KR20190067108A - 팁 레일 냉각 통로를 갖는 터빈 구성요소 - Google Patents

팁 레일 냉각 통로를 갖는 터빈 구성요소 Download PDF

Info

Publication number
KR20190067108A
KR20190067108A KR1020180155326A KR20180155326A KR20190067108A KR 20190067108 A KR20190067108 A KR 20190067108A KR 1020180155326 A KR1020180155326 A KR 1020180155326A KR 20180155326 A KR20180155326 A KR 20180155326A KR 20190067108 A KR20190067108 A KR 20190067108A
Authority
KR
South Korea
Prior art keywords
rail
tip
airfoil
coolant
chamber
Prior art date
Application number
KR1020180155326A
Other languages
English (en)
Other versions
KR102682175B1 (ko
Inventor
니콜라스 윌리엄 래티
게리 마이클 잇첼
Original Assignee
제네럴 일렉트릭 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제네럴 일렉트릭 컴퍼니 filed Critical 제네럴 일렉트릭 컴퍼니
Publication of KR20190067108A publication Critical patent/KR20190067108A/ko
Application granted granted Critical
Publication of KR102682175B1 publication Critical patent/KR102682175B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/127Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • F05D2250/141Two-dimensional elliptical circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

터빈 구성요소는 에어포일(124, 215)을 포함하고, 에어포일은 에어포일(124, 215) 내에 배치되는 에어포일 챔버(174)를 갖고, 에어포일 챔버(174)는 에어포일(124, 215)을 통해 냉각제를 공급하도록 구성된다. 에어포일(124, 215)의 팁은, 팁 플레이트(148)로부터 반경 방향으로 연장되는 레일을 포함하고, 레일은 내부에 팁 포켓(155)을 획정하는 내측 레일 표면(155), 외측 레일 표면(159) 및 내측 레일 표면(157)과 외측 레일 표면(159) 사이의 반경 방향 외향 레일 표면(160)을 포함한다. 팁 레일 공동(172)은 레일 내에 있고 레일을 부분적으로 둘러싸며, 팁 레일 공동(172)은 냉각제 유동(226)을 받아들인다. 팁 레일 냉각 통로(170)는, 팁 레일 공동(172)에 유체 연결되는 입구(176, 224), 입구(176, 224)에 유체 연결되고 레일을 부분적으로 둘러싸는 통로 길이(178), 통로 길이(178)에 유체 연결되는 계량 요소(180), 및 계량 요소(180)에 유체 연결되고 반경 방향 외향 레일 표면(160)을 통해 연장되는 출구(182)를 포함한다.

