TWI761254B - 高溫零件及高溫零件的製造方法 - Google Patents

高溫零件及高溫零件的製造方法 Download PDF

Info

Publication number
TWI761254B
TWI761254B TW110125088A TW110125088A TWI761254B TW I761254 B TWI761254 B TW I761254B TW 110125088 A TW110125088 A TW 110125088A TW 110125088 A TW110125088 A TW 110125088A TW I761254 B TWI761254 B TW I761254B
Authority
TW
Taiwan
Prior art keywords
passage
cooling
inclined portion
cooling passage
partition wall
Prior art date
Application number
TW110125088A
Other languages
English (en)
Other versions
TW202138673A (zh
Inventor
飯田耕一郎
脇田祥成
徳武太郎
谷川秀次
伊藤竜太
Original Assignee
日商三菱動力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱動力股份有限公司 filed Critical 日商三菱動力股份有限公司
Publication of TW202138673A publication Critical patent/TW202138673A/zh
Application granted granted Critical
Publication of TWI761254B publication Critical patent/TWI761254B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/40Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • F02K9/64Combustion or thrust chambers having cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/204Heat transfer, e.g. cooling by the use of microcircuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)

Abstract

其中一個實施形態的高溫零件,是需要由冷卻媒體冷卻的高溫零件,具備「前述冷卻媒體可流通的複數個冷卻通路」、「設於各個前述冷卻通路內,將前述冷卻通路分隔成複數個第1分歧流路」的第1分隔壁,前述第1分隔壁含有傾斜部,該傾斜部形成:在前述第1分隔壁的上游側領域,當從前述冷卻通路的延伸方向觀看時,前述冷卻通路的流路剖面積從上游側朝下游側逐漸減少。

