TWI767191B - 高溫零件、高溫零件的製造方法及流量調節方法 - Google Patents

高溫零件、高溫零件的製造方法及流量調節方法 Download PDF

Info

Publication number
TWI767191B
TWI767191B TW109105683A TW109105683A TWI767191B TW I767191 B TWI767191 B TW I767191B TW 109105683 A TW109105683 A TW 109105683A TW 109105683 A TW109105683 A TW 109105683A TW I767191 B TWI767191 B TW I767191B
Authority
TW
Taiwan
Prior art keywords
cooling
passages
passage
outlet
cross
Prior art date
Application number
TW109105683A
Other languages
English (en)
Other versions
TW202039995A (zh
Inventor
徳武太郎
伊藤竜太
飯田耕一郎
脇田祥成
谷川秀次
Original Assignee
日商三菱動力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱動力股份有限公司 filed Critical 日商三菱動力股份有限公司
Publication of TW202039995A publication Critical patent/TW202039995A/zh
Application granted granted Critical
Publication of TWI767191B publication Critical patent/TWI767191B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/14Micromachining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/312Arrangement of components according to the direction of their main axis or their axis of rotation the axes being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/323Arrangement of components according to their shape convergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/37Arrangement of components circumferential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/516Surface roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)
  • Glass Compositions (AREA)
  • Measuring Volume Flow (AREA)
  • Thermistors And Varistors (AREA)

Abstract

一個實施形態的高溫零件,是用於渦輪機械,且需要由冷卻媒體冷卻的高溫零件,具備:複數個冷卻通路,可供前述冷卻媒體流通;和集流管部,連接著前述複數個冷卻通路的下游端;及1個以上的出口通路,用來將已流入前述集流管部的前述冷卻媒體朝前述集流管部的外部排出,前述1個以上的出口通路的數量,低於前述複數個冷卻通路的數量,前述1個以上的出口通路之各個最小流路剖面積,為「前述集流管部與前述冷卻通路間之連接部處,前述複數個冷卻通路之各個流路剖面積」以上,前述1個以上的出口通路之各個最小流路剖面積的總和,小於「前述集流管部與前述冷卻通路間之連接部處,前述複數個冷卻通路之各個流路剖面積」的總和。

