65が接続されていることから、ヘッダ部80における空間容積が大きくなり、ヘッダ部80における冷却空気CAの流速が低下するので、冷却空気CAへの熱伝達率が低下する。そのため、ヘッダ部80では冷却能力が低下するおそれがあるため、上流側内壁部81と下流側内壁部82との離間距離Ldは大きくない方がよい。
その点、幾つかの実施形態に係る分割体51によれば、上流側内壁部81と下流側内壁部82との離間距離Ldが上記等価直径DBminの3倍以下であるので、分割体51において冷却能力が不足する領域が生じることを抑制できる。
また、上流側内壁部81と下流側内壁部82との離間距離Ldが上記等価直径DBminの3倍以下であれば、ヘッダ部80の容積、すなわち分割体51の内部の空間部の容積を抑制して、分割体51の強度低下を抑制できる。
幾つかの実施形態に係る分割体51では、出口通路110は、出口通路110の流路断面積が下流側に向かって漸減する流路断面積縮小部113を含む。
これにより、流路断面積縮小部113の下流側から出口通路110の延在方向と直交する方向の大きさを調節することで、出口通路110における最小流路断面積SBminの調節が容易となる。したがって、出口通路110の下流側における出口通路110の延在方向と直交する方向の寸法を管理すれば、冷却空気CAの流量を管理できるので、流路断面積の精度、すなわち通路の寸法精度を確保すべき領域を狭くすることができ、分割体51の製造コストを抑制できる。
なお、上流側領域111に流路断面積縮小部113が形成されていることから、後述するように、出口通路110の下流端110bから上流端110aに向かって三角ドリルによって出口通路110に機械加工を施すことで、下流端110bから上流側に遡った一部の区間の内径が一定となり、該区間が下流側領域115となる。したがって、下流側領域115に最小流路断面積部117を容易に形成できる。
幾つかの実施形態に係る分割体51では、出口通路110の内壁面110cの粗度は、出口通路110の流路断面積が最小となる領域において、複数の冷却通路60の内壁面60aの粗度以下である。すなわち、幾つかの実施形態に係る分割体51では、下流側領域115における内壁面115aの粗度が、複数の冷却通路60の内壁面60aの粗度以下である。
出口通路110の内壁面110cの粗度を上述のようにすることで、出口通路110における圧損のばらつきが小さくなるので、冷却空気CAの流量の調節精度を向上できる。また、出口通路110の内壁面110cの粗度を上述のようにすることで、出口通路110において異物が通過し易くなるので、出口通路110が閉塞するリスクを低減できる。
なお、幾つかの実施形態に係る分割体51では、上流側領域111における内壁面111aの粗度は、複数の冷却通路60の内壁面60aの粗度以下でなくてもよい。
例えば、幾つかの実施形態では、出口通路110の内壁面110cは、下流側領域115において、中心線平均粗さRaが10μm以下の粗度を有する。また、幾つかの実施形態では、複数の冷却通路60の内壁面60aは、中心線平均粗さRaが10μm以上20μm以下の粗度を有する。
幾つかの実施形態に係る分割体51によれば、複数の冷却通路60の内壁面60cが上記の粗度を有するので、冷却通路60における冷却性能を向上できる。また、幾つかの実施形態に係る分割体51によれば、出口通路110の下流側領域115における内壁面115cが上記の粗度を有するので、出口通路110における圧力損失のばらつきを抑制できるとともに、出口通路110において異物が通過し易くなり、出口通路110路が閉塞するリスクを低減できる。
幾つかの実施形態に係る分割体51では、複数の冷却通路60を形成する壁部、すなわち仕切壁70は、冷却通路60の下流端65において角部75が面取りされている。