Description

高溫零件及高溫零件的製造方法
本發明關於高溫零件及高溫零件的製造方法。
舉例來說,燃氣渦輪機和火箭引擎等高溫作動氣體流動於內部的機械,構成該機械的零件含有:需要「冷卻媒體所形成之冷卻」的高溫零件。作為這種高溫零件的冷卻構造,已知有:在零件的內部,藉由使冷卻空氣流通於「可供冷卻空氣流通的複數個配送通道(冷卻通路)」,而執行高溫零件的冷卻(譬如,請參考專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2015-48848號公報
[發明欲解決之問題]
流通於冷卻通路的冷卻空氣(冷卻媒體),藉由「從冷卻通路的內壁面所傳達的熱(量)」,越朝向冷卻通路的下游側流動,溫度越上升。因此,越朝向冷卻通路的下游側,內壁面與冷卻媒體之間的溫度差變小而導熱量下降,冷卻能力下降。因此,舉例來說,倘若藉由增加冷卻媒體的流通量,使冷卻能力在冷卻通路的下游側不致於不足,反而在冷卻通路的上游側,導致冷卻能力過剩。 如同燃氣渦輪機和火箭引擎等藉由高溫的作動氣體而作動的機械,一般來說,過度的冷卻將導致機械的熱效率低落。因為這緣故,期待能抑制過度的冷卻,且不會形成冷卻能力不足。
有鑑於上述的情事,本發明的至少一種實施形態,其目的為提供:能抑制過度的冷卻,且不會冷卻能力不足的高溫零件。 [解決問題之手段]
(1)本發明的至少其中一種實施形態的高溫零件, 是需要由冷卻媒體冷卻的高溫零件,具備: 複數個冷卻通路,可供前述冷卻媒體流通;及 第1分隔壁,設於各個前述冷卻通路內,將前述冷卻通路分隔成複數個第1分歧流路, 前述第1分隔壁含有傾斜部,該傾斜部形成:在前述第1分隔壁的上游側領域,從前述冷卻通路的延伸方向觀看時,前述冷卻通路的流路剖面積從上游側朝向下游側逐漸減少。
根據上述(1)的構造,藉由將第1分隔壁設於冷卻通路內,能縮小「從冷卻通路的延伸方向觀看時,冷卻通路的流路剖面積」。藉此,流動於冷卻通路之冷卻媒體的流速,相較於「未設有第1分隔壁的區間,亦即比第1分歧流路更上游側的區間」,「設有第1分隔壁的區間,亦即第1分歧流路」更快。因此,能使對第1分歧流路中冷卻媒體的熱傳達率,大於「較第1分歧流路更上游側的區間」。 此外,藉由將第1分隔壁設於冷卻通路內,能使「複數個第1分歧流路中,每個單位區間的複數個第1分歧流路之內壁面的面積」的合計面積,大於「較第1分歧流路更上游側的區間中,每個單位長度的冷卻通路之內壁面的面積」。 如此一來,在較第1分歧流路更上游側的區間能抑制過度的冷卻,即使在第1分歧流路中,越往下游側冷卻媒體的溫度便上升,也不會形成冷卻能力不足。
倘若冷卻通路的流路剖面積從上游側朝下游側急遽地減少,從流路剖面積急遽減少前(上游側)的區間,到急遽減少後(下游側)的區間,恐將產生:對冷卻媒體的熱傳達率急遽增加,高溫零件的溫度急遽下降的領域。此外,倘若每個單位長度的冷卻通路之內壁面的面積從上游側朝下游側急遽地增加,從內壁面的面積急遽增加前(上游側)的區間,到急遽增加後(下游側)的區間,恐將產生:對冷卻媒體的導熱量急遽增加,高溫零件的溫度急遽下降的領域。 倘若在高溫零件產生「因場所的不同,溫度劇烈變化」的領域,熱應力將變大,恐對高溫零件的耐久性帶來不良影響。此外,因為過度冷卻也可能導致熱效率下降。 這一點,根據上述(1)的構造,在冷卻通路形成有傾斜部的區間,冷卻通路的流路剖面積從上游側朝下游側逐漸減少。如此一來,抑制「冷卻通路的流路剖面積從上游側朝下游側急遽減少」及「每個單位長度的冷卻通路之內壁面的面積,從上游側朝下游側急遽增加」,並能抑制如以上所述的「對冷卻媒體的熱傳達率和導熱量的急遽增加」。因此,可以抑制「高溫零件的溫度急遽地下降」的領域產生,不會損及高溫零件的耐久性。此外,能抑制因為過度冷卻所導致熱效率下降。
(2)幾個實施形態,在上述(1)的構造中, 各個前述冷卻通路,由前述第1分隔壁,在前述冷卻通路的寬度方向,分隔成一對前述第1分歧流路, 各個前述第1分歧流路,在前述寬度方向中,在鄰接於前述第1分隔壁之前述傾斜部的前述第1分歧流路的上游端領域,正交於前述寬度方向的前述冷卻通路之高度方向的尺寸Hp,形成朝向下游側逐漸增加。
根據上述(2)的構造,可在第1分歧流路的上游端領域,逐漸增加流路剖面積。如此一來,可抑制「因設置第1分隔壁所衍生之流路剖面積的減少」,並能抑制如以上所述的「對冷卻媒體的熱傳達率的急遽增加」。
(3)幾個實施形態,在上述(1)或(2)的構造中, 各個前述冷卻通路,由前述第1分隔壁,在前述冷卻通路的寬度方向,分隔成一對前述第1分歧流路, 各個前述第1分歧流路,至少在較前述傾斜部更下游側,含有「正交於前述寬度方向的前述冷卻通路之高度方向的尺寸Hp,朝向下游側逐漸減少」的流路高度縮小部。
根據上述(3)的構造,可在流路高度縮小部,逐漸減少流路剖面積。如此一來,由於在流路高度縮小部可逐漸增加冷卻媒體的流速,亦即熱傳達率,因此在流路高度縮小部,即使越往下游側冷卻媒體的溫度上升,也不會形成冷卻能力不足。
(4)幾個實施形態,在上述(3)的構造中,在前述冷卻通路的前述延伸方向中,前述流路高度縮小部與前述傾斜部,至少一部分形成重疊(overlap)。
根據上述(4)的構造,在流路高度縮小部與傾斜部形成重疊的區間,相較於流路高度縮小部與傾斜部未形成重疊的區間,可加大「冷卻通路中每個單位長度的流路剖面積的減少率」。因此,在需要更進一步冷卻的領域,藉由設置流路高度縮小部與傾斜部形成重疊的區間,能確保必要的冷卻能力。
(5)幾個實施形態,在上述(3)或(4)的構造中, 形成前述流路高度縮小部的前述第1分歧流路的內壁面,具有對前述冷卻通路的前述延伸方向形成傾斜的傾斜壁面, 前述傾斜部對前述冷卻通路之前述延伸方向的傾斜角度,大於前述傾斜壁面對前述延伸方向的傾斜角度。
舉例來說,在藉由金屬積層成形法和精密鑄造法來製作高溫零件的場合中,一旦傾斜部對冷卻通路之延伸方向的傾斜角度變小,在傾斜部,於指向「與冷卻通路的延伸方向交叉的方向」的前端部與「冷卻通路的壁面」之間的間隙變小的領域,間隙的確保變得困難,因此,難以精確地形成傾斜部。 相對於此,由於必須使冷卻媒體流動於流路高度縮小部,故即使是流路高度縮小部中最下游側的領域,傾斜壁面,從與該傾斜壁面相對向的壁面,形成一定程度以上的分離。因此,舉例來說,即使是藉由金屬積層成形法和精密鑄造法來製作高溫零件的場合,傾斜壁面對冷卻通路之延伸方向的傾斜角度,假設即使為0度,也可能形成流路高度縮小部。 根據上述(5)的構造,由於傾斜部對冷卻通路之延伸方向的傾斜角度,大於傾斜壁面對冷卻通路之延伸方向的傾斜角度,因此,譬如在藉由金屬積層成形法或精密鑄造法來製作高溫零件的場合中,能容易且精確地形成傾斜部。
(6)幾個實施形態,在上述(1)至(5)的任一個構造中, 各個前述冷卻通路,由前述第1分隔壁,在前述冷卻通路的寬度方向,分隔成一對前述第1分歧流路, 前述傾斜部形成:正交於前述寬度方向的前述冷卻通路之高度方向中的尺寸Ht,朝向下游側逐漸增加。
上述(6)的構造,「沿著冷卻通路中冷卻媒體之流動的區間」之中,在設有傾斜部的區間,於高度方向相對向的一對內壁面(一對通路內壁面)之中,其中一個通路內壁面與傾斜部連接,另一個通路內壁面,在與傾斜部之間具有(存在)間隙。因此,在設有傾斜部的區間,藉由其中一個通路內壁面與另一個通路內壁面,容易形成冷卻媒體所帶來的冷卻,亦即冷卻能力產生差異。因此,根據上述(6)的構造,考慮上述冷卻能力的差異來決定高溫零件中傾斜部的配置,藉此能抑制高溫零件所要求之冷卻能力的過剩與不足。
(7)幾個實施形態,在上述(6)的構造中, 前述高溫零件,在前述冷卻通路之前述高度方向中的其中一側具有被加熱面, 前述傾斜部,為了形成前述冷卻通路,在前述高度方向相對向的一對通路內壁面之中,從離前述高溫零件之前述被加熱面較近的第1通路內壁面朝向第2通路內壁面豎起設置。
上述(7)的構造,「沿著冷卻通路中冷卻媒體之流動的區間」之中,在設有傾斜部的區間,第1通路內壁面與傾斜部連接,第2通路內壁面,在與傾斜部之間具有(存在)間隙。因此,相較於第2通路內壁面,能提高第1通路內壁面的冷卻能力。此外,第1通路內壁面,是在高度方向相對向的一對通路內壁面中,離被加熱面較近的通路內壁面。因此,根據上述(7)的構造,來自被加熱面的熱量能有效率地傳達至冷卻媒體,可抑制第1通路內壁面的過熱。
(8)幾個實施形態,在上述(6)的構造中, 前述高溫零件,在前述冷卻通路之前述高度方向中的其中一側具有被加熱面, 前述傾斜部,為了形成前述冷卻通路,在前述高度方向相對向的一對通路內壁面之中,從離前述高溫零件之前述被加熱面較遠的第2通路內壁面朝向第1通路內壁面豎起設置。