Description

高溫零件、高溫零件的製造方法及流量調節方法
本發明關於高溫零件、高溫零件的製造方法及流量調節方法。
舉例來說,燃氣渦輪機等高溫作動氣體流動於內部的機械,構成該機械的零件含有:需要「冷卻媒體所形成之冷卻」的高溫零件。作為這種高溫零件的冷卻構造,已知有:在零件的內部,藉由使冷卻空氣流通於「可供冷卻空氣流通的複數個配送通道(冷卻通路)」,而執行高溫零件的冷卻(譬如,請參考專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2015-48848號公報
[發明欲解決之問題]
如同燃氣渦輪機等藉由高溫的作動氣體而作動的機械,藉由冷卻帶走熱量,通常會使機械的熱效率低落。因為這緣故,期望能盡量以少量的冷卻媒體來有效率地冷卻高溫零件。因此,冷卻通路中的流路剖面積不宜大於必要的面積。 但是,倘若流路剖面積小,因為高溫零件之製造上的限制,而具有冷卻通路之尺寸精度下降的傾向,故恐有冷卻通路中冷卻空氣之流量的精度下降的疑慮。 一旦冷卻通路中冷卻空氣的流量精度下降,而使冷卻空氣的流量大於設計上的流量時,冷卻空氣將帶走所需以上的熱量,恐有機械的熱效率低落的疑慮。此外,一旦冷卻空氣的流量少於設計上的流量,因冷卻不足恐有高溫零件受損的疑慮。
有鑑於上述的情事,本發明的至少一種實施形態,其目的為提供:能抑制過度的冷卻,且不會冷卻能力不足的高溫零件。 [解決問題之手段]
(1)本發明的至少其中一種實施形態的高溫零件, 是用於渦輪機械(turbomachinery),且需要由冷卻媒體冷卻的高溫零件,具備: 複數個冷卻通路,可供前述冷卻媒體流通;和 集流管部,連接著前述複數個冷卻通路的下游端;和 1個以上的出口通路,用來將已流入前述集流管部的前述冷卻媒體朝前述集流管部的外部排出, 前述1個以上的出口通路的數量,低於前述複數個冷卻通路的數量, 前述1個以上的出口通路之各個最小流路剖面積,為在前述集流管部與前述冷卻通路間之連接部處的前述複數個冷卻通路之各個流路剖面積以上, 前述1個以上的出口通路之各個最小流路剖面積的總和,小於「在前述集流管部與前述冷卻通路間之連接部處的前述複數個冷卻通路之各個流路剖面積」的總和。
一旦以「複數個冷卻通路之各個流路剖面積」來決定在複數個冷卻通路中所各自流動之冷卻媒體的流量,將如以上所述,倘若流路剖面積小,因為高溫零件之製造上的限制,而具有冷卻通路之尺寸精度下降的傾向,故恐有冷卻通路中冷卻媒體之流量的精度下降的疑慮。 相對於此,根據上述(1)的構造,由於1個以上的出口通路之各個最小流路剖面積的總和,小於「在集流管部與冷卻通路間之連接部處的複數個冷卻通路之各個流路剖面積」的總和,因此,可藉由出口通路的最小流路剖面積,規定複數個冷卻通路中冷卻媒體的流量。藉此,在複數個冷卻通路的每一個,不必使流路剖面積縮小至調整冷卻媒體之流量的必須值以下,因此,可提高冷卻通路的尺寸精度,能抑制複數個冷卻通路彼此之冷卻媒體的流量差異。因此,能抑制過度的冷卻,且不會冷卻能力不足的高溫零件。 此外,根據上述(1)的構造,由於1個以上的出口通路之各個最小流路剖面積,為「在集流管部與冷卻通路間之連接部處的複數個冷卻通路之各個流路剖面積」以上,因此,容易確保出口通路的尺寸精度,並且在出口通路不容易引起異物堵塞。 不僅如此,根據上述(1)的構造,由於1個以上的出口通路的數量低於複數個冷卻通路的數量,因此在冷卻媒體之流量的管理上,可以減少「應該確保流路剖面積的精度,亦即通路之尺寸精度」的位置,能抑制高溫零件的製造成本。
(2)幾個實施形態,在上述(1)的構造中,在前述集流管部的上游側內壁部與下游側內壁部之間的分離距離,為「前述出口通路的流路剖面積成為最小的領域中之等效直徑(equivalent diameter)」的1倍以上3倍以下。
倘若「上游側內壁部,亦即複數個冷卻通路的下游端與集流管部之間的連接位置」、與「下游側內壁部,亦即1個以上的出口通路的上游端與集流管部之間的連接位置」過於接近,將導致在「冷卻通路的下游端與出口通路的上游端之間的距離」小的冷卻通路與大的冷卻通路,冷卻媒體之流量的差變大。 相對於此,根據上述(2)的構造,藉由使「上游側內壁部,亦即複數個冷卻通路的下游端與集流管部之間的連接位置」、與「下游側內壁部,亦即1個以上的出口通路的上游端與集流管部之間的連接位置」至少形成上述等效直徑之1倍以上的分離,能抑制複數個冷卻通路彼此之冷卻媒體的流量差異。 此外,在集流管部,由於連接著複數個冷卻通路的下游端,因此在集流管部的空間容積變大,由於冷卻媒體在集流管部的流速下降,因此對冷卻媒體的熱傳達率下降。因此,由於在集流管部恐有冷卻能力下降的疑慮,故上游側內壁部與下游側內壁部之間的分離距離最好不要太大。 這一點,根據上述(2)的構造,由於上游側內壁部與下游側內壁部之間的分離距離為上述等效直徑的3倍以下,因此能抑制在高溫零件產生冷卻能力不足的領域。
(3)幾個實施形態,在上述(1)或(2)的構造中,前述1個以上的出口通路含有:前述出口通路的流路剖面積朝向下游側逐漸減少的流路剖面積縮小部。
根據上述(3)的構造,藉由從流路剖面積縮小部的下游側調節與出口通路的延伸方向正交之方向的大小(尺寸),在出口通路的最小流路剖面積的調節變得容易。因此,只要管理出口通路的下游側中與出口通路的延伸方向正交之方向的尺寸,由於可管理冷卻媒體的流量,可以使「應確保流路剖面積的精度,亦即通路的尺寸精度的領域」變窄,能抑制高溫零件的製造成本。
(4)幾個實施形態,在上述(1)至(3)的任一個構造中, 前述1個以上的出口通路的內壁面,在前述出口通路的流路剖面積成為最小的領域中,中心線平均粗度Ra具有10μm以下的粗度, 前述複數個冷卻通路的內壁面,中心線平均粗度Ra具有10μm以上20μm以下的粗度。
根據上述(4)的構造,由於複數個冷卻通路的內壁面具有上述的粗度,因此能提高冷卻通路中的冷卻性能。此外,根據上述(4)的構造,由於出口通路的流路剖面積成為最小的領域中,出口通路的內壁面具有上述的粗度,故能抑制在出口通路之壓力損失的差異,並且在出口通路異物變得容易通過,能降低出口通路堵塞的風險。
(5)幾個實施形態,在上述(1)至(4)的任一個構造中,形成前述複數個冷卻通路的壁部,在前述冷卻通路的下游端,角部被施以倒角。
形成複數個冷卻通路的壁部,根據提高導熱性能的觀點,有時將視需要使壁部的厚度盡可能地變小。在這樣的場合中,倘若欲在冷卻通路的下游端形成「角部未形成倒角」的形狀,舉例來說,當藉由精密鑄造法和金屬積層成形法來形成高溫零件時,在稍後的熱處理之際,恐有導致該角部的形狀崩壞的疑慮。一旦該角部的形狀崩壞,將對流通於冷卻通路的冷卻媒體帶來不良影響,恐有導致冷卻性能下降的疑慮。 相對於此,根據上述(5)的構造,由於在冷卻通路的下游端,角部被施以倒角,故能抑制如以上所述「該角部的形狀崩壞」所帶來的不良影響。
(6)幾個實施形態,在上述(1)至(5)的任一個構造中,前述出口通路的數量為1。
如以上所述,在冷卻媒體之流量的管理上,期待減少「應該確保流路剖面積的精度,亦即通路之尺寸精度」的位置,這一點,根據上述(6)的構造,由於出口通路的數量為1,因此可以減少「應該確保通路之尺寸精度」的位置,能抑制高溫零件的製造成本。
(7)幾個實施形態,在上述(1)至(6)的任一個構造中, 前述高溫零件,是複數個分割體沿著周方向配設成環狀所構成之燃氣渦輪機的分割環, 前述複數個分割體,分別具有面向可供燃燒氣體流動之燃燒氣體流路的內表面, 前述複數個冷卻通路,形成於前述複數個分割體的各個內部, 前述1個以上的出口通路,在前述複數個分割體中的各個軸方向的下游側端部,朝向前述燃燒氣體中形成開口。
根據上述(7)的構造,藉由燃氣渦輪機的分割環具備上述(1)至(6)的任一種構造,1個以上的出口通路之各個最小流路剖面積的總和,小於「在集流管部與冷卻通路間之連接部處的複數個冷卻通路之各個流路剖面積」的總和,因此,可藉由出口通路的最小流路剖面積,規定複數個冷卻通路中冷卻媒體的流量。藉此,在複數個冷卻通路的每一個,不必使流路剖面積縮小至調整冷卻媒體之流量的必須值以下,因此,可提高冷卻通路的尺寸精度,能抑制複數個冷卻通路彼此之冷卻媒體的流量差異。因此,在分割環能抑制過度的冷卻,且不會形成冷卻能力不足。 此外,根據上述(7)的構造,由於1個以上的出口通路之各個最小流路剖面積,為「在集流管部與冷卻通路間之連接部處的複數個冷卻通路之各個流路剖面積」以上,因此,在分割環容易確保出口通路的尺寸精度,並且在出口通路不容易引起異物堵塞。 不僅如此,根據上述(7)的構造,由於1個以上的出口通路的數量低於複數個冷卻通路的數量,因此在冷卻媒體之流量的管理上,可以減少「應該確保流路剖面積的精度,亦即通路之尺寸精度」的位置,能抑制分割環的製造成本。