Description

팁 레일 냉각 통로를 갖는 터빈 구성요소{TURBINE COMPONENT WITH TIP RAIL COOLING PASSAGE}
관련 출원들에 대한 상호 참조
본 출원은 동시에 출원되고 현재 계류 중인 미국 출원 제 ______호(GE 문서 번호 322976-1호)에 관한 것이다.
본 개시는 전체적으로 터빈 구성요소에 관한 것으로, 보다 구체적으로는 팁 레일 냉각 통로를 포함하는 터빈 구성요소에 관한 것이다.
가스 터빈 엔진에서, 공기는 압축기 내에서 가압되고 연소기 내의 연료를 연소시켜 고온의 연소 가스의 유동을 발생시키는 데에 사용된다는 것이 널리 알려져 있고, 그래서 그러한 가스는 에너지가 가스로부터 추출될 수 있도록 하나 이상의 터빈을 통해 하류로 유동한다. 그러한 터빈에 따르면, 일반적으로, 원주 방향으로 이격된 터빈 로터 블레이드의 열이 지지 로터 디스크로부터 반경 방향 외측으로 연장된다. 각각의 블레이드는 통상적으로 로터 디스크의 대응하는 도브테일 슬롯(dovetail slot)에서 블레이드의 조립 및 분해를 허용하는 도브테일 뿐만 아니라 도브테일로부터 반경 방향 외측으로 연장되는 에어포일을 포함한다.
에어포일은 대응하는 선단 에지와 후단 에지 사이에서 축방향으로 그리고 루트와 팁 사이에서 반경 방향으로 연장되는 대체로 오목한 압력 측벽과 대체로 볼록한 흡입 측벽을 갖는다. 블레이드 팁은 터빈 블레이드들 사이에서 하류로 유동하는 연소 가스가 사이에서 누출하는 것을 최소화하도록 반경 방향 외측 터빈 슈라우드에 밀접하게 이격되어 있는 것으로 이해될 것이다. 엔진의 최대 효율은 누출이 방지되도록 팁 클리어런스 또는 간극을 최소화함으로써 얻어지지만, 이 전략은 터빈 로터 블레이드와 터빈 슈라우드 사이의 상이한 열적 및 기계적 팽창과 수축 속도 그리고 작동 중에 슈라우드에 대해 팁이 과도하게 러빙(rubbing)되는 바람직하지 않은 시나리오를 피하기 위한 동기 부여에 의해 어느 정도 제한된다.
게다가, 터빈 로터 블레이드는 고온의 연소 가스에 휩싸여 있기 때문에, 유효 부품 수명을 보장하기 위해 효과적인 냉각이 요구된다. 통상, 블레이드 에어포일은 중공형이고 압축기와 유체 연통하게 배치되므로 압축기로부터 배출된 가압 공기의 일부가 냉각제로서 에어포일을 냉각시키는 데에 사용되도록 수용된다. 에어포일 냉각은 매우 정교하며, 다양한 형태의 내측 냉각 채널 및 피쳐, 뿐만 아니라 냉각 공기를 방출하도록 에어포일의 외측벽을 관통한 냉각 구멍을 사용하여 채용될 수 있다. 그럼에도 불구하고, 에어포일 팁은 터빈 슈라우드에 바로 인접하게 배치되고 팁 간극을 통해 유동하는 고온 연소 가스에 의해 가열되기 때문에 냉각하기가 특히 어렵다. 따라서, 블레이드의 에어포일 내측에서 채널링되는 공기의 일부는 통상적으로 그 냉각을 위해 팁을 통해 방출된다
종래의 블레이드 팁은 누출을 방지하고 냉각 효과를 증가시키도록 된 다수의 상이한 기하학적 형태 및 구성을 포함한다는 것이 이해될 것이다. 그러나, 종래의 블레이드 팁 모두는, 누출을 적절하게 감소시키지 못하고 및/또는 효율을 저하시키는 압축기 바이패스 공기의 사용을 최소화하는 효율적인 팁 냉각을 허용하지 못하는 일반적인 불능을 비롯하여 특정한 단점을 갖는다. "스퀄러 팁(squealer tip)" 배열이라고 지칭되는 한가지 방안은 팁 슈라우드에 러빙될 수 있는 반경 방향 연장 레일을 제공한다. 레일은 누출을 감소시키고, 이에 따라 터빈 엔진의 효율을 증가시킨다.
그러나, 스퀄러 팁의 레일은 높은 열 부하를 받고 효과적으로 냉각하기 어렵다 - 흔히 블레이드에서 가장 뜨거운 영역 중 하나이다 -. 팁 레일 충돌 냉각은 레일의 상단을 통해 냉각제를 전달하며 효과적인 레일 냉각 방법인 것으로 입증되었다. 그러나, 레일의 상단을 통해 냉각제를 배출하는 것과 관련된 수많은 도전 과제가 있다. 예를 들어, 역류 압력 마진 요건(backflow pressure margin requirement)은 이러한 배열(특히, 저압 영역 및 고압 영역 - 레일의 상단 및 압력 측벽 각각 - 에 연결된 구멍이 있는 압력 측벽)로 충족시키기가 어렵다. 그러므로, 팁 통로에서 손실을 야기하여 냉각제 유동에 역압을 가하는 동시에 레일을 충분히 냉각시키는 것이 도전 과제인데, 그 이유는 팁 통로에서의 손실은 이 영역에 사용되는 냉각 유체의 양을 감소시키기 때문이다. 또한, 출구 구멍은 내마모성을 가지면서도 레일에 충분한 냉각을 제공해야 한다. 예를 들어, 출구 구멍은 팁 러빙을 견딜 수 있어야 하며 또한 먼지가 폐색하지 않을 수 있도록 충분히 커야 한다.
이상적으로, 레일 냉각 통로는 또한 적층 가공을 사용하여 형성될 수 있으며, 이는 또 다른 도전 과제를 제시한다. 적층 가공(AM; additive manufacturing)은 재료를 제거하는 것이 아니라 재료를 연속적으로 적층하여 구성요소를 제조하는 광범위한 공정을 포함한다. 따라서, 적층 가공은 어떠한 종류의 공구, 몰드 또는 고정구를 사용하지 않고 그리고 폐기 재료가 거의 없거나 전혀 없이 복잡한 기하학적 형태를 만들 수 있다. 많은 부분이 절단되거나 폐기되는 고형 빌렛 재료로부터 구성요소를 가공하는 대신에, 적층 가공에 사용되는 재료는 오직 구성요소를 성형하는 데에만 필요한 재료이다. 팁 레일 냉각 통로와 관련하여, 레일 내의 종래의 원형 냉각 구멍은 적층 가공(공칭 제조 방향에 수직)을 사용하여 형성하기가 매우 어렵고 제조 중에 심하게 변형되거나 붕괴된다.
팁 냉각에 관한 또 다른 도전 과제는 팁 레일의 상이한 영역에서 관찰되는 상이한 온도를 수용하는 것이다. 예를 들어, 압력 측벽 및 흡입 측벽의 후미 영역에 있는 레일은 통상적으로 다른 영역보다 더 고온이다.
본 개시의 제1 양태는, 베이스, 베이스에 대향하여 배치된 팁, 및 선단 에지와 후단 에지 사이에서 연장되는 압력 측벽과 흡입 측벽을 갖는 에어포일; 에어포일 내에 배치되고, 에어포일을 통해 냉각제를 공급하도록 구성된 에어포일 챔버; 팁에 있는 팁 플레이트 및 팁 플레이트로부터 반경 방향으로 연장되는 레일 - 레일은 팁 플레이트의 주변에 또는 그 근처에 배치되고, 레일은 내측 레일 표면, 외측 레일 표면 및 내측 레일 표면과 외측 레일 표면 사이의 반경 방향 외향 레일 표면을 포함함 -; 레일 내에 있고 레일을 부분적으로 둘러싸며 냉각제 유동을 받아들이는 공동; 및 공동에 유체 연결되는 입구, 입구에 유체 연결되고 레일을 부분적으로 둘러싸는 통로 길이, 통로 길이에 유체 연결되는 계량 요소, 및 계량 요소에 유체 연결되고 반경 방향 외향 레일 표면을 통해 연장되는 출구를 포함하는 팁 레일 냉각 통로를 포함하는 터빈 구성요소를 제공한다.
본 개시의 제2 양태는 가스 터빈 엔진용의 터빈 로터 블레이드를 제공하는 것으로서, 터빈 로터 블레이드는, 베이스, 베이스에 대향하여 배치된 팁, 및 선단 에지와 후단 에지 사이에서 연장되는 압력 측벽과 흡입 측벽을 갖는 에어포일; 에어포일 내에 배치되고, 에어포일을 통해 냉각제를 공급하도록 구성된 에어포일 챔버; 팁에 있는 팁 플레이트 및 팁 플레이트로부터 반경 방향으로 연장되는 레일 - 레일은 팁 플레이트의 주변에 또는 그 근처에 배치되고, 레일은 내측 레일 표면, 외측 레일 표면 및 내측 레일 표면과 외측 레일 표면 사이의 반경 방향 외향 레일 표면을 포함함 -; 레일 내에 있고 레일을 부분적으로 둘러싸며 냉각제 유동을 받아들이는 공동; 및 공동에 유체 연결되는 입구, 입구에 유체 연결되고 레일을 부분적으로 둘러싸는 통로 길이, 통로 길이에 유체 연결되는 계량 요소, 및 계량 요소에 유체 연결되고 반경 방향 외향 레일 표면을 통해 연장되는 출구를 포함하는 팁 레일 냉각 통로를 포함한다.
본 개시의 제3 양태는, 베이스, 베이스에 대향하여 배치된 팁, 및 선단 에지와 후단 에지 사이에서 연장되는 압력 측벽과 흡입 측벽을 갖는 에어포일; 에어포일 내에 배치되고, 에어포일을 통해 냉각제를 공급하도록 구성된 에어포일 챔버; 압력 측벽과 흡입 측벽 사이의 팁에 있는 팁 플레이트; 팁 플레이트로부터 반경 방향으로 연장되는 레일 - 레일은 팁 플레이트의 주변에 또는 그 근처에 배치되고, 레일은 적어도 부분적으로 그 안에 있는 적어도 하나의 팁 레일 냉각 구조를 포함함 -; 에어포일 내에서 에어포일 챔버와 팁 플레이트 사이에 반경 방향으로 위치 설정된 레일 냉각제 지향 챔버 - 레일 냉각제 지향 챔버는 에어포일 챔버로부터의 냉각제의 적어도 일부를 포함하는 냉각제 유동을 받아들이도록 에어포일 챔버에 유체 연결된 입구를 포함함 -; 냉각제 유동을 레일의 적어도 하나의 팁 레일 냉각 구조로 지향시키는 레일 냉각제 지향 챔버로부터의 복수의 출구; 및 레일 냉각제 지향 챔버 내에 있는 적어도 하나의 지향벽 - 적어도 하나의 지향벽은 다른 출구에 앞서 압력 측벽 및 흡입 측벽의 후방 영역 중 적어도 하나를 따라 배치된 복수의 출구 중 하나 이상을 향해 냉각제 유동을 지향시키도록 위치 설정됨 - 을 포함하는 터빈 구성요소를 포함한다.
본 개시의 제4 양태는 가스 터빈 엔진용의 터빈 로터 블레이드에 관한 것으로서, 터빈 로터 블레이드는, 베이스, 베이스에 대향하여 배치된 팁, 및 선단 에지와 후단 에지 사이에서 연장되는 압력 측벽과 흡입 측벽을 갖는 에어포일; 에어포일 내에 배치되고, 에어포일을 통해 냉각제를 공급하도록 구성된 에어포일 챔버; 압력 측벽과 흡입 측벽 사이의 팁에 있는 팁 플레이트; 팁 플레이트로부터 반경 방향으로 연장되는 레일 - 레일은 팁 플레이트의 주변에 또는 그 근처에 배치되고, 레일은 적어도 부분적으로 그 안에 있는 적어도 하나의 팁 레일 냉각 구조를 포함함 -; 에어포일 내에서 에어포일 챔버와 팁 플레이트 사이에 반경 방향으로 위치 설정된 레일 냉각제 지향 챔버 - 레일 냉각제 지향 챔버는 에어포일 챔버로부터의 냉각제의 적어도 일부를 포함하는 냉각제 유동을 받아들이도록 에어포일 챔버에 유체 연결된 입구를 포함함 -; 냉각제 유동을 레일의 적어도 하나의 팁 레일 냉각 구조로 지향시키는 레일 냉각제 지향 챔버로부터의 복수의 출구; 및 레일 냉각제 지향 챔버 내에 있는 적어도 하나의 지향벽 - 적어도 하나의 지향벽은 다른 출구에 앞서 압력 측벽 및 흡입 측벽의 후방 영역 중 적어도 하나를 따라 배치된 복수의 출구 중 하나 이상을 향해 냉각제 유동을 지향시키도록 위치 설정됨 - 을 포함한다.
본 개시의 예시적인 양태는 본 명세서에 기재된 문제점 및/또는 논의되지 않은 다른 문제점을 해결하도록 설계된다.
본 개시의 이들 특징 및 다른 특징은 본 개시의 다양한 실시예를 도시하는 첨부된 도면과 관련하여 취해진 본 개시의 다양한 양태에 대한 다음의 상세한 설명으로부터 보다 용이하게 이해될 것이다. 도면에서:
도 1은 터보 기계 시스템의 실시예의 개략도이다.
도 2는 로터 디스크, 터빈 블레이드, 및 고정식 슈라우드를 포함하는 터빈 로터 블레이드 조립체의 형태의 예시적인 터빈 구성요소의 사시도이다.
도 3은 본 개시의 실시예가 사용될 수 있는 터빈 로터 블레이드의 형태의 터빈 구성요소의 팁의 확대 입체 사시도이다.
도 4는 본 개시의 실시예가 사용될 수 있는 터빈 로터 블레이드의 형태의 터빈 구성요소의 팁의 투시 사시도를 도시한다.
도 5는 본 개시의 실시예에 따른 팁 레일 냉각 통로(즉, 공기 공간)의 예시적인 형상의 사시도를 도시한다.
도 6은 통로 길이의 단면을 도시하는 도 5의 선 6-6을 따른 팁 레일의 단면도를 도시한다.
도 7은 계량 요소의 단면을 도시하는 도 5의 선 7-7을 따른 팁 레일의 단면도를 도시한다.
도 8은 본 개시의 실시예가 사용될 수 있는 터빈 로터 블레이드의 형태의 터빈 구성요소의 팁의 투시 사시도를 도시한다.
도 9는 본 개시의 실시예에 따른 팁 및 레일 냉각제 지향 챔버의 단면을 도시하는, 도 8의 선 9-9를 따른 팁의 단면도를 도시한다.
도 10은 본 개시의 실시예에 따른 레일 냉각제 지향 챔버의 사시도를 도시한다.
도 11은 레일 냉각제 지향 챔버의 제1 단면을 도시하는 도 9의 선 11-11을 따른 팁의 단면도를 도시한다.
도 12는 레일 냉각제 지향 챔버의 제2 단면을 도시하는 도 9의 선 12-12를 따른 팁의 단면도를 도시한다.
도 13은 본 개시의 다른 실시예에 따른 레일 냉각제 지향 챔버의 단면도를 도시한다.
도 14는 본 개시의 다른 실시예에 따른 레일 냉각제 지향 챔버의 단면도를 도시한다.
도 15는 본 개시의 다른 실시예에 따른 레일 냉각제 지향 챔버의 단면도를 도시한다.
도 16은 본 개시의 다른 실시예에 따른 레일 냉각제 지향 챔버의 단면도를 도시한다.
도 17은 본 개시의 다른 실시예에 따른 레일 냉각제 지향 챔버의 단면도를 도시한다.
도 18은 본 개시의 변형예가 사용될 수 있는 터빈 로터 블레이드의 형태의 터빈 구성요소의 팁의 투시 사시도를 도시한다.
도 19는 본 개시의 변형예에 따른 도 18의 선 19-19를 따른 팁 및 레일 냉각제 지향 챔버의 단면도를 도시한다.
도 20은 본 개시의 변형예가 사용될 수 있는 터빈 로터 블레이드의 형태의 터빈 구성요소의 팁의 투시 사시도를 도시한다.
도 21은 본 개시의 다른 변형예에 따른 도 20의 선 21-21를 따른 팁 및 레일 냉각제 지향 챔버의 단면도를 도시한다.