複数の冷却通路60(分岐流路63)を形成する壁部でもある仕切壁70は、伝熱性能向上の観点から必要に応じて壁部の厚さ、すなわち仕切壁70の周方向Dcの寸法をできるだけ小さくする場合がある。このような場合に、冷却通路60(分岐流路63)の下流端65において角部75が面取りされていないような形状にしようとすると、例えば精密鋳造法や金属積層造形法によって分割体51を形成する際や、その後の熱処理の際に、該角部の形状が崩れてしまうおそれがある。該角部の形状が崩れてしまうと、冷却通路60を流通する冷却空気CAの流れに悪影響を及ぼして、冷却性能を低下させるおそれがある。
これに対して、幾つかの実施形態に係る分割体51によれば、冷却通路60の下流端65において角部75が面取りされているので、上述したような該角部75の形状が崩れてしまうことによる悪影響を抑制できる。
例えば、幾つかの実施形態では、図3〜図5に示すように、1つのヘッダ部80に対して、1つの出口通路110とが接続されている。
上述したように、冷却空気CAの流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることが望ましい。その点、図3〜図5に示した幾つかの実施形態によれば、1つのヘッダ部80に対して接続された出口通路110の数が1であるので、通路の寸法精度を確保すべき箇所を少なくすることができ、分割体51の製造コストを抑制できる。
(分割体51の製造方法について)
以下、上述した幾つかの実施形態に係る分割体51の製造方法について説明する。幾つかの実施形態に係る分割体51は、例えば金属積層造形法や精密鋳造法によって製作できる。図6は、幾つかの実施形態に係る分割体51を金属積層造形法で作成する場合の作成手順の一例を示すフローチャートである。幾つかの実施形態に係る分割体51の製造方法は、冷却通路形成工程S10と、ヘッダ部形成工程S20と、出口通路形成工程S30と、出口通路切削工程S40を備える。
幾つかの実施形態に係る分割体51の形成方法は、例えば、パウダーベッド方式であってもよく、メタルデポジッション方式であってもよく、バインダージェット方式であってもよく、上述した方式以外の他の方式であってもよい。以下の説明では、幾つかの実施形態に係る分割体51の形成方法が、例えば、パウダーベッド方式や、メタルデポジッション方式である場合について説明する。
冷却通路形成工程S10は、冷却空気CAが流通可能な複数の冷却通路60を形成するステップである。冷却通路形成工程S10では、例えば、軸方向Da上流側から軸方向Da下流側に向かって原料粉末を積層させて分割体51を冷却通路60の下流端65まで形成する。
ヘッダ部形成工程S20は、複数の冷却通路の下流端が接続されたヘッダ部を形成するステップである。ヘッダ部形成工程S20では、冷却通路形成工程S10に続いて軸方向Da上流側から軸方向Da下流側に向かって原料粉末を積層させて分割体51をヘッダ部80の下流側内壁部82まで形成する。
出口通路形成工程S30は、ヘッダ部80に流入した冷却空気CAをヘッダ部80の外部に排出するための1以上の出口通路110を形成するステップである。出口通路形成工程S30では、ヘッダ部形成工程S20に続いて軸方向Da上流側から軸方向Da下流側に向かって原料粉末を積層させて分割体51を出口通路110の下流端110bまで形成する。
なお、出口通路形成工程S30では、出口通路110の流路断面積が下流側に向かって漸減する流路断面積縮小部113を含むように出口通路110を形成する。
図7は、後述する出口通路切削工程S40について説明するための図である。図7では、出口通路切削工程S40において出口通路110を三角ドリル19によって切削する前の出口通路110の下流側の形状及び三角ドリル19を二点鎖線で描いている。
幾つかの実施形態に係る出口通路形成工程S30では、出口通路110の下流側における、出口通路110の延在方向と直交する方向の寸法が、三角ドリル19の直径Ddよりも小さくなるように、出口通路110の下流側を形成する。すなわち、幾つかの実施形態に係る出口通路形成工程S30では、出口通路切削工程S40の実施前の出口通路110において、流路断面積縮小部113の最も下流側における出口通路110の延在方向と直交する方向の寸法Mが、三角ドリル19の直径Ddよりも小さくなるように、流路断面積縮小部113を形成する。