(8)本發明的至少其中一種實施形態之高溫零件的製造方法, 是用於渦輪機械,且需要由冷卻媒體冷卻的高溫零件的製造方法,具備: 用來形成可供前述冷卻媒體流通之複數個冷卻通路的步驟;和 用來形成可供前述複數個冷卻通路的下游端連接之集流管部的步驟;和 用來形成將已流入前述集流管部的前述冷卻媒體朝前述集流管部的外部排出之1個以上的出口通路的步驟, 前述1個以上的出口通路的數量,低於前述複數個冷卻通路的數量, 前述1個以上的出口通路之各個最小流路剖面積,為在前述集流管部與前述冷卻通路間之連接部處,前述複數個冷卻通路之各個流路剖面積以上, 前述1個以上的出口通路之各個最小流路剖面積的總和,小於「在前述集流管部與前述冷卻通路間之連接部處,前述複數個冷卻通路之各個流路剖面積」的總和。
根據上述(8)的方法,由於1個以上的出口通路之各個最小流路剖面積的總和,形成小於「在集流管部與冷卻通路間之連接部處,複數個冷卻通路之各個流路剖面積」的總和,因此,可藉由出口通路的最小流路剖面積,規定複數個冷卻通路中冷卻媒體的流量。藉此,在複數個冷卻通路的每一個,不必使流路剖面積縮小至調整冷卻媒體之流量的必須值以下,因此,可提高冷卻通路的尺寸精度,能抑制複數個冷卻通路彼此之冷卻媒體的流量差異。因此,能抑制過度的冷卻,且不會冷卻能力不足的高溫零件。 此外,根據上述(8)的方法,由於1個以上的出口通路之各個最小流路剖面積,可形成「在集流管部與冷卻通路間之連接部處,複數個冷卻通路之各個流路剖面積」以上,因此,容易確保出口通路的尺寸精度,並且在出口通路不容易引起異物堵塞。 不僅如此,根據上述(8)的方法,由於1個以上的出口通路的數量低於複數個冷卻通路的數量,因此在冷卻媒體之流量的管理上,可以減少「應該確保流路剖面積的精度,亦即通路之尺寸精度」的位置,能抑制高溫零件的製造成本。
(9)幾個實施形態,在上述(8)的方法中,用來形成前述1個以上的出口通路的步驟,採以下的方式形成前述1個以上的出口通路:含有前述出口通路的流路剖面積朝向下游側逐漸減少的流路剖面積縮小部。
根據上述(9)的方法,藉由以「而在流路剖面積縮小部具有出口通路的最小流路剖面積」的方式形成出口通路,在冷卻媒體之流量的管理上,只需在流路剖面積縮小部管理最下游側之領域的尺寸精度即可,故能使「應確保流路剖面積的精度,亦即通路的尺寸精度的領域」變窄,能抑制高溫零件的製造成本。
(10)幾個實施形態,在上述(8)或(9)的方法中, 用來形成前述1個以上的出口通路的步驟,是藉由金屬積層成形法或者精密鑄造法,形成前述1個以上的出口通路, 並更進一步具備:對前述1個以上的出口通路之內壁面的至少一部分實施機械加工的步驟。
根據上述(10)的方法,相較於僅藉由機械加工來形成出口通路的場合,能抑制高溫零件的製造成本。此外,根據上述(10)的方法,相較於僅藉由金屬積層成形法或者精密鑄造法形成出口通路的場合,能提高出口通路之內壁面的尺寸精度,並能提高冷卻媒體之流量的調節精度。不僅如此,根據上述(10)的方法,由於出口通路之內壁面的尺寸可於確認冷卻媒體的流量時調節,因此能抑制冷卻媒體之流量的過多或不足。
(11)幾個實施形態,在上述(10)的方法中,用來實施前述機械加工的步驟,是藉由鑽頭來切削前述1個以上的出口通路。
根據上述(11)的方法,由於可藉由鑽頭的直徑來規定出口通路之內壁面的尺寸,因此製造變的容易。
(12)本發明的至少其中一種實施形態的流量調節方法, 是流動於「用於渦輪機械,且需要冷卻媒體的冷卻之高溫零件的內部」之前述冷卻媒體的流量調節方法,具備: 用來形成可供前述冷卻媒體流通之複數個冷卻通路的步驟;和 用來形成可供前述複數個冷卻通路的下游端連接之集流管部的步驟;和 藉由金屬積層成形法或者精密鑄造法,形成將已流入前述集流管部的前述冷卻媒體朝前述集流管部的外部排出之1個以上的出口通路的步驟;及 藉由鑽頭來切削前述1個以上的出口通路的步驟。
根據上述(12)的方法,由於可藉由鑽頭的直徑來規定出口通路之內壁面的尺寸,因此冷卻媒體的流量調節變的容易。因此,能抑制過度的冷卻,且不會形成冷卻能力不足。
(13)幾個實施形態,在上述(12)的方法中, 前述高溫零件含有複數個冷卻通路群,該冷卻通路群含有:1個前述集流管部、下游端連接於該集流管部之至少2個以上的前述冷卻通路、連接於該集流管部之1個以上的前述出口通路, 用來形成前述複數個冷卻通路的步驟,形成前述複數個冷卻通路群所含有的各個前述冷卻通路, 用來形成前述集流管部的步驟,形成前述複數個冷卻通路群所含有的各個前述集流管部, 用來形成前述1個以上的出口通路的步驟,形成前述複數個冷卻通路群所含有的各個前述出口通路, 藉由鑽頭來切削前述1個以上的出口通路的步驟,藉由鑽頭,切削前述複數個冷卻通路群所含有的各個前述出口通路。
根據上述(13)的方法,由於可藉由鑽頭的直徑來規定各出口通路之內壁面的尺寸,因此容易抑制複數個冷卻通路群彼此之冷卻媒體的流量差異。 [發明的效果]
根據本發明的至少一種實施形態,可提供:能抑制過度的冷卻,且不會冷卻能力不足的高溫零件。
以下,參考圖面說明本發明的幾個實施形態。但是,作為實施形態所記載或者圖面所顯示之構成零件的尺寸、材質、形狀、其相對的配置等,並非用來侷限本發明的範圍,僅是單純的說明範例罷了。 舉例來說,用來表達「朝某方向」、「沿著某方向」、「平行」、「正交」、「中心」、「同心」或者「同軸」等相對性或絕對性配置的表現,不僅嚴謹地表達其配置,並且表達:以公差、或者可獲得相同功能之程度的角度和距離,形成相對性位移的狀態。 舉例來說,用來表達「相同」、「相等」、「同質」等之事物相等的狀態的表現,不僅嚴謹地表達其配置,並且表達:存在著公差、或者可獲得相同功能之程度的差異的狀態。 舉例來說,用來表達四角形狀和圓筒形狀等形狀的表現,不僅是表達幾何學上嚴謹的四角形狀和圓筒形狀等的形狀,也表達:在可獲得相同效果的範圍,含有凹凸部和倒角部等的形狀。 另外,「備有」、「具有」、「具備」、「含有」或者「包括」一個構成要件的這種表現,並非用來排除其他構成要件之存在的表現。
在以下的說明中,列舉「燃氣渦輪機所使用的高溫零件」作為例子,並針對幾個實施形態的高溫零件進行說明。 圖1為顯示燃氣渦輪機之整體構造的概略圖,圖2為顯示渦輪機之氣體流路的剖面圖。
在本實施形態中,如圖1所示,燃氣渦輪機10,是由轉子14將壓縮機11、燃燒器12、渦輪機13配置於同軸上所構成,在轉子14的其中一端部連結著發電機15。在以下的說明中,將轉子14的軸線所延伸的方向設為軸方向Da、將「把該轉子14的軸線作為中心的周方向」設為周方向Dc,將垂直於轉子14之軸線Ax的方向設為徑向Dr。此外,周方向Dc中,將轉子14的轉動方向作為轉動方向R來表示。
壓縮機11,藉由「從空氣取入口所導入的空氣AI通過複數個定子葉片及轉子葉片而受到壓縮」,而產生高溫、高壓的壓縮空氣AC。燃燒器12,對該壓縮空氣AC供給特定的燃料FL,並藉由燃燒而產生高溫、高壓的燃燒氣體FG。渦輪機13,藉由「由燃燒器12所產生的高溫、高壓的燃燒氣體FG通過複數個定子葉片及轉子葉片」而驅動轉子14轉動,並驅動該轉子14所連結的發電機15轉動。
此外,如圖2所示,在渦輪機13,渦輪機定子葉片(定子葉片)21,是將葉片型部23的輪轂部固定於內側圍板25,並將前端側固定於外側圍板27所構成。渦輪機轉子葉片(轉子葉片)41,是將葉片型部43的基端部固定於載台45所構成。然後,外側圍板27、與配置於轉子葉片41之前端部側的分割環50,透過隔熱環(thermal insulation ring)35由殼體(渦輪機殼體)30所支承,內側圍板25則由支承環31所支承。因此,燃燒氣體FG通過的燃燒氣體流路32,作為由內側圍板25、外側圍板27、載台45、分割環50所圍繞的空間,沿著軸方向Da形成。
內側圍板25、外側圍板27及分割環50,是作為氣體通道面形成構件發揮作用。所謂的「氣體通道面形成構件」,是用來區劃燃燒氣體流路32,並且具有可供燃燒氣體FG接觸之氣體通道面的構件。
燃燒器12、轉子葉片41(譬如載台45)、定子葉片21(譬如內側圍板25和外側圍板27)及分割環50等,是在接觸燃燒氣體FG的高溫環境下所使用的高溫零件,需要冷卻媒體的冷卻。在以下的說明中,將分割環50的冷卻構造作為高溫零件之冷卻構造的例子進行說明。
圖3,是從徑向Dr外側觀看幾個實施形態的「構成分割環50之其中一個分割體51」的示意俯視圖、以及沿著周方向Dc從轉子14之轉動方向R下游側朝向轉動方向R上游側所見的示意側視圖。圖4,為圖3中A4-A4箭號視角剖面圖。在圖3中,簡略地描繪了分割體51的構造。因此在圖3中,譬如省略了用來將分割體51安裝於隔熱環35的鈎之類的記載。