上述(8)的構造,「沿著冷卻通路中冷卻媒體之流動的區間」之中,在設有傾斜部的區間,第2通路內壁面與傾斜部連接,第1通路內壁面,在與傾斜部之間具有(存在)間隙。因此,相較於第2通路內壁面,能抑制第1通路內壁面的冷卻能力。此外,第2通路內壁面,是在高度方向相對向的一對通路內壁面中,遠被加熱面較遠的通路內壁面。亦即,第1通路內壁面,是在高度方向相對向的一對通路內壁面中,離被加熱面較近的通路內壁面。因此,根據上述(8)的構造,能抑制來自被加熱面的熱量傳達至冷卻媒體,可抑制第1通路內壁面的過度冷卻。
(9)幾個實施形態,在上述(6)至(8)的任一個構造中,前述傾斜部對前述冷卻通路之延伸方向的傾斜角度,為45度以下。
根據上述(9)的構造,藉由使傾斜部的傾斜角度形成45度以下,可抑制「冷卻通路的流路剖面積,從上游側朝下游側急遽減少」的情形,因此能抑制對冷卻媒體之熱傳達率的急遽增加。因此,可以抑制「高溫零件的溫度急遽地下降」的領域產生,不會損及高溫零件的耐久性。 此外,只要高溫零件是藉由金屬積層成形法所形成,在從冷卻通路的上游側朝下游側積層所形成的場合中,可將傾斜部的伸出(overhang)角度抑制於45度以下,因此能精確地形成傾斜部。
(10)幾個實施形態,在上述(1)至(5)的任一個構造中, 各個前述冷卻通路,由前述第1分隔壁,在前述冷卻通路的寬度方向,分隔成一對前述第1分歧流路, 前述傾斜部形成:前述寬度方向的尺寸Wt,朝向下游側逐漸增加。
上述(10)的構造,「沿著冷卻通路中冷卻媒體之流動的區間」之中,在設有傾斜部的區間,於正交於寬度方向的高度方向相對向的一對內壁面(一對通路內壁面)的雙方,可形成皆與傾斜部連接。因此,在設有傾斜部的區間,藉由其中一個通路內壁面與另一個通路內壁面,容易形成冷卻媒體所帶來的冷卻,亦即冷卻能力產生差異。因此,上述(10)的構造,適合以下的場合:不期望藉由其中一個通路內壁面與另一個通路內壁面,對冷卻能力產生差異。
(11)幾個實施形態,在上述(1)至(10)的任一個構造中,更進一步具備:在前述第1分隔壁的下游側,設於前述第1分歧流路內,從途中將前述第1分歧流路分隔成複數個第2分歧流路的第2分隔壁。
根據上述(11)的構造,藉由從途中將第1分歧流路分隔成複數個第2分歧流路可增加分歧的段數,能加大冷卻能力的調整幅度。
(12)幾個實施形態,在上述(1)至(11)的任一個構造中,連結於「前述傾斜部中前述第1分隔壁之側面」的前述傾斜部的上游端部,其角部被施以倒角。
根據上述(12)的構造,可抑制:形成有傾斜部的領域中冷卻通路的壓力損失。
(13)幾個實施形態,在上述(1)至(12)的任一個構造中, 前述高溫零件,在前述冷卻通路之高度方向中的其中一側具有被加熱面, 為了形成前述冷卻通路,在前述高度方向相對向的一對通路內壁面之中,離前述被加熱面較近的第1通路內壁面,對前述被加熱面形成傾斜,使前述第1通路內壁面與前述被加熱面之間的距離,從前述冷卻通路的上游側朝向下游側變小。
根據上述(13)的構造,由於被加熱面與第1通路內壁面之間的距離,從冷卻通路的上游側朝下游側變小,因此,在冷卻通路的上游側的區間能抑制過度的冷卻,即使在冷卻通路中,冷卻媒體越往下游側則溫度上升,也不會形成冷卻能力不足。
(14)本發明的至少其中一種實施形態之高溫零件的製造方法, 是需要由冷卻媒體冷卻的高溫零件的製造方法,具備: 藉由金屬積層成形法,將前述冷卻媒體可流通的複數個冷卻通路,形成於前述高溫零件的內部,並形成「設於各個前述冷卻通路內,將前述冷卻通路分隔成複數個第1分歧流路」的第1分隔壁的步驟, 前述第1分隔壁含有傾斜部,該傾斜部形成:在前述第1分隔壁的上游側領域,從前述冷卻通路的延伸方向觀看時,前述冷卻通路的流路剖面積從上游側朝向下游側逐漸減少。
根據上述(14)的構造,將第1分隔壁設於冷卻通路內,能縮小「從冷卻通路的延伸方向觀看時,冷卻通路的流路剖面積」。藉此,如以上所述,流動於冷卻通路之冷卻媒體的流速,相較於「未設有第1分隔壁的區間,亦即比第1分歧流路更上游側的區間」,「設有第1分隔壁的區間,亦即第1分歧流路」更快。因此,使對第1分歧流路中冷卻媒體的熱傳達率,能大於「較第1分歧流路更上游側的區間」。 此外,如以上所述,藉由將第1分隔壁設於冷卻通路內,能使「複數個第1分歧流路中,每個單位區間的複數個第1分歧流路之內壁面的面積」的合計面積,大於「較第1分歧流路更上游側的區間中,每個單位長度的冷卻通路之內壁面的面積」。 如此一來,可提供高溫零件,該高溫零件構成:在較第1分歧流路更上游側的區間能抑制過度的冷卻,即使在第1分歧流路中,冷卻媒體越往下游側則溫度上升,也不會形成冷卻能力不足。
此外,根據上述(14)的方法,在冷卻通路形成有傾斜部的區間,冷卻通路的流路剖面積從上游側朝下游側逐漸減少。如此一來,抑制「冷卻通路的流路剖面積從上游側朝下游側急遽減少」及「每個單位長度的冷卻通路之內壁面的面積,從上游側朝下游側急遽增加」,並能抑制如以上所述的「對冷卻媒體的熱傳達率和導熱量的急遽增加」。因此,可以抑制「高溫零件的溫度急遽地下降」的領域產生,不會損及高溫零件的耐久性。 [發明的效果]
根據本發明的至少一種實施形態,可提供:能抑制過度的冷卻,且不會冷卻能力不足的高溫零件。
以下,參考圖面說明本發明的幾個實施形態。但是,作為實施形態所記載或者圖面所顯示之構成零件的尺寸、材質、形狀、其相對的配置等,並非用來侷限本發明的範圍,僅是單純的說明範例罷了。 舉例來說,用來表達「朝某方向」、「沿著某方向」、「平行」、「正交」、「中心」、「同心」或者「同軸」等相對性或絕對性配置的表現,不僅嚴謹地表達其配置,並且表達:以公差、或者可獲得相同功能之程度的角度和距離,形成相對性位移的狀態。 舉例來說,用來表達「相同」、「相等」、「同質」等之事物相等的狀態的表現,不僅嚴謹地表達其配置,並且表達:存在著公差、或者可獲得相同功能之程度的差異的狀態。 舉例來說,用來表達四角形狀和圓筒形狀等形狀的表現,不僅是表達幾何學上嚴謹的四角形狀和圓筒形狀等的形狀,也表達:在可獲得相同效果的範圍,含有凹凸部和倒角部等的形狀。 另外,「備有」、「具有」、「具備」、「含有」或者「包括」一個構成要件的這種表現,並非用來排除其他構成要件之存在的表現。
在以下的說明中,列舉「燃氣渦輪機所使用的高溫零件」作為例子,並針對幾個實施形態的高溫零件進行說明。 圖1為顯示燃氣渦輪機之整體構造的概略圖,圖2為顯示渦輪機之氣體流路的剖面圖。
在本實施形態中,如圖1所示,燃氣渦輪機10,是由轉子14將壓縮機11、燃燒器12、渦輪機13配置於同軸上所構成,在轉子14的其中一端部連結著發電機15。在以下的說明中,將轉子14的軸線所延伸的方向設為軸方向Da、將「把該轉子14的軸線作為中心的周方向」設為周方向Dc,將垂直於轉子14之軸線Ax的方向設為徑向Dr。此外,周方向Dc中,將轉子14的轉動方向作為轉動方向R來表示。
壓縮機11,藉由「從空氣取入口所導入的空氣AI通過複數個定子葉片及轉子葉片而受到壓縮」,而產生高溫、高壓的壓縮空氣AC。燃燒器12,對該壓縮空氣AC供給特定的燃料FL,並藉由燃燒而產生高溫、高壓的燃燒氣體FG。渦輪機13,藉由「由燃燒器12所產生的高溫、高壓的燃燒氣體FG通過複數個定子葉片及轉子葉片」而驅動轉子14轉動,並驅動該轉子14所連結的發電機15轉動。
此外,如圖2所示,在渦輪機13,渦輪機定子葉片(定子葉片)21,是將葉片型部23的輪轂部固定於內側圍板25,並將前端側固定於外側圍板27所構成。渦輪機轉子葉片(轉子葉片)41,是將葉片型部43的基端部固定於載台45所構成。然後,外側圍板27、與配置於轉子葉片41之前端部側的分割環50,透過隔熱環(thermal insulation ring)35由殼體(渦輪機殼體)30所支承,內側圍板25則由支承環31所支承。因此,燃燒氣體FG通過的燃燒氣體流路32,作為由內側圍板25、外側圍板27、載台45、分割環50所圍繞的空間,沿著軸方向Da形成。
內側圍板25、外側圍板27及分割環50,是作為氣體通道面形成構件發揮作用。所謂的「氣體通道面形成構件」,是用來區劃燃燒氣體流路32,並且具有可供燃燒氣體FG接觸之氣體通道面的構件。
燃燒器12、轉子葉片41(譬如載台45)、定子葉片21(譬如內側圍板25和外側圍板27)及分割環50等,是在接觸燃燒氣體FG的高溫環境下所使用的高溫零件,需要冷卻媒體的冷卻。在以下的說明中,將分割環50的冷卻構造作為高溫零件之冷卻構造的例子進行說明。
圖3,是從徑向Dr外側觀看幾個實施形態的「構成分割環50之其中一個分割體51」的示意俯視圖、以及沿著周方向Dc從轉子14之轉動方向R下游側朝向轉動方向R上游側所見的示意側視圖。圖4為圖3中A4-A4箭號視角剖面圖。圖5為圖3中A5-A5箭號視角剖面圖。在圖3~圖5中,簡略地描繪了分割體51的構造。因此在圖3~圖5中,譬如省略了用來將分割體51安裝於隔熱環35的鈎之類的記載。