出口通路切削工程S40は、出口通路110の内壁面110cの少なくとも一部に機械加工を施すステップである。具体的には、出口通路切削工程S40は、出口通路110を三角ドリル19によって切削するステップである。出口通路切削工程S40では、出口通路110の下流端110bから上流端110aに向かって三角ドリル19によって出口通路110に機械加工を施す。これにより、下流端110bから上流側に遡った一部の区間の内径が一定となり、該区間が下流側領域115となる。
なお、冷却通路形成工程S10及びヘッダ部形成工程S20は、必ずしも金属積層造形法によって実施する必要はなく、精密鋳造法によって実施してもよい。そして、出口通路形成工程S30を金属積層造形法によって実施してもよい。また、冷却通路形成工程S10から出口通路形成工程S30までを精密鋳造法によって実施してもよい。
幾つかの実施形態に係る分割体51の製造方法では、1つのヘッダ部80に接続されている出口通路110の数が、1つのヘッダ部80に接続されている複数の冷却通路60の数未満となるように分割体51を形成する。
また、幾つかの実施形態に係る分割体51の製造方法では、出口通路110の最小流路断面積SBminが、ヘッダ部80と冷却通路60との接続部67における複数の冷却通路60(分岐流路63)の各々の流路断面積SA以上となるように分割体51を形成する。
さらに、幾つかの実施形態に係る分割体51の製造方法では、出口通路110の最小流路断面積SBminが、1つのヘッダ部80に接続されている複数の冷却通路60(分岐流路63)の接続部67における各々の流路断面積SAの和ΣSAより小さくなるように分割体51を形成する。
なお、1つのヘッダ部80に対して2以上の出口通路110が接続されるように分割体51を形成する場合、1つのヘッダ部80に接続されている出口通路110の各々の最小流路断面積SBminが、接続部67における複数の冷却通路60の各々の流路断面積SA以上となるように分割体51を形成する。
また、1つのヘッダ部80に対して2以上の出口通路110が接続されるように分割体51を形成する場合、1つのヘッダ部80に接続されている出口通路110の各々の最小流路断面積SBminの和ΣSBminが、1つのヘッダ部80に接続されている複数の冷却通路60の接続部67における各々の流路断面積SAの和ΣSAより小さくなるように分割体51を形成する。
幾つかの実施形態に係る分割体51の製造方法によれば、1以上の出口通路110の各々の最小流路断面積SBminの和ΣSBminが接続部67における複数の冷却通路60の各々の流路断面積SAの和ΣSAより小さくなるので、複数の冷却通路60における冷却空気CAの流量を出口通路110の最小流路断面積SBminによって規定できる。これにより、複数の冷却通路60のそれぞれでは、冷却空気CAの流量調整のために流路断面積を必要以上に小さくしなくてもよくなるので、冷却通路60の寸法精度が向上し、複数の冷却通路60同士での冷却空気CAの流量のばらつきを抑制できる。したがって、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる。
また、幾つかの実施形態に係る分割体51の製造方法によれば、1以上の出口通路110の各々の最小流路断面積SBminを接続部67における複数の冷却通路60の各々の流路断面積SA以上とすることができるので、出口通路110の寸法精度が確保し易くなるとともに、出口通路110において異物の詰まりも起こし難くなる。
さらに、幾つかの実施形態に係る分割体51の製造方法によれば、1以上の出口通路110の数が複数の冷却通路60の数未満となるので、冷却空気CAの流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることができ、分割体51の製造コストを抑制できる。