幾個實施形態的分割環50,是由沿著周方向Dc形成環狀的複數個分割體51所構成。各分割體51,將「在內部形成有冷卻流路的本體52」作為主要的構成件。如圖2所示,分割體51配置成:徑向Dr的內表面52a面向燃燒氣體FG流動的燃燒氣體流路32。在分割體51的徑向Dr內側,設置一定的間隙,配置有以轉子14作為中心而轉動的轉子葉片41。為了防止高溫的燃燒氣體FG所帶來的熱損傷,在分割體51形成有:延伸於軸方向Da的複數個軸方向通路(冷卻通路)60。 冷卻通路60,並列於周方向Dc而配設有複數個。 在幾個實施形態中,將冷卻通路60的周方向Dc,稱為冷卻通路60的寬度方向。此外,在幾個實施形態中,將冷卻通路60中,正交於該寬度方向的徑向Dr,稱為冷卻通路60的高度方向。
雖然沒有圖示,但其中一個實施形態的燃氣渦輪機10構成:從外表面52b側對幾個實施形態的各分割體51供給冷卻空氣CA。被供給至分割體51的冷卻空氣CA,流通於冷卻通路60,並於朝燃燒氣體FG中排出的過程,對分割體51的本體52形成對流冷卻。
以下,針對幾個實施形態之分割體51的冷卻構造進行說明。 幾個實施形態的冷卻通路60,各自的上游端連接於冷卻空氣分歧裝置55。在幾個實施形態的冷卻通路60之各自的內部,形成有:將冷卻通路60從途中分割成複數個分歧流路63的分隔壁70。在幾個實施形態中,分隔壁70將冷卻通路60從途中朝冷卻通路的寬度方向分割成一對分歧流路63。
在幾個實施形態的冷卻通路60中,亦即在較分隔壁70更上游側的區間、及分歧流路63,當從冷卻通路60的延伸方向觀看時之冷卻通路60的流路的剖面形狀,可以是矩形,可以是圓形,亦可為矩形之外的多角形,也可以是橢圓形。此外,在冷卻通路60中較分隔壁70更上游側的區間與分歧流路63,流路的剖面形狀的種類即使不同亦無妨。亦即,在較分隔壁70更上游側之區間的流路的剖面形狀可以是矩形,而在分歧流路63之流路的剖面形狀可以是圓形。此外,在分歧流路63之流路的剖面形狀,也可以是以分隔壁70將圓和橢圓一分為2的形狀。 冷卻通路60,藉由對冷卻通路60的內壁面形成冷卻,而冷卻分割體51。因此,冷卻通路60,具有冷卻通路60之等效直徑的5倍以上的長度。所謂「冷卻通路60的等效直徑」,在冷卻通路60的剖面形狀為圓形以外之形狀的場合中,是從「冷卻空氣CA之流動的點」置換成「成為等效的圓形流路」時之流路的直徑。
複數個分歧流路63,各自的下游端65連接於集流管部80。在幾個實施形態中,譬如,在分別相鄰的3個冷卻通路60中的6個分歧流路63的下游端65,連接於1個集流管部80的上游側內壁部81。在幾個實施形態中,於分割體51形成有複數個集流管部80。
各集流管部80,是以下的構件所圍繞之長方形(rectangular)的空間部:上游側內壁部81及下游側內壁部82,為在軸方向Da相對向的一對壁部;側方內壁部83、84,為在周方向Dc相對向的一對壁部;圖面中未顯示的內壁部,為在徑向Dr相對向的一對壁部。
在各集流管部80的下游側內壁部82形成有:用來將已流入集流管部80的冷卻空氣CA,排出至集流管部80的外部亦即分割體51之外部的至少1個以上的出口通路110。在圖3所示的實施形態中,在集流管部80,於下游側內壁部82的周方向Dc的中央附近,形成有1個出口通路110。出口通路110,在分割體51的軸方向Da的下游側端部53,朝向燃燒氣體FG中形成開口。
在幾個實施形態中,分割體51含有複數個冷卻通路群6,該冷卻通路群6含有:1個集流管部80、下游端連接於該集流管部80的3個冷卻通路60、連接於該集流管部80的1個出口通路110。在軸方向Da中,冷卻通路60,其長度尺寸比集流管部80長。
從分割體51的外部供給至分割體51的冷卻空氣CA,在被供給至冷卻空氣分歧裝置55後,從冷卻空氣分歧裝置55分配至各冷卻通路60。被分配至各冷卻通路60的冷卻空氣CA,由分隔壁70所分割,而流入各分歧流路63。已流入各分歧流路63的冷卻空氣CA,在各集流管部80被匯集,並從出口通路110排出至分割體51的外部。
如同燃氣渦輪機10等藉由高溫的作動氣體而作動的機械,藉由冷卻帶走熱量,通常會使機械的熱效率低落。因為這緣故,期望能盡量以少量的冷卻媒體來有效率地冷卻高溫零件。因此,冷卻通路60中的流路剖面積不宜大於必要的面積。
但是,倘若流路剖面積小,本身為高溫零件的分割體51因為製造上的限制,而具有冷卻通路60之尺寸精度下降的傾向,故恐有冷卻通路60中冷卻空氣CA之流量的精度下降的疑慮。
一旦冷卻通路60中冷卻空氣CA的流量精度下降,而使冷卻空氣CA的流量大於設計上的流量時,冷卻空氣CA將帶走所需以上的熱量,恐有燃氣渦輪機10的熱效率低落的疑慮。此外,一旦冷卻空氣CA的流量少於設計上的流量,因冷卻不足恐有分割體51受損的疑慮。
有鑑於上述的情事,本發明的至少一種實施 形態,其目的為提供:能抑制過度的冷卻,且不會冷卻能力不足的高溫零件。
因此,在幾個實施形態中,藉由使分割體51中的構造形成以下所述的構造,來抑制過度的冷卻,且不會冷卻能力不足。
圖5,為圖4中集流管部80附近的放大圖。
在幾個實施形態中,如圖3~圖5所示,在分割體51中,連接於1個集流管部80之出口通路110的數量,為不滿連接於1個集流管部80之複數個冷卻通路60的數量。舉例來說,在幾個實施形態中,如圖3~圖5所示,對1個集流管部80連接:由分隔壁70所分割的6個冷卻通路60(6個分歧流路63)、1個出口通路110。
在幾個實施形態中,如同圖5所顯示,出口通路110具有上游側領域111及下游側領域115。在上游側領域111形成有:流路剖面積朝向下游側逐漸減少的流路剖面積縮小部113。在下游側領域115形成有:流路剖面積變成最小的最小流路剖面積部117。
在幾個實施形態中,從出口通路110的延伸方向觀看時,出口通路110之流路的剖面形狀,在上游側領域111及下游側領域115為圓形。但是,出口通路110之流路的剖面形狀,在上游側領域111及下游側領域115也可以是矩形,亦可為矩形之外的多角形,也可以是橢圓形。此外,在上游側領域111及下游側領域115,流路之剖面形狀的種類即使不同亦無妨。亦即,在上游側領域111的流路的剖面形狀為矩形,而在下游側領域115的流路的剖面形狀可以是圓形。
考慮到下游側領域115之流路的剖面形狀為圓形以外的場合,在以下的說明中,在下游側領域115(最小流路剖面積部117),提及流路大小的場合,是藉由最小流路剖面積部117的等效直徑來說明。 所謂「最小流路剖面積部117的等效直徑」,在最小流路剖面積部117的剖面形狀為圓形以外之形狀的場合中,是從「冷卻空氣CA之流動的點」置換成「成為等效的圓形流路」時之最小流路剖面積部117的直徑。在最小流路剖面積部117的剖面形狀為圓形的場合中,所謂「最小流路剖面積部117的等效直徑」,是最小流路剖面積部117的直徑。
在幾個實施形態中,在分割體51,出口通路110的最小流路剖面積SBmin,為在集流管部80與冷卻通路間60之連接部67的「複數個冷卻通路60(分歧流路63)之各個的流路剖面積SA」以上。 在幾個實施形態中,如圖3~圖5所示,在分割體51,出口通路110的最小流路剖面積SBmin,小於在「連接於1個集流管部80的複數個冷卻通路間60(分歧流路63)的連接部67」之各個流路剖面積SA的總和ΣSA。 在2個以上的出口通路110連接於1個集流管部80的場合中,連接於1個集流管部80的出口通路110之各個最小流路剖面積SBmin,為在連接部67的複數個冷卻通路60之各個流路剖面積SA以上。 此外,在2個以上的出口通路110連接於1個集流管部80的場合中,連接於1個集流管部80的出口通路110之各個最小流路剖面積SBmin的總和ΣSBmin,小於在「連接於1個集流管部80的複數個冷卻通路60之連接部67」的各個流路剖面積SA的總和ΣSA。
如同稍後所述,分割體51譬如可藉由金屬積層成形法和精密鑄造法所形成。因此,倘若冷卻通路60的流路剖面積SA小,分割體51因為製造上的限制,而具有冷卻通路60之尺寸精度下降的傾向。 一旦以「複數個冷卻通路60之各個流路剖面積SA」來決定在複數個冷卻通路60中所各自流動之冷卻空氣CA的流量,將如以上所述,倘若流路剖面積SA小,將使冷卻通路60的尺寸精度下降,恐有冷卻通路60中冷卻空氣CA之流量的精度下降的疑慮。
