WO2014104506A1 - 포켓타입의 태양광발전용 백시트, 상기 백시트의 제조방법, 그리고 상기 백시트를 구비한 태양광발전용 모듈 - Google Patents

포켓타입의 태양광발전용 백시트, 상기 백시트의 제조방법, 그리고 상기 백시트를 구비한 태양광발전용 모듈 Download PDF

Info

Publication number
WO2014104506A1
WO2014104506A1 PCT/KR2013/005718 KR2013005718W WO2014104506A1 WO 2014104506 A1 WO2014104506 A1 WO 2014104506A1 KR 2013005718 W KR2013005718 W KR 2013005718W WO 2014104506 A1 WO2014104506 A1 WO 2014104506A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
back sheet
conductive member
pocket
backsheet
Prior art date
Application number
PCT/KR2013/005718
Other languages
English (en)
French (fr)
Inventor
김민혁
Original Assignee
Kim Min Hyuk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20120154598A external-priority patent/KR101285408B1/ko
Application filed by Kim Min Hyuk filed Critical Kim Min Hyuk
Priority to EP13868999.7A priority Critical patent/EP2830103A4/en
Priority to JP2015503140A priority patent/JP2015513228A/ja
Priority to CN201380010173.5A priority patent/CN104126232A/zh
Priority to US14/389,734 priority patent/US20150068593A1/en
Publication of WO2014104506A1 publication Critical patent/WO2014104506A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell backsheet of the pocket type, and a solar cell backsheet of the pocket type produced by this, and a solar cell module having the backsheet,
  • the step of forming a heat radiation to weather resistant coating layer on the exposed surface of the insulating film the step of adhering the insulating film on both sides of the plate-shaped thermal conductive member, and then sealing the opening of the insulating film to the outside and closed Through the process of forming a pocket,
  • the backsheet that is, the thermally conductive member
  • the backsheet prevents moisture or foreign matter from entering the backsheet (that is, the laminated surface between the thermally conductive member and the insulating film is not exposed to the outside and is insulated from the thermally conductive member by contact with moisture or the like. Peeling phenomenon between the films), and by sealing the insulation of the side portion of the thermally conductive member to the outside by an insulating film, the insulation performance of the backsheet can be upgraded one step further, and the gas is permeated.
  • the solar module is manufactured according to the conventional method without using a thermally conductive member made of metal or graphite, which is impossible to do, the solar module is installed on the outside and the gas generated from the EVA layer of the module cannot be leaked to the outside for a long time. Is a fatal defect that the other layer of the solar module and the backsheet are essentially peeled off.
  • the backsheet according to the present invention can design the size of the thermal conductive member and the size of the insulating film freely to provide a passage for the gas generated in the EVA layer inside the solar module to the outside to the problem of peeling the backsheet.
  • the complete technical solution is to provide a backsheet that can improve the safety and quality of the backsheet itself and the safety and quality of the solar module and to provide a solar power module using the same.
  • the prior art is a laminated structure of a glass substrate, a front solar EVA, a solar cell, a rear solar EVA, and a heat dissipation sheet having a ceramic coating layer, and the heat dissipation sheet is a material having excellent thermal conductivity, such as aluminum, copper, brass, steel sheet, and stainless steel. And using one of metal sheets having emissivity performance equivalent to or higher than those of such materials,
  • the ceramic coating layer is to heat-dissipate and thereby increase the power generation efficiency of the module by forming a thermally conductive ceramic coating layer by ceramic coating one or both sides of the heat radiation sheet by a conventional ceramic coating method.
  • the conventional technology is a metal thin film is exposed along the four edges of the outer sheet has a problem that the insulation performance is reduced by the electrical leakage generated by the solar cell through the exposed portion, thereby ensuring the safety of the photovoltaic device There is a fatal problem that cannot be done.
  • the present invention has been made to solve the conventional backsheet problem, as described above,
  • the side portion of the thermally conductive member is exposed to the aluminum frame of the photovoltaic module to generate a leakage current.
  • the thermally conductive member is sealed by an insulating film to block contact with the outside, thereby insulating the backsheet. Not only can you upgrade your level
  • the solar module is manufactured in a conventional manner without using a thermally conductive member made of metal or graphite, which is impermeable to gas, the solar module is installed on the outside and gas generated from the EVA layer of the module does not leak out.
  • the present invention is designed to solve this problem by freely designing the size of the thermal conductive member and the size of the insulating film.
  • the gap size between the insulating film and the insulating film can be designed freely, so that the gas generated from the EVA layer inside the photovoltaic module can be provided to the outside to completely solve the problem of backsheet peeling.
  • one object is to improve the safety and quality of the backsheet itself, and the safety and quality of the photovoltaic module having such a backsheet.
  • the present invention is to simplify the process of manufacturing a backsheet of the pocket type is possible to mass production, high productivity, thereby reducing the production cost is another object to increase the economics.
  • the manufacturing method of the pocket type solar backsheet according to the present invention is the manufacturing method of the pocket type solar backsheet according to the present invention.
  • the insulating film having a larger size than the thermally conductive member is formed on both sides of the thermally conductive member to seal the opening of the insulating film formed to form a closed pocket with the outside.
  • thermally conductive member and the insulating film of the step (b) is characterized in that made by the adhesive means.
  • the heat dissipation ceramic layer or the heat dissipation coating layer is further formed on the exposed surface of the coating layer
  • step (b) is characterized in that the protective layer is further formed on the exposed surface of the coating layer.
  • the insulating film is made of a plate-like thermal conductive member that is in close contact with both sides,
  • the insulating film is made of a larger size than the thermally conductive member, the opening of the insulating film formed thereby is characterized in that the pocket type solar backsheet sheet, characterized in that to form a closed pocket with the outside.
  • the opening of the insulating film is sealed to form a closed pocket with the outside to seal the back sheet, thereby preventing moisture or foreign substances from entering the inside of the back sheet, and the laminated surface between the thermal conductive member and the insulating film is not exposed to the outside. It is possible to prevent the phenomenon of peeling between the thermally conductive member and the insulating film by the air in contact with moisture or the like.
  • the present invention can not only improve the insulation performance of the backsheet by sealing the insulation of the side portion of the thermally conductive member exposed to the frame of the solar module by the insulating film to prevent contact with the outside one step, As a result, it is possible to improve the safety and product quality of the solar module product.
  • the present invention can simplify the process of manufacturing the backsheet of the pocket type is possible to mass production, thereby increasing the productivity, thereby reducing the production cost it is possible to increase the economics.
  • FIG. 1 is a flow chart showing a manufacturing method of a pocket type solar back sheet according to the present invention
  • Figure 2 is a process chart showing a manufacturing method of a pocket type solar back sheet according to the present invention
  • Figure 3 is a cross-sectional view showing modifications of the pocket-type solar backsheet sheet according to the present invention.
  • Figure 4 is a view showing a solar cell backsheet and solar module of the pocket type according to the present invention.
  • coating layer 40 adhesive means
  • 'plate-like' is not meant to limit the thickness, it is meant to encompass the concept of a general sheet or film,
  • exposure surface means the outer side or the outer side of each member
  • the "stacked surface” means the side portion of the back sheet formed by stacking each member.
  • step (a) (S100) is a thermal conductive coating layer 30 on the exposed surface of the insulating film 20 ) Is the process of forming.
  • the coating layer 30 has one or more functions selected from thermal conductivity, thermal radiation, and weather resistance.
  • Step (a) (S100) is to form a coating layer 30 by applying a thermal conductive (or heat radiation or weather resistant) paint to a part or all of the exposed surface of the insulating film 20,
  • the coating layer 30 is applied to the rolled insulating film 20 is formed, then cut to a predetermined size,
  • the coating layer 30 is formed on the exposed surface of the insulating film 20.
  • the insulating film 20 is composed of one material of PET, PI PP, PE, BOPP, OPP, PVF, PVDF, TPE, ETFE, aramid film and nylon, EVA, or a composite material obtained therefrom,
  • the insulating film 20 is manufactured in the form of a thin film by molding the polymer material as described above.
  • the insulating film 20 made of a polymer material as described above has an advantage that the withstanding voltage is excellent and the durability can be improved because there is no fear of breaking the insulating part.
  • This characteristic has the advantage of extending the application to various fields that require higher withstand voltage in terms of quality standards.
  • the insulating film 20 is excellent in heat resistance to prevent the insulation layer from being broken or broken, as well as being manufactured in the form of a thin film, thereby making the backsheet BS itself slim.
  • the coating layer 30 ensures the insulation performance and heat dissipation performance of the back sheet BS, and also has excellent heat resistance and adhesive strength, and also enables the thin film of the back sheet BS.
  • the coating layer 30 is composed of an organic or inorganic thermal conductive paint, or an organic-inorganic hybrid hybrid thermal conductive paint,
  • the coating layer 30 uses an inorganic paint composed of metal oxides, CNTs, silicon, etc., such as ceramic-based alumina, titanium oxide, and zirconia.
  • the inorganic paint has excellent heat resistance, chemical stability, thermal conductivity, and insulation. It has the advantage of being.
  • organic-inorganic hybrid hybrid paints containing organic chemical coatings such as urethane, polyester, and acrylic, which are organic materials, are mixed with the inorganic paints. Alternatively introduced.
  • the coating layer 30 composed of the organic-inorganic composite hybrid paint not only has excellent insulation performance, heat dissipation performance, and radiation property, but also has excellent heat resistance and adhesive strength,