幾個實施形態的分割環50,是由沿著周方向Dc形成環狀的複數個分割體51所構成。各分割體51,將「在內部形成有冷卻流路的本體52」作為主要的構成件。如圖2所示,分割體51配置成:徑向Dr的內表面52a面向燃燒氣體FG流動的燃燒氣體流路32。在分割體51的徑向Dr內側,設置一定的間隙,配置有以轉子14作為中心而轉動的轉子葉片41。為了防止高溫的燃燒氣體FG所帶來的熱損傷,在分割體51形成有:延伸於軸方向Da的複數個軸方向通路(冷卻通路)60。 冷卻通路60,並列於周方向Dc而配設有複數個。
雖然沒有圖示,但其中一個實施形態的燃氣渦輪機10構成:從外表面52b側對幾個實施形態的各分割體51供給冷卻空氣CA。被供給至分割體51的冷卻空氣CA,流通於冷卻通路60,並於朝燃燒氣體FG中排出的過程,對分割體51的本體52形成對流冷卻。
以下,針對幾個實施形態的冷卻通路60進行說明。 幾個實施形態的冷卻通路60,各自的上游端連接於冷卻空氣分歧裝置55。在幾個實施形態的冷卻通路60之各自的內部,形成有:將冷卻通路60從途中分隔成複數個第1分歧流路63的第1分隔壁70。在幾個實施形態中,第1分隔壁70將冷卻通路從途中分隔成一對第1分歧流路63。在圖5及稍後所述的圖6~圖12中,相當於第1分隔壁70之剖面的部分,是由十字剖面線(cross hatching)來表示。 第1分隔壁70,可以將冷卻通路60完全分割(隔)成複數個第1分歧流路63,亦可不完全地分割(隔)。亦即,第1分隔壁70,可沿著徑向Dr而連續地形成於後述的第1通路內壁面601與第2通路內壁面602之間,或亦可在第1通路內壁面601與第2通路內壁面602之間,具有朝徑向Dr分離的間隙。
複數個第1分歧流路63,各自的下游端連接於集流管部80。在幾個實施形態中,譬如,在分別相鄰的3個冷卻通路60中的6個第1分歧流路63的下游端,連接於1個集流管部80之上游側的內壁部81。在幾個實施形態中,於分割體51形成有複數個集流管部80。 在各集流管部80之下游側的內壁部82形成有:用來將已流入集流管部的冷卻空氣CA,排出至集流管部80的外部亦即分割體51之外部的至少1個出口通路110。出口通路110,在分割體51的軸方向Da的下游側端部53,朝向燃燒氣體FG中形成開口。
在幾個實施形態中,分割體51含有複數個冷卻通路群6,該冷卻通路群6含有:1個集流管部80、下游端連接於該集流管部80的3個冷卻通路60、連接於該集流管部80的1個出口通路110。
從分割體51的外部供給至分割體51的冷卻空氣CA,在被供給至冷卻空氣分歧裝置55後,從冷卻空氣分歧裝置55分配至各冷卻通路60。被分配至各冷卻通路60的冷卻空氣CA,由第1分隔壁70所分隔,而流入各第1分歧流路63。已流入各第1分歧流路63的冷卻空氣CA,在各集流管部80被匯集,並從出口通路110排出至分割體51的外部。
已從冷卻空氣分歧裝置55導入各冷卻通路60的冷卻空氣CA,在朝向軸方向Da的下游側流動的過程中,被來自本體52的熱輸入量所加熱。因此,冷卻空氣CA越朝軸方向Da的下游側前進,流動於各冷卻通路60的冷卻空氣CA將變得過熱,使冷卻空氣CA的冷卻能力下降。因為這緣故,分割體51之軸方向Da的下游側的領域,較其他的領域容易高溫化。因此,舉例來說,倘若藉由增加冷卻空氣CA的流通量等,使冷卻能力在冷卻通路60的下游側不致於不足,反而在冷卻通路60的上游側,導致冷卻能力過剩。 如同燃氣渦輪機和火箭引擎等藉由高溫的作動氣體而作動的機械,一般來說,過度的冷卻將導致機械的熱效率低落。因為這緣故,期待能抑制過度的冷卻,且不會形成冷卻能力不足。
有鑑於此,在幾個實施形態中,藉由使分割體51中的冷卻構造形成以下所述的構造,來抑制過度的冷卻,且不會冷卻不足。 圖6,為其中一個實施形態的分割體51之冷卻通路60局部的示意剖面圖。在圖6中,一併記載了將「圖5中第1分隔壁70之上游側的端部附近」予以放大的剖面圖、該剖面圖中的A6-A6箭號視角圖、B6-B6箭號視角圖、C6-C6箭號視角圖、D6-D6箭號視角圖、及E6-E6箭號視角圖。 圖7,為另一個實施形態的分割體51之冷卻通路60局部的示意剖面圖。在圖7中,一併記載了相當於「將圖5中第1分隔壁70之上游側的端部附近予以放大之剖面圖」的剖面圖、該剖面圖中的B7-B7箭號視角圖、C7-C7箭號視角圖、D7-D7箭號視角圖、及E7-E7箭號視角圖。 圖8,為另外一個實施形態的分割體51之冷卻通路60局部的示意剖面圖。在圖8中,一併記載了相當於「將圖5中第1分隔壁70之上游側的端部附近予以放大之剖面圖」的剖面圖、該剖面圖中的B8-B8箭號視角圖、C8-C8箭號視角圖、D8-D8箭號視角圖、及E8-E8箭號視角圖。 圖9,為另外一個實施形態的分割體51之冷卻通路60局部的示意剖面圖。在圖9中,一併記載了相當於「將圖5中第1分隔壁70之上游側的端部附近予以放大之剖面圖」的剖面圖、該剖面圖中的B9-B9箭號視角圖、C9-C9箭號視角圖、D9-D9箭號視角圖、及E9-E9箭號視角圖。
(關於設置第1分隔壁70) 在幾個實施形態中,如圖3~圖9所示,分割體51具備:將冷卻通路60從途中分隔成複數個第1分歧流路63的第1分隔壁70。 藉由將第1分隔壁70設於冷卻通路60內,如圖6~圖9所示,能縮小「從冷卻通路60的延伸方向觀看時,冷卻通路60的流路剖面積」。藉此,流動於冷卻通路60之冷卻媒體(冷卻空氣CA)的流速,相較於「未設有第1分隔壁70的區間,亦即比第1分歧流路63更上游側的區間61」,「設有第1分隔壁70的區間,亦即第1分歧流路63」更快。因此,能使對第1分歧流路63中冷卻空氣CA的熱傳達率,大於「較第1分歧流路63更上游側的區間61」。
此外,藉由將第1分隔壁70設於冷卻通路60內,能使「複數個第1分歧流路63中,每個單位區間的複數個第1分歧流路63之內壁面63a的面積」的合計面積,大於「較第1分歧流路63更上游側的區間61中,每個單位長度的冷卻通路60之內壁面60a(內壁面61a)的面積」。 如此一來,在較第1分歧流路63更上游側的區間61能抑制過度的冷卻,即使在第1分歧流路63中,冷卻空氣CA越往下游側溫度則上升,也不會形成冷卻能力不足。
倘若冷卻通路60的流路剖面積從上游側朝下游側急遽地減少,從流路剖面積急遽減少前(上游側)的區間(區間61),到急遽減少後(下游側)的區間,恐將產生:對冷卻空氣CA的熱傳達率急遽增加,本身為高溫零件的分割體51之溫度急遽下降的領域。此外,倘若每個單位長度的冷卻通路60之內壁面60a的面積從上游側朝下游側急遽地增加,從內壁面60a的面積急遽增加前(上游側)的區間(區間61),到急遽增加後(下游側)的區間,恐將產生:對冷卻空氣CA的導熱量急遽增加,分割體51的溫度急遽下降的領域。 倘若在如同分割體51般的高溫零件,產生「因場所的不同,溫度劇烈變化」的領域,熱應力將變大,恐對高溫零件的耐久性帶來不良影響。此外,因為過度冷卻也可能導致熱效率下降。
有鑑於此,在幾個實施形態中,如圖5~圖9所示,以「第1分隔壁70含有傾斜部71」的方式,形成第1分隔壁70。在幾個實施形態中,如圖5~圖9所示,傾斜部71形成:在第1分隔壁70的上游側領域70a,從冷卻通路60的延伸方向觀看時,冷卻通路60的流路剖面積從上游側朝向下游側逐漸減少。 藉此,在冷卻通路60形成有傾斜部71的區間64,冷卻通路60的流路剖面積從上游側朝下游側逐漸減少。這是由於:因為傾斜部71的高度,亦即傾斜部71之徑向Dr的尺寸從上游側朝下游側逐漸增加,使得在沿著徑向Dr的冷卻通路60的剖面中,傾斜部71之剖面的比率從上游側朝向下游側逐漸增加。換個方式說,這是由於:因為「傾斜部71之徑向Dr的尺寸」對「冷卻通路60之徑向Dr的尺寸」的比率,從上游側朝下游側逐漸增加,使得在沿著徑向Dr的冷卻通路60的剖面中,傾斜部71之剖面的比率從上游側朝向下游側逐漸增加。 如此一來,抑制「冷卻通路60的流路剖面積從上游側朝下游側急遽減少」及「每個單位長度的冷卻通路60之內壁面60a的面積,從上游側朝下游側急遽增加」,並能抑制如以上所述的「對冷卻空氣CA的熱傳達率和導熱量的急遽增加」。因此,可以抑制「分割體51的溫度急遽地下降」的領域產生,不會損及分割體51的耐久性。此外,能抑制因為過度冷卻所導致熱效率下降。
在幾個實施形態中,冷卻通路60之寬度方向的尺寸Wp,在未被第1分隔壁70所分隔的區間(區間61)、與由第1分隔壁70所分隔的區間(區間65),形成相同。但是,只要在不會損及「由設置第1分隔壁70所衍生之作用效果」的範圍內,冷卻通路60之寬度方向的尺寸Wp,在未被第1分隔壁70所分隔的區間(區間61)、與由第1分隔壁70所分隔的區間(區間65),亦可形成不同。 在幾個實施形態中,將冷卻通路60的周方向Dc,稱為冷卻通路60的寬度方向。此外,在幾個實施形態中,將在冷卻通路60正交於該寬度方向的徑向Dr,稱為冷卻通路60的高度方向。