본 개시의 도면은 반드시 실척이 아니라는 점이 주목된다. 도면은 본 개시의 통상적인 양태만을 도시하기 위한 것이며, 따라서 본 개시의 범위를 제한하는 것으로 간주되어서는 안된다. 도면에서, 동일한 번호는 도면들 사이의 동일한 요소를 나타낸다.
초기 문제로서, 본 개시를 명확하게 설명하기 위해, 터보 기계 시스템 내의 관련된 기계 구성요소를 언급하고 설명할 때에 특정 용어를 선택하는 것이 필요하게 될 것이다. 이렇게 할 때 가능하다면 일반 산업 용어가 허용된 의미와 일치하는 방식으로 사용되고 채용된다. 달리 언급하지 않는 한, 이러한 용어는 본 출원의 문맥 및 첨부된 청구범위의 범위와 일치하는 폭 넓은 해석으로 주어져야 한다. 당업자는 종종 특정 구성요소가 몇몇 상이하거나 겹치는 용어를 사용하여 언급될 수 있다는 것을 이해할 것이다. 본 명세서에서 단일 부분으로 기술될 수 있는 것은 다른 문맥에서 다수의 구성요소를 포함하고 다수의 구성요소로 이루어진 것으로서 언급될 수 있다. 대안적으로, 다수의 구성요소를 포함하는 것으로 본 명세서에서 설명될 수 있는 것은 다른 곳에서 단일 부분으로서 언급될 수 있다.
또한, 본 명세서에서는 여러 개의 기술 용어가 규칙적으로 사용될 수 있으며, 본 섹션의 개시 시점에 이들 용어를 정의하는 것이 도움이 된다는 것을 입증하여야 한다. 달리 언급되지 않는 한, 이들 용어와 정의는 다음과 같다. 본 명세서에 사용된 바와 같이, "하류" 및 "상류"는 터빈 엔진을 통한 연소 가스와 같은 작동 유체의 유동, 또는 예를 들어, 연소기를 통한 공기의 유동 또는 터빈의 구성요소들 중 하나를 통한 또는 그 하나에 의한 냉각제의 유동에 대한 방향을 나타내는 용어이다. "하류"라는 용어는 유체의 유동 방향에 해당하고, "상류"라는 용어는 상기 유동의 반대 방향을 나타낸다. 임의의 추가적인 특정 없는 "전방"와 "후방"이라는 용어는 방향을 나타내는 데, "전방"은 언급되는 부품의 상류 부분, 즉 압축기에 가장 가까운 부분을 지칭하고, "후방"은 언급되는 부품의 하류 부분, 즉 압축기로부터 가장 먼 부분을 지칭한다. 중심축과 관련하여 상이한 반경 방향 위치에 있는 부분들을 설명해야 하는 경우가 있다. "반경 방향"이라는 용어는 축에 수직인 이동 또는 위치를 나타낸다. 이와 같은 경우에, 제1 구성요소가 제2 구성요소보다 축에 더 가깝게 존재하는 경우, 본 명세서에서 제1 구성요소는 제2 구성요소의 "반경 방향 내향" 또는 "안쪽"인 것으로 언급될 것이다. 한편, 제1 구성요소가 제2 구성요소보다 축으로부터 더 멀리 떨어져 있는 경우, 본 명세서에서 제1 구성요소는 제2 구성요소의 "반경 방향 외향" 또는 "바깥쪽"인 것으로 언급될 것이다. "축방향"이란 용어는 축에 평행한 이동 또는 위치를 나타낸다. 마지막으로, "원주 방향"이라는 용어는 축 둘레의 이동 또는 위치를 나타낸다. 이러한 용어는 터빈의 중심축과 관련하여 적용될 수 있다는 것을 이해할 것이다.
요소 또는 층이 다른 요소 또는 층 "위에 있는", "에 맞물린", "으로부터 맞물림 해제된", "에 연결된" 또는 "에 커플링된" 것으로 언급된 경우, 요소 또는 층은 직접 다른 요소 또는 층 위에 있거나, 맞물리거나, 연결되거나, 커플링될 수 있고, 또는 개재 요소 또는 층이 존재할 수 있다. 이와 달리, 한 요소가 다른 요소 또는 층 "위에 직접 있는", "직접 맞물린", "직접 연결된" 또는 "직접 커플링된" 것으로 언급된 경우, 어떠한 개재 요소 또는 층도 존재하지 않을 수 있다. 요소들 사이의 관계를 설명하기 위해 사용되는 다른 단어들도 동일한 방식(예컨대, "사이" 대 "사이에 직접", "인접한" 대 "바로 인접한" 등)으로 해석되어야 한다. 본 명세서에 사용되는 바와 같이, "및/또는"이라는 용어는 하나 이상의 관련 열거된 항목의 임의의 조합 및 모든 조합을 포함한다.
위에서 나타낸 바와 같이, 본 개시의 실시예는 다양한 레일 냉각 통로 및/또는 레일 냉각제 지향 챔버를 포함하는 터빈 구성요소 또는 터빈 로터 블레이드를 제공한다. 터빈 구성요소는 에어포일을 포함하고, 에어포일은 에어포일 내에 배치되는 에어포일 챔버를 갖고, 에어포일 챔버는 에어포일을 통해 냉각제를 공급하도록 구성된다. 에어포일의 팁은 팁에서 압력 측벽과 흡입 측벽 사이의 외향 팁 단부를 획정하는 팁 플레이트를 포함한다. 레일은 팁 플레이트로부터 반경 방향으로 연장될 수 있다. 레일은 내부에 팁 레일 포켓을 획정하는 내측 레일 표면, 외측 레일 표면 및 내측 레일 표면과 외측 레일 표면 사이의 반경 방향 외향 레일 표면을 포함한다.
실시예에서, "레일 냉각 구조"는 팁 레일 공동이 있는 팁 레일 냉각제 통로 또는 팁 레일 공동만을 포함할 수 있고, 이들 각각은 레일 내에 위치 설정될 수 있고 레일을 부분적으로 둘러싼다. 팁 레일 공동은, 예를 들어 에어포일 챔버 또는 레일 냉각제 지향 챔버로부터 냉각제 유동을 받아들인다. 팁 레일 냉각 통로는, 팁 레일 공동에 유체 연결되는 입구, 입구에 유체 연결되고 레일을 부분적으로 둘러싸는 통로 길이, 통로 길이에 유체 연결되는 계량 요소, 및 계량 요소에 유체 연결되고 반경 방향 외향 레일 표면을 통해 연장되는 출구를 포함할 수 있다. 팁 레일 냉각 통로는 레일의 개선된 냉각을 가능하게 하는 한편 통로를 통과하는 냉각제를 계량한다.
실시예에서, 레일 냉각제 지향 챔버는 에어포일 챔버로부터 반경 방향 외측으로 그리고 팁 플레이트로부터 반경 방향 내측으로 위치 설정될 수 있다. 레일 냉각제 지향 챔버는 에어포일 챔버로부터 냉각제의 적어도 일부를 포함하는 냉각제 유동을 받아들이도록 에어포일 챔버에 유체 연결되는 입구를 포함할 수 있다. 레일 냉각제 지향 챔버로부터의 복수의 출구는 냉각제 유동을 레일에 있는 적어도 하나의 레일 냉각 구조로, 예를 들어 팁 레일 공동 및 이후에 팁 레일 냉각 통로로, 또는 팁 레일 공동으로만 지향시킨다. 레일 냉각제 지향 챔버 내의 지향벽(들)은 다른 출구에 앞서 압력 측벽 및 흡입 측벽의 후방 영역 중 적어도 하나를 따라 배치된 복수의 출구들 중 하나 이상을 향해 냉각제 유동을 지향시키도록 위치 설정된다. 레일 냉각 지향 챔버는 팁의 다른 부분과 비교하여 추가 냉각을 필요로 하는 팁 및/또는 레일의 해당 영역, 예를 들어 그 흡입측, 후방부에 더 차가운 냉각제 유동을 전달한다.
팁 레일 냉각 구조 및/또는 레일 냉각제 지향 챔버는 적층 가공을 가능하게 한다. 팁 레일 냉각 통로는 또한 먼지 폐색을 처리한다. 적층 가공(AM; additive manufacturing)은 재료를 제거하는 것이 아니라 재료를 연속적으로 적층하여 구성요소를 제조하는 광범위한 공정을 포함한다. 적층 가공 기술은 형성될 구성요소의 3차원 CAD(computer aided design) 파일을 취하고, 구성요소를, 예를 들어 18-102 마이크로미터 두께의 층으로 슬라이스하며, 벡터, 이미지 또는 좌표를 포함하는 각각의 층의 2차원 이미지를 갖는 파일을 생성하는 것을 포함한다. 이어서, 파일은 구성요소가 상이한 유형의 적층 가공 시스템에 의해 만들어질 수 있도록 파일을 해석하는 준비 소프트웨어 시스템에 로딩될 수 있다. 적층 가공의 3D 인쇄, RP(rapid Prototyping) 및 DDM(direct digital manufacturing) 형태에서, 재료 층들은 선택적으로 분배, 소결, 형성, 증착 등을 통해 구성요소를 생성한다. DMLM(direct metal laser melting)(SLM(selective laser melting)이라고도 지칭됨)과 같은 금속 분말 적층 가공 기술에서, 금속 분말층은 순차적으로 함께 용융되어 구성요소를 형성한다. 보다 구체적으로는, 금속 분말 베드 상에 어플리케이터(applicator)를 사용하여 균일하게 분포된 후에 미세한 금속 분말층이 순차적으로 용융된다. 각각의 어플리케이터는 금속, 플라스틱, 세라믹, 탄소 섬유 또는 고무로 제조되어 금속 분말을 빌드 플랫폼 위에서 균등하게 확산시키는 립, 브러시, 블레이드 또는 롤러 형태의 어플리케이터 요소를 포함한다. 금속 분말 베드는 수직축에서 이동될 수 있다. 공정은 정밀하게 제어된 분위기를 갖는 처리 챔버에서 일어난다. 일단 각 층이 생성되면, 구성요소 기하학적 형태의 각각의 2차원 슬라이스는 금속 분말을 선택적으로 용융시킴으로써 융합될 수 있다. 용융은 금속 분말을 완전히 용접(용융)하여 고체 금속을 형성하도록 100 와트 이터븀 레이저와 같은 고출력 용융 빔에 의해 수행될 수 있다. 용융 빔은 스캐닝 미러를 사용하여 X-Y 방향으로 이동하고, 금속 분말을 완전히 용접(용융)하여 고체 금속을 형성하기에 충분한 강도를 갖는다. 금속 분말 베드는 각각의 후속하는 2차원 층에 대해 하강될 수 있고, 공정은 구성요소가 완전히 형성될 때까지 반복된다.
도 1은 가스 터빈 시스템(100)과 같은 터보 기계 시스템의 실시예의 개략도이다. 시스템(100)은 압축기(102), 연소기(104), 터빈(106), 샤프트(108) 및 연료 노즐(110)을 포함한다. 실시예에서, 시스템(100)은 복수의 압축기(102), 연소기(104), 터빈(106), 샤프트(108) 및 연료 노즐(110)을 포함할 수 있다. 압축기(102) 및 터빈(106)은 샤프트(108)에 의해 커플링된다. 샤프트(108)는 단일 샤프트이거나 샤프트(108)를 형성하도록 함께 커플링된 복수의 샤프트 세그먼트일 수 있다.
일 양태에서, 연소기(104)는 천연 가스 또는 수소 농후 합성 가스와 같은 액체 및/또는 가스 연료를 사용하여 엔진을 작동시킨다. 예를 들어, 연료 노즐(110)은 공기 공급원 및 연료 공급원(112)과 유체 연통한다. 연료 노즐(110)은 공기-연료 혼합물을 생성하고, 공기-연료 혼합물을 연소기(104)로 방출함으로써 고온의 가압 배기 가스를 생성시키는 연소를 유발한다. 연소기(104)는 고온 가압 가스를 천이 피스를 통해 터빈 노즐(또는 "스테이지 원 노즐")로 지향시키고, 버킷 및 노즐의 다른 스테이지가 터빈(106)을 회전시킨다. 터빈(106)의 회전은 샤프트(108)를 회전시킴으로써, 공기가 압축기(102) 내로 유동할 때에 공기를 압축시킨다. 실시예에서, 제한하지 않지만, 슈라우드, 다이어프램, 노즐, 블레이드 및 천이 피스를 포함하는 고온 가스 경로 구성요소들은 터빈(106) 내에 배치되며, 구성요소를 가로지르는 고온 가스 유동은 터빈 부품들의 크리프, 산화, 마모 및 열 피로를 유발한다. 고온 가스 경로 구성요소들의 온도를 제어하면 구성요소의 디스트레스 모드(distress mode)가 감소될 수 있다. 가스 터빈의 효율은 터빈 시스템(100)의 점화 온도의 증가에 따라 증가한다. 점화 온도가 증가함에 따라, 고온 가스 경로 구성요소는 서비스 수명을 만족시키기 위해 적절하게 냉각될 필요가 있다. 고온 가스 경로에 근접한 영역의 냉각을 위한 개선된 장치를 갖는 구성요소 및 그러한 구성요소를 제조하는 방법이 본 명세서에서 상세히 논의된다. 아래의 논의는 주로 가스 터빈에 초점을 맞추지만, 논의된 개념은 가스 터빈으로 제한되지 않는다.
도 2는 가스 터빈 또는 연소 엔진의 터빈 내에 위치 결정된 예시적인 종래의 터빈 구성요소, 즉 터빈 로터 블레이드(115)의 사시도이다. 터빈은 연소기로부터 고온 연소 가스(116)를 받아들이도록 연소기로부터 하류에 장착된다는 것이 이해될 것이다. 축방향 중앙선 축선을 중심으로 축 대칭인 터빈은 로터 디스크(117)와, 반경 방향 축선을 따라 로터 디스크(117)로부터 반경 방향 외측으로 연장되는 복수의 원주 방향으로 이격된 터빈 로터 블레이드(그 중 하나만 도시됨)를 포함한다. 환형의 고정식 터빈 슈라우드(120)는 고정식 스테이터 케이싱(도시 생략)에 적절하게 결합되고 터빈 로터 블레이드(115)를 둘러싸므로, 그 사이에 비교적 작은 클리어런스 또는 간극이 남게 되어 작동 중에 연소 가스의 누출을 제한한다.
각각의 터빈 로터 블레이드(115)는 일반적으로 로터 디스크(117)의 둘레에 있는 대응하는 도브테일 슬롯에 장착되도록 구성된 축방향 도브테일과 같은 임의의 종래의 형태를 가질 수 있는 베이스(122)(루트 또는 도브테일이라고도 지칭됨)를 포함한다. 중공형 에어포일(124)은 베이스(122)에 일체형으로 결합되고 베이스로부터 반경 방향으로 또는 종방향으로 외측을 향해 연장된다. 터빈 로터 블레이드(115)는 또한 연소 가스(116)를 위한 반경 방향 내측 유동 경로의 일부를 획정하도록 에어포일(124)과 베이스(122)의 결합부에 배치된 일체형 플랫폼(126)을 포함한다. 터빈 로터 블레이드(115)는 임의의 종래의 방식으로 형성될 수 있고, 통상적으로는 원피스 캐스팅, 적층 가공된 부품, 또는 캐스트 블레이드 베이스 섹션에 결합된 적층 가공된 팁이라는 것이 이해될 것이다. 에어포일(124)은 바람직하게는 대향하는 선단 에지(132)와 후단 에지(134) 사이에서 각각 축방향으로 연장되는 대체로 오목한 압력 측벽(128) 및 원주 방향 또는 측방향으로 대향하는 대체로 볼록한 흡입 측벽(130)을 포함한다는 것을 알 것이다. 측벽(128 및 130)은 또한 플랫폼(126)으로부터 반경 방향 외측 블레이드 팁 또는 단순히 팁(137)까지 반경 방향으로 연장된다.