幾つかの実施形態に係る分割体51の製造方法によれば、流路断面積縮小部113において出口通路110における最小流路断面積を有するように出口通路110を形成することで、冷却空気CAの流量の管理上、流路断面積縮小部113において最も下流側の領域の寸法精度を管理すればよいこととなる。そのため、流路断面積の精度、すなわち通路の寸法精度を確保すべき領域を狭くすることができ、分割体51の製造コストを抑制できる。
幾つかの実施形態に係る分割体51の製造方法によれば、出口通路110を機械加工だけによって形成する場合と比べて、分割体51の製造コストを抑制できる。また、幾つかの実施形態に係る分割体51の製造方法によれば、出口通路110を金属積層造形法又は精密鋳造法だけによって形成する場合と比べて、出口通路110の内壁面110cの寸法精度を向上でき、冷却空気CAの流量の調節精度を向上できる。さらに、幾つかの実施形態に係る分割体51の製造方法によれば、出口通路110の内壁面110cの寸法を冷却空気CAの流量を確認しながら調節できるので、冷却空気CAの流量の過不足を抑制できる。
幾つかの実施形態に係る分割体51の製造方法によれば、三角ドリル19の直径Ddによって出口通路110の内壁面110cの寸法、より具体的には最小流路断面積部117の内径Diを規定できるので、分割体51の製造が容易となる。
なお、幾つかの実施形態に係る分割体51の製造方法を実施することで、分割体51における冷却空気CAの流量を調整することができる。すなわち、上述した幾つかの実施形態に係る分割体51における冷却空気CAの流量調節方法は、冷却通路形成工程S10と、ヘッダ部形成工程S20と、出口通路形成工程S30と、出口通路切削工程S40を備える。
幾つかの実施形態に係る冷却空気CAの流量調節方法によれば、三角ドリル19の直径Ddによって出口通路110の内壁面110cの寸法(最小流路断面積部117の内径Di)を規定できるので、冷却空気CAの流量調節が容易となる。したがって、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることが容易となる。
幾つかの実施形態に係る冷却空気CAの流量調節方法では、冷却通路形成工程S10において、複数の冷却通路グループ6に含まれる各々の冷却通路60を形成する。
また、幾つかの実施形態に係る冷却空気CAの流量調節方法では、ヘッダ部形成工程S20において、複数の冷却通路グループ6に含まれる各々のヘッダ部80を形成する。
幾つかの実施形態に係る冷却空気CAの流量調節方法では、出口通路形成工程S30において、複数の冷却通路グループ6に含まれる各々の出口通路110を形成する。
幾つかの実施形態に係る冷却空気CAの流量調節方法では、出口通路切削工程S40において、複数の冷却通路グループ6に含まれる各々の出口通路110を三角ドリル19によって切削する。
これにより、三角ドリル19の直径Ddによって各出口通路110の内壁面110cの寸法(最小流路断面積部117の内径Di)を規定できるので、複数の冷却通路グループ6同士の冷却空気CAの流量のばらつきの抑制が容易となる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
例えば、上述した幾つかの実施形態では、冷却媒体による冷却を必要とする高温部品の例として分割環50を例に挙げて説明したが、本発明はこれに限定されず、燃焼器12、動翼41(例えばプラットフォーム45)、静翼21(例えば内側シュラウド25や外側シュラウド27)等、他の高温部品についても適用できる。また、本発明が適用できる高温部品は、ガスタービン10における構成部品に限定されず、ターボチャージャ等、ガスタービン10以外のターボ機械における構成部品であってもよい。
6 冷却通路グループ
10 ガスタービン
12 燃焼器
13 タービン
21 タービン静翼(静翼)
41 タービン動翼(動翼)
50 分割環
51 分割体
52 本体
52b 外表面(被加熱面)
60 軸方向通路(冷却通路)
63 分岐流路
65 下流端
67 接続部
70 仕切壁
80 ヘッダ部
81 上流側内壁部
82 下流側内壁部
110 出口通路
111 上流側領域
113 流路断面積縮小部
115 下流側領域
117 最小流路断面積部