  • the coating layer 30 is selected from Al 2 O 3 , AlS, AlN, ZnO 2 , TiO 2 , SiO 2 , TEOS, MTMS, ZrO 3, and MOS 2 as an alternative form of an inorganic paint or an organic / inorganic hybrid hybrid paint. It is also possible to ensure insulation performance and heat dissipation performance by introducing a ceramic material containing more than one species.
  • step (b) (S200) in the method of manufacturing a pocket-type solar backsheet (BS) according to the present invention is a plate-shaped thermal conductive member 10. It is a process of bringing the insulating film 20 into close contact with both surfaces of the substrate.
  • the thermally conductive insulating film 20 is in close contact.
  • Such a close contact process is such that the insulating film 20 is in close contact with both surfaces of the thermal conductive member 10 in the process of sealing the opening 21 of the insulating film 20 in step (c) (S300) to be described below, or the front surface of the insulating film 20.
  • the adhesion process may be performed by adhering the insulating film 20 in the state where the adhesive is applied to the both surfaces of the thermal conductive member 10.
  • Examples of the adhesive applied to the insulating film 20 include EVA, acrylic, and urethane-based adhesive transparent films, adhesive paints, and the like having thermal conductivity.
  • the adhesive is characterized in that the thermoplastic solvent-free adhesive, to solve the problem of at least 5-7 days to manufacture the existing finished product by simultaneously bonding and aging the thermally conductive member in the middle and the insulating film located on the upper and lower surfaces It is characterized by the technical features that can be manufactured so that this is not necessary.
  • the conventional solar backsheet manufacturing process has matured by bonding another insulating member to the other side after aging to bond the middle member and one side member and remove the residual solvent when the three-layer type is made.
  • the time to manufacture the finished product using the mold adhesive was at least 5-7 days.
  • thermoplastic solvent-free adhesive is used as the adhesive, and the intermediate thermal conductive plate-like member and the insulating film on the upper and lower surfaces are simultaneously bonded to each other and are manufactured so that aging is unnecessary.
  • the thermoplastic adhesive is pre-coated on the insulating film 20 wider than the thermal conductive member 10, and then the top and bottom thereof are disposed, and the process is performed to the insulating film while advancing the thermal conductive member in the process direction.
  • the heat conductive member was cut while proceeding in the direction, and then the insulating film was pressed with a heating roller up and down to produce a back sheet of pocket type.
  • thermally conductive member 10 is composed of a material of aluminum, copper, brass, steel sheet and stainless steel and graphite, or a composite material obtained therefrom having excellent thermal conductivity,
  • the thermally conductive member 10 is manufactured in the form of a thin film, but the materials as described above can prevent deformation of the material due to thermal stress due to excellent rigidity and heat resistance.
  • the adhesive that is, the adhesive means 40 in the form of a film
  • the adhesive means 40 is arranged on both sides of the thermal conductive member 10, and the insulating film 20 is exposed on the exposed surface of the adhesive means 40.
  • laminating is performed by applying a constant heat pressure.
  • the thermally conductive member 10 and the bonding means 40 of the thin film are laminated by the difference in the thermal expansion coefficient and the cooling rate, and then the cooling rate of the thermal conductive member 10 and the bonding means 40 is changed. Due to this, the thermal conductive member 10 is bent,
  • the step (c) (S300) is to seal the opening 21 of the insulating film 20,
  • the openings 21 of the insulating film 20 are assumed to have four backsheets BS. Will be,
  • the opening 21 when the opening 21 is left in order to insert the thermally conductive member 10 by sealing the insulating film 20 in a pocket form in advance, the opening 21 will be one place.
  • the sealing portion 23 is formed at the sealed portion to form a pocket that is blocked from the outside, and thus, the thermal conductive member 10 is completely sealed to the outside. Contact with is blocked.
  • the laminated surface between the thermally conductive member 10 and the insulating film 20 is not exposed to the outside as in the prior art, and thus the contact between the outside air and moisture is blocked so that the thermally conductive member 10 and the insulating film 20 are closed. The phenomenon of peeling can be prevented.
  • the insulating film 20 seals the thermal conductive member 10 so that the side portion of the thermal conductive member 10 is not exposed to the outside as in the prior art, the insulating performance can be more fully realized.
  • a solar module is manufactured in a conventional manner by using a plate-shaped thermally conductive member without a border as a gas or a material through which gas cannot penetrate, the solar module is installed on the outside and the gas generated from the EVA layer of the module is In the long run, a critical defect occurs in which other layers of the solar module and the backsheet are essentially peeled off.
  • the size of the plate-shaped thermally conductive member and the size of the insulating film can be freely designed through (a) steps (S100) to (c) step (S300). This makes it possible to design the width of the gap D freely due to the size difference between the insulating film and the thermally conductive member (see FIG. 2).
  • gap (D) can be designed according to the solar module according to
  • the heat seal member 23 is not arranged in the sealing part 23 through the pocket type, and only the pure insulator is left at the edge, thereby blocking the leakage current that went out to the aluminum frame of the solar module, thereby increasing the insulation of the solar module.
  • the step (a) is preferably performed first in time
  • the steps (a) and (b) are performed to form a thermally conductive coating layer on the insulating film through the (a) step.
  • the order may be reversed.
  • the carbon black layer 50 is further formed on the exposed surface of the coating layer 30.
  • the carbon black layer 50 increases the heat radiation performance to double the heat radiation efficiency.
  • the carbon black layer 50 is formed by applying a carbon black resin
  • the carbon black layer 50 is excellent in heat radiation, that is, the thermal conductivity is to maximize the heat dissipation efficiency by releasing the conductive heat transmitted from the coating layer 30 to the air more quickly.
  • a heat dissipation ceramic layer or a heat dissipation coating layer 60 is further formed on the exposed surface of the coating layer 30.
  • the heat dissipation ceramic layer (or heat dissipation coating layer) 60 is at least one metal ceramic material selected from the group consisting of alumina, titanium oxide, and zirconia,
  • An organosilane, an inorganic silane, a silane coupling agent, and CNTs are composed of at least one selected from the group consisting of at least one nonmetal ceramic material.
  • the heat dissipation ceramic layer (or heat dissipation coating layer) 60 effectively discharges the conductive heat transmitted by the heat conductive coating layer 30 to the outside, thereby increasing the heat dissipation efficiency and, thereby, increasing the generation amount of the solar module.
  • a protective layer 70 is further formed on the exposed surface of the coating layer 30,
  • the protective layer 70 is made of a material such as ceramic, fluorine resin,
  • the protective layer 70 is excellent in weather resistance and corrosion resistance, and excellent in blocking ultraviolet rays, and also improves surface protection and insulation performance of the back sheet BS.
  • the carbon black layer, the heat dissipating ceramic layer (or the heat dissipation coating layer), and the protective layer may be selectively introduced in a single form or two or more forms.
  • the stacking order may be applied to the exposed surface of the coating layer or the exposed surface of the insulating film after step (a) (S100), depending on its functionality.
  • each of the layers may be positioned on a part of the exposed surface of the coating layer (see FIG. 3 (a)) or all of them (see FIG. 3 (b)).
  • the protective layer is preferably formed on the exposed surface of the outermost layer when the carbon black layer, the heat dissipation ceramic layer (or heat dissipation coating layer) is selectively or all introduced.
  • pocket type solar backsheet As shown in Figure 1 and 2 pocket type solar backsheet according to the present invention is
  • Insulating film 20 A coating layer 30 formed on part or all of the exposed surface of the insulating film 20; And the plate-shaped thermally conductive member 10 in which the insulating film 20 is in close contact with both surfaces thereof.
  • the opening 21 of the insulating film 20 is sealed to form a closed pocket with the outside.
  • the sealing member 23 is formed by sealing the opening 21 in such a manner as to thermally compress the opening 21 of the insulating film 20 to form a closed pocket with the outside, thereby forming the sealing portion 23.
  • the member 10 is sealed by the insulating film 20 and completely blocked from the outside.
  • the carbon black layer 50, the heat dissipating ceramic layer (or heat dissipation coating layer) 60, and the protective layer 70 are formed on the back sheet BS manufactured by the manufacturing method according to the present invention. It is possible to be selectively introduced in singular or plural as necessary,
  • the carbon black layer, the heat dissipating ceramic layer and the protective layer may be introduced after the step (b), and after the step (c) as shown in FIG.
  • Figure 4 shows the back of the solar module according to the invention showing the state before and after the mounting of the back sheet (BS).
  • each part of the photovoltaic module except for the backsheet (BS) structure is the same as a conventional photovoltaic module, and thus a detailed description thereof is omitted.
  • the back sheet (BS) is mounted inside the frame (F) of the photovoltaic module (M), by having a back sheet (BS) having the above-described structure or through the above-described manufacturing process, the solar light
  • the safety of the power generation module can be expected and the quality can be expected.
  • the present invention describes a method for manufacturing a solar cell backsheet for pocket type, and a solar cell backsheet for pocket type manufactured by this, and the solar cell module provided with the backsheet.
  • the present invention can be variously modified and changed by those skilled in the art, such modifications and variations should be construed as being included in the scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 절연필름의 노출면에 열복사성 내지 내후성 코팅층을 형성하는 공정과, 판상의 열전도성부재의 양면에 상기 절연필름을 밀착시키는 공정과, 이후 상기 절연필름의 개구부를 봉합하여 외부와 폐쇄된 포켓을 형성하는 공정을 통하여, 백시트 즉, 열전도성부재를 밀봉시킴으로써 백시트로 습기나 이물질이 투입되는 것을 차단하고, 백시트의 절연성능을 한 단계 업그레이드시킬 수 있고, 나아가 열전도성부재의 사이즈와 절연필름의 사이즈 크기를 자유자재로 디자인할 수 있어 태양광 모듈 내부의 EVA 레이어에서 발생하는 가스가 외부로 나갈 통로를 마련해주어 백시트 박리의 문제점을 완벽하게 해결하게 되었는바, 결국 백시트 자체의 안전성과 품질 및 태양광 모듈의 안전성과 품질을 향상시킬 수 있는 백시트를 제공함에 그 기술적 특징으로 한다.