도 3은 본 개시의 실시예가 채용될 수 있는 예시적인 터빈 블레이드 팁(137)의 확대 사시도를 제공한다. 일반적으로, 블레이드 팁(137)은 베이스(122)(도 2)에 대향하여 배치되며, 압력 측벽(128)과 흡입 측벽(130) 사이의 외향 팁 단부(151)를 획정하는 팁 플레이트(148)를 포함한다. 팁 플레이트(148)는 통상적으로 에어포일(124) 내에 배치되고 에어포일(124)의 압력 측벽(128)과 흡입 측벽(130) 사이에 획정되는 내측 냉각 통로(본 명세서에서 단순히 "에어포일 챔버"(174)(도 4, 도 9도 참조)로 지칭됨)를 경계 설정한다. 에어포일 챔버는 예를 들어 반경 방향으로 에어포일(124)을 통해 냉각제를 공급하도록 구성된다. 즉, 압축기로부터 배출된 압축 공기와 같은 냉각제는 작동 중에 에어포일 챔버를 통해 순환될 수 있다. 에어포일 챔버는, 제한하지 않지만, 냉각 통로(도 9 및 도 19 참조), 충돌 슬리브 또는 요소, 연결 통로, 공동, 받침대 등을 비롯하여 임의의 현재 공지된 또는 나중에 개발되는 냉각제 전달 통로 또는 회로를 포함할 수 있다. 팁 플레이트(148)는 터빈 로터 블레이드(115)와 일체형일 수 있거나, 블레이드가 캐스팅된 후에 적소에 용접/브레이징될 수 있다.
누출 유동 감소와 같은 특정 성능 이점으로 인해, 블레이드 팁(137)은 흔히 팁 레일 또는 단순히 레일(150)을 포함한다. 압력 측벽(128) 및 흡입 측벽(130)과 일치하게, 레일(150)은 각각 압력 측벽 레일(152) 및 흡입 측벽 레일(154)을 포함하는 것으로 설명될 수 있다. 일반적으로, 압력 측벽 레일(152)은 팁 플레이트(148)로부터 반경 방향 외측으로 연장되고 에어포일(124)의 선단 에지(132)로부터 후단 에지(134)까지 연장된다. 예시된 바와 같이, 압력 측벽 레일(152)의 경로는 압력 측벽(128)의 외측 반경 방향 에지에 인접하거나 또는 근처에[즉, 압력 측벽(128)의 외측 반경 방향 에지와 정렬되도록 팁 플레이트(148)의 주변에 또는 그 근처에] 있다. 유사하게, 예시된 바와 같이, 흡입 측벽 레일(154)은 팁 플레이트(148)로부터 반경 방향 외측으로 연장되고 에어포일(124)의 선단 에지(132)로부터 후단 에지(134)까지 연장된다. 흡입 측벽 레일(154)의 경로는 흡입 측벽(130)의 외측 반경 방향 에지에 인접하거나 또는 근처에[즉, 흡입 측벽(130)의 외측 반경 방향 에지와 정렬되도록 팁 플레이트(148)의 주변에 또는 그 근처에] 있다. 압력 측벽 레일(152)과 흡입 측벽 레일(154) 양자는 내측 레일 표면(157), 외측 레일 표면(159), 및 내측 레일 표면(157)과 외측 레일 표면(159) 사이의 반경 방향 외향 레일 표면(160)을 갖는 것으로 설명될 수 있다. 그러나, 레일(들)이 압력 또는 흡입 측벽 레일을 반드시 따라가지 않을 수 있다는 것을 이해해야 한다. 즉, 본 개시가 사용될 수 있는 대안적인 유형의 팁에서, 팁 레일(150)은 팁 플레이트(148)의 에지로부터 멀어지게 이동될 수 있고 후단 에지(134)로 연장되지 않을 수 있다.
이러한 방식으로 형성되면, 팁 레일(150)이 터빈 로터 블레이드(115)의 팁(137)에서 팁 포켓(155)을 획정한다는 것이 이해될 것이다. 당업자가 이해하는 바와 같이, 이러한 방식으로 구성된 팁(137), 즉 이러한 유형의 팁 포켓(155)을 갖는 팁(137)은 흔히 "스퀄러 팁" 또는 "스퀄러 포켓 또는 공동"을 갖는 팁으로 지칭된다. 압력 측벽 레일(152) 및/또는 흡입 측벽 레일(154)의 높이 및 폭(그리고 이에 따라 팁 포켓(155)의 깊이)은 최상의 성능 및 전체 터빈 조립체의 크기에 따라 변할 수 있다. 팁 플레이트(148)는 팁 포켓(155)의 바닥(즉, 공동의 내측 반경 방향 경계)을 형성하고, 팁 레일(150)은 팁 포켓(155)의 측벽을 형성하며, 팁 포켓(155)은, 일단 터빈 엔진 내에 설치되면, 반경 방향으로 약간 오프셋된 환형의 고정식 터빈 슈라우드(120)(도 2 참조)에 의해 밀접하게 경계 설정되는 외측 반경면을 통해 개방 상태로 유지된다는 것일 이해될 것이다. 레일(150)의 반경 방향 외향 레일 표면(160)은 환형의 고정식 터빈 슈라우드(120)에 대해 러빙될 수 있다.
도 4 내지 도 7을 참조하여, 팁 레일 냉각 통로(170)의 형태인 팁 레일 냉각 구조(168)(도 4)의 실시예를 설명하기로 한다. 도 4는 팁 레일 냉각 통로(170)의 실시예가 사용될 수 있는 터빈 로터 블레이드(115) 형태의 터빈 구성요소의 팁(137)의 투시 사시도를 도시하고, 도 5는 본 개시의 실시예에 따른 팁 레일 냉각 통로(170)(즉, 공기 공간)의 예시적인 형상의 사시도를 도시한다. 도 4에 도시된 바와 같이, 팁 레일 공동(172)은 레일(150) 내에 적어도 부분적으로 (반경 방향으로) 위치 설정되고 레일(150)을 부분적으로 둘러싼다. 팁 레일 공동(172)은 냉각제 유동을 받아들이는 레일(150)의 임의의 형태의 개구를 포함할 수 있다. 팁 레일 공동(172)은 에어포일 챔버(174)(도 4)로부터 또는 그 일부로서 냉각제 유동을 받아들이거나, 또는 레일 냉각제 지향 챔버(200)(예를 들어, 도 8, 도 9 및 도 18)로부터 냉각제 유동을 받아들일 수 있으며, 레일 냉각제 지향 챔버에 대해서는 본 명세서에서 더 상세하게 설명된다. 도 4에 도시된 일례에서, 팁 레일 공동(172)은 압력 측벽(128) 및 흡입 측벽(130)의 내측 표면의 충돌 냉각 후에 냉각제 유동을 받아들이고, 즉 에어포일 챔버(174)로부터 복수의 출구(222)를 통하는 충돌후 공동이다. 팁 레일 공동(172)은 레일(150) 내를 통과하도록, 즉 레일(150)의 곡률을 둘러싸도록 임의의 길이로 연장될 수 있다. 팁 레일 공동(172)은 에어포일 챔버(174) 또는 레일 냉각제 지향 챔버(220)(본 명세서에서 설명됨)로부터 냉각제 유동을 받아들이기 위해 내부에 임의의 갯수의 개구를 포함할 수 있다. 팁 레일 공동(172)은 원하는 임의의 단면 형상을 가질 수 있다.
본 개시의 실시예에 따르면, 팁 레일 냉각 통로(170)는 팁 레일 공동(172)에 유체 연결된다. 도 5에 가장 잘 도시된 바와 같이, 본 개시의 실시예에 따른 팁 레일 냉각 통로(170)는, 팁 레일 공동(172)에 유체 연결되는 입구(176), 입구(176)에 유체 연결되고 레일(150)을 부분적으로 둘러싸는 통로 길이(178), 통로 길이(178)에 유체 연결되는 계량 요소(180), 및 계량 요소(180)에 유체 연결되고 반경 방향 외향 레일 표면(160)(도 4)을 통해 연장되는 출구(182)를 포함한다. 입구(176)는 팁 레일 공동(172) 내의 냉각제 유동이 입구(176) 내로 유입되도록 팁 레일 공동(172)을 따라 임의의 방식으로 임의의 위치에서 팁 레일 공동(172)에 유체 연결될 수 있다. 일 실시예에서, 입구(176)는 통로 길이(178)와 반대 방향으로 냉각제 유동을 지향시키도록 경사질 수 있다. 일 실시예에서, 입구(176)는 통로 길이(178)에 대해 20 내지 90°범위의 각도(α)로 배치될 수 있다. 냉각제 유동이 각형 입구(176)를 통과함에 따라, 냉각제 유동은 각형 에지로부터 분리되어, 냉각제에서 압력 손실이 유발되고 (다른 유동 영역과 비교하여) 높은 열 전달 영역을 생성한다.
도 4에 도시된 바와 같이, 통로 길이(178)는 반경 방향 외향 레일 표면(160)의 일부와 평행하게 연장된다. 결과적으로, 팁 레일 냉각 통로(170)는 일정 길이의 레일(150)을 냉각시킬 수 있고, 또한 냉각제를 반경 방향 외향 레일 표면(160)으로부터 배출시킬 수 있다. 통로 길이(178)는 원하는 임의의 길이를 가질 수 있다.
도 6은 통로 길이(178)의 단면을 도시하는 도 5의 선 6-6을 따른 팁 레일(150)의 단면도를 도시하고, 도 7은 계량 요소(180)를 도시하는 도 5의 선 7-7을 따른 팁 레일(150)의 단면도를 도시한다. 계량 요소(180)는 통로 길이(178)에 유체 연결되고, 예를 들어 통로 길이(178)의 하류 단부(도 5에서 우측)에 배치된다. 도 5로부터 알 수 있는 바와 같이 그리고 도 6과 도 7을 비교함으로써, 통로 길이(178)는 제1 단면적을 가질 수 있고 계량 요소(180)는 제1 단면적보다 작은 제2 단면적을 가질 수 있다. 일 실시예에서, 계량 요소(180)는 간단히 통로 길이(178)보다 작은 직경, 예를 들어 통로 길이(178)의 0.0635 cm(0.021 인치)와 비교하여 0.0533 cm(0.025 인치)를 갖는 적어도 일부를 가질 수 있다. 다른 실시예에서, 통로 길이(178)는 원형 단면(도 6)을 가질 수 있고, 계량 요소(180)는 타원형 단면(도 7)을 가질 수 있다. 즉, 계량 요소(180)는 그 원주 방향(수평 방향) 폭(W)보다 큰 반경 방향(수직 방향) 높이(H)를 가질 수 있고, 그 반대일 수도있다. 다른 실시예에서, 통로 길이(178)는 정사각형 단면을 가질 수 있고, 계량 요소(180)는 통로 길이(178)의 원주 방향 폭보다 작은 원주 방향 폭을 갖는 직사각형 단면을 가질 수 있다. 계량 요소(180)가 통로 길이보다 작은 단면적을 갖는 다른 다각형 배열도 채용될 수 있다. 임의의 경우에, 도 4에 도시된 바와 같이, 계량 요소(180)는 통로 길이(178)를 향하는 면(190)을 제공할 수 있고, 이는 계량 요소를 통과하는 냉각제 유동으로부터의 열 전달에 기여할 수 있다. 타원형인 계량 요소(180)는 열 전달 및 적층 가공의 제약을 처리한다. 예를 들어, 현재의 실시는 먼지가 폐색하는 것을 방지하기 위한 최소 구멍 크기(D1) 및 예를 들어 제조 중에 붕괴를 방지하기 위한 적층 가공된 구멍들에 대한 별개의 구멍 크기(D2)에 영향을 준다. 적층 가공을 위한 최소 크기가 더 크다. 그러나, 가공 제한은 빌드 평면에 수직으로만 적용되고, 이는 이 경우에 반경(수직) 방향이다. 그러므로, 이 예에서의 타원형 계량 요소(180)는 원주 방향 폭(W)에서 크기 D1이고 반경 방향 높이(H)에서 크기 D2일 수 있다. 그러므로, 이 예에서의 타원형 계량 요소(180)는 원주 방향 폭(W)에서 크기 D1이고 반경 방향 높이(H)에서 크기 D2일 수 있다. 임의의 경우에, 계량 요소(180)는 계량 요소를 통과하는 냉각제 유동을 계량하도록 작용한다. 따라서, 계량 요소(180)는 통로 길이(178)보다 작은 단면적을 가지므로, 열 전달을 증가시키고, 적층 가공 제약을 충족시키며, 냉각제 유동의 양을 조절하고, 역류 압력 마진 요건을 만족시킨다.
출구(182)(도 5)는 계량 요소(180)에 유체 연결되고 반경 방향 외향 레일 표면(160)을 통해 연장된다. 출구(182)는 임의의 다양한 단면 형상을 가질 수 있다. 도시된 일 실시예에서, 출구는 원형 단면을 갖는다. 변형예에서, 출구는 정사각형 또는 직사각형일 수 있다. 출구(182)는 반경 방향으로 배향될 수 있어, 출구(182)가 대체로 반경 방향으로 연장되는 것을 나타내며, 출구는 약간 반경 방향으로, 예를 들어 +/-10°로 경사질 수 있다. 출구(182)는 계량 요소(180)로부터 방출되어 출구의 내측 표면에 충돌하는 냉각제 유동과 관련된 열 전달 이점을 제공하며, 블레이드 팁의 러빙으로부터, 예를 들어 냉각 구멍 위에서 문지르는 외향 레일 표면(160)으로부터 폐쇄 위험을 낮추는 더 큰 개구를 제공한다. 출구(182)는 냉각 구멍이 폐쇄되는 것을 방지하는 데에 필요한 임의의 크기를 가질 수 있다. 일례에서, 출구(182)는 계량 요소(180)의 직경의 2배의 직경을 가질 수 있다.
에어포일(124), 및 특히 팁(137)은 캐스팅 및 적층 가공과 같이 현재 공지된 또는 나중에 개발되는 임의의 공정을 사용하여 제조될 수 있다. 그러나, 팁 레일 냉각 통로(170)가 특히 적층 가공에 적합하다는 점이 주목된다. 이 경우에, 종래의 팁과 달리, 레일(150)은 그 내부에 팁 레일 냉각 통로(170)를 갖는 단일 구조, 즉 원피스일 수 있다. 또한, 도 4에서 가장 잘 알 수 있는 바와 같이, 팁 레일 냉각 통로(170)의 입구(176), 통로 길이(178) 및 계량 요소(180)는 레일(150)의 내측 레일 표면(157), 외측 레일 표면(159) 및 반경 방향 외향 레일 표면(160) 내에 있다. 팁 레일 냉각 통로의 일부에 커버를 만들거나 개방 통로를 다른 요소로 폐쇄할 필요가 없다. 사용된 적층 가공의 유형은 달라질 수 있다. 일례에서, 적층 가공은 직접 금속 레이저 용융을 포함할 수 있다.
도 4에 도시된 바와 같이, 하나의 팁 레일 공동(172) 및 하나의 팁 레일 냉각 통로(170)가 본 명세서에서 설명되었지만, 복수의 쌍의 공동 및 팁 레일 냉각 통로가 레일(150) 내에 이격되어 있을 수 있다. 팁 레일 공동(172) 및/또는 팁 레일 냉각 통로(170)가 레일을 둘러싸거나 레일 내에서 연장되는 범위는, 제한하지 않지만, 팁 크기, 레일 길이, 열적 조건, 냉각제 조건 등과 같은 임의의 갯수의 인자에 따라 달라질 수 있다. 몇몇 경우에, 팁 플레이트(148)는 에어포일 챔버(174)의 일부로부터 팁 플레이트(148)를 통해 팁 포켓(155) 내로 연장되는 팁 플레이트 냉각제 통로(149)를 포함할 수 있다. 팁 플레이트 냉각제 통로(149)는 팁 플레이트(148)에 대해 필름 냉각을 제공할 수 있다.