Claims (13)

  1. ターボ機械に用いられ、冷却媒体による冷却を必要とする高温部品であって、
    前記冷却媒体が流通可能な複数の冷却通路と、
    前記複数の冷却通路の下流端が接続されたヘッダ部と、
    前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路と、
    を備え、
    前記1以上の出口通路の数は、前記複数の冷却通路の数未満であり、
    前記1以上の出口通路の各々の最小流路断面積は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積以上であり、
    前記1以上の出口通路の各々の最小流路断面積の和は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積の和より小さく、
    前記1以上の出口通路の内壁面は、前記出口通路の流路断面積が最小となる領域において、中心線平均粗さRaが10μm以下の粗度を有し、
    前記複数の冷却通路の内壁面は、中心線平均粗さRaが10μm以上20μm以下の粗度を有する
    高温部品。
  2. ターボ機械に用いられ、冷却媒体による冷却を必要とする高温部品であって、
    前記冷却媒体が流通可能な複数の冷却通路と、
    前記複数の冷却通路の下流端が接続されたヘッダ部と、
    前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路と、
    を備え、
    前記1以上の出口通路の数は、前記複数の冷却通路の数未満であり、
    前記1以上の出口通路の各々の最小流路断面積は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積以上であり、
    前記1以上の出口通路の各々の最小流路断面積の和は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積の和より小さく、
    前記高温部品は、複数の分割体が周方向に沿って環状に配設されて構成されるガスタービンの分割環であり、
    前記複数の分割体は、燃焼ガスが流れる燃焼ガス流路に面する内表面をそれぞれ有し、
    前記複数の冷却通路は、前記複数の分割体のそれぞれの内部に形成され、
    前記1以上の出口通路は、前記複数の分割体のそれぞれにおける軸方向の下流側端部で前記燃焼ガス中に開口する
    高温部品。
  3. 前記ヘッダ部における上流側内壁部と下流側内壁部との離間距離は、前記出口通路の流路断面積が最小となる領域における等価直径の1倍以上3倍以下である
    請求項1又は2に記載の高温部品。
  4. 前記1以上の出口通路は、前記出口通路の流路断面積が下流側に向かって漸減する流路断面積縮小部を含む
    請求項1乃至3の何れか一項に記載の高温部品。
  5. 前記複数の冷却通路を形成する壁部は、前記冷却通路の下流端において角部が面取りされている
    請求項1乃至4の何れか一項に記載の高温部品。
  6. 前記出口通路の数は、1である
    請求項1乃至5の何れか一項に記載の高温部品。
  7. ターボ機械に用いられ、冷却媒体による冷却を必要とする高温部品であって、
    前記冷却媒体が流通可能な複数の冷却通路と、
    前記複数の冷却通路の下流端が接続されたヘッダ部と、
    前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路と、
    を備え、
    前記複数の冷却通路は、前記ヘッダ部よりも長さ寸法が長く、
    前記1以上の出口通路の数は、前記複数の冷却通路の数未満であり、
    前記1以上の出口通路の各々の最小流路断面積は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積以上であり、
    前記1以上の出口通路の各々の最小流路断面積の和は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積の和より小さい
    高温部品。
  8. ターボ機械に用いられ、冷却媒体による冷却を必要とする高温部品の製造方法であって、
    前記冷却媒体が流通可能な複数の冷却通路を形成するステップと、
    前記複数の冷却通路の下流端が接続されたヘッダ部を形成するステップと、
    前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路を形成するステップと、
    を備え、
    前記複数の冷却通路は、前記ヘッダ部よりも長さ寸法が長く、
    前記1以上の出口通路の数は、前記複数の冷却通路の数未満であり、