Description

포켓타입의 태양광발전용 백시트, 상기 백시트의 제조방법, 그리고 상기 백시트를 구비한 태양광발전용 모듈
본 발명은 포켓타입의 태양광발전용 백시트의 제조방법 및 이에 의하여 제조된 포켓타입의 태양광발전용 백시트, 그리고 상기 백시트를 구비한 태양광발전용 모듈에 관한 것으로,
보다 구체적으로는 절연필름의 노출면에 열복사성 내지 내후성 코팅층을 형성하는 공정과, 판상의 열전도성부재의 양면에 상기 절연필름을 밀착시키는 공정과, 이후 상기 절연필름의 개구부를 봉합하여 외부와 폐쇄된 포켓을 형성하는 공정을 통하여,
백시트 즉, 열전도성부재를 밀봉시킴으로써 백시트로 습기나 이물질이 투입되는 것을 차단(다시 말해, 열전도성부재와 절연필름간의 적층면이 외부로 노출되지 않아 습기 등과의 접촉으로 열전도성부재와 절연필름 상호 간의 박리 현상을 방지할 수 있음)하고, 종래에 열전도성부재의 측면부가 외부로 노출되던 것을 절연필름에 의하여 밀봉시켜 줌으로써 백시트의 절연성능을 한 단계 업그레이드시킬 수 있고, 나아가 가스가 투과할 수 없는 금속 또는 그라파이트 재질의 열전도성 부재를 테두리없이 사용하여 기존의 방식대로 태양광 모듈을 제조하면 태양광 모듈이 외부에 설치되고 모듈의 EVA 레이어에서 발생하는 가스가 외부로 유출되지 못하여 장기적으로는 태양광 모듈의 타 레이어와 백시트가 필수적으로 박리가 되는 치명적인 결함이 있으나 본 발명에 따른 백시트는 열전도성부재의 사이즈와 절연필름의 사이즈 크기를 자유자재로 디자인할 수 있어 태양광 모듈 내부의 EVA 레이어에서 발생하는 가스가 외부로 나갈 통로를 마련해주어 백시트 박리의 문제점을 완벽하게 해결하게 되었는바, 결국 백시트 자체의 안전성과 품질 및 태양광 모듈의 안전성과 품질을 향상시킬 수 있는 백시트를 제공하고 이를 이용한 태양광 발전용 모듈을 제공함에 그 기술적 특징으로 한다.
종래의 방열시트 내지 백시트로는 등록특허 제10-0962642호(2010.06.11. 이하 '종래기술'이라 함.) "세라믹 코팅 방열시트를 구비한 태양광발전용 모듈"이 개시되어 있다.
상기 종래기술은 유리기판, 전면 쏠라 EVA, 쏠라 셀, 후면 쏠라 EVA 및 세라믹 코팅층이 형성된 방열시트의 순으로 적층된 구조로 상기 방열시트는 열전도율이 뛰어난 소재로서, 알루미늄, 동, 황동, 강판, 스테인리스 및 이와 같은 소재들과 동등 이상의 방사율 성능을 갖는 금속 박판 중에서 한 가지를 선택하여 사용하고,
또한 상기 세라믹 코팅층은 통상적인 세라믹 코팅법에 의해 방열시트의 한쪽 면 또는 양쪽 면을 세라믹 코팅하여 열전도성 세라믹 코팅층을 형성함으로써 방열과, 이를 통하여 모듈의 발전효율을 높이고자 한다.
그러나 상기 종래기술은 방열시트의 측면이 외부로 노출되어 있어 습기나, 먼지나 기타 이물질 등이 각 부재의 사이로 투입되는 것을 방지할 수 없고,
또한 방열시트의 측면이 항상 공기나 습기와 접촉될 가능성이 높아 각 필름이나 시트 형태의 적층물이 박리되는 문제가 있다.
아울러 상기 종래기술은 금속 박막이 외부 시트의 네 테두리를 따라 노출되어 있어 쏠라 셀에 의하여 발생되는 전기가 노출부를 통하여 누전됨으로써 절연성능이 떨어지는 문제가 있고, 이에 의하여 태양광 발전용 장치의 안전성을 보장할 수 없는 치명적인 문제가 있다.
본 발명은 상기한 바와 같이 종래 백시트 문제점을 해결하기 위해 안출된 것으로,
절연필름의 노출면에 열복사성 또는 내후성 코팅층을 형성하는 공정과, 판상의 열전도성부재 양면에 절연필름을 밀착시키는 공정과, 상기 절연필름의 개구부를 봉합하여 외부와 폐쇄된 포켓을 형성하는 공정을 통하여 열전도성부재가 밀봉된 포켓타입의 백시트를 제공함으로써
열전도성부재와 절연필름간의 적층면이 외부로 노출되지 않아 공기나 습기 등과의 접촉으로 열전도성부재와 절연필름 상호 간의 박리 현상을 방지할 수 있고, 종국적으로는 백시트로 습기나 이물질이 투입되는 것을 차단하고,
아울러 종래에 열전도성부재의 측면부가 태양광 모듈의 알루미늄 프레임에 노출되어 누설전류가 발생하던 것을 본 발명에서는 절연필름에 의하여 열전도성부재를 밀봉시켜 외부와의 접촉을 차단하여 줌으로써 백시트의 절연성능을 한 단계 업그레이드시킬 수 있을 뿐만 아니라,
가스가 투과할 수 없는 금속 또는 그라파이트 재질의 열전도성 부재를 테두리없이 사용하여 기존의 방식대로 태양광 모듈을 제조하면 태양광 모듈이 외부에 설치되고 모듈의 EVA 레이어에서 발생하는 가스가 외부로 유출되지 못하여 장기적으로는 태양광 모듈의 타 레이어와 백시트가 필수적으로 박리가 되는 치명적인 결함이 있으나 본 발명은 이런 문제를 해결하고자 열전도성 부재의 크기와 절연필름의 크기를 자유자재로 디자인하여 열전도성 부재와 절연필름 간 형성되는 간격 크기 역시 자유자재로 디자인할 수 있어 태양광 모듈 내부의 EVA 레이어에서 발생하는 가스가 외부로 나갈 통로를 마련할 수 있어 백시트 박리의 문제점을 완벽하게 해결할 수 있는 백시트를 제공하고자 하는 것을 목적으로 하는바,
결국 백시트 자체의 안전성과 품질, 그리고 이러한 백시트를 구비한 태양광 발전용 모듈의 안전성과 품질을 향상시키는 것을 하나의 목적으로 하며,
더 나아가 본 발명은 포켓타입의 백시트를 제작하는 공정이 단순화되어 있어 대량 생산이 가능하여 생산성이 높고, 이에 의하여 제작비용이 절감됨으로써 경제성을 높이는 것을 또 하나의 목적으로 한다.
본 발명에 따른 포켓타입의 태양광발전용 백시트의 제조방법은
(a) 절연필름의 노출면의 일부 또는 모두에 열전도성, 복사성, 내후성 중 선택된 하나 이상의 기능을 갖는 코팅층을 형성하는 단계와,
(b) 판상의 열전도성부재의 양면에 열전도성부재 보다 큰 사이즈를 갖는 상기 절연필름을 밀착시키는 단계와, 그리고
(c) 열전도성부재 보다 큰 사이즈를 갖는 절연필름이 열전도성부재의 양면에 위치하면서 형성된 절연필름의 개구부를 봉합하여 외부와 폐쇄된 포켓을 형성하는 단계를 포함하여 이루어진 것을 기술적 특징으로 한다.
또한 상기 (b) 단계의 열전도성부재와 상기 절연필름의 밀착은 접착수단에 의하여 이루어지는 것을 기술적 특징으로 한다.
또한 상기 (b)단계 후 코팅층의 노출면에는 방열세라믹층 또는 방열 코팅층이 더 형성되는 것을 특징으로 하고,
또는 상기 (b)단계 후 코팅층의 노출면에는 보호층이 더 형성되는 것을 특징으로 한다.