팁 레일 냉각 통로(170)는 각형 입구(176)와 통로 길이(178)를 따른 큰 표면적, 및 출구(182)의 내측 표면을 제공하여 상당한 열 전달을 제공한다. 계량 요소(180)는 레일(150)의 위치에 관계없이 팁 레일 공동(172)(및 더 상류)에 냉각제 유동 역류 마진을 생성한다. 큰 출구(182)는 팁 러빙으로 인해 구멍이 폐쇄될 가능성을 감소시키고 계량 요소(180)와 함께 다른 열 전달 표면을 제공한다. 팁 레일 냉각 통로(170)는 현재의 장치와 비교하여 팁 냉각제 유동을 감소시킬 수 있고, 이는 가스 터빈 엔진에 대해 증가된 복합 사이클 효율을 제공한다. 또한, 통로(170)는 부품 내구성을 증가시킬 수 있다.
도 8 내지 도 21을 참조하여, 터빈 구성요소, 즉 레일 냉각제 지향 챔버(220)를 갖는 터빈 로터 블레이드(115)(명료성을 위해, 도 9에만 도시 됨)의 실시예를 설명하기로 한다. 도 8은 레일 냉각제 지향 챔버(220)를 갖는 팁(137)의 투시 사시도를 도시하고, 도 9는 팁(137)의 도 8의 선 9-9를 따른 단면도를 도시한다. 이 실시예에서, 에어포일 챔버(174)만을 갖는 도 4에 도시된 구조 대신에, 팁(137)은 본 개시의 실시예에 따른 레일 냉각제 지향 챔버(220)를 포함할 수 있다. 도 10은 본 개시의 실시예에 따른 레일 냉각제 지향 챔버(220)의 사시도를 도시한다. 도 4에 대해 설명되고 도 8에 다시 도시된 바와 같이, 에어포일 챔버(174)는 에어포일(215) 내에 배치되고, 에어포일 챔버(174)는 에어포일을 통해 냉각제, 예를 들어 압축기(102)(도 1)로부터의 공기를 공급하도록 구성된다. 터빈 구성요소는 또한 압력 측벽(128)과 흡입 측벽(130) 사이의 팁(137)에 팁 플레이트(148)를 포함할 수 있고, 팁 플레이트는 선단 에지(132)와 후단 에지(134) 사이에서 연장된다. 레일(150)은 팁 플레이트(148)로부터 반경 방향으로 연장되고 팁 플레이트(148)의 주변에 또는 그 근처에 배치된다. 레일(150)은 내부에 적어도 부분적으로 적어도 하나의 팁 레일 냉각 구조(168)를 포함할 수 있다. 도 9의 실시예에서, 팁 레일 냉각 구조(168)는 내부의 팁 레일 공동(172) 및 팁 레일 냉각 통로(170)를 포함하며, 도 18 및 도 19의 실시예에 대해 설명되는 바와 같이, 팁 레일 냉각 구조(168)는 팁 레일 공동(172)만을 포함할 수 있다. 각각의 팁 레일 냉각 구조(168)는 레일(150) 내에서 적어도 부분적으로 반경 방향으로 있을 수 있다. 레일(150)은 압력 측벽 레일(152) 및 흡입 측벽 레일(154)을 포함할 수 있다. 레일(150)은 원하는 곳에 불연속부를 가질 수 있다.
레일 냉각제 지향 챔버(220)는 에어포일(215) 내에서 에어포일 챔버(174)와 팁 플레이트(148) 사이에 반경 방향으로 위치 설정될 수 있다. 레일 냉각제 지향 챔버(220)는 내부의 냉각제 유동(226)이 노출되는 에어포일(215)의 부분에 약간의 냉각을 제공할 수 있지만, 또한 냉각제 유동(226)을 에어포일 챔버(174)로부터, 예를 들어 압력 측벽(128)을 따라 그리고 흡입 측벽(130)의 후방 영역(250)에서 레일(150)에 대해 더 차가운 냉각 유동(226)이 요망되는 영역으로 지향시키는 역할을 한다. 본 명세서에서 설명되는 바와 같이, 레일 냉각제 지향 챔버(220)의 출구(222)는 팁 레일 냉각 통로(들)(170)에 이르는 팁 레일 공동(172)과 같은 팁 레일 냉각 구조(168)와 유체 연통될 수 있거나, 팁 레일 냉각 통로(들)(170)과 직접 유체 연통할 수 있다 - 공동(172)이 생략된 경우, 예를 들어 도 20 참조 -.
도 10을 계속 참조하면, 레일 냉각제 지향 챔버(220)는 에어포일 챔버(174)로부터 냉각제의 적어도 일부를 포함하는 냉각제 유동(226)을 받아들이도록 에어포일 챔버(174)에 유체 연결되는 입구(224)를 포함할 수 있다. 입구(224)는 냉각 회로(도 9) 등의 최상부 스윙에서, 예를 들어 충돌 냉각 후에 에어포일 챔버(174)를 따라 임의의 원하는 위치로부터 냉각제 유동(226)을 끌어당길 수 있다. 입구(224)가 냉각제 유동(226)을 끌어당기는 위치는, 제한하지 않지만, 원하는 냉각제 압력, 냉각제 온도, 또는 냉각제 유속; 에어포일 적용; 예상되는 레일 온도; 에어포일 재료 등을 비롯한 다수의 인자에 따라 좌우될 수 있다.
레일 냉각제 지향 챔버(220)로부터의 복수의 출구(222)는 냉각제 유동(226)을 적어도 하나의 팁 레일 냉각 구조(168)로 지향시킨다. 팁 레일 냉각 구조(168)는 레일(150)에 대해 임의의 현재 공지된 또는 나중에 개발되는 냉각 피쳐를 포함할 수 있다. 도 9의 예시적인 실시예에서, 팁 레일 냉각 구조(168)는 레일(150) 내에 본 개시의 실시예에 따른 팁 레일 냉각 통로(170)를 포함하고, 또한 팁 레일 공동(들)(172)을 포함한다. 도 18 및 도 19의 예시적인 실시예에서, 팁 레일 냉각 구조(168)는 다른 구조에, 예를 들어 제한하지 않지만 개구(223)를 통해 팁 포켓(155)에 이를 수 있는 팁 레일 공동(들)(172)만을 포함한다. 도 20 및 도 21의 실시예에서, 팁 레일 냉각 구조(168)는 레일 냉각제 지향 챔버(220)와 직접 연통하는 팁 레일 냉각 통로(들)(170)만을 포함한다. 도 18 내지 도 21은 본 명세서에서 보다 상세하게 설명될 것이다. 출구(222)는 냉각제 유동(226)이 팁 레일 냉각 구조(168), 예를 들어 팁 레일 공동(172)(도 9, 도 18 및 도 19) 또는 팁 레일 냉각 통로(170)(도 20 내지 도 21)에 진입할 수 있는 방식으로 레일 냉각제 지향 챔버(220)의 외주를 따라, 즉 압력 측벽 및 흡입 측벽 내에서만 반경 방향 천장(228)(도 9)에 위치 설정될 수 있다. 출구(222)는 측벽(128, 130)에 대한 위치를 설명하기 위해 도 10에서 가상선으로 중첩되어 있다. 임의의 갯수의 출구(222)가 제공될 수 있고, 출구는 원하는 냉각을 제공하도록 필요에 따라 이격되거나 경사질 수 있다.
레일 냉각제 지향 챔버(220)는 또한 내부에 적어도 하나의 지향벽(230)을 포함할 수 있다. 지향벽(230)은 냉각제 유동(226)을 다른 출구에 앞서 압력 측벽(128) 및 흡입 측벽(130)의 후방 영역(250) 중 적어도 하나를 따라 배치된 복수의 출구(220) 중 하나 이상을 향해 지향시키도록 위치 설정된다 - 상기 다른 출구는 이들 영역에 냉각제 유동을 공급하지 못하는 출구를 지칭함 -. 레일(150)은 이들 영역에서 보다 고온의 온도를 나타내며, 그래서 추가의 레일 냉각이 유리한 것으로 밝혀졌다. 설명되는 바와 같이, 지향벽(230)은 본 개시의 실시예에 따라 다양한 형태를 취할 수 있다.
도 10 내지 도 16은 지향벽(230)이 레일 냉각제 지향 챔버(220) 내에 분리벽(240)을 포함하는 다수의 실시예를 도시한다. 도 11은 레일 냉각제 지향 챔버(220)의 제1 단면을 도시하는, 도 9의 선 11-11을 따른 팁의 단면도를 도시하고, 도 12는 레일 냉각제 지향 챔버의 제2 단면을 도시하는, 도 9의 선 12-12(선 11-11로부터 반경 방향 외향)을 따른 팁의 단면도를 도시한다. (도 13 내지 도 17은 도 12와 유사한 단면을 도시한다.)
도 9 내지 도 16에 도시된 실시예에서, 분리벽(240)은 압력 측벽(128)의 내측 표면(244) 및 흡입 측벽(130)의 내측 표면(252)의 후방 영역과 유체 접촉하도록 냉각제 유동(226)을 위한 통로(242)(본 명세서에서 "상류 통로"로 지칭됨)를 생성한다. 분리벽(240)은 또한 예를 들어 후방 영역(250)의 상류인 전방 영역(264)과 같은 다른 영역에서 흡입 측벽(130)의 내측 표면(262)과 유체 접촉하는, 냉각제 유동(226)을 위한 통로(260)(본 명세서에서 "하류 통로"로 지칭됨)를 생성한다. 후방 영역(250)은 전방 영역(264)보다 높은 온도가 관측되는, 즉 그 위치 때문에 고온 가스가 흡입 측벽(130) 및 흡입측 내측 레일 표면(157)보다 더 심하게 온도에 영향을 주는 흡입 측벽(130)의 부분으로서 정의될 수 있다. 전방 영역(264)은 선단 에지(132)로부터 후방 영역(250)까지 연장될 수 있다. 본 명세서에서 사용되는 바와 같이, "유체 접촉"은 냉각제 유동(226)이 특정 측벽의 정해진 표면과 직접 유체 연통한다는 것을 나타낸다. "내측 표면"은 특정 측벽의 최외측 내향 표면을 나타낸다. 도 10 내지 도 16에서, 입구(224)는 선단 에지(132)에 인접한 레일 냉각제 지향 챔버(220) 내로, 즉 챔버 바로 내부 또는 그 근처에서 개방되고, 상류 통로(242)로 개방되지만 하류 통로(260)로는 개방되지 않는다. 냉각제 유동(226)은 상류 통로(242)를 통과한 후에 하류 통로(260)에 진입하여 하류 통로를 통해 유동한다.
도 10 내지 도 13은 상류 통로(242)를 복수의 개별 통로(272)로 분리시키는 적어도 하나의 냉각제 지향벽(270)을 포함하는 지향벽(들)(230)을 도시한다. 지향벽(들)(270) 및 개별 통로(272)는, 예를 들어 레일 냉각제 지향 챔버(220)를 통해 균등하게 냉각제 유동(226)을 확산시켜, 예를 들어 벽 및 챔버에 약간의 냉각을 제공하고, 필요에 따라 냉각제 유동(226)을 지향시키며, 냉각제 유동(226)을 보다 균등하게 분포시켜 제조 동안 및 그 후에 팁 플레이트(148)에 대한 지지를 제공하도록 채용될 수 있다. 지향벽들(270) 사이의 간격은, 제한하지 않지만, 원하는 유동 파라미터 및 팁 플레이트(148)를 지지하는 데에 필요한 강도와 같은 임의의 갯수의 인자들에 따라 정해질 수 있다. 도 10 내지 도 12에는 4개의 냉각제 지향벽(270)이 도시되어 있으며, 도 13에는 3개의 냉각제 지향벽(270)이 도시되어 있다. 그러나, 임의의 갯수의 냉각제 지향벽(270)이 채용될 수 있다는 것이 강조된다. 이와 달리, 도 14는 하류 통로(260)에 그리고 후방 영역(250) 근처에 별개의 지지부(300)를 갖는 분리벽(240)만을 제공한다.
도 15 및 도 16에 도시된 바와 같이, 지향벽(들)(230)은 또한 하류 통로(260)를 복수의 개별 통로(276)로 분리시키는 적어도 하나의 냉각제 지향벽(274)을 포함할 수 있다. 냉각제 지향벽(들)(274) 및 개별 통로(276)는 냉각제 지향벽(들)(270) 및 통로(272)에 대해 전술한 것과 유사한 이유로 채용될 수 있다. 또한, 냉각제 지향벽(들)(274)은 흡입 측벽(130)의 전방 영역(264)에 대해 상이한 상류 및 하류 방향으로 냉각제 유동(226)을 지향시킬 수 있다. 예를 들어, 도 15 및 도 16에 도시된 바와 같이, 전방 영역(264)을 노출시키기 전에 레일 냉각재 지향 챔버(220)의 중심부(284)를 냉각제 유동(226)에 노출시키기 위해 각각 1개 또는 2개의 냉각제 지향벽(들)(274)이 사용될 수 있다. 도 15에서, 하나의 냉각제 지향벽(274)은 흡입 측벽(130)의 전방 영역(264)을 따라 하류로 냉각제 유동(226)을 지향시키도록 작용하고, 도 16에서, 2개의 냉각제 지향벽(274)은 전방 영역(264)을 따라 상류로 냉각제 유동(226)을 지향시키도록 작용한다. 임의의 갯수의 냉각제 지향벽(274)은, 예를 들어 레일 냉각제 지향 챔버(220)를 통해 균등하게 냉각제 유동(226)을 확산시켜, 예를 들어 벽 및 챔버에 약간의 냉각을 제공하고, 필요에 따라 냉각제 유동(226)을 지향시키며, 냉각제 유동(226)을 보다 균등하게 분포시켜 적층 가공 동안 및 그 후에 팁 플레이트(148)에 대한 지지를 제공하도록 채용될 수 있다. 냉각제 지향벽들(274) 사이의 간격은, 제한하지 않지만, 원하는 유동 파라미터 및 팁 플레이트(148)를 지지하는 데에 필요한 강도와 같은 임의의 갯수의 인자들에 따라 정해질 수 있다.
도 15를 더 참조하면, 지향벽(들)(230)은 레일 냉각제 지향 챔버(220) 내에 채널 분리벽(280)을 포함할 수 있다. 채널 분리벽(280)은 채널 통로(282)를 통해 레일 냉각제 지향 챔버(220)의 중심부(284) 내로 상류 통로(242)를 생성하고, 압력 측벽(128)의 내측 표면(244)과 유체 접촉하고 흡입 측벽(130)의 내측 표면(252)의 후방 영역(250)으로 이어지는 후속 통로(286)를 생성한다. 복수의 교차 개구(290)는 냉각제 유동(226)을 통과시키도록 채널 분리벽(280)의 압력 측벽(128)을 향하여 제공될 수 있다. 냉각제 지향벽(274)은 흡입 측벽(130)의 내측 표면(252)의 후방 영역(250)으로부터 전방으로 연장될 수 있다. 냉각제 지향벽(274)은 흡입 측벽(130)의 내측 표면(252)의 후방 영역(250)으로부터 선단 에지(132)를 향해 상류로 연장되는 개별 통로(292) 및 흡입 측벽(130)의 내측 표면(252)의 전방 영역(264)을 따라 하류로 연장되는 연속적인 통로(294)를 생성한다.