    前記1以上の出口通路の各々の最小流路断面積は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積以上であり、
    前記1以上の出口通路の各々の最小流路断面積の和は、前記ヘッダ部と前記冷却通路との接続部における前記複数の冷却通路の各々の流路断面積の和より小さい
    高温部品の製造方法。
  9. 前記1以上の出口通路を形成するステップは、前記出口通路の流路断面積が下流側に向かって漸減する流路断面積縮小部を含むように前記1以上の出口通路を形成する
    請求項8に記載の高温部品の製造方法。
  10. 前記1以上の出口通路を形成するステップは、金属積層造形法又は精密鋳造法によって、前記1以上の出口通路を形成し、
    前記1以上の出口通路の内壁面の少なくとも一部に機械加工を施すステップ
    をさらに備える
    請求項8又は9に記載の高温部品の製造方法。
  11. 前記機械加工を施すステップは、前記1以上の出口通路をドリルによって切削する
    請求項10に記載の高温部品の製造方法。
  12. ターボ機械に用いられ、冷却媒体による冷却を必要とする高温部品の内部を流れる前記冷却媒体の流量調節方法であって、
    前記冷却媒体が流通可能な複数の冷却通路を形成するステップと、
    前記複数の冷却通路の下流端が接続されたヘッダ部を形成するステップと、
    金属積層造形法又は精密鋳造法によって、前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路を形成するステップと、
    前記1以上の出口通路をドリルによって切削するステップと、
    を備え
    前記1以上の出口通路をドリルによって切削するステップは、前記出口通路の内壁面の寸法を前記冷却媒体の流量を確認しながら調節するステップを含む
    流量調節方法。
  13. 前記高温部品は、1の前記ヘッダ部と、該ヘッダ部に下流端が接続された少なくとも2以上の前記冷却通路と、該ヘッダ部に接続された1以上の前記出口通路とを含む冷却通路グループを複数含み、
    前記複数の冷却通路を形成するステップは、前記複数の冷却通路グループに含まれる各々の前記冷却通路を形成し、
    前記ヘッダ部を形成するステップは、前記複数の冷却通路グループに含まれる各々の前記ヘッダ部を形成し、
    前記1以上の出口通路を形成するステップは、前記複数の冷却通路グループに含まれる各々の前記出口通路を形成し、
    前記1以上の出口通路をドリルによって切削するステップは、前記複数の冷却通路グループに含まれる各々の前記出口通路をドリルによって切削する
    請求項12に記載の流量調節方法。
JP2019065811A 2019-03-29 2019-03-29 高温部品、高温部品の製造方法及び流量調節方法 Active JP6636668B1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019065811A JP6636668B1 (ja) 2019-03-29 2019-03-29 高温部品、高温部品の製造方法及び流量調節方法
CN202080013401.4A CN113474545B (zh) 2019-03-29 2020-02-19 高温部件、高温部件的制造方法、以及流量调节方法
PCT/JP2020/006527 WO2020202863A1 (ja) 2019-03-29 2020-02-19 高温部品、高温部品の製造方法及び流量調節方法
DE112020000728.6T DE112020000728T5 (de) 2019-03-29 2020-02-19 Hochtemperaturkomponente, herstellungsverfahren für hochtemperaturkomponente und strömungsratensteuerverfahren
US17/432,211 US11702944B2 (en) 2019-03-29 2020-02-19 High-temperature component, production method for high-temperature component, and flow rate control method
KR1020217024554A KR102546850B1 (ko) 2019-03-29 2020-02-19 고온 부품, 고온 부품의 제조 방법 및 유량 조절 방법
TW109105683A TWI767191B (zh) 2019-03-29 2020-02-21 高溫零件、高溫零件的製造方法及流量調節方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065811A JP6636668B1 (ja) 2019-03-29 2019-03-29 高温部品、高温部品の製造方法及び流量調節方法