나아가 본 발명에 따른 백시트는,
절연필름와,
상기 절연필름의 노출면의 일부 또는 모두에 형성된 열전도성, 복사성, 내후성 중 선택된 하나 이상의 기능을 갖는 코팅층과, 그리고
상기 절연필름이 양면에 밀착되는 판상의 열전도성부재를 포함하여 이루어지되,
상기 절연필름은 열전도성부재보다 큰 사이즈로 이루어져 이로 인해 형성된 절연필름의 개구부는 봉합되어 외부와 폐쇄된 포켓을 형성하는 것을 특징으로 하는 포켓타입의 태양광발전용 백시트인 것을 기술적 특징으로 한다.
본 발명에 따른 포켓타입의 태양광발전용 백시트의 제조방법 및 이에 의하여 제조된 포켓타입의 태양광발전용 백시트, 그리고 상기 백시트를 구비한 태양광 발전용 모듈은,
절연필름의 개구부를 봉합하여 외부와 폐쇄된 포켓을 형성하여 백시트를 밀봉시킴으로써 백시트 내부로 습기나 이물질이 투입되는 것을 차단하고, 또한 열전도성부재와 절연필름간의 적층면이 외부로 노출되지 않아 공기가 습기 등과의 접촉으로 열전도성부재와 절연필름 상호 간의 박리 현상을 방지할 수 있게 된다.
아울러 본 발명은 종래에 열전도성부재의 측면부가 태양광 모듈의 프레임에노출되던 것을 절연필름에 의하여 밀봉시켜 외부와의 접촉을 차단하여 줌으로써 백시트의 절연성능을 한 단계 업그레이드시킬 수 있을 뿐만 아니라, 이에 의하여 태양광발전용 모듈 제품의 안전성과 제품의 품질을 향상시킬 수 있게 된다.
나아가 본 발명은 포켓타입의 백시트를 제작하는 공정이 단순화되어 있어 대량 생산이 가능하여 생산성을 높이고, 이에 의하여 제작비용이 절감됨으로써 경제성을 높일 수 있게 된다.
도 1은 본 발명에 따른 포켓타입의 태양광발전용 백시트의 제조방법을 나타내는 흐름도,
도 2는 본 발명에 따른 포켓타입의 태양광발전용 백시트의 제조방법을 나타내는 공정도,
도 3은 본 발명에 따른 포켓타입의 태양광발전용 백시트의 변형례들을 나타내는 단면도.
도 4는 본 발명에 따른 포켓타입의 태양광발전용 백시트와 태양광 모듈을 도시한 도면.
* 도면의 주요부분에 대한 부호의 설명 *
M: 태양광발전용 모듈 F: 프레임
BS : 백시트
10 : 열전도성부재
20 : 절연필름 21 : 개구부 23 : 밀봉부
30 : 코팅층 40 : 접착수단
50 : 카본블랙층 60 : 방열세라믹층 70 : 보호층
이하에서는 본 발명에 따른 포켓타입의 태양광발전용 백시트의 제조방법 및 이에 의하여 제조된 포켓타입의 태양광발전용 백시트, 그리고 상기 백시트가 구비된 태양광 발전용 모듈을 첨부된 도면을 참조하여 설명하기로 한다.
본 명세서상에서 사용되는 용어를 정의하면 '판상'은 두께를 한정하지 않고, 일반적인 시트 또는 필름의 개념을 포괄하는 의미이고,
또한 '노출면'은 각 부재의 외측부 또는 외측면을 의미하는 것이며,
또한 '적층면'은 각 부재가 적층되어 형성되는 백시트의 측면부를 의미하는 것이다.
도 1 및 도 2에 도시된 바와 같이 본 발명에 따른 포켓타입의 태양광발전용 백시트의 제조방법은
(a) 절연필름(20)의 노출면의 일부 또는 모두에 코팅층(30)을 형성하는 단계;
(b) 판상의 열전도성부재(10)의 양면에 상기 절연필름(20)을 밀착시키는 단계; 및
(c) 상기 절연필름(20)의 개구부(21)를 봉합하여 외부와 폐쇄된 포켓을 형성하는 단계;를 포함하여 이루어진다.
도 1 및 도 2에 도시된 바와 같이 본 발명에 따른 포켓타입의 태양광발전용 백시트의 제조방법에서 상기 (a) 단계(S100)는 절연필름(20)의 노출면에 열전도성 코팅층(30)을 형성하는 공정이다.
그리고 상기 코팅층(30)은 열전도성, 열복사성, 내후성 중 선택된 하나 이상의 기능을 구비한다.
상기 (a) 단계(S100)는 상기 절연필름(20)의 노출면 일부 또는 모두에 열전도성(또는 열복사성 또는 내후성) 도료를 도포하여 코팅층(30)을 형성하게 되는데,
이때 상기 코팅층(30)은 롤링되어 있는 절연필름(20)에 도포되어 형성된 후, 일정한 사이즈로 절단하거나,
또는 절연필름(20) 자체를 일정한 사이즈로 절단한 후, 절연필름(20)의 노출면에 코팅층(30)을 형성하게 된다.
우선 상기 절연필름(20)은 PET, PI PP, PE, BOPP, OPP, PVF, PVDF, TPE, ETFE, 아라미드 필름 및 나일론, EVA, 또는 이들로부터 얻어진 복합재료 중 하나의 소재로 구성되고,
상기 절연필름(20)은 상기한 바와 같은 고분자물질을 성형하여 박막형태로 제작된다.
특히 상기한 바와 같은 고분자물질로 이루어진 절연필름(20)은 내전압(withstanding voltage)이 우수하여 절연부분이 파괴될 염려가 없어 내구성을 향상시킬 수 있다는 장점이 있고,
이러한 특성은 품질규격 면에서 더 높은 내전압성이 요구되는 다양한 분야로 활용 폭을 넓힐 수 있는 이점을 갖게 된다.
또한 상기 절연필름(20)은 내열성이 우수하여 절연층이 깨지거나 또는 파괴되는 현상을 방지할 수 있을 뿐만 아니라, 박막형태로 제작되어 백시트(BS) 자체를 슬림하게 제작할 수 있게 된다.
다음으로 상기 코팅층(30)은 백시트(BS)의 절연성능 및 방열성능을 보장하고, 또한 내열성과 접착강도를 우수하게 하며, 또한 백시트(BS)의 박막화를 가능하게 한다.
이 경우 상기 코팅층(30)은 유기 또는 무기 열전도성 도료, 또는 유무기 복합 하이브리드 열전도성 도료를 이용하여 구성되는데,
이는 상기 코팅층(30)으로 유기고분자 물질을 사용하는 경우 유기고분자 물질의 낮은 표면에너지와 낮은 분자력으로 인하여 기계적 강도와 접착력이 약해지는 문제를 해결하기 위함이다.
우선 상기 코팅층(30)은 세라믹계열의 알루미나, 산화티탄, 지르코니아와 같이 금속산화물, CNT, 규소 등으로 구성된 무기도료를 사용하게 되며, 이때 무기도료는 내열성, 화학적 안정성, 열전도성 및 절연성 등이 우수하다는 장점을 갖게 된다.
다만 무기도료를 사용하는 경우에는 취성이 강하여 박막화가 어렵고, 저온 소성이 되지 않는 단점을 갖기 때문에 상기 무기도료에 유기질 재료인 우레탄 또는 포리에스터, 아크릴 등의 유기화학 코팅제를 혼합한 유무기 복합 하이브리드 도료를 대안적으로 도입하게 된다.
따라서 유무기 복합 하이브리드 도료로 구성된 코팅층(30)은 절연성능과 방열성능, 그리고 복사성이 우수할 뿐만 아니라, 내열성과 접착강도가 우수하고,