(關於冷卻通路60之高度方向的尺寸Hp) 舉例來說,如圖5所示,冷卻通路60含有:冷卻通路60之高度方向的尺寸Hp,朝向下游側逐漸減少的流路高度縮小部66、67。在流路高度縮小部67,冷卻通路60之高度方向的尺寸Hp、與第1分隔壁70之高度方向的尺寸相等。 如此一來,由於在流路高度縮小部66、67可逐漸減少冷卻通路60的流路剖面積,因此在流路高度縮小部66、67,可逐漸增加冷卻空氣CA的流速亦即熱傳達率。因此,可形成:在流路高度縮小部66、67,即使冷卻空氣CA越往下游側則溫度上升,也不會形成冷卻能力不足。 流路高度縮小部66,在較第1分歧流路63更上游側的區間61,促使冷卻通路60的流路剖面積逐漸減少。流路高度縮小部67,在被第1分隔壁70所分隔的區間65中,至少較傾斜部71更下游側的區間,促使冷卻通路60(第1分歧流路63)的流路剖面積逐漸減少。 流路高度縮小部66也被稱為第1流路高度縮小部66,流路高度縮小部67也被稱為第2流路高度縮小部67。 在圖5所示的實施形態中,在第1流路高度縮小部66與第2流路高度縮小部67之間,存在冷卻通路60之高度方向的尺寸Hp呈現恆定的區間,該區間被稱為第1流路高度不變部69A。在圖5所示的實施形態中,在第1流路高度不變部69A設有傾斜部71。
舉例來說,在圖7所示的實施形態中,第1分歧流路63,在寬度方向中,在鄰接於第1分隔壁70之傾斜部71的第1分歧流路的上游端領域68(亦即區間64),形成有「冷卻通路60之高度方向的尺寸Hp,形成朝向下游側逐漸增加」的高度逐漸增加領域68a。 如此一來,可在第1分歧流路63的上游端領域68,逐漸增加流路剖面積。因此,可抑制「因設置第1分隔壁70所衍生之流路剖面積的減少」,並能抑制如以上所述的「對冷卻空氣CA的熱傳達率的急遽增加」。 在高度逐漸增加領域68a,由第1分隔壁70所分隔的一對第1分歧流路63之各個流路剖面積的合計面積,可朝向下游側逐漸減少,亦可朝向下游側逐漸增加,或者朝向下游側形成不增加也不減少,亦即不變(恆定)。
在圖7所示的實施形態中,在逐漸增加的高度逐漸增加部68a與第2流路高度縮小部67之間,存在冷卻通路60之高度方向的尺寸Hp呈現恆定的區間,該區間被稱為第2流路高度不變部69B。在圖7所示的實施形態中,在第2流路高度不變部69B中至少上游側的局部區間,設有傾斜部71。
舉例來說,在圖8所示的實施形態中,在冷卻通路60的延伸方向中,流路高度縮小部67與傾斜部71形成重疊(overlap)。亦即,流路高度縮小部67與傾斜部71,舉例來說,可如同圖5所示的實施形態般,在冷卻通路60的延伸方向不形成重疊,亦可如圖8所示的實施形態般形成重疊。 在冷卻通路60的延伸方向中,流路高度縮小部67與傾斜部71亦可至少其中一部分形成重疊。 如此一來,在流路高度縮小部67與傾斜部71形成重疊的區間,相較於如圖5所示流路高度縮小部67與傾斜部71未形成重疊的區間,可加大「冷卻通路60中每個單位長度之流路剖面積的減少率」。因此,在需要更進一步冷卻的領域,藉由設置流路高度縮小部67與傾斜部71形成重疊的區間,能確保必要的冷卻能力。
舉例來說,在圖7所示的實施形態中,形成流路高度縮小部67的第1分歧流路63的內壁面63a,具有對冷卻通路60的延伸方向形成傾斜的傾斜壁面63b。在圖7所示的實施形態中,傾斜部71對冷卻通路60之延伸方向的傾斜角度θt,大於傾斜壁面63b對該延伸方向的傾斜角度θw。
舉例來說,在藉由金屬積層成形法和精密鑄造法來製作分割體51的場合中,一旦傾斜部71對冷卻通路60之延伸方向的傾斜角度θt變小,在傾斜部71,於指向「與冷卻通路60的延伸方向交叉之方向」的前端部71a與「冷卻通路的內壁面60a」之間的間隙變小的領域,間隙的確保變得困難,因此,難以精確地形成傾斜部71。 相對於此,由於必須使冷卻空氣CA流動於流路高度縮小部67,故即使是流路高度縮小部67中最下游側的領域,傾斜壁面63b,從與該傾斜壁面63b相對向的內壁面63a,形成一定程度以上的分離。因此,舉例來說,即使是藉由金屬積層成形法和精密鑄造法來製作分割體51的場合,傾斜壁面63b對冷卻通路60之延伸方向的傾斜角度,假設即使為0度,也可能形成流路。 因此,根據圖7所示的實施形態,由於傾斜部71對冷卻通路60之延伸方向的傾斜角度θt,大於傾斜壁面63b對冷卻通路60之延伸方向的傾斜角度θw,因此,譬如在藉由金屬積層成形法或精密鑄造法來製作高溫零件的場合中,能容易且精確地形成傾斜部71。
在圖5~圖9所示的實施形態中,傾斜部71對冷卻通路60之延伸方向的傾斜角度θt(請參考圖7),為45度以下。 藉由使傾斜部71的傾斜角度θt形成45度以下,可抑制「冷卻通路60的流路剖面積,從上游側朝下游側急遽減少」的情形,因此能抑制對冷卻空氣CA之熱傳達率的急遽增加。因此,可以抑制「分割體51的溫度急遽地下降」的領域產生,不會損及分割體51的耐久性。 此外,如稍後所述,只要分割體51是藉由金屬積層成形法所形成,在從冷卻通路60的上游側朝下游側積層所形成的場合中,可將傾斜部71的伸出(overhang)角度抑制於45度以下,因此能精確地形成傾斜部71。
圖10,為一併顯示傾斜部71之前端部71a的方向不同的2種案例的圖。圖10之上側的圖,是顯示如圖5~圖9所示,傾斜部71A從徑向Dr外側的內壁面60a朝向徑向Dr內側豎起設置之案例的圖。圖10之下側的圖,是顯示傾斜部71B從徑向Dr內側的內壁面60a朝向徑向Dr外側豎起設置之案例的圖。
分割體51之徑向Dr的內表面52a,是被燃燒氣體FG加熱的被加熱面。因此,在以下的說明中,分割體51之徑向Dr的內表面52a,也被稱為被加熱面52a。
如圖10之上側的圖所示,在「傾斜部71A從徑向Dr外側的內壁面60a朝向徑向Dr內側豎起設置」之案例的場合中,傾斜部71A,為了形成冷卻通路60,在高度方向相對向的一對通路內壁面(內壁面60a)之中,從離被加熱面52a較遠的第2通路內壁面602朝向第1通路內壁面601豎起設置。 在該場合中,「沿著冷卻通路60中冷卻空氣CA之流動的區間」之中,在設有傾斜部71A的區間64,第2通路內壁面602與傾斜部71A連接,第1通路內壁面601,在與傾斜部71A之間具有(存在)間隙。因此,相較於第2通路內壁面602,能抑制第1通路內壁面601的冷卻能力。此外,第2通路內壁面602,是在高度方向相對向的一對通路內壁面中,離被加熱面52a較遠的通路內壁面。亦即,第1通路內壁面601,是在高度方向相對向的一對通路內壁面中,離被加熱面52a較近的通路內壁面。因此,在圖10之上側的圖所示的例子中,能抑制來自被加熱面52a的熱量傳達至冷卻空氣CA,可抑制第1通路內壁面601的過度冷卻。
如圖10之下側的圖所示,在「傾斜部71B從徑向Dr內側的內壁面60a朝向徑向Dr外側豎起設置」之案例的場合中,傾斜部71B,為了形成冷卻通路60,在高度方向相對向的一對通路內壁面(內壁面60a)之中,從離被加熱面52a較近的第1通路內壁面601朝向第2通路內壁面602豎起設置。 在該場合中,「沿著冷卻通路60中冷卻空氣CA之流動的區間」之中,在設有傾斜部71B的區間64,第1通路內壁面601與傾斜部71B連接,第2通路內壁面602,在與傾斜部71B之間具有(存在)間隙。因此,相較於第2通路內壁面602,能提高第1通路內壁面601的冷卻能力。亦即,第1通路內壁面601,是在高度方向相對向的一對通路內壁面中,離被加熱面52a較近的通路內壁面。因此,在圖10之下側的圖所示的例子中,來自被加熱面52a的熱量能有效率地傳達至冷卻媒體,可抑制第1通路內壁面601的過熱。
(關於第1通路內壁面601對被加熱面52a形成傾斜的場合) 在圖5~圖8所示的實施形態中,從冷卻通路60的上游側到下游側,第1通路內壁面601與被加熱面52a之間的距離d相同。相對於此,在圖9所示的實施形態中,為了形成前述冷卻通路60,在高度方向相對向的一對通路內壁面之中,離被加熱面52a較近的第1通路內壁面601,對被加熱面52a形成傾斜,使第1通路內壁面601與被加熱面52a之間的距離d,從冷卻通路的上游側朝向下游側變小。 因此,由於被加熱面52a與第1通路內壁面601之間的距離d,從冷卻通路60的上游側朝下游側變小,故在冷卻通路60的上游側的區間能抑制過度的冷卻,即使在冷卻通路60中,冷卻空氣CA越往下游側則溫度上升,也不會形成冷卻能力不足。
圖11,為一併顯示在傾斜部71,朝向下游側使高度方向的尺寸逐漸增加的案例、及使寬度方向的尺寸逐漸增加之案例的2種案例的圖。圖11之左側的圖,是顯示如圖5~圖9所示,在傾斜部71A,朝向下游側使高度方向的尺寸逐漸增加之案例的圖。圖11之右側的圖,是顯示在傾斜部71C,朝向下游側使寬度方向的尺寸逐漸增加之案例的圖。