도 10, 도 12, 도 13, 도 15 및 도 17에 가장 잘 도시된 바와 같이, 적어도 하나의 지향벽(230), 예컨대 분리벽(240) 및/또는 냉각제 지향벽(270, 274)은 냉각제 유동(226)의 일부가 각각의 벽을 통과하게 하도록 그 안에 복수의 교차 개구(290)를 포함할 수 있다. 따라서, 교차 개구(290)는 냉각제 유동(226) 방향 및 유동 체적에 대해 보다 많은 제어를 허용한다. 교차 개구(290)는 임의의 방식으로, 예를 들어 각 벽 내에서 균일하거나 불균일하게 이격될 수 있으며, 임의의 원하는 크기 또는 형상을 가질 수 있다.
별개의 지지부(300)는, 예를 들어 적층 가공 동안 및 그 후에 팁 플레이트(148)에 지지를 제공하기 위해 필요한 임의의 위치에서 레일 냉각제 지향 챔버(220) 내에 마련될 수 있다. 각각의 별개의 지지부(300)는, 예를 들어 원하는 국부적인 열 전달을 제공하고 및/또는 그 위에 팁 플레이트(148)를 지지하도록 임의의 수직 형태, 예를 들어 임의의 단면의 포스트, 격자 구조 등을 취할 수 있다. 별개의 지지부(300)는 사실상 레일 냉각제 지향 챔버(220)의 어느 위치에나 위치 설정될 수 있다. 예를 들어, 도 16을 참조하면, 복수의 별개의 지지체(300)는 적어도 하류 통로(260) 내에 위치 설정될 수 있다. 그러나, 다른 실시예에서, 복수의 별개의 지지체(300)는 다양한 위치에 위치 설정될 수 있다. 다시, 도 14는 하류 통로(260)에 그리고 후방 영역(250) 근처에 별개의 지지부(300)를 갖는 분리벽(240)만을 제공한다. 임의의 갯수의 별개의 지지부(300)가 제공될 수 있으며, 지지부는 필요한 임의의 방식으로 분포될 수 있다.
도 17을 참조하면, 다른 실시예에서, 입구(324)는 흡입 측벽(130)의 내측 표면(252)의 후방 영역(250)에 인접한 레일 냉각제 지향 챔버(220)로 개방될 수 있다. 입구(224)는, 출구(222; 예를 들어, 도 9)가 다른 출구들 전에 냉각제 유동을 받아들이도록 냉각제 유동(226)을 다른 영역에 앞서 압력 측벽(128) 및 흡입 측벽(130)의 내측 표면(252)의 후방 영역(250)으로 지향시키는 지향벽(들)(230)을 갖는 레일 냉각제 지향 챔버(220) 내의 사실상 임의의 위치에 위치 설정될 수 있다. 도 17에서, 지향벽(들)(230)은, 레일 냉각제 지향 챔버(220)의 중심부(314)로의 통로(312) 및 압력 측벽(128)의 내측 표면(244)과 접촉하고 흡입 측벽(130)의 내측 표면(252)의 전방 영역(264)으로 이어지는 다른 통로(316)를 포함하는 상류 통로(242)를 생성하는 채널 분리벽(310)을 레일 냉각제 지향 챔버(220) 내에 포함할 수 있다. 채널 분리벽(310)은 냉각제 유동(226)을 통과시키기 위해 벽 내에 복수의 교차 개구(290)를 포함할 수 있다. 냉각제 지향벽(들)(318)은 또한 통로(312)를 복수의 개별 통로(320)로 분리시키도록 제공될 수 있다. 개별 통로(320) 각각은 교차 개구(290)를 통해 통로(316)에 이를 수 있다.
도 9로 돌아가서, 단면은 2개 이상의 통로를 생성하는 레일 냉각제 지향 챔버(220) 내의 지향벽(들)(230)을 예시한다. 도시된 바와 같이, 적층 가공 목적을 위해, 통로(들)는 스퀄러 바닥을 지지하기 위해 팁 플레이트(148) 내에 정점이 있는 천장(330)을 포함할 수 있다. 이해되는 바와 같이, 정점이 있는 천장은 지나치게 수평인 표면의 붕괴를 방지하기 위해 적층 가공 중에 천장을 충분히 지지할 수 있다. 최외측 지향벽(340)은 지지를 위해 또는 출구(222)에 냉각제 엑세스를 제공하기 위해 팁 플레이트(148)의 바닥 근처에서 외측으로 경사질 수 있다는 것이 또한 관찰된다. 별개의 지지부(300)는 적층 가공을 허용하기 위해 유사한 플레어형(flared) 상단부를 가질 수 있다. 도 9는 또한 적층 가공된 경우, 팁 플레이트(148), 레일(150) 및 지향벽(230)이 단일 구조를 형성하고, 즉 이들이 하나의 일체형 재료 부재라는 것을 도시한다. 도 9는 또한 레일 냉각제 지향 챔버(220)가 제공되는 경우, 팁 플레이트 냉각제 통로(들)(149)가 다른 실시예에서의 에어포일 챔버(174)가 아니라 팁 플레이트(148)를 통해 레일 냉각제 지향 챔버(220)로부터 연장될 수 있다는 것을 보여준다.
도 10의 예에 도시된 바와 같이, 지향벽(들)(230), 압력 측벽(128) 및/또는 흡입 측벽(130) 중 임의의 것은 냉각제 유동(226)에 난류를 생성하여 열 전달을 증가시키도록 그 위에, 즉 그 내측 표면 상에 임의의 현재 공지된 또는 나중에 개발되는 난류 요소(들)(332)를 포함할 수 있다. 난류 요소(332)는, 제한하지 않지만, 소용돌이 발생기, 딤플, 웨이브, 거칠기 등을 포함할 수 있고, 난류가 요망되는 곳이면 어디든지 위치 설정될 수 있다.
도 11 및 도 12를 참조하면, 작동 시에 그리고 화살표로 도시된 바와 같이, 냉각제 유동(226)은 입구(224)를 통해 레일 냉각제 지향 챔버(220)에 진입하고 상류 통로(242)에 진입한다. 도 11 및 도 12에 예시된 실시예에서, 상류 통로(242)는 통로를 분리하고 냉각제 유동을 분배하는 다수의 지향벽(270)을 포함한다. 냉각제 유동(226)이 먼저 압력 측벽(128)의 내측 표면(244)을 따라 이동함에 따라, 레일(150)의 팁 레일 냉각 구조(168)(예를 들어, 도 10)에 대해 출구(222)와 조우하며, 이에 따라 예를 들어 흡입 측벽(130)의 전방 영역(264)에서 다른 출구(222)에 앞서 상기 출구에 대해 더 차가운 냉각제 유동(226)을 지향시킨다. 냉각제 유동(226)의 대부분은 흡입 측벽(130)의 전방 영역(264)의 내측 표면(262) 및 그 위의 출구(222)로부터 분리벽(240)에 의해 차단된다. 도 12에 도시된 바와 같이, 일부 실시예에서, 약간의 제한된 양의 냉각제 유동(226)이 교차 개구(290)를 통해 전방 영역(264)으로 통과할 수 있다. 교차 개구(290)를 통과하는 냉각제 유동(226)의 부분은 그 안의 냉각제 유동을 냉각시키지만, 여전히 상류 통로(242)의 냉각제 유동(226)의 대부분보다 더 뜨겁다. 상류 통로(242) 내의 냉각제 유동(226)의 더 차가운 부분은 압력 측벽(128)을 따라 출구(222)와 조우한 다음, 흡입 측벽(130)의 내측 표면(252)의 후방 영역(250)에 있는 출구(222)와 조우한다. 이러한 방식으로, 흡입 측벽의 후방 영역(250)에 걸쳐 있는 레일(150)은 다른 출구, 예를 들어 전방 영역(264)에 있는 출구보다 더 차가운 냉각제 유동을 받아들인다. 후방 영역(250) 이후에, 냉각제 유동(226)은 전방 영역(264)의 출구(222)와 조우하는 하류 통로(260)에 진입하고 레일(150)의 팁 레일 냉각 구조(168)(예를 들어, 도 10)로 나아간다. 언급된 바와 같이, 보다 차가운 냉각제 유동(226) 중 일부는 교차 개구(290)를 통과하여 하류 통로(260)의 현재 보다 뜨거운 냉각제 유동(226)과 혼합할 수 있다.
다른 실시예는 도 11 및 도 12와 유사한 방식으로 동작한다. 냉각제 유동(226)은 상류 통로(242)를 먼저 통과하고, 출구(222)를 빠져나와 다른 출구(222)에 앞서 압력 측벽(128)의 내측 표면(244) 및 흡입 측벽(130)의 내측 표면(252)의 후방 영역(250) 근처에서 레일(150)의 팁 레일 냉각 구조(168)(도 9, 도 19 및 도 21)로 향한다. 도 13은 그 내부의 지향벽(270)에 추가의 교차 개구(290)를 제공한다. 도 14는 하류 통로(260)에 그리고 후방 영역(250) 근처에 별개의 지지부(300)를 갖는 분리벽(240)만을 제공한다. 도 15는 레일 냉각제 지향 챔버(220)에 사형 경로 및 흡입 측벽(130)의 전방 영역(264)을 따른 하류 냉각제 유동을 생성하도록 채널 분리벽(280) 및 지향벽(274)을 제공한다. 도 16은 레일 냉각제 지향 챔버(220)를 통해 더 긴 사형 경로를 생성하기 위한 다수의 지향벽(274)을 포함한다. 도 17은 후방 영역(250) 근처의 입구(324) 및 만곡된 채널 분리벽(310)을 갖는다. 각각의 실시예는, 각 실시예 내에서 별개의 형태로 도시되어 있지만, 여러 실시예에 걸쳐 사용될 수 있는 특유의 지향벽(230) 및 통로(260, 272)를 제공한다.
도 18 및 도 19는 팁 레일 공동(들)(172)만을 포함하는 팁 레일 냉각 구조(168)의 투시 투시도 및 부분 단면도(도 9와 유사함)를 각각 도시한다. 여기서, 팁 레일 공동(172)은 구멍(223)을 통해, 제한하지 않지만, 팁 포켓(155)과 같은 다른 구조체에 이를 수 있다. 팁 레일 냉각 통로(170)는 생략된다. 도 20 및 도 21은 레일 냉각제 지향 챔버(220)와 직접 연통하는 팁 레일 냉각 통로(들)(170)만을 포함하는 팁 레일 냉각 구조(168)의 투시 사시도 및 부분 단면도(도 9와 유사함)를 각각 도시한다. 여기서, 레일 냉각제 지향 챔버(220)의 출구(222)는 팁 레일 냉각 통로(170)의 입구(176)에 진입한다. 예시된 바와 같이, 팁 레일 냉각 통로(170) 및 레일 냉각제 지향 챔버(220)의 실시예는 개별적으로 또는 함께 사용될 수 있다.
레일 냉각제 지향 챔버(220)의 실시예는 가스 터빈 엔진에서 블레이드 스퀄러 팁의 레일(150)의 효과적인 냉각을 제공한다. 레일 냉각제 지향 챔버(220)는 낮은 압력 강하, 사형의 내측 냉각 구조를 제공하고, 가장 차가운 냉각제 유동(226)은 이것을 가장 필요로 하는, 압력 측벽(128)의 내측 표면(244) 및 흡입 측벽(130)의 내측 표면(252)의 후방 영역(250)에서 레일(150)을 위한 출구(222)(도 10)로 먼저 지향된다. 측벽(128, 130)을 통과하는 출구 개구를 포함할 수 있는 에어포일 챔버(174)의 영역과 달리, 압력 측벽(128) 및 흡입 측벽(130)은 관통하는 냉각제 통로 개구가 없을 수 있고, 즉 챔버(220)는 냉각제를 지향시키고 내부에서만 냉각하도록 작용한다. 더욱이, 레일 냉각제 지향 챔버(220)는 적층 가공 중에 팁 플레이트(148)를 지지하는 데에 사용되는 피쳐, 예를 들어 조밀하게 이격된 지향벽(230) 뿐만 아니라 팁 플레이트(148)의 바닥 근처에서 외측으로 경사진 벽 및 별개의 지지부(300)를 통합한다.
본 명세서에서 사용되고 있는 전문 용어는 오직 특정 실시예를 설명하기 위한 것으로서, 본 개시를 제한하기 위한 의도가 있는 것은 아니다. 본 명세서에 사용되는 바와 같이, 단수 형태는 문맥상 명확하게 달리 지시되지 않는 한, 복수 형태를 물론 포함하도록 의도된다. 또한, 용어 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은, 본 명세서에 사용되는 경우, 정해진 피쳐, 정수, 단계, 동작, 요소 및/또는 구성요소의 존재를 명시하지만, 하나 이상의 다른 피쳐, 정수, 단계, 동작, 요소, 구성요소 및/또는 이들로 이루어진 그룹의 존재 또는 추가를 제외하는 것은 아님이 이해될 것이다. "선택적" 또는 "선택적으로"는, 그 다음에 설명되는 이벤트 또는 상황이 발생할 수 있거나 발생하지 않을 수 있고, 설명은 이벤트가 발생하는 상황과 이벤트가 발생하지 않는 상황을 포함한다.
본 명세서와 청구범위 전반에 걸쳐 사용되는 근사 표현들은 관련된 기본적인 기능에서의 변화를 초래하는 일 없이 허용 가능하게 변형될 수 있는 임의의 정량적 표현을 수정하도록 적용될 수 있다. 따라서, "약", "대략", 및 "실질적으로" 등의 용어나 용어들에 의해 수정되는 값은 특정된 정확한 값으로 제한되지 않는다. 적어도 몇몇 상황에서, 근사 표현은 값을 측정하는 기구의 정밀도에 대응할 수 있다. 여기서 그리고 명세서 및 청구범위 전반에 걸쳐서, 범위 제한은 결합 및/또는 상호 교환될 수 있고, 그러한 범위는 확인되며 문맥 또는 표현이 달리 나타내지 않는다면 그 안에 포함되는 하위 범위들을 모두 포함한다. 범위의 특정 값에 적용되는 "대략"은 양자의 값 모두에 적용되며, 값을 측정하는 도구의 정밀도에 의존하지 않는 한, 명시된 값(들)의 +/- 10%를 나타낼 수 있다.
이하의 청구범위에서의 모든 수단 또는 단계 플러스 기능 요소의 상응하는 구조, 재료, 작용 및 등가물은 구체적으로 청구된 바와 같은 다른 청구된 요소와 조합하여 기능을 수행하기 위한 임의의 구조, 재료 또는 작용을 포함하도록 의도된다. 본 개시의 설명은 예시 및 설명의 목적을 위해 제공되었지만, 제시된 형태의 개시에 한정적이거나 제한되고자 의도된 것이 아니다. 당업자에게는 본 개시의 범위 및 사상을 벗어나지 않고 많은 수정 및 변형이 명백할 것이다. 실시예는 본 개시 및 실제 적용의 원리를 가장 잘 설명하고, 당업자가 고려된 특정 용도에 적합한 다양한 변형을 갖는 다양한 실시예에 대한 본 개시를 이해할 수 있도록 하기 위해 선택 및 설명된 것이다.