相對於此,根據幾個實施形態的分割體51,由於1個以上的出口通路110之各個最小流路剖面積SBmin的總和ΣSBmin,小於「在連接部67的複數個冷卻通路60之各個流路剖面積SA」的總和ΣSA,因此,可藉由出口通路110的最小流路剖面積SBmin,規定複數個冷卻通路60中冷卻空氣CA的流量。藉此,在複數個冷卻通路60的每一個,不必為了調整冷卻空氣CA的流量而使流路剖面積SA縮小至必須值以下,因此,可提高冷卻通路60的尺寸精度,能抑制複數個冷卻通路60彼此之冷卻空氣CA的流量差異。因此,能抑制過度的冷卻,且冷卻能力不會不足。
此外,根據幾個實施形態的分割體51,由於1個以上的出口通路110之各個最小流路剖面積SBmin,為「在連接部67的複數個冷卻通路60之各個流路剖面積SA」以上,因此,容易確保出口通路110之徑向的尺寸精度,並且在出口通路110不容易引起異物堵塞。 不僅如此,根據幾個實施形態的分割體51,由於1個以上的出口通路110的數量低於複數個冷卻通路60的數量,因此在冷卻空氣CA之流量的管理上,可以減少「應該確保流路剖面積的精度,亦即通路之尺寸精度」的位置,能抑制分割體51的製造成本。
在幾個實施形態中,如圖5所示,在分割體51,在集流管部80的上游側內壁部81與下游側內壁部82之間的分離距離Ld,亦即集流管部80的上游側端部與下游側端部之間的長度,為「出口通路110的流路剖面積成為最小的領域亦即下游側領域115的等效直徑」的1倍以上3倍以下。
倘若「上游側內壁部81,亦即複數個冷卻通路60的下游端65與集流管部80之間的連接位置」、與「下游側內壁部82,亦即出口通路110的上游端110a與集流管部80之間的連接位置」過於接近,將導致在「冷卻通路60的下游端65與出口通路110的上游端110a之間的距離」小的冷卻通路60與大的冷卻通路60,冷卻空氣CA之流量的差變大。 相對於此,根據幾個實施形態的分割體51,藉由使上游側內壁部81與下游側內壁部82至少形成上述等效直徑DBmin之1倍以上的分離,能抑制複數個冷卻通路60彼此之冷卻空氣CA的流量差異。 此外,在集流管部80,由於連接著複數個冷卻通路60的下游端65,因此在集流管部80的空間容積變大,由於冷卻空氣CA在集流管部80的流速下降,因此對冷卻空氣CA的熱傳達率下降。因此,由於在集流管部80恐有冷卻能力下降的疑慮,故上游側內壁部81與下游側內壁部82之間的分離距離Ld最好不要太大。 這一點,根據幾個實施形態的分割體51,由於上游側內壁部81與下游側內壁部82之間的分離距離Ld為上述等效直徑DBmin的3倍以下,因此能抑制在分割體51產生冷卻能力不足的領域。 此外,只要上游側內壁部81與下游側內壁部82之間的分離距離Ld為上述等效直徑DBmin的3倍以下,便能抑制集流管部80的容積,亦即分割體51內部之空間部的容積,並能抑制分割體51的強度下降。
在幾個實施形態的分割體51中,出口通路110含有:出口通路110的流路剖面積朝向下游側逐漸減少的流路剖面積縮小部113。 如此一來,藉由從流路剖面積縮小部113的下游側調節與出口通路110的延伸方向正交之方向的大小(尺寸),在出口通路110的最小流路剖面積SBmin的調節變得容易。因此,只要管理出口通路110的下游側中與出口通路110的延伸方向正交之方向的尺寸,由於可管理冷卻空氣CA的流量,可以使「應確保流路剖面積的精度,亦即通路的尺寸精度的領域」變窄,能抑制分割體51的製造成本。 由於在上游側領域111形成有流路剖面積縮小部113,如稍後所述,藉由從出口通路110的下游端110b朝向上游端110a以三角鑽頭對出口通路110實施機械加工,從下游端110b到上游側之局部區間的內徑成為一定(恆定),該區間成為下游側領域115。因此,能容易在下游側領域115形成最小流路剖面積部117。
在幾個實施形態的分割體51中,出口通路110之內壁面110c的粗度,在出口通路110的流路剖面積成為最小的領域,為複數個冷卻通路60之內壁面60a的粗度以下。亦即,在幾個實施形態的分割體51中,在下游側領域115之內壁面115a的粗度,為複數個冷卻通路60之內壁面60a的粗度以下。 藉由使出口通路110之內壁面110c的粗度形成如以上所述,使在出口通路110的壓力損失的差異變小,因此能提高冷卻空氣CA之流量的調節精度。此外,藉由使出口通路110之內壁面110c的粗度形成如以上所述,使在出口通路110異物的通過變得容易,因此能降低出口通路110堵塞的風險。 在幾個實施形態的分割體51中,在上游側領域111之內壁面111a的粗度,即使未成為複數個冷卻通路60之內壁面60a的粗度以下亦無妨。
舉例來說,在幾個實施形態中,出口通路110的內壁面110c,在下游側領域115,中心線平均粗度Ra具有10μm以下的粗度。此外,在幾個實施形態中,複數個冷卻通路60的內壁面60a,中心線平均粗度Ra具有10μm以上20μm以下的粗度。 根據幾個實施形態的分割體51,由於複數個冷卻通路60的內壁面60a具有上述的粗度,因此能提高冷卻通路60中的冷卻性能。此外,根據幾個實施形態的分割體51,由於在出口通路110之下游側領域115的內壁面115c具有上述的粗度,故能抑制在出口通路110之壓力損失的差異,並且在出口通路110異物變得容易通過,能降低出口通路110堵塞的風險。
在幾個實施形態的分割體51中,形成複數個冷卻通路60的壁部,亦即分隔壁70,在冷卻通路60的下游端65,角部75被施以倒角。 形成複數個冷卻通路60(分歧流路63)的壁部亦即分隔壁70,根據提高導熱性能的觀點,有時將視需要使壁部的厚度盡可能地變小,亦即使分隔壁70之周方向Dc的尺寸盡可能地變小。在這樣的場合中,倘若欲在冷卻通路60(分歧流路63)的下游端65形成「角部75未形成倒角」的形狀,舉例來說,當藉由精密鑄造法和金屬積層成形法來形成分割體51時、和在稍後的熱處理之際,恐有導致該角部的形狀崩壞的疑慮。一旦該角部的形狀崩壞,將對流通於冷卻通路60之冷卻空氣CA的流動帶來不良影響,恐有導致冷卻性能下降的疑慮。 相對於此,根據幾個實施形態的分割體51,由於在冷卻通路60的下游端65,角部75被施以倒角,故能抑制如以上所述「該角部75的形狀崩壞」所帶來的不良影響。
舉例來說,在幾個實施形態中,如圖3~圖5所示,對1個集流管部80連接1個出口通路110。 如以上所述,在冷卻空氣CA之流量的管理上,期待減少「應該確保流路剖面積的精度,亦即通路之尺寸精度」的位置,這一點,根據圖3~圖5所示的幾個實施形態,由於連接於1個集流管部80之出口通路110的數量為1,因此可以減少「應該確保通路之尺寸精度」的位置,能抑制分割體51的製造成本。
(分割體51的製造方法) 以下,針對上述幾個實施形態之分割體51的製造方法進行說明。幾個實施形態的分割體51,譬如可藉由金屬積層成形法和精密鑄造法來製造。圖6為流程圖,顯示利用金屬積層成形法製造幾個實施形態之分割體51時之製造順序的其中一例。幾個實施形態之分割體51的製造方法,具備冷卻通路形成步驟S10、集流管部形成步驟S20、出口通路形成步驟S30、出口通路切削步驟S40。 幾個實施形態之分割體51的形成方法,舉例來說,可以是粉床熔融(Powder bed fusion)方式,可以是金屬沉積(Metal deposition)方式,可以是黏著劑噴塗(binder jet)方式,也可以是上述方式以外的其他方式。在以下的說明中,幾個實施形態之分割體51的形成方法,是針對譬如粉床熔融方式和金屬沉積方式的場合進行說明。
冷卻通路形成步驟S10,是用來形成可供冷卻空氣CA流通之複數個冷卻通路60的步驟。在冷卻通路形成步驟S10中,舉例來說,使原料粉末從軸方向Da上游側朝向軸方向Da下游側積層,形成分割體51直到冷卻通路60的下游端65為止。
集流管部形成步驟S20,是用來形成「複數個冷卻通路的下游端所連接的集流管部」的步驟。在集流管部形成步驟S20中,延續冷卻通路形成步驟S10,使原料粉末從軸方向Da上游側朝向軸方向Da下游側積層,形成分割體51直到集流管部80的下游側內壁部82為止。
出口通路形成步驟S30,是用來形成將已流入集流管部80的冷卻空氣CA朝集流管部80的外部排出之1個以上的出口通路110的步驟。在出口通路形成步驟S30中,延續集流管部形成步驟S20,使原料粉末從軸方向Da上游側朝向軸方向Da下游側積層,形成分割體51直到出口通路110的下游端110b為止。 在出口通路形成步驟S30中,採以下的方式形成出口通路110:含有「出口通路110的流路剖面積朝向下游側逐漸減少的流路剖面積縮小部113」。