如圖11之左側的圖所示,「在傾斜部71A,朝向下游側使高度方向的尺寸逐漸增加之案例」的場合,傾斜部71A形成:冷卻通路60之高度方向的尺寸Ht,朝下游側逐漸增加。 在該場合中,「沿著冷卻通路60中冷卻空氣CA之流動的區間」之中,在設有傾斜部71A的區間,於高度方向相對向的一對內壁面60a(一對通路內壁面)之中,其中一個通路內壁面(譬如,第2通路內壁面602)與傾斜部71A連接,另一個通路內壁面(譬如,第1通路內壁面601),在與傾斜部71A之間具有(存在)間隙。因此,在設有傾斜部71A的區間64,藉由其中一個通路內壁面(譬如,第2通路內壁面602)與另一個通路內壁面(譬如,第1通路內壁面601),容易形成冷卻空氣CA所帶來的冷卻,亦即冷卻能力產生差異。因此,在圖11之左側的圖所示的例子中,考慮上述冷卻能力的差異來決定分割體51中傾斜部71的配置,藉此能抑制分割體51所要求之冷卻能力的過剩與不足。
如圖11之右側的圖所示,「在傾斜部71C,使寬度方向的尺寸逐漸增加之案例」的場合,傾斜部71C形成:寬度方向的尺寸Wt,朝下游側逐漸增加。 在該場合中,「沿著冷卻通路60中冷卻空氣CA之流動的區間」之中,在設有傾斜部71C的區間64,於高度方向相對向的一對內壁面60a(一對通路內壁面)的雙方,可形成皆與傾斜部71C連接。因此,在設有傾斜部71C的區間64,藉由其中一個通路內壁面(譬如,第2通路內壁面602)與另一個通路內壁面(譬如,第1通路內壁面601),容易形成冷卻空氣CA所帶來的冷卻,亦即冷卻能力產生差異。因此,在圖11之右側的圖所示的例子中,適合以下的場合:如同在轉子葉片41和定子葉片21中翼型部之腹側的壁面與背側的壁面般,不期望藉由其中一個通路內壁面與另一個通路內壁面,對冷卻能力產生差異。
圖12,是用來說明傾斜部71中,連結於第1分隔壁70的側面72之傾斜部71的上游端部73(前端部71a)的一個實施形態的圖。 在圖12所示的實施形態中,傾斜部71的上游端部73,角部被施以倒角。如此一來,可抑制:形成有傾斜部71的領域中冷卻通路60的壓力損失。
圖13,為顯示另一個實施形態的分割體51之剖面局部的圖,相當於圖3中A4-A4箭號視角剖面圖。圖13所示之實施形態的分割體51,更進一步具備:在第1分隔壁70的下游側,設於第1分歧流路63內,從途中將第1分歧流路63分隔成複數個第2分歧流路92的第2分隔壁77。 藉此,藉由從途中將第1分歧流路63分隔成複數個第2分歧流路92可增加分歧的段數,能加大冷卻能力的調整幅度。 雖然在圖13所示的實施形態中,藉由第2分隔壁77從途中將1個第1分歧流路63分隔成2個第2分歧流路92,但亦可分隔成3個以上的第2分歧流路92。此外,在圖13所示的實施形態中,藉由2個第1分隔壁70將1個冷卻通路60分隔成3個第1分歧流路63。但是,亦可如圖4等所示,藉由1個第1分隔壁70將1個冷卻通路60分隔成2個第1分歧流路63,並藉由第2分隔壁77,從途中將前述2個第1分歧流路63分別分隔成2個第2分歧流路92,亦可分隔成3個以上的第2分歧流路92。
(關於分割體51的製造方法) 幾個實施形態的分割體51,譬如可藉由金屬積層成形法和精密鑄造法來製造。圖14為流程圖,顯示利用金屬積層成形法製造幾個實施形態之分割體51時之製造順序的其中一例。幾個實施形態之分割體51的製造方法,含有積層成形步驟S10。積層成形步驟S10具備以下的步驟:藉由金屬積層成形法,在分割體51的內部形成「冷卻空氣CA可流通的複數個冷卻通路60」,並形成「設於各個冷卻通路60內,從途中將冷卻通路60分隔成複數個第1分歧流路63」的第1分隔壁70。 在積層成形步驟S10中,以含有傾斜部71的方式形成第1分隔壁70,該傾斜部71形成:在第1分隔壁70的上游側領域70a,從前述冷卻通路的延伸方向觀看時,前述冷卻通路的流路剖面積從上游側朝向下游側逐漸減少。
在積層成形步驟S10中,舉例來說,使原料粉末從軸方向Da上游側朝向軸方向Da下游側積層,而形成分割體51。在積層成形步驟S10中分割體51的形成方法,舉例來說,可以是粉床熔融(Powder bed fusion)方式,可以是金屬沉積(Metal deposition)方式,可以是黏著劑噴塗(binder jet)方式,也可以是上述方式以外的其他方式。 藉由以金屬積層成形法形成幾個實施形態的分割體51,能比較容易地形成「在內部具有複雜形狀」的分割體51。 此外,藉由以金屬積層成形法形成幾個實施形態的分割體51,可以提供以下的分割體51:在較第1分歧流路63更上游側的區間61能抑制過度的冷卻,且即使在第1分歧流路63中,冷卻空氣CA越往下游側溫度則上升,也不會形成冷卻能力不足。
本發明並不侷限於上述的實施形態,也包含對上述的實施形態加入變形設計、和將這些形態予以適當地組合的形態。 舉例來說,在上述的幾個實施形態中,傾斜部71的傾斜角度θt,從傾斜部71的上游端到下游端可以為恆定的角度,亦可如圖15所示,從傾斜部71的上游端到下游端的途中形成變化。圖15,是相當於「將圖5中第1分隔壁70之上游側的端部附近予以放大之剖面圖」的剖面圖,是顯示傾斜部71之變形例的圖。雖然圖15所示的變形例中,傾斜部71中上游側傾斜部74A的傾斜角度θta,小於「傾斜部71中下游側傾斜部74B的傾斜解度θtb」,但亦可大於「下游側傾斜部74B的傾斜解度θtb」。此外,傾斜部71的傾斜角度θt,從傾斜部71的上游端到下游端的途中,亦可形成2次以上的變化。傾斜部71的傾斜角度θt,亦可在從傾斜部71的上游端到下游端的過程中,連續地形成變化。亦即,傾斜部71亦可形成:當從周方向Dc觀看時,前端部71a描繪成圓弧。
舉例來說,在上述的幾個實施形態中,第1分隔壁70,從冷卻通路60的途中將冷卻通路60分隔成複數個第1分歧流路63。但是,亦可如圖16所示,第1分隔壁70,從冷卻通路60的上游端將冷卻通路60分隔成複數個第1分歧流路63。亦即,傾斜部71的上游端的位置,即使與冷卻通路60的上游端的位置相同亦無妨。圖16,是相當於「圖3中A4-A4箭號視角剖面圖」的剖面圖,是顯示第1分隔壁70之變形例的圖。雖然在圖16中,僅1個冷卻通路60改變了第1分隔壁70之上游端的位置,但本發明並不侷限於此,亦可使複數個第1分隔壁70之上游端的位置改變。
舉例來說,雖然在上述的幾個實施形態中,對於需要由冷卻媒體冷卻的高溫零件,列舉了分割環50作為例子並加以說明,但是本發明並不侷限於此,也能適用於燃燒器12、轉子葉片41、定子葉片21、內側圍板25、外側圍板27等的其他高溫零件。此外,可適用本發明的高溫零件,並不限定於燃氣渦輪機10中的構成零件,也可以是鍋爐和火箭引擎等使用高溫媒體的各種機械中的構造零件。
6:冷卻通路群 10:燃氣渦輪機 12:燃燒器 13:渦輪機(turbine) 21:渦輪機定子葉片(定子葉片) 41:渦輪機轉子葉片(轉子葉片) 50:分割環 51:分割體 52:本體 52b:外表面(被加熱面) 60:軸方向通路(冷卻通路) 63:第1分歧流路 63a:傾斜壁面 68:上游端領域 68a:高度逐漸增加領域 70:第1分隔壁 71,71A,71B,71C:傾斜部 73:上游端部 77:第2分隔壁 80:集流管部 92:第2分歧流路
[圖1]:為顯示燃氣渦輪機之整體構造的概略圖。 [圖2]:為顯示渦輪機之氣體流路的剖面圖。 [圖3]:從徑向外側觀看幾個實施形態之分割體的示意俯視圖、以及沿著周方向從轉子之轉動方向下游側朝向轉動方向上游側所見的示意側視圖。 [圖4]:為圖3中A4-A4箭號視角剖面圖。 [圖5]:為圖3中A5-A5箭號視角剖面圖。 [圖6]:為其中一個實施形態的分割體之冷卻通路局部的示意剖面圖。 [圖7]:為其他實施形態的分割體之冷卻通路局部的示意剖面圖。 [圖8]:為另一個實施形態的分割體之冷卻通路局部的示意剖面圖。 [圖9]:為另一個實施形態的分割體之冷卻通路局部的示意剖面圖。 [圖10]:為一併顯示傾斜部之前端部的方向不同的2種案例的圖。 [圖11]:為一併顯示在傾斜部,朝向下游側使高度方向的尺寸逐漸增加的案例、及使寬度方向的尺寸逐漸增加之2種案例的圖。 [圖12]:是用來說明傾斜部之上游端部的一個實施形態的圖。 [圖13]:為顯示另一個實施形態的分割體之剖面局部的圖,相當於圖3中A4-A4箭號視角剖面圖。 [圖14]:為流程圖,顯示利用金屬積層成形法製造幾個實施形態之分割體時之製造順序的其中一例。 [圖15]:為顯示傾斜部之變形例的圖。 [圖16]:為顯示第1分隔壁之變形例的圖。
32:燃燒氣體流路
50:分割環
51:分割體
52:本體
52a:內表面(被加熱面)
53:下游側端部
55:冷卻空氣分歧裝置
60:軸方向通路(冷卻通路)
61:區間
63:第1分歧流路
66,67:流路高度縮小部
69A:第1流路高度不變部
70:第1分隔壁
70a:上游側領域
71:傾斜部
80:集流管部
81:(上游側的)內壁部
82:(下游側的)內壁部
110:出口通路
Da:軸方向
Dr:徑向
FG:燃燒氣體