Claims (15)

  1. 터빈 구성요소로서:
    베이스(122), 이 베이스(122)에 대향하여 배치된 팁, 및 선단 에지(132)와 후단 에지 사이에서 연장되는 압력 측벽(128)과 흡입 측벽(130)을 갖는 에어포일(124, 215);
    상기 에어포일(124, 215) 내에 배치되고, 상기 에어포일(124, 215)을 통해 냉각제를 공급하도록 구성된 에어포일 챔버(174);
    상기 팁에 있는 팁 플레이트(148) 및 이 팁 플레이트(148)로부터 반경 방향으로 연장되는 레일 - 상기 레일은 상기 팁 플레이트(148)의 주변에 또는 그 근처에 배치되고, 상기 레일은 내측 레일 표면(157), 외측 레일 표면(159) 및 내측 레일 표면(157)과 외측 레일 표면(159) 사이의 반경 방향 외향 레일 표면(160)을 포함함 -;
    상기 레일 내에 있고 상기 레일을 부분적으로 둘러싸며 냉각제 유동(226)을 받아들이는 팁 레일 공동(172); 및
    상기 팁 레일 공동(172)에 유체 연결되는 입구(176, 224), 이 입구(176, 224)에 유체 연결되고 상기 레일을 부분적으로 둘러싸는 통로 길이(178), 이 통로 길이(178)에 유체 연결되는 계량 요소(180), 및 이 계량 요소(180)에 유체 연결되고 상기 반경 방향 외향 레일 표면(160)을 통해 연장되는 출구(182)를 포함하는 팁 레일 냉각 통로(170)
    를 포함하는 터빈 구성요소.
  2. 제1항에 있어서,
    상기 입구(176, 224)는 상기 통로 길이(178)의 방향과는 반대 방향으로 냉각제 유동(226)을 지향시켜 냉각제 유동(226)에서 압력 손실을 유발하도록 경사져 있는 것인 터빈 구성요소.
  3. 제1항에 있어서,
    상기 통로 길이(178)는 제1 단면적을 갖고, 상기 계량 요소(180)는 제1 단면적보다 작은 제2 단면적을 갖는 것인 터빈 구성요소.
  4. 제1항에 있어서,
    상기 계량 요소(180)는 그 원주 방향 폭보다 큰 반경 방향 높이를 갖는 것인 터빈 구성요소.
  5. 제1항에 있어서,
    상기 통로 길이(178)는 원형 단면을 갖고, 상기 계량 요소(180)는 타원형 단면을 갖는 것인 터빈 구성요소.
  6. 제1항에 있어서,
    상기 출구(182)는 원형 단면을 갖는 것인 터빈 구성요소.
  7. 제1항에 있어서,
    상기 출구(182)는 상기 계량 요소(180) 및 통로 길이(178)보다 큰 단면적을 갖는 것인 터빈 구성요소.
  8. 제1항에 있어서,
    상기 에어포일(124, 215)은 적층 가공(additive manufacturing)되는 것인 터빈 구성요소.
  9. 제1항에 있어서,
    상기 레일은 단일 구조이고, 상기 팁 레일 냉각 통로(170)의 입구(176, 224), 통로 길이(178) 및 계량 요소(180)는 상기 레일의 내측 레일 표면(157), 외측 레일 표면(159) 및 반경 방향 외향 레일 표면(160) 내에 있는 것인 터빈 구성요소.
  10. 제1항에 있어서,
    상기 레일 내에서 이격되어 있는 복수의 쌍의 공동 및 팁 레일 냉각 통로(170)를 더 포함하는 것인 터빈 구성요소.
  11. 제1항에 있어서,
    상기 통로 길이(178)는 상기 반경 방향 외향 레일 표면(160)의 일부와 평행하게 연장되는 것인 터빈 구성요소.
  12. 제1항에 있어서,
    상기 계량 요소(180)는 상기 통로 길이(178)의 하류 단부에 배치되는 것인 터빈 구성요소.
  13. 제1항에 있어서,
    상기 에어포일(124, 215) 챔버의 일부로부터 상기 팁 플레이트(148)를 통해 상기 내측 레일 표면(157) 내에 획정된 팁 레일 포켓 내로 연장되는 팁 플레이트(148) 냉각제 통로
    를 더 포함하는 터빈 구성요소.
  14. 가스 터빈 엔진용의 터빈 로터 블레이드(115)로서:
    베이스(122), 이 베이스(122)에 대향하여 배치된 팁, 및 선단 에지(132)와 후단 에지 사이에서 연장되는 압력 측벽(128)과 흡입 측벽(130)을 갖는 에어포일(124, 215);
    상기 에어포일(124, 215) 내에 배치되고, 상기 에어포일(124, 215)을 통해 냉각제를 공급하도록 구성된 에어포일 챔버(174);
    상기 팁에 있는 팁 플레이트(148) 및 이 팁 플레이트(148)로부터 반경 방향으로 연장되는 레일 - 상기 레일은 팁 플레이트(148)의 주변에 또는 그 근처에 배치되고, 상기 레일은 내측 레일 표면(157), 외측 레일 표면(159) 및 내측 레일 표면(157)과 외측 레일 표면(159) 사이의 반경 방향 외향 레일 표면(160)을 포함함 -;
    상기 레일 내에 있고 상기 레일을 부분적으로 둘러싸며 냉각제 유동(226)을 받아들이는 팁 레일 공동(172); 및
    상기 팁 레일 공동(172)에 유체 연결되는 입구(176, 224), 이 입구(176, 224)에 유체 연결되고 레일을 부분적으로 둘러싸는 통로 길이(178), 이 통로 길이(178)에 유체 연결되는 계량 요소(180), 및 이 계량 요소(180)에 유체 연결되고 상기 반경 방향 외향 레일 표면(160)을 통해 연장되는 출구(182)를 포함하는 팁 레일 냉각 통로(170)
    를 포함하는 터빈 로터 블레이드.
  15. 제14항에 있어서,
    상기 입구(176, 224)는 상기 통로 길이(178)의 방향과는 반대 방향으로 냉각제 유동(226)을 지향시켜 냉각제 유동(226)에서 압력 손실을 유발하도록 경사져 있는 것인 터빈 로터 블레이드.
KR1020180155326A 2017-12-06 2018-12-05 팁 레일 냉각 통로를 갖는 터빈 구성요소 KR102682175B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/833,431 2017-12-06
US15/833,431 US10570750B2 (en) 2017-12-06 2017-12-06 Turbine component with tip rail cooling passage