圖7,是用來說明稍後所述之出口通路切削步驟S40的圖。在圖7中,是以兩點鏈線來描繪:在出口通路切削步驟S40中利用三角鑽頭19切削出口通路110之前,出口通路110之下游側的形狀及三角鑽頭19。 在幾個實施形態的出口通路形成步驟S30中,採以下的方式形成出口通路110的下游側:使在出口通路110的下游側與「出口通路110的延伸方向」正交之方向的尺寸,小於三角鑽頭19的直徑Dd。亦即,在幾個實施形態的出口通路形成步驟S30中,在實施出口通路切削步驟S40前的出口通路110,採以下的方式形成流路剖面積縮小部113:使在流路剖面積縮小部113的最下游側與「出口通路110的延伸方向」正交之方向的尺寸M,小於三角鑽頭19的直徑Dd。
出口通路切削步驟S40,是對出口通路110之內壁面110c的至少一部分實施機械加工的步驟。具體地說,出口通路切削步驟S40,是利用三角鑽頭19切削出口通路110的步驟。在出口通路切削步驟S40中,從出口通路110的下游端110b朝向上游端110a,利用三角鑽頭19對出口通路110實施機械加工。藉此,從下游端110b到上游側之局部區間的內徑成為一定(恆定),該區間成為下游側領域115。
冷卻通路形成步驟S10及集流管部形成步驟S20,並沒有必須藉由金屬積層成形法來實施的必要,也可以藉由精密鑄造法來實施。然後,亦可藉由金屬積層成形法來實施出口通路形成步驟S30。此外,從冷卻通路形成步驟S10到出口通路形成步驟S30,亦可藉由精密鑄造法來實施。
在幾個實施形態的分割體51的製造方法中,採以下的方式形成分割體51:連接於1個集流管部80之出口通路110的數量,少於連接於1個集流管部80之複數個冷卻通路60的數量。 此外,在幾個實施形態的分割體51的製造方法中,採以下的方式形成分割體51:出口通路110的最小流路剖面積SBmin,成為在集流管部80與冷卻通路間60之連接部67處的複數個冷卻通路60(分歧流路63)之各個的流路剖面積SA以上。 不僅如此,在幾個實施形態的分割體51的製造方法中,採以下的方式形成分割體51:出口通路110的最小流路剖面積SBmin,小於「連接於1個集流管部80之複數個冷卻通路間60(分歧流路63)的連接部67之各個流路剖面積SA的總和ΣSA」。
在以「2個以上的出口通路110連接於1個集流管部80」的方式形成分割體51的場合中,採以下的方式形成分割體51:接於1個集流管部80的出口通路110之各個最小流路剖面積SBmin,成為在連接部67的複數個冷卻通路60之各個流路剖面積SA以上。 此外,在以「2個以上的出口通路110連接於1個集流管部80」的方式形成分割體51的場合中,採以下的方式形成分割體51:連接於1個集流管部80的出口通路110之各個最小流路剖面積SBmin的總和ΣSBmin,小於在「連接於1個集流管部80的複數個冷卻通路60之連接部67」的各個流路剖面積SA的總和ΣSA。
根據幾個實施形態之分割體51的製造方法,由於1個以上的出口通路110之各個最小流路剖面積SBmin的總和ΣSBmin,小於「在連接部67的複數個冷卻通路60之各個流路剖面積SA」的總和ΣSA,因此,可藉由出口通路110的最小流路剖面積SBmin,規定複數個冷卻通路60中冷卻空氣CA的流量。藉此,在複數個冷卻通路60的每一個,不必為了調整冷卻空氣CA的流量而使流路剖面積SA縮小至必須值以下,因此,可提高冷卻通路60的尺寸精度,能抑制複數個冷卻通路60彼此之冷卻空氣CA的流量差異。因此,能抑制過度的冷卻,且冷卻能力不會不足。 此外,根據幾個實施形態之分割體51的製造方法,由於1個以上的出口通路110之各個最小流路剖面積SBmin,可形成「在連接部67的複數個冷卻通路60之各個流路剖面積SA」以上,因此,容易確保出口通路110的尺寸精度,並且在出口通路110不容易引起異物堵塞。 不僅如此,根據幾個實施形態之分割體51的製造方法,由於1個以上的出口通路110的數量低於複數個冷卻通路60的數量,因此在冷卻空氣CA之流量的管理上,可以減少「應該確保流路剖面積的精度,亦即通路之尺寸精度」的位置,能抑制分割體51的製造成本。
根據幾個實施形態之分割體51的製造方法,藉由以「在流路剖面積縮小部113具有出口通路110的最小流路剖面積」的方式形成出口通路110,在冷卻空氣CA之流量的管理上,只需在流路剖面積縮小部113管理最下游側之領域的尺寸精度即可。因此,可以使「應確保流路剖面積的精度,亦即通路的尺寸精度的領域」變窄,能抑制分割體51的製造成本。
根據幾個實施形態之分割體51的製造方法,相較於僅藉由機械加工來形成出口通路110的場合,能抑制分割體51的製造成本。此外,根據幾個實施形態之分割體51的製造方法,相較於僅藉由金屬積層成形法或者精密鑄造法形成出口通路110的場合,能提高出口通路110之內壁面110c的尺寸精度,並能提高冷卻空氣CA之流量的調節精度。不僅如此,根據幾個實施形態之分割體51的製造方法,由於出口通路110之內壁面110c的尺寸可於確認冷卻空氣CA的流量時調節,因此能抑制冷卻空氣CA之流量的過多或不足。
根據幾個實施形態之分割體51的製造方法,由於可藉由三角鑽頭19的直徑Dd來規定出口通路110之內壁面110c的尺寸,更具體地說,由於可規定最小流路剖面積部117的內徑Di,因此分割體51的製造變的容易。
藉由實施幾個實施形態之分割體51的製造方法,能調整分割體51中冷卻空氣CA的流量。亦即,上述幾個實施形態的分割體51中冷卻空氣CA的流量調節方法,具備冷卻通路形成步驟S10、集流管部形成步驟S20、出口通路形成步驟S30、出口通路切削步驟S40。 根據幾個實施形態之冷卻空氣CA的流量調節方法,由於可藉由三角鑽頭19的直徑Dd來規定出口通路110之內壁面110c的尺寸(最小流路剖面積部117的內徑Di),因此冷卻空氣CA的流量調節變得容易。因此,容易形成:能抑制過度的冷卻,且不會形成冷卻能力不足。
在幾個實施形態之冷卻空氣CA的流量調節方法中,於冷卻通路形成步驟S10,形成複數個冷卻通路群6所含有的各個冷卻通路60。 此外,在幾個實施形態之冷卻空氣CA的流量調節方法中,於集流管部形成步驟S20,形成複數個冷卻通路群6所含有的各個集流管部80。 在幾個實施形態之冷卻空氣CA的流量調節方法中,於出口通路形成步驟S30,形成複數個冷卻通路群6所含有的各個出口通路110。 在幾個實施形態之冷卻空氣CA的流量調節方法中,於出口通路切削步驟S40,藉由三角鑽頭19,對複數個冷卻通路群6所含有的各個出口通路110進行切削。 如此一來,由於可藉由三角鑽頭19的直徑Dd來規定各出口通路110之內壁面110c的尺寸(最小流路剖面積部117的內徑Di),因此容易抑制複數個冷卻通路群6彼此之冷卻空氣CA的流量差異。
本發明並不侷限於上述的實施形態,也包含對上述的實施形態加入變形設計、和將這些形態予以適當地組合的形態。 舉例來說,雖然在上述的幾個實施形態中,對於需要由冷卻媒體冷卻的高溫零件,列舉了分割環50作為例子並加以說明,但是本發明並不侷限於此,也能適用於燃燒器12、轉子葉片41(譬如載台45)、定子葉片21(譬如內側圍板25和外側圍板27)等的其他高溫零件。此外,可適用本發明的高溫零件,並不限定於燃氣渦輪機10中的構成零件,也可以是渦輪增壓機(turbocharger)等燃氣渦輪機10以外的渦輪機械中的構造零件。
6:冷卻通路群 10:燃氣渦輪機 12:燃燒器 13:渦輪機(turbine) 21:渦輪機定子葉片(定子葉片) 41:渦輪機轉子葉片(轉子葉片) 50:分割環 51:分割體 52:本體 52b:外表面(被加熱面) 60:軸方向通路(冷卻通路) 63:分歧流路 65:下游端 67:連接部 70:分隔壁 80:集流管部 81:上游側內壁部 82:下游側內壁部 110:出口通路 111:上游側領域 113:流路剖面積縮小部 115:下游側領域 117:最小流路剖面積部
[圖1]:為顯示燃氣渦輪機之整體構造的概略圖。 [圖2]:為顯示渦輪機之氣體流路的剖面圖。 [圖3]:從徑向外側觀看幾個實施形態之分割體的示意俯視圖、以及沿著周方向從轉子之轉動方向下游側朝向轉動方向上游側所見的示意側視圖。 [圖4]:為圖3中A4-A4箭號視角剖面圖。 [圖5]:為圖4中集流管部附近的放大圖。 [圖6]:為流程圖,顯示利用金屬積層成形法製造幾個實施形態之分割體時之製造順序的其中一例。 [圖7]:是用來說明出口通路切削步驟的圖。
6:冷卻通路群
50:分割環
51:分割體
52:本體
53:下游側端部
55:冷卻空氣分歧裝置
60:軸方向通路(冷卻通路)
63:分歧流路
65:下游端
70:分隔壁
80:集流管部
81:上游側內壁部
82:下游側內壁部
110:出口通路
CA:冷卻空氣
Da:軸方向
Dc:周方向
R:轉動方向