Claims (11)

  1. 一種高溫零件,是需要由冷卻媒體冷卻的高溫零件,具備:複數個冷卻通路,可供前述冷卻媒體流通;及第1分隔壁,設於各個前述冷卻通路內,將前述冷卻通路分隔成複數個第1分歧流路,前述第1分隔壁含有傾斜部,該傾斜部形成:在前述第1分隔壁的上游側領域,從前述冷卻通路的延伸方向觀看時,前述冷卻通路的流路剖面積從上游側朝向下游側逐漸減少,各個前述冷卻通路,由前述第1分隔壁,在前述冷卻通路的寬度方向,分隔成一對前述第1分歧流路,前述傾斜部形成:正交於前述寬度方向的前述冷卻通路之高度方向中的尺寸Ht、前述寬度方向中的尺寸Wt之中的至少其中一個,朝向下游側逐漸增加。
  2. 如請求項1所記載的高溫零件,其中各個前述冷卻通路,由前述第1分隔壁,在前述冷卻通路的寬度方向,分隔成一對前述第1分歧流路,各個前述第1分歧流路,至少在較前述傾斜部更下游側,含有:正交於前述寬度方向的前述冷卻通路之高度方向的尺寸Hp,朝向下游側逐漸減少的流路高度縮小部。
  3. 如請求項2所記載的高溫零件,其中在前述冷卻通路的前述延伸方向中,前述流路高度縮小部與前述傾斜部,至少一部分形成重疊。
  4. 如請求項2所記載的高溫零件,其中形成前述流路高度縮小部的前述第1分歧流路的內壁面,具有對前述冷卻通路的前述延伸方向形成傾斜的傾斜壁面,前述傾斜部對前述冷卻通路之前述延伸方向的傾斜角度,大於前述傾斜壁面對前述延伸方向的傾斜角度。
  5. 如請求項1或請求項2所記載的高溫零件,其中前述傾斜部形成:正交於前述寬度方向的前述冷卻通路之高度方向中的尺寸Ht,朝向下游側逐漸增加,前述高溫零件,在前述冷卻通路之前述高度方向中的其中一側具有被加熱面,前述傾斜部,為了形成前述冷卻通路,在前述高度方向相對向的一對通路內壁面之中,從離前述高溫零件之前述被加熱面較近的第1通路內壁面朝向第2通路內壁面豎起設置。
  6. 如請求項1或請求項2所記載的高溫零件,其中前述傾斜部形成:正交於前述寬度方向的前述冷卻通路之高度方向中的尺寸Ht,朝向下游側逐漸增加,前述高溫零件,在前述冷卻通路之前述高度方向中的其中一側具有被加熱面,前述傾斜部,為了形成前述冷卻通路,在前述高度方向相對向的一對通路內壁面之中,從離前述高溫零件之前述被加熱面較遠的第2通路內壁面朝向第1通路內壁面豎起設置。
  7. 如請求項1或請求項2所記載的高溫零 件,其中前述傾斜部形成:正交於前述寬度方向的前述冷卻通路之高度方向中的尺寸Ht,朝向下游側逐漸增加,前述傾斜部對前述冷卻通路之前述延伸方向的傾斜角度,為45度以下。
  8. 如請求項1或請求項2所記載的高溫零件,其中更進一步具備:在前述第1分隔壁的下游側,設於前述第1分歧流路內,從途中將前述第1分歧流路分隔成複數個第2分歧流路的第2分隔壁。
  9. 如請求項1或請求項2所記載的高溫零件,其中連結於前述傾斜部中前述第1分隔壁之側面的前述傾斜部的上游端部,其角部被施以倒角。
  10. 如請求項1或請求項2所記載的高溫零件,其中前述高溫零件,在前述冷卻通路之高度方向中的其中一側具有被加熱面,為了形成前述冷卻通路,在前述高度方向相對向的一對通路內壁面之中,離前述被加熱面較近的第1通路內壁面,對前述被加熱面形成傾斜,使前述第1通路內壁面與前述被加熱面之間的距離,從前述冷卻通路的上游側朝向下游側變小。
  11. 一種高溫零件的製造方法,是需要由冷卻媒體冷卻的高溫零件的製造方法,具備以下的步驟:藉由金屬積層成形法,將前述冷卻媒體可流通的複數個冷卻通路,形成於前述高溫零件的內部,並形成第1分隔壁,該第1分隔壁設於各個前述冷卻通路內,將前述冷 卻通路分隔成複數個第1分歧流路,前述第1分隔壁含有傾斜部,該傾斜部形成:在前述第1分隔壁的上游側領域,從前述冷卻通路的延伸方向觀看時,前述冷卻通路的流路剖面積從上游側朝向下游側逐漸減少,各個前述冷卻通路,由前述第1分隔壁,在前述冷卻通路的寬度方向,分隔成一對前述第1分歧流路,前述傾斜部形成:正交於前述寬度方向的前述冷卻通路之高度方向中的尺寸Ht、前述寬度方向中的尺寸Wt之中的至少其中一個,朝向下游側逐漸增加。
TW110125088A 2019-03-29 2020-02-21 高溫零件及高溫零件的製造方法 TWI761254B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065821A JP7234006B2 (ja) 2019-03-29 2019-03-29 高温部品及び高温部品の製造方法
JP2019-065821 2019-03-29