Publications (2)

Publication Number Publication Date
KR20190067108A true KR20190067108A (ko) 2019-06-14
KR102682175B1 KR102682175B1 (ko) 2024-07-04

Family

ID=

Also Published As

Publication number Publication date
JP7163156B2 (ja) 2022-10-31
US20190169999A1 (en) 2019-06-06
JP2019116893A (ja) 2019-07-18
DE102018131044A1 (de) 2019-06-06
US10570750B2 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
JP7163156B2 (ja) 先端レール冷却通路を有するタービン構成要素
JP6192984B2 (ja) タービン動翼の先端の冷却構造
KR102281624B1 (ko) 내부 유체 통로를 획정하는 유동 터뷸레이터를 포함하는 적층 가공형 열교환기
JP6266231B2 (ja) タービンロータブレード先端における冷却構造
US10718222B2 (en) Diffuser-deswirler for a gas turbine engine
JP7370823B2 (ja) 先端レール冷却インサートを含むタービンブレード先端冷却システム
JP2015048848A (ja) タービン部品を冷却するための方法およびシステム
US10982553B2 (en) Tip rail with cooling structure using three dimensional unit cells
US20240209738A1 (en) Turbomachine cooling trench
EP2666968A1 (en) Turbine rotor blade
US10408065B2 (en) Turbine component with rail coolant directing chamber
JP7346254B2 (ja) 複数のノズルおよびベンチュリを含む高温ガス経路構成要素
EP3844370B1 (en) Additive supports with integral film cooling
US11208902B2 (en) Tip rail cooling insert for turbine blade tip cooling system and related method
CN112343665B (zh) 具有冷却孔的发动机构件
EP2696028A1 (en) A turbomachine component for hot gas path of a gas turbine
KR102682175B1 (ko) 팁 레일 냉각 통로를 갖는 터빈 구성요소
CN112240227A (zh) 涡轮发动机翼型件
US11486259B1 (en) Component with cooling passage for a turbine engine
US11560803B1 (en) Component with cooling passage for a turbine engine
CN114592923A (zh) 涡轮间隙控制系统

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right