더 나아가 박막화가 가능하여 제품의 신뢰성을 보장과, 제품의 품질을 향상시킬 수 있는 장점을 얻을 수 있게 된다.
한편 상기 코팅층(30)은 무기도료나 유무기 복합 하이브리드 도료의 대안적인 형태로 Al2O3, AlS, AlN, ZnO2, TiO2, SiO2, TEOS, MTMS, ZrO3 및 MOS2 중에서 선택된 1 종 이상을 포함하는 세라믹 소재를 도입하여 절연성능과 방열성능을 확보하는 것도 가능하다.
다음으로 도 1 및 도 2에 도시된 바와 같이 본 발명에 따른 포켓타입의 태양광발전용 백시트(BS)의 제조방법에서의 상기 (b) 단계(S200)는 판상의 열전도성부재(10)의 양면에 절연필름(20)을 밀착시키는 공정이다.
상기 (b) 단계(S200)에서는 판상의 열전도성부재(10)를 절단하거나, 재단하여 준비한 후, 열전도성 절연필름(20)을 밀착시키게 되는데,
이러한 밀착 공정은 하기할 (c) 단계(S300)에서 절연필름(20)의 개구부(21)를 밀봉하는 과정에서 절연필름(20)이 열전도성부재(10)의 양면에 밀착되도록 하거나, 또는 전면(全面)에 접착제가 도포된 상태의 절연필름(20)을 열전도성부재(10)의 양면에 접착시킴으로서 밀착공정이 진행될 수 있다.
다만 상기 열전도성부재(10)와 절연필름(20)과의 밀착정도를 높이기 위해서는 후자의 방법이 바람직하고,
절연필름(20)에 도포되는 접착제로는 열전도성을 갖는 EVA, 아크릴, 우렌탄 계열의 접착성 투명 필름이나, 접착 도료 등이 도입된다.
또는 상기 접착제는 열가소성 무용제 접착제인 것을 특징으로 하여, 기존 완제품 제조시까지 적어도 5~7일 정도 소요되는 문제점을 해결하여 중간에 위치하는 열전도성부재와 상, 하면에 위치한 절연필름을 동시에 접착시키고 숙성이 필요 없도록 제조가능한 것을 기술적 특징으로 한다.
즉 기존 태양광 백시트 제조 공정은 3 레이어 타입이 만들어질 때 중간부재와 한 쪽면의 부재를 접착시키고 잔류 용제를 제거하기 위해 숙성 후 또 반대편에 또 다른 절연 부재를 접착시켜 숙성을 하여왔으며 대부분 용제형 접착제를 사용하여 완제품 제조시까지 소요되는 시간이 적어도 5-7 일이 소요되었다.
그런데 본 발명에서는 접착제로 열가소성 무용제 접착제를 사용하여 중간의 열전도성 판상 부재와 상, 하면의 절연필름을 동시에 접착시키고 숙성이 필요없도록 제조가 된다.
또 포켓을 만드는 보다 구체적인 방식은 열전도성부재(10)보다 넓은 절연 필름(20)에 열가소성 접착제를 미리 도포한 후 이를 상, 하에 배치하고 열전도성부재를 공정 방향으로 진행시키면서 절연 필름까지 공정을 같은 방향으로 진행하면서 열전도성부재를 절단시키고 그 후에 절연필름을 상하에서 히팅 롤러로 눌러주어 포켓 타잎의 백시트가 제조된다.
그리고 열전도성부재(10)는 열전도성이 우수한 알루미늄, 동, 황동, 강판 및 스테인리스 스틸 및 흑연, 또는 이들로부터 얻어진 복합재료 중 하나의 소재로 구성되고,
상기 열전도성부재(10)는 박막 형태로 제작되나, 상기한 바와 같은 소재들은 일정 이상의 강성과 내열성이 우수하여 열응력에 의한 소재의 변형을 방지할 수 있다.
다음으로 상기 접착제 즉, 필름 형태의 접착수단(40)이 도입되는 경우에는 열전도성부재(10)의 양면에 접착수단(40)을 배열하고, 접착수단(40)의 노출면에 절연필름(20)을 배치시킨 후, 일정한 열 압력을 가하여 라미네이팅 작업을 수행한다.
이 경우 박막의 열전도성부재(10)와 접착수단(40)은 열팽창계수와 냉각속도의 차이에 의하여 라미네이팅 후, 냉각되는 과정에서 열전도성부재(10)와 접착수단(40)의 냉각속도 차이로 인하여 열전도성부재(10)가 휘는 현상이 발생하게 되는데,
이러한 문제는 상기 절연필름(20)으로 도입되는 소재들이 접착수단(40)과의 열팽창계수와 냉각속도가 근사하여 라미네이팅 작업 후, 냉각되는 과정에서 절연필름(20)이 열전도성부재(10)와 접착수단(40) 간의 냉각속도의 차이를 최소화하여 열전도성부재(10)의 휨 변형을 방지하여 줌으로써 제품의 품질을 균일하게 유시킬 수 있게 된다.
도 1 및 도 2에 도시된 바와 같인 본 발명에 따른 포켓타입의 태양광발전용 백시트의 제조방법에서의 상기 (c) 단계(S300)는 상기 (b) 단계(S200)를 거친 후, 상기 절연필름(20)의 개구부(21)를 봉합하여 외부와 폐쇄된 포켓을 형성하는 공정이다.
상기 (c) 단계(S300)는 상기 절연필름(20)의 개구부(21)를 봉합하게 되는데,
이때 상기 절연필름(20)의 개구부(21)는 상기 열전도성부재(10)의 양면에 절연필름(20)이 낱장으로 배열되는 경우에는 백시트(BS)가 사각형 형태라 가정할 때, 4개소가 될 것이고,
또는 상기 절연필름(20)을 포켓 형태로 미리 봉합하여 열전도성부재(10)를 투입하기 위해 개구부(21)를 존치시키는 경우에는 상기 개구부(21)는 1개소가 될 것이다.
본 발명에서 절연필름(20)의 개구부(21)를 봉합하게 되면 봉합되는 부위에는 밀봉부(23)가 형성되어 외부와 차단된 포켓이 형성되고 이로 인해 열전도성부재(10)는 완전히 밀봉되어 외부와의 접촉이 차단된다.
이렇게 함으로써 백시트(BS)로 습기나 이물질 등이 투입되는 것이 방지되고,
또한 종래와 같이 열전도성부재(10)와 절연필름(20) 간의 적층면이 외부로 노출되지 않고, 이에 의하여 외기와 습기 등과의 접촉이 차단되어 열전도성부재(10)와 절연필름(20)이 박리되는 현상을 방지할 수 있게 된다.
또한 상기 열전도성부재(10)의 측면부가 종래와 같이 외부로 노출되지 않도록 상기 절연필름(20)이 열전도성부재(10)를 밀봉하고 있어 절연성능을 보다 완벽하게 구현할 수 있게 된다.
한편 가스가 투과할 수 없는 금속 또는 그라파이트 재질로서 판상의 열전도성 부재를 테두리없이 사용하여 기존의 방식대로 태양광 모듈을 제조하면 태양광 모듈이 외부에 설치되고 모듈의 EVA 레이어에서 발생하는 가스가 외부로 유출되지 못하여 장기적으로는 태양광 모듈의 타 레이어와 백시트가 필수적으로 박리가 되는 치명적인 결함이 발생된다.
그런데 본 발명에서는 (a) 단계(S100) ~ (c) 단계(S300)를 통해 판상의 열전도성 부재의 사이즈와 절연필름의 사이즈를 자유자재로 디자인할 수 있고(포켓타입이기에 절연필름의 사이즈가 열전도성부재의 사이즈보다 크게 된다) 이를 통해 절연필름과 열전도성부재간의 사이즈 크기 차이에 따라 생기는 간극(D)의 너비 역시 자유자재로 디자인할 수 있고(도 2 참조),