Publications (2)

Publication Number Publication Date
TW202138673A TW202138673A (zh) 2021-10-16
TWI761254B true TWI761254B (zh) 2022-04-11

Family

ID=72667876

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110125088A TWI761254B (zh) 2019-03-29 2020-02-21 高溫零件及高溫零件的製造方法
TW109105648A TWI737188B (zh) 2019-03-29 2020-02-21 高溫零件及高溫零件的製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109105648A TWI737188B (zh) 2019-03-29 2020-02-21 高溫零件及高溫零件的製造方法

Country Status (7)

Country Link
US (1) US11920486B2 (zh)
JP (1) JP7234006B2 (zh)
KR (1) KR102606418B1 (zh)
CN (1) CN113454322B (zh)
DE (1) DE112020000861T5 (zh)
TW (2) TWI761254B (zh)
WO (1) WO2020202866A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200710321A (en) * 2005-08-31 2007-03-16 United Technologies Corp Manufacturable and inspectable microcircuits
JP2012202335A (ja) * 2011-03-25 2012-10-22 Mitsubishi Heavy Ind Ltd インピンジメント冷却構造、及び、それを用いたガスタービン静翼
US20170306766A1 (en) * 2014-10-14 2017-10-26 Siemens Aktiengesellschaft Turbine blade having an inner module and method for producing a turbine blade

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE861475L (en) * 1985-07-03 1987-01-03 Tsnii Kozhevenno Obuvnoi Ptomy Improved coolant passage structure especially for cast rotor¹blades in a combustion turbine
US5813835A (en) * 1991-08-19 1998-09-29 The United States Of America As Represented By The Secretary Of The Air Force Air-cooled turbine blade
JP3651490B2 (ja) 1993-12-28 2005-05-25 株式会社東芝 タービン冷却翼
US6939102B2 (en) 2003-09-25 2005-09-06 Siemens Westinghouse Power Corporation Flow guide component with enhanced cooling
DE102007018061A1 (de) * 2007-04-17 2008-10-23 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammerwand
EP2405103B1 (en) 2009-08-24 2016-05-04 Mitsubishi Heavy Industries, Ltd. Split ring cooling structure
US8727704B2 (en) 2010-09-07 2014-05-20 Siemens Energy, Inc. Ring segment with serpentine cooling passages
US20140099476A1 (en) * 2012-10-08 2014-04-10 Ramesh Subramanian Additive manufacture of turbine component with multiple materials
JP6210402B2 (ja) 2013-03-18 2017-10-11 Fdk株式会社 巻線部品
US9416662B2 (en) 2013-09-03 2016-08-16 General Electric Company Method and system for providing cooling for turbine components
US10690055B2 (en) 2014-05-29 2020-06-23 General Electric Company Engine components with impingement cooling features
US10221767B2 (en) * 2014-09-02 2019-03-05 United Technologies Corporation Actively cooled blade outer air seal
US10099290B2 (en) 2014-12-18 2018-10-16 General Electric Company Hybrid additive manufacturing methods using hybrid additively manufactured features for hybrid components
CN105019950A (zh) 2015-06-25 2015-11-04 西安理工大学 透平叶片前缘仿生微细通道内冷结构及其成形方法
US10107128B2 (en) 2015-08-20 2018-10-23 United Technologies Corporation Cooling channels for gas turbine engine component
WO2017077955A1 (ja) * 2015-11-05 2017-05-11 三菱日立パワーシステムズ株式会社 燃焼用筒、ガスタービン燃焼器及びガスタービン
US9926788B2 (en) 2015-12-21 2018-03-27 General Electric Company Cooling circuit for a multi-wall blade
JP6664657B2 (ja) * 2015-12-25 2020-03-13 株式会社ノーリツ 伝熱管の取付け構造、熱交換器、および伝熱管の取付け方法
US10989070B2 (en) * 2018-05-31 2021-04-27 General Electric Company Shroud for gas turbine engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200710321A (en) * 2005-08-31 2007-03-16 United Technologies Corp Manufacturable and inspectable microcircuits
JP2012202335A (ja) * 2011-03-25 2012-10-22 Mitsubishi Heavy Ind Ltd インピンジメント冷却構造、及び、それを用いたガスタービン静翼
US20170306766A1 (en) * 2014-10-14 2017-10-26 Siemens Aktiengesellschaft Turbine blade having an inner module and method for producing a turbine blade

Also Published As

Publication number Publication date
KR102606418B1 (ko) 2023-11-24
US20220162962A1 (en) 2022-05-26
CN113454322A (zh) 2021-09-28
US11920486B2 (en) 2024-03-05
KR20210114529A (ko) 2021-09-23
JP2020165361A (ja) 2020-10-08
CN113454322B (zh) 2023-10-31
WO2020202866A1 (ja) 2020-10-08
TW202138673A (zh) 2021-10-16
TWI737188B (zh) 2021-08-21
DE112020000861T5 (de) 2021-11-11
TW202039994A (zh) 2020-11-01
JP7234006B2 (ja) 2023-03-07

Similar Documents

Publication Publication Date Title
JP5947519B2 (ja) タービンロータブレードのプラットフォーム領域を冷却するための装置及び方法
EP3318720B1 (en) Cooled structure for a gas turbine, corresponding gas turbine and method of making a cooled structure
TWI737187B (zh) 高溫零件及高溫零件的製造方法
JP7109901B2 (ja) 冷却構造のチャネル接続部を冷却するための移行マニホールド
CN111936724B (zh) 涡轮动叶以及燃气轮机
US20170254267A1 (en) Combustor and gas turbine
TWI761254B (zh) 高溫零件及高溫零件的製造方法
TWI767191B (zh) 高溫零件、高溫零件的製造方法及流量調節方法
JP2019173595A5 (zh)
EP3095962B1 (en) A heat exchanger seal segment for a gas turbine engine
US11187085B2 (en) Turbine bucket with a cooling circuit having an asymmetric root turn
JP6910607B2 (ja) ピンフィン、ピンフィン群及びタービン翼
JP2021071085A (ja) タービン翼及びこれを備えたガスタービン
JP2020002950A (ja) 重なり合う表面近傍冷却チャネル
JP6583780B2 (ja) 翼及びこれを備えるガスタービン
JP2022099908A (ja) 高温部品及び回転機械