Claims (13)

  1. 一種高溫零件,是用於渦輪機械,且需要由冷卻媒體冷卻的高溫零件,具備:複數個冷卻通路,可供前述冷卻媒體流通;和集流管部,連接著前述複數個冷卻通路的下游端;和1個以上的出口通路,用來將已流入前述集流管部的前述冷卻媒體朝前述集流管部的外部排出,前述1個以上的出口通路的數量,低於前述複數個冷卻通路的數量,前述1個以上的出口通路之各個最小流路剖面積,為在前述集流管部與前述冷卻通路間之連接部處的前述複數個冷卻通路之各個流路剖面積以上,前述1個以上的出口通路之各個最小流路剖面積的總和,小於:在前述集流管部與前述冷卻通路間之連接部處的前述複數個冷卻通路之各個流路剖面積的總和,前述1個以上的出口通路的內壁面,是在前述出口通路的流路剖面積成為最小的領域中,中心線平均粗度Ra具有10μm以下的粗度,前述複數個冷卻通路的內壁面,中心線平均粗度Ra具有10μm以上20μm以下的粗度。
  2. 一種高溫零件,是用於渦輪機械,且需要由冷卻媒體冷卻的高溫零件,具備: 複數個冷卻通路,可供前述冷卻媒體流通;和集流管部,連接著前述複數個冷卻通路的下游端;和1個以上的出口通路,用來將已流入前述集流管部的前述冷卻媒體朝前述集流管部的外部排出,前述1個以上的出口通路的數量,低於前述複數個冷卻通路的數量,前述1個以上的出口通路之各個最小流路剖面積,為在前述集流管部與前述冷卻通路間之連接部處的前述複數個冷卻通路之各個流路剖面積以上,前述1個以上的出口通路之各個最小流路剖面積的總和,小於:在前述集流管部與前述冷卻通路間之連接部處的前述複數個冷卻通路之各個流路剖面積的總和,前述高溫零件,是複數個分割體沿著周方向配設成環狀所構成之燃氣渦輪機的分割環,前述複數個分割體,分別具有面向可供燃燒氣體流動之燃燒氣體流路的內表面,前述複數個冷卻通路,形成於前述複數個分割體的各個內部,前述1個以上的出口通路,在前述複數個分割體中的各個軸方向的下游側端部,朝向前述燃燒氣體中形成開口。
  3. 如請求項1或請求項2所記載的高溫零件,其中在前述集流管部的上游側內壁部與下游側內壁部之間的分離距離,是在前述出口通路的流路剖面積成為最 小的領域中之等效直徑的1倍以上3倍以下。
  4. 如請求項1或請求項2所記載的高溫零件,其中前述1個以上的出口通路含有:前述出口通路的流路剖面積朝向下游側逐漸減少的流路剖面積縮小部。
  5. 如請求項1或請求項2所記載的高溫零件,其中形成前述複數個冷卻通路的壁部,在前述冷卻通路的下游端,角部被施以倒角。
  6. 如請求項1或請求項2所記載的高溫零件,其中前述出口通路的數量為1。
  7. 一種高溫零件,是用於渦輪機械,且需要由冷卻媒體冷卻的高溫零件,具備:複數個冷卻通路,可供前述冷卻媒體流通;和集流管部,連接著前述複數個冷卻通路的下游端;和1個以上的出口通路,用來將已流入前述集流管部的前述冷卻媒體朝前述集流管部的外部排出,前述複數個冷卻通路,其長度尺寸比前述集流管部長,前述1個以上的出口通路的數量,低於前述複數個冷卻通路的數量,前述1個以上的出口通路之各個最小流路剖面積,為在前述集流管部與前述冷卻通路間之連接部處的前述複數個冷卻通路之各個流路剖面積以上,前述1個以上的出口通路之各個最小流路剖面積的總 和,小於:在前述集流管部與前述冷卻通路間之連接部處的前述複數個冷卻通路之各個流路剖面積的總和。
  8. 一種高溫零件的製造方法,是用於渦輪機械,且需要由冷卻媒體冷卻的高溫零件的製造方法,具備:用來形成可供前述冷卻媒體流通之複數個冷卻通路的步驟;和用來形成可供前述複數個冷卻通路的下游端連接之集流管部的步驟;和用來形成將已流入前述集流管部的前述冷卻媒體朝前述集流管部的外部排出之1個以上的出口通路的步驟,前述複數個冷卻通路,其長度尺寸比前述集流管部長,前述1個以上的出口通路的數量,低於前述複數個冷卻通路的數量,前述1個以上的出口通路之各個最小流路剖面積,為在前述集流管部與前述冷卻通路間之連接部處,前述複數個冷卻通路之各個流路剖面積以上,前述1個以上的出口通路之各個最小流路剖面積的總和,小於:在前述集流管部與前述冷卻通路間之連接部處,前述複數個冷卻通路之各個流路剖面積的總和。
  9. 如請求項8所記載之高溫零件的製造方法,其中用來形成前述1個以上的出口通路的步驟,採下述方式形成前述1個以上的出口通路:含有前述出口通路 的流路剖面積朝向下游側逐漸減少的流路剖面積縮小部。
  10. 如請求項8或請求項9所記載之高溫零件的製造方法,其中用來形成前述1個以上的出口通路的步驟,是藉由金屬積層成形法或者精密鑄造法,形成前述1個以上的出口通路,並更進一步具備:對前述1個以上的出口通路之內壁面的至少一部分實施機械加工的步驟。
  11. 如請求項10所記載之高溫零件的製造方法,其中用來實施前述機械加工的步驟,是藉由鑽頭來切削前述1個以上的出口通路。
  12. 一種流量調節方法,是流動於用於渦輪機械且需要冷卻媒體的冷卻之高溫零件的內部之前述冷卻媒體的流量調節方法,具備:用來形成可供前述冷卻媒體流通之複數個冷卻通路的步驟;和用來形成可供前述複數個冷卻通路的下游端連接之集流管部的步驟;和藉由金屬積層成形法或者精密鑄造法,形成將已流入前述集流管部的前述冷卻媒體朝前述集流管部的外部排出之1個以上的出口通路的步驟;及藉由鑽頭來切削前述1個以上的出口通路的步驟,前述藉由鑽頭來切削前述1個以上的出口通路的步驟,包含:確認前述冷卻媒體之流量的同時,調整前述出 口通路之內壁面的尺寸的步驟。
  13. 如請求項12所記載的流量調節方法,其中前述高溫零件含有複數個冷卻通路群,該冷卻通路群含有:1個前述集流管部、下游端連接於該集流管部之至少2個以上的前述冷卻通路、連接於該集流管部之1個以上的前述出口通路,用來形成前述複數個冷卻通路的步驟,形成前述複數個冷卻通路群所含有的各個前述冷卻通路,用來形成前述集流管部的步驟,形成前述複數個冷卻通路群所含有的各個前述集流管部,用來形成前述1個以上的出口通路的步驟,形成前述複數個冷卻通路群所含有的各個前述出口通路,藉由鑽頭來切削前述1個以上的出口通路的步驟,藉由鑽頭切削前述複數個冷卻通路群所含有的各個前述出口通路。
TW109105683A 2019-03-29 2020-02-21 高溫零件、高溫零件的製造方法及流量調節方法 TWI767191B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065811A JP6636668B1 (ja) 2019-03-29 2019-03-29 高温部品、高温部品の製造方法及び流量調節方法
JP2019-065811 2019-03-29