그리고 상기 간극(D)을 태양광 모듈에 따라 맞춰 설계할 수 있음에 따라
다양한 형태의 태양광 모듈(M)에서 태양광 모듈 내부의 EVA 레이어에서 발생하는 가스가 나갈 통로가 마련되어 백시트 박리의 문제점을 완벽하게 해결하게 된다(도 2 및 도 4 참조)
또한 포켓타입을 통해 밀봉부(23)에는 열전도성부재가 배열되어 있지 않고 순수 절연체만 테두리에 남게 되어 결국 태양광 모듈의 알루미늄 프레임으로 나가던 누설 전류를 차단하여 태양광 모듈의 절연성을 높여주게 된다.
그리고 첨부된 도면에는 도시되지 않았지만 본 발명에 따른 포켓타입의 태양광발전용 백시트(BS)의 제조방법에서
상기 (a) 단계는 시간적으로 가장 먼저 진행되는 것이 바람직하나,
필요에 따라서는 상기 (b) 단계 진행을 통하여 절연필름을 열전도성부재에 밀착시킨 후, 상기 (a) 단계 진행을 통하여 절연필름에 열전도성 코팅층을 형성하도록 상기 (a) 단계와 (b) 단계는 순서가 상호 뒤바뀔 수 있다.
더 나아가 도 3에 도시된 바와 같이 본 발명에 따른 상기 (b)단계 후, 코팅층(30)의 노출면에는 카본블랙층(50)이 더 형성되는데,
상기 카본블랙층(50)은 열복사 성능을 높여 방열효율을 배가시키게 된다.
이러한 상기 카본블랙층(50)은 카본블랙 수지를 도포하여 형성되고,
또한 상기 카본블랙층(50)은 열복사 즉, 열전단율이 우수하여 상기 코팅층(30)으로부터 전달되는 전도열을 보다 신속하게 공기 중으로 방출시킴으로써 방열효율을 극대화시키게 된다.
또한 도 3에 도시된 바와 같이 본 발명에 따른 상기 (b)단계 후, 코팅층(30)의 노출면에는 방열세라믹층 또는 방열코팅층(60)이 더 형성되는데,
상기 방열세라믹층(또는 방열 코팅층)(60)은 알루미나, 산화티탄, 지르코니아로 이루어진 군으로 선택된 1종 이상의 금속 세라믹소재와,
유기실란, 무기실란, 실란커플링제 및 CNT로 이루어진 군으로부터 선택된 1종 이상의 비금속 세라믹소재 중에서 선택된 1종 이상으로 구성된다.
따라서 상기 방열세라믹층(또는 방열 코팅층)(60)은 열전도성 코팅층(30)에 의하여 전달되는 전도열을 효율적으로 외부로 방출하여 줌으로써 방열효율과, 이로 인하여 태양광 모듈의 발전량을 높일 수 있게 된다.
또한 도 3에 도시된 바와 같이 본 발명에 따른 상기 (b)단계 후, 코팅층(30)의 노출면에는 보호층(70)이 더 형성되는데,
상기 보호층(70)은 세라믹, 불소수지 등과 같은 소재를 사용하게 되고,
이때 상기 보호층(70)은 내후성과 내식성이 뛰어나 자외선을 차단하는 효과가 우수할 뿐만 아니라, 표면보호, 백시트(BS)의 절연성능을 향상시키게 된다.
한편 첨부된 도면에는 도시되지 않았지만 상기 카본블랙층, 방열세라믹층(또는 방열 코팅층) 및 보호층은 단일 또는 2개 이상의 복수 형태로 선택적으로 도입되는 것이 가능하고,
또한 적층 순서는 그 기능성에 따라 상기 코팅층의 노출면이나, 상기 (a) 단계(S100) 후, 상기 절연필름의 노출면에 적용하는 것도 가능하고,
아울러 상기 각 층은 도 3에 도시된 바와 같이 상기 코팅층의 노출면 일부(도 3의 (a) 참조.) 또는 모두(도 3의 (b) 참조.)에 위치하도록 하는 것도 가능하다.
또한 상기 보호층은 카본블랙층, 방열세라믹층(또는 방열 코팅층)이 선택적으로 또는 모두 도입되는 경우에는 가장 외측에 위치하는 층의 노출면에 형성되는 것이 바람직하다.
도 1 및 도 2에 도시된 바와 같이 본 발명에 따른 포켓타입의 태양광발전용 백시트는
절연필름(20); 상기 절연필름(20)의 노출면의 일부 또는 모두에 형성된 코팅층(30); 및 상기 절연필름(20)이 양면에 밀착되는 판상의 열전도성부재(10);를 포함하여 이루어지되,
상기 절연필름(20)의 개구부(21)는 봉합되어 외부와 폐쇄된 포켓을 형성하는 특징으로 한다.
그리고 외부와 폐쇄된 포켓을 형성하기 위해 상기 절연필름(20)의 개구부(21)를 열압착하여 융착시키는 등의 방법으로 개구부(21)를 봉합하여 밀봉부(23)를 형성하게 됨으로써 상기 열전도성부재(10)가 절연필름(20)에 의하여 밀봉되어 외부와 완전히 차단된다.
아울러 본 발명에 따른 백시트를 구성하는 각 구성요소는 상기한 바와 같은 기능과 성능을 그대로 보유하게 되므로 중복 설명의 회피하기 위해 자세한 설명은 생략하기로 한다.
또한 도 3에 도시된 바와 같이 본 발명에 따른 제조방법에 의하여 제조된 백시트(BS)에는 상기 카본블랙층(50), 방열세라믹층(또는 방열코팅층)(60) 및 보호층(70)은 필요에 따라 단수 또는 복수로 선택적으로 도입되는 것이 가능하고,
그 기능 또한 상기한 바와 동일하므로 이에 대한 자세한 설명은 생략하기로 한다.
또한 상기 카본블랙층, 방열세라믹층 및 보호층은 상기 (b) 단계 후, 도입되는 것으로 첨부된 도 3과 같이 상기 (c) 단계 후, 상기 각 층들을 도입하는 것도 가능하고, 또한 각 층들을 형성하기 위한 작업 편의성을 고려할 때, 백시트가 봉합된 후, 즉 상기 (c) 단계 후에 각 층들이 접착되거나, 도포되어 형성될 수 있도록 하는 것이 바람직하다.
다음으로 도 4는 본 발명에 따른 태양광발전용 모듈의 후면을 도시한 것으로 백시트(BS)의 장착 전 후의 상태를 도시하고 있다.
백시트(BS) 구조를 제외한 태양광발전용 모듈의 각부는 기존 태양광발전용 모듈과 동일하기에 이에 대한 구체적 설명은 생략한다. 그리고 상기 백시트(BS)는 태양광발전용 모듈(M)의 프레임(F) 내측으로 장착되어, 전술된 구조를 가진 또는 전술된 제조과정을 거쳐 완성된 백시트(BS)를 구비함으로써 태양광 발전용 모듈의 안전성을 기대하고 품질 향상을 기대할 수 있게 된다.
이상에서 첨부된 도면을 참조하여 본 발명인 포켓타입의 태양광발전용 백시트의 제조방법 및 이에 의하여 제조된 포켓타입의 태양광발전용 백시트, 그리고 상기 백시트 구비된 태양광 발전용 모듈을 설명함에 있어 특정 형상 및 방향을 위주로 설명하였으나, 본 발명은 당업자에 의하여 다양한 변형 및 변경이 가능하고, 이러한 변형 및 변경은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.