Publications (2)

Publication Number Publication Date
JP6636668B1 true JP6636668B1 (ja) 2020-01-29
JP2020165359A JP2020165359A (ja) 2020-10-08

Family

ID=69183756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065811A Active JP6636668B1 (ja) 2019-03-29 2019-03-29 高温部品、高温部品の製造方法及び流量調節方法

Country Status (7)

Country Link
US (1) US11702944B2 (ja)
JP (1) JP6636668B1 (ja)
KR (1) KR102546850B1 (ja)
CN (1) CN113474545B (ja)
DE (1) DE112020000728T5 (ja)
TW (1) TWI767191B (ja)
WO (1) WO2020202863A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115096031B (zh) * 2022-05-11 2024-01-26 北京华卓精科科技股份有限公司 一种光刻设备中的硅片承载装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963349A1 (de) * 1999-12-27 2001-06-28 Abb Alstom Power Ch Ag Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante
DE19963377A1 (de) * 1999-12-28 2001-07-12 Abb Alstom Power Ch Ag Turbinenschaufel mit aktiv gekühltem Deckbandelement
US6779597B2 (en) * 2002-01-16 2004-08-24 General Electric Company Multiple impingement cooled structure
JP2003214185A (ja) * 2002-01-22 2003-07-30 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器冷却構造およびガスタービン
JP2003214184A (ja) 2002-01-28 2003-07-30 Jfe Steel Kk ガスタービンおよびその運転方法
US7411150B2 (en) * 2002-06-12 2008-08-12 Alstom Technology Ltd. Method of producing a composite component
AU2005284134B2 (en) * 2004-09-16 2008-10-09 General Electric Technology Gmbh Turbine engine vane with fluid cooled shroud
US7131818B2 (en) 2004-11-02 2006-11-07 United Technologies Corporation Airfoil with three-pass serpentine cooling channel and microcircuit
US7306424B2 (en) 2004-12-29 2007-12-11 United Technologies Corporation Blade outer seal with micro axial flow cooling system
JP2008274774A (ja) * 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器およびガスタービン
US8057177B2 (en) * 2008-01-10 2011-11-15 General Electric Company Turbine blade tip shroud
US8317461B2 (en) * 2008-08-27 2012-11-27 United Technologies Corporation Gas turbine engine component having dual flow passage cooling chamber formed by single core
JP4634528B1 (ja) * 2010-01-26 2011-02-23 三菱重工業株式会社 分割環冷却構造およびガスタービン
US8727704B2 (en) * 2010-09-07 2014-05-20 Siemens Energy, Inc. Ring segment with serpentine cooling passages
JP5281685B2 (ja) * 2011-10-31 2013-09-04 三菱重工業株式会社 ガスタービン燃焼器およびガスタービン
US8650521B1 (en) 2011-12-01 2014-02-11 The Florida State University Research Foundation, Inc. Dendritic cooling layer generator and method of fabrication
JP2013240845A (ja) * 2012-05-18 2013-12-05 Toshiba Corp リーマ加工機、リーマ加工方法および蒸気タービンの製造方法
US20140099476A1 (en) 2012-10-08 2014-04-10 Ramesh Subramanian Additive manufacture of turbine component with multiple materials
ITCO20120061A1 (it) 2012-12-13 2014-06-14 Nuovo Pignone Srl Metodi per produrre pale di turbomacchina con canali sagomati mediante produzione additiva, pale di turbomacchina e turbomacchine
US9416662B2 (en) 2013-09-03 2016-08-16 General Electric Company Method and system for providing cooling for turbine components
US10294799B2 (en) * 2014-11-12 2019-05-21 United Technologies Corporation Partial tip flag
DE112016004421B4 (de) * 2015-09-29 2021-10-21 Mitsubishi Power, Ltd. Laufschaufel und damit ausgestattete gasturbine
JP6564872B2 (ja) 2015-11-05 2019-08-21 三菱日立パワーシステムズ株式会社 燃焼用筒、ガスタービン燃焼器及びガスタービン
US20170175574A1 (en) * 2015-12-16 2017-06-22 General Electric Company Method for metering micro-channel circuit
US10480322B2 (en) * 2018-01-12 2019-11-19 General Electric Company Turbine engine with annular cavity
US10550710B2 (en) * 2018-05-31 2020-02-04 General Electric Company Shroud for gas turbine engine
US10989070B2 (en) * 2018-05-31 2021-04-27 General Electric Company Shroud for gas turbine engine
US10738651B2 (en) * 2018-05-31 2020-08-11 General Electric Company Shroud for gas turbine engine

Also Published As

Publication number Publication date
TW202039995A (zh) 2020-11-01
DE112020000728T5 (de) 2021-11-04
CN113474545B (zh) 2023-10-31
KR20210109026A (ko) 2021-09-03
TWI767191B (zh) 2022-06-11
US20220049612A1 (en) 2022-02-17
CN113474545A (zh) 2021-10-01
KR102546850B1 (ko) 2023-06-23
JP2020165359A (ja) 2020-10-08
US11702944B2 (en) 2023-07-18
WO2020202863A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6666500B1 (ja) 高温部品及び高温部品の製造方法
EP3318720B1 (en) Cooled structure for a gas turbine, corresponding gas turbine and method of making a cooled structure
US10738791B2 (en) Active high pressure compressor clearance control
KR20190067108A (ko) 팁 레일 냉각 통로를 갖는 터빈 구성요소
US11879356B2 (en) Turbomachine cooling trench
JP6636668B1 (ja) 高温部品、高温部品の製造方法及び流量調節方法
EP3712380A1 (en) A component for an aero engine, an aero engine module comprising such a component, and method of manufacturing said component by additive manufacturing
US20210040859A1 (en) Engine component with cooling hole
US11458541B2 (en) Method of manufacturing a component
JP7234006B2 (ja) 高温部品及び高温部品の製造方法
US20190390568A1 (en) Overlapping near surface cooling channels
JP2022099908A (ja) 高温部品及び回転機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190705

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190705

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191218

R150 Certificate of patent or registration of utility model

Ref document number: 6636668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150