Publications (2)

Publication Number Publication Date
TW202039995A TW202039995A (zh) 2020-11-01
TWI767191B true TWI767191B (zh) 2022-06-11

Family

ID=69183756

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109105683A TWI767191B (zh) 2019-03-29 2020-02-21 高溫零件、高溫零件的製造方法及流量調節方法

Country Status (7)

Country Link
US (1) US11702944B2 (zh)
JP (1) JP6636668B1 (zh)
KR (1) KR102546850B1 (zh)
CN (1) CN113474545B (zh)
DE (1) DE112020000728T5 (zh)
TW (1) TWI767191B (zh)
WO (1) WO2020202863A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115096031B (zh) * 2022-05-11 2024-01-26 北京华卓精科科技股份有限公司 一种光刻设备中的硅片承载装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050173388A1 (en) * 2002-06-12 2005-08-11 Fergus Lavers Method of producing a composite component
US20060140753A1 (en) * 2004-12-29 2006-06-29 United Technologies Corporation Blade outer seal with micro axial flow cooling system
CN1800588A (zh) * 2004-11-02 2006-07-12 联合工艺公司 带有三通路弯曲冷却通道和微型回路的翼型
CN103953396A (zh) * 2012-12-13 2014-07-30 诺沃皮尼奥内股份有限公司 涡轮机空心叶片、涡轮机以及相关的制造方法
CN104684667A (zh) * 2012-10-08 2015-06-03 西门子公司 使用多种材料的涡轮机部件的添加制造

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963349A1 (de) * 1999-12-27 2001-06-28 Abb Alstom Power Ch Ag Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante
DE19963377A1 (de) * 1999-12-28 2001-07-12 Abb Alstom Power Ch Ag Turbinenschaufel mit aktiv gekühltem Deckbandelement
US6779597B2 (en) * 2002-01-16 2004-08-24 General Electric Company Multiple impingement cooled structure
JP2003214185A (ja) * 2002-01-22 2003-07-30 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器冷却構造およびガスタービン
JP2003214184A (ja) 2002-01-28 2003-07-30 Jfe Steel Kk ガスタービンおよびその運転方法
EP1789654B1 (de) * 2004-09-16 2017-08-23 General Electric Technology GmbH Strömungsmaschinenschaufel mit fluidisch gekühltem deckband
JP2008274774A (ja) * 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器およびガスタービン
US8057177B2 (en) * 2008-01-10 2011-11-15 General Electric Company Turbine blade tip shroud
US8317461B2 (en) * 2008-08-27 2012-11-27 United Technologies Corporation Gas turbine engine component having dual flow passage cooling chamber formed by single core
JP4634528B1 (ja) * 2010-01-26 2011-02-23 三菱重工業株式会社 分割環冷却構造およびガスタービン
US8727704B2 (en) * 2010-09-07 2014-05-20 Siemens Energy, Inc. Ring segment with serpentine cooling passages
JP5281685B2 (ja) * 2011-10-31 2013-09-04 三菱重工業株式会社 ガスタービン燃焼器およびガスタービン
US8650521B1 (en) 2011-12-01 2014-02-11 The Florida State University Research Foundation, Inc. Dendritic cooling layer generator and method of fabrication
JP2013240845A (ja) * 2012-05-18 2013-12-05 Toshiba Corp リーマ加工機、リーマ加工方法および蒸気タービンの製造方法
US9416662B2 (en) 2013-09-03 2016-08-16 General Electric Company Method and system for providing cooling for turbine components
US10294799B2 (en) * 2014-11-12 2019-05-21 United Technologies Corporation Partial tip flag
WO2017056997A1 (ja) * 2015-09-29 2017-04-06 三菱日立パワーシステムズ株式会社 動翼及びこれを備えるガスタービン
WO2017077955A1 (ja) 2015-11-05 2017-05-11 三菱日立パワーシステムズ株式会社 燃焼用筒、ガスタービン燃焼器及びガスタービン
US20170175574A1 (en) * 2015-12-16 2017-06-22 General Electric Company Method for metering micro-channel circuit
US10480322B2 (en) * 2018-01-12 2019-11-19 General Electric Company Turbine engine with annular cavity
US10550710B2 (en) * 2018-05-31 2020-02-04 General Electric Company Shroud for gas turbine engine
US10738651B2 (en) * 2018-05-31 2020-08-11 General Electric Company Shroud for gas turbine engine
US10989070B2 (en) * 2018-05-31 2021-04-27 General Electric Company Shroud for gas turbine engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050173388A1 (en) * 2002-06-12 2005-08-11 Fergus Lavers Method of producing a composite component
CN1800588A (zh) * 2004-11-02 2006-07-12 联合工艺公司 带有三通路弯曲冷却通道和微型回路的翼型
US20060140753A1 (en) * 2004-12-29 2006-06-29 United Technologies Corporation Blade outer seal with micro axial flow cooling system
CN104684667A (zh) * 2012-10-08 2015-06-03 西门子公司 使用多种材料的涡轮机部件的添加制造
CN103953396A (zh) * 2012-12-13 2014-07-30 诺沃皮尼奥内股份有限公司 涡轮机空心叶片、涡轮机以及相关的制造方法

Also Published As

Publication number Publication date
CN113474545B (zh) 2023-10-31
KR20210109026A (ko) 2021-09-03
DE112020000728T5 (de) 2021-11-04
JP6636668B1 (ja) 2020-01-29
KR102546850B1 (ko) 2023-06-23
CN113474545A (zh) 2021-10-01
WO2020202863A1 (ja) 2020-10-08
JP2020165359A (ja) 2020-10-08
US20220049612A1 (en) 2022-02-17
US11702944B2 (en) 2023-07-18
TW202039995A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
TWI737187B (zh) 高溫零件及高溫零件的製造方法
RU2426890C2 (ru) Система входных направляющих лопастей для газотурбинного двигателя
JP5947519B2 (ja) タービンロータブレードのプラットフォーム領域を冷却するための装置及び方法
EP3318720B1 (en) Cooled structure for a gas turbine, corresponding gas turbine and method of making a cooled structure
US11339669B2 (en) Turbine blade and gas turbine
CN108019240B (zh) 燃气涡轮及其被冷却结构
TWI767191B (zh) 高溫零件、高溫零件的製造方法及流量調節方法
JP2021156284A (ja) ターボ機械構成要素用の冷却回路
TWI761254B (zh) 高溫零件及高溫零件的製造方法
US10830072B2 (en) Turbomachine airfoil
JP2022104882A (ja) ターボ機械構成要素のためのバイパス導管を有する冷却回路
CN117157452A (zh) 翼型件以及方法