Claims (9)

  1. (a) 절연필름의 노출면의 일부 또는 모두에 열전도성, 복사성, 내후성 중 선택된 하나 이상의 기능을 갖는 코팅층을 형성하는 단계;
    (b) 판상의 열전도성부재의 양면에 열전도성부재 보다 큰 사이즈를 갖는 상기 절연필름을 밀착시키는 단계; 및
    (c) 열전도성부재 보다 큰 사이즈를 갖는 절연필름이 열전도성부재의 양면에 위치하면서 형성된 절연필름의 개구부를 봉합하여 외부와 폐쇄된 포켓을 형성하는 단계;
    를 포함하여 이루어진 포켓타입의 태양광발전용 백시트의 제조방법.
  2. 제 1 항에 있어서,
    상기 (b) 단계의 열전도성부재와 상기 절연필름의 밀착은 접착수단에 의하여 이루어지는 것을 특징으로 하는 포켓타입의 태양광발전용 백시트의 제조방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 코팅층은 유기 또는 무기 열전도성 도료, 또는 유무기 복합 하이브리드 열전도성 도료를 이용하여 이루어지는 것을 특징으로 하는 포켓타입 태양광발전용 백시트의 제조방법.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 절연필름은 PET, PI PP, PE, BOPP, OPP, PVF, PVDF, TPE, ETFE, 아라미드 필름 및 나일론, EVA, 또는 이들로부터 얻어진 복합재료 중 하나의 소재로 구성되는 것을 특징으로 하는 포켓타입의 태양광발전용 백시트의 제조방법.
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 열전도성부재는 알루미늄, 동, 황동, 강판 및 스테인리스 스틸 및 흑연, 또는 이들로부터 얻어진 복합재료 중 하나의 소재로 구성되는 것을 특징으로 하는 포켓타입의 태양광발전용 백시트의 제조방법.
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 (b)단계 후 코팅층의 노출면에는 방열세라믹층 또는 방열 코팅층이 더 형성되는 것을 특징으로 하는 포켓타입의 태양광발전용 백시트의 제조방법.
  7. 제 1 항 또는 제 2 항에 있어서,
    상기 (b)단계 후 코팅층의 노출면에는 보호층이 더 형성되는 것을 특징으로 하는 포켓타입의 태양광발전용 백시트의 제조방법.
  8. 절연필름;
    상기 절연필름의 노출면의 일부 또는 모두에 형성된 열전도성, 복사성, 내후성 중 선택된 하나 이상의 기능을 갖는 코팅층; 및
    상기 절연필름이 양면에 밀착되는 판상의 열전도성부재;를 포함하여 이루어지되,
    상기 절연필름은 열전도성부재보다 큰 사이즈로 이루어져 이로 인해 형성된 절연필름의 개구부는 봉합되어 외부와 폐쇄된 포켓을 형성하는 것을 특징으로 하는 포켓타입의 태양광발전용 백시트.
  9. 하면에 백시트를 구비하는 태양광발전용 모듈에 있어서,
    상기 백시트는 상기 제 8 항에 의한 백시트인 것을 특징으로 하는 포켓타입의 태양광발전용 백시트를 구비한 태양광발전용 모듈.
PCT/KR2013/005718 2011-12-27 2013-06-27 포켓타입의 태양광발전용 백시트, 상기 백시트의 제조방법, 그리고 상기 백시트를 구비한 태양광발전용 모듈 WO2014104506A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13868999.7A EP2830103A4 (en) 2012-12-27 2013-06-27 BACKGROUND OF PHOTOVOLTAIC POWER GENERATION OF POCKET TYPE, PROCESS FOR PRODUCING THE SAME, AND PHOTOVOLTAIC ENERGY PRODUCTION MODULE COMPRISING SAID BACK SHEET
JP2015503140A JP2015513228A (ja) 2012-12-27 2013-06-27 太陽光発電用バックシート、前記バックシートの製造方法、そして前記バックシートを備えた太陽光発電用モジュール
CN201380010173.5A CN104126232A (zh) 2012-12-27 2013-06-27 口袋型太阳能发电背板及其制作方法与具备该背板的太阳能发电模块
US14/389,734 US20150068593A1 (en) 2011-12-27 2013-06-27 Pocket type photovoltaic power generation back sheet, method for manufacturing said back sheet, and photovoltaic power generation module including said back sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120154598A KR101285408B1 (ko) 2011-12-27 2012-12-27 포켓타입의 태양광발전용 백시트를 구비한 태양광발전용 모듈
KR20120154597A KR101313339B1 (ko) 2011-12-27 2012-12-27 포켓타입의 태양광발전용 백시트의 제조방법
KR10-2012-0154597 2012-12-27
KR10-2012-0154598 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014104506A1 true WO2014104506A1 (ko) 2014-07-03

Family

ID=51022541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005718 WO2014104506A1 (ko) 2011-12-27 2013-06-27 포켓타입의 태양광발전용 백시트, 상기 백시트의 제조방법, 그리고 상기 백시트를 구비한 태양광발전용 모듈

Country Status (4)

Country Link
EP (1) EP2830103A4 (ko)
JP (1) JP2015513228A (ko)
CN (1) CN104126232A (ko)
WO (1) WO2014104506A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632843B (zh) * 2017-12-01 2018-08-11 微星科技股份有限公司 人臉及身分辨識機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093124A (ja) * 1996-09-12 1998-04-10 Canon Inc 太陽電池モジュール
JP2002134770A (ja) * 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
KR100962642B1 (ko) 2009-06-11 2010-06-11 (주)해인에너테크 세라믹 코팅 방열시트를 구비한 태양광발전용 모듈
KR101073029B1 (ko) * 2010-10-13 2011-10-12 에플럭스(주) 태양광발전용 솔라셀 모듈의 백시트

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139519A (ja) * 1995-11-15 1997-05-27 Canon Inc 太陽電池モジュール
JP5056638B2 (ja) * 2008-07-16 2012-10-24 凸版印刷株式会社 太陽電池バックシートの製造方法
JP5493560B2 (ja) * 2009-08-03 2014-05-14 凸版印刷株式会社 太陽電池用裏面保護シート及びこれを用いた太陽電池モジュール
JP2011077246A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp クラッド基板、光電変換装置、薄膜太陽電池モジュール、クラッド基板の製造方法および薄膜太陽電池モジュールの製造方法
JP2011181557A (ja) * 2010-02-26 2011-09-15 Toppan Printing Co Ltd 太陽電池用バックシートとその製造方法及び太陽電池モジュール
WO2012050316A1 (ko) * 2010-10-13 2012-04-19 Kim Min-Hyuk 태양광발전용 솔라셀 모듈의 백시트
CN103429429B (zh) * 2011-03-07 2016-06-08 富士胶片株式会社 易粘合板和用于太阳能电池的保护板
JP2012238810A (ja) * 2011-05-13 2012-12-06 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093124A (ja) * 1996-09-12 1998-04-10 Canon Inc 太陽電池モジュール
JP2002134770A (ja) * 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
KR100962642B1 (ko) 2009-06-11 2010-06-11 (주)해인에너테크 세라믹 코팅 방열시트를 구비한 태양광발전용 모듈
KR101073029B1 (ko) * 2010-10-13 2011-10-12 에플럭스(주) 태양광발전용 솔라셀 모듈의 백시트

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2830103A4 *

Also Published As

Publication number Publication date
JP2015513228A (ja) 2015-04-30
EP2830103A4 (en) 2015-10-28
EP2830103A1 (en) 2015-01-28
CN104126232A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
KR101070871B1 (ko) 태양광발전용 솔라셀 모듈의 백시트
WO2010143816A2 (ko) 세라믹 코팅 방열시트를 구비한 태양광발전용 모듈
WO2011053077A2 (ko) 태양전지 및 이의 제조방법
WO2012157975A2 (ko) 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
WO2012148176A2 (ko) 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
WO2021040211A2 (ko) 시인성이 우수한 태양 전지 모듈
WO2011111939A2 (ko) 진공 단열 패널용 심재 및 이를 제조하는 방법
JP2012519967A (ja) 軽量太陽電池モジュール
WO2023101292A1 (ko) Bipv 적용 가능한 고출력 슁글드 태양광 모듈 및 그 제조 방법
CN102272945A (zh) 无框太阳能电池板及其制造方法
WO2011053025A2 (ko) 태양전지 및 이의 제조방법
WO2020204527A1 (ko) 태양전지 패널 및 그 제조 방법
WO2011132976A2 (en) Back sheet for solar cell module and manufacturing method thereof
WO2012161405A1 (ko) 절연 특성이 개선된 태양광 발전용 모듈
WO2012050316A1 (ko) 태양광발전용 솔라셀 모듈의 백시트
WO2014104506A1 (ko) 포켓타입의 태양광발전용 백시트, 상기 백시트의 제조방법, 그리고 상기 백시트를 구비한 태양광발전용 모듈
JP2009267034A (ja) 薄膜太陽電池モジュール、その製造方法及びその設置方法
KR101285408B1 (ko) 포켓타입의 태양광발전용 백시트를 구비한 태양광발전용 모듈
WO2015156593A1 (ko) 태양광 모듈용 정션 박스를 연결하기 위한 백시트 및 그 형성 방법
WO2016137048A1 (ko) 박막형 태양전지를 이용한 구조물
JP2019513338A (ja) 車両ルーフソーラーチップの集積装置、ソーラーカー及びチップのパッケージング方法
WO2011108805A2 (ko) 태양전지모듈용 이면 보호시트의 제조방법
WO2010140753A1 (ko) 피막층이 형성된 방열시트를 구비한 태양광발전 모듈
JP2002026346A (ja) 太陽電池用バックカバー材兼用封止膜及び太陽電池
JP3856224B2 (ja) 太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503140

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14389734

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013868999

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013868999

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE