WO2021040211A2 - 시인성이 우수한 태양 전지 모듈 - Google Patents

시인성이 우수한 태양 전지 모듈 Download PDF

Info

Publication number
WO2021040211A2
WO2021040211A2 PCT/KR2020/007967 KR2020007967W WO2021040211A2 WO 2021040211 A2 WO2021040211 A2 WO 2021040211A2 KR 2020007967 W KR2020007967 W KR 2020007967W WO 2021040211 A2 WO2021040211 A2 WO 2021040211A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
transparent substrate
cell module
glass
excellent visibility
Prior art date
Application number
PCT/KR2020/007967
Other languages
English (en)
French (fr)
Other versions
WO2021040211A3 (ko
Inventor
강윤묵
김동환
이해석
전용석
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2021040211A2 publication Critical patent/WO2021040211A2/ko
Publication of WO2021040211A3 publication Critical patent/WO2021040211A3/ko
Priority to US17/682,293 priority Critical patent/US20220190178A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module having excellent visibility, and more particularly, by installing solar cells in a horizontal arrangement on a transparent substrate or a transparent substrate bonded with glass to improve the condensing rate of visible, near-infrared, and ultraviolet rays, and affect transparency. It relates to a solar cell module having excellent visibility so as not to do so.
  • a solar system is a system that converts light energy into electrical energy using a solar cell, and is used as an independent power source for general homes or industries, or as an auxiliary power source in connection with a system of a commercial AC power source.
  • Such a solar system is a semiconductor device that converts light energy into electrical energy using the photoelectric effect, and is composed of two semiconductor thin films each having positive (+) and negative (-) polarities, and a number of solar cells The cells are connected in series/parallel to generate the voltage and current required by the user, and the user can use the power generated by the solar cell.
  • the grid-connected photovoltaic system used as an exterior type of a building which is commonly used, includes a plurality of solar cells that convert solar energy into electrical energy, and a direct current power source, which is the electrical energy converted from the solar panel, is an AC power source. It is composed of an inverter that converts to and supplies it to the user.
  • the installation of a solar panel installed to obtain solar energy is the most important factor in the system configuration, and the installation of such a solar panel is installed on a separately secured site or on the roof of a building.
  • a separate space must be secured.
  • a cooling tower constituting a cooling system is installed on the roof of a building, so the place for installing the solar panel is narrow and limited, so it is not suitable for the installation of the solar panel. It is restricted and the installation work becomes difficult.
  • Korean Patent Registration No. 10-0765965 discloses a window using a solar cell.
  • FIG. 1 is a perspective view of a conventional window.
  • a conventional window 20 is coupled to a solar panel 1 that converts solar energy into electrical energy, and is coupled to the rim of the solar panel 1, and on the opening 3 of the building wall 2 It is configured to include a frame (4) that is mounted on and fixed.
  • the solar panel 1 is fixed at the inner center of the frame 4 forming a rectangular shape, and the front side and the rear side of the solar panel 1 are outside the building wall 2
  • the outer glass window to be positioned and the inner glass window to be positioned inside are arranged at a predetermined distance from the solar panel 1 to form a fixed structure.
  • a plurality of solar cell 11 made of single crystal or polycrystal are disposed between the tempered glass substrates 12a and 12b, and these are separated by using the EVA film 13 It is produced by attaching it.
  • the conventional solar cell module 10 manufactured as described above usually has a blue or black color, as shown in Fig. 3(a), and the rear surface is almost gray color, as shown in Fig. 3(b). Is floating.
  • two electrode wires having a width of 3 to 5 mm are formed by screen printing with silver paste (Ag) to form an electrode line 13b on the rear surface of the solar cell 11, and Dry on a roll conveyor equipped with an IR lamp.
  • the color of the dried electrode line 13b is close to light gray.
  • Such solar cell 11 is made by depositing an N layer on a P-type wafer or a P layer on an N-type wafer.
  • the back side of each solar cell 11 has a positive (+) and the front side has a negative (-) electrical polarity.
  • each solar cell 11 is connected in series and parallel.
  • an interconnector ribbon 14 is used to connect the solar cell 11, and the material of the connection ribbon 14 is usually Sn+Pb+Ag, Sn+Ag, Sn+Ag+. It is made of Cu, and when connected in series, the negative (-) polarity silver paste electrode wire 13a with a width of 1-3 mm formed on the front surface of the solar cell 11 is connected to the other solar cell 11 with a width of 3-5 mm. It is connected to the silver paste electrode line 13b of the positive (+) polarity through the connection ribbon 14.
  • connection ribbon 14 connecting the solar cells 11 is 1.5-3mm, and a thickness of 0.01-0.2mm is used.
  • connection method consists of an indirect connection method using an infrared lamp, a halogen lamp, and hot air, and a direct connection method using an iron.
  • the EVA film 13 positioned between the glass substrates 12a and 12b of the solar cell module 10 starts to melt at a temperature of 80_ and becomes clear and transparent at a temperature of about 150_, so that the solar cell 11 and the glass The substrate is bonded, and the silver electrode wires 13a, 13b and the ribbon 14 of the solar cell 11 are corroded by preventing the penetration of moisture and air from the outside toward the solar cell 11 Or short circuit.
  • the EVA film 13 melts between the double-glazed glass substrates 12a and 12b of the solar cell module 10 to make it appear clear and transparent. Except for 11) and the connection ribbon 14, the rest of the parts are transparent.
  • Such a conventional solar cell module 10 for BIPV is manufactured using a single crystal or polycrystalline solar cell 11, and depending on the manufacturing type of the solar cell 11, the double glass substrates 12a and 12b of the building It is placed in the building so that it can be seen from inside and outside the building.
  • the color of the front surface of the solar cell module 10 mounted on the building becomes colored in the process of forming an electrode by PECVD and APCVD (not shown), which are vacuum equipment, and depositing an anti-reflection film by screen printing.
  • PECVD and APCVD which are vacuum equipment, and depositing an anti-reflection film by screen printing.
  • the front side has a blue or black color, but the back-surface field (BSF) of the solar cell module 10 is deposited by vacuum equipment (not shown) with aluminum (Al) to form an electrode. Therefore, the color is grayed out.
  • the conventional solar cell module 10 as described above connects several to tens of solar cell 11 to the inside of the glass substrates 12a and 12b with a connection ribbon 14, and such a connection ribbon ( 14) do not maintain a constant straight line, and become curved and meandering.
  • connection ribbon 14 connecting the solar cell 11 in the glass substrates 12a and 12b is bent as a whole and looks uneven.
  • connection ribbon 14 is silver, and when the solar cell module 10 for BIPV is manufactured, the front and back sides of the connection ribbon 14 are silver. Is exposed.
  • the color of the rear and the connection ribbon 14 is gray and silver
  • the front side of the solar cell module 10 The silver of the connection ribbon 14 is exposed to the outside through the front glass substrates 12a and 12b, and the gray and silver colors of the rear are visible, and the lines of the connection ribbon 14 look curved and serpentine.
  • the solar cell module 10 is attached as a substitute for the glass of the building, it is not good in terms of aesthetics.
  • the solar cell module having excellent visibility of the present invention improves the condensing rate of visible, near-infrared, and ultraviolet rays by installing solar cells in a horizontal arrangement on a transparent substrate or a transparent substrate bonded with glass.
  • the cells are installed at equal intervals in the direction of a vertical line, which is a horizontal arrangement with the surface of a transparent substrate or glass, the light condensing rate is improved while being installed in a range that does not interfere with the human field of view, so that transparent visibility can be secured.
  • an object of the present invention is to allow the solar cells to be horizontally arranged on a transparent substrate so that the broadband visible light transmittance can be absorbed in a balanced manner.
  • an object of the present invention is to implement excellent color rendering properties close to natural light based on a high average transmittance in a broadband visible light region through a solar cell.
  • an object of the present invention is to improve light absorption efficiency by absorbing light on a plate including a light emitter that re-emits the absorbed light by installing a plurality of light collection modules in a space between solar cells inside a transparent substrate.
  • the solar cell module having excellent visibility of the present invention for achieving the above object includes a transparent substrate; A solar cell installed inside the transparent substrate to convert sunlight into photoelectricity; However, the solar cells are installed in a horizontal arrangement on the transparent substrate.
  • the solar cell module excellent in visibility of the present invention is glass; A transparent substrate surface-bonded to the glass; A solar cell installed in a groove formed on one surface of the transparent substrate to convert sunlight into photoelectricity; However, the solar cells are installed in a horizontal arrangement on the transparent substrate.
  • the solar cell module excellent in visibility of the present invention is glass; A thin-film solar cell installed on one surface of the glass to convert sunlight into photoelectricity; A transparent substrate impregnated with a solar cell by resin molding on one side of the glass, but the solar cells are installed in a horizontal arrangement on the transparent substrate.
  • the solar cell module excellent in visibility of the present invention is glass; A solar cell laminated on one surface of the glass and installed in a horizontal arrangement on the surface of the glass by wet etching the remaining portions except for the etching mask printing portion to convert sunlight into photoelectricity; It consists of; a transparent substrate that is solidified by impregnating the solar cell by resin molding on one surface of the glass.
  • solar cells are installed in a vertical line direction between -10° and 10° with the front surface of the erected transparent substrate.
  • the solar cell in the horizontal arrangement, is installed in a vertical line direction between -10° to 10° and the front surface of the glass.
  • a plurality of the solar cells are provided and installed at equal intervals.
  • a plurality of the solar cells are provided and installed at equal intervals on a transparent substrate, and a plurality of light collection modules are arranged and installed between the solar cells.
  • the transparent substrate and the glass are surface-bonded.
  • an LED luminous body is installed in the solar cell.
  • the solar cell is a thin-film solar cell type solar cell having a thickness of 10 nm to 10 um.
  • the solar cell is applied with a Yangmyeong light-emitting silicon solar cell type solar cell having a thickness of 50 ⁇ 300um.
  • a thin film layer expressing color is provided on the solar cell.
  • a transparent electrode is provided between the transparent substrate and the glass and configured to conduct electricity with the solar cell.
  • a light absorption layer is coated between the transparent substrate and the glass and on the solar cell.
  • a thin film layer expressing color is provided on a bonding surface of a transparent substrate bonded to glass.
  • a passivation or antireflection layer is further included at the tip of the solar cell.
  • the solar cell is installed on a transparent substrate or a transparent substrate bonded with glass in a vertical direction so that visible, near-infrared, and ultraviolet rays are transmitted through the transparent substrate. It is installed in an array to improve the condensing rate according to the optimal sunlight incident angle, and at the same time, it is installed in a range that does not interfere with the range of the human field of view, so that it can perform the function of a solar cell with improved condensing efficiency while securing transparent visibility. There is an effect.
  • the solar cell module having excellent visibility of the present invention has an effect of being able to absorb broadband visible light transmittance in a balanced manner through a transparent substrate in which solar cells are horizontally arranged at equal intervals.
  • the solar cell module having excellent visibility of the present invention has an effect of implementing excellent color rendering properties close to natural light based on a high average transmittance in a broadband visible light region through a solar cell.
  • the solar cell module with excellent visibility of the present invention absorbs light from a plate including a light emitter that re-emits the absorbed light by installing a plurality of light collection modules in the space between the solar cells inside the transparent substrate to improve light absorption efficiency. There is an effect of improving.
  • the solar cell module with excellent visibility of the present invention can be applied to windows other than the roof and wall of a building, so it can be applied to a building with an exterior wall as a window in addition to the existing rooftop or wall surface, and thus can consume as much power as a solar power unit. There is an effect that can be obtained.
  • FIG. 1 is a perspective view of a conventional window.
  • FIG. 2 is a cross-sectional view showing a conventional solar cell module.
  • FIG 3 is a front view and a rear view showing a conventional solar cell module.
  • Figure 4 is a perspective view showing a first embodiment of the solar cell module of the present invention.
  • FIG. 5 is a cross-sectional view showing a first embodiment of the solar cell module of the present invention.
  • FIG. 6 is a perspective view showing a second embodiment of the solar cell module of the present invention.
  • FIG. 7 is a cross-sectional view showing a second embodiment of the solar cell module of the present invention.
  • FIG 8 is a cross-sectional view showing a state in which the light collection module is applied in the second embodiment of the solar cell module of the present invention.
  • Figure 9a is a configuration diagram showing a solar cell arrangement state of the solar cell module of the present invention.
  • 9B is a graph showing the transmittance of visible light and the collection rate of near-infrared rays when a near-infrared mirror is applied to the solar cell module of the present invention.
  • Figure 10a is a configuration diagram showing the arrangement of the solar cell and the light collection module of the solar cell module of the present invention.
  • Figure 10b is a configuration diagram showing the state of the light collection rate according to the installation of the solar cell and the light collection module of the solar cell module of the present invention.
  • FIG. 11 is a manufacturing flow chart showing a third embodiment of the solar cell module of the present invention.
  • FIG. 12 is a manufacturing flow chart showing a fourth embodiment of the solar cell module of the present invention.
  • FIG. 13 is a view showing various application examples of the transparent substrate applied to the transparent sunlight of the present invention.
  • Figure 1 is a perspective view of a conventional window
  • Figure 2 is a cross-sectional view showing a conventional solar cell module
  • Figure 3 is a front view and a rear view showing a conventional solar cell module
  • Figure 4 is a solar cell module of the present invention
  • Figure 5 is a cross-sectional view showing a first embodiment of the solar cell module of the present invention
  • Figure 6 is a perspective view showing a second embodiment of the solar cell module of the present invention
  • Figure 7 is A cross-sectional view showing a second embodiment of the solar cell module of the present invention
  • FIG. 8 is a cross-sectional view showing a state in which a light collection module is applied in the second embodiment of the solar cell module of the present invention
  • FIG. 9A is a solar cell of the present invention.
  • a configuration diagram showing the solar cell arrangement of the module FIG. 9B is a graph showing the transmittance of visible light and the collection rate of near-infrared rays that appear when a near-infrared mirror is applied to the solar cell module of the present invention
  • FIG. 10A is a solar cell of the present invention.
  • It is a configuration diagram showing the arrangement state of the solar cell and the light collection module of the module
  • FIG. 10B is a configuration diagram showing the state of the light collection rate according to the installation of the solar cell and the light collection module of the solar cell module of the present invention
  • FIG. 11 is FIG. 12 is a manufacturing flow chart showing a third embodiment of the solar cell module of the present invention
  • FIG. 12 is a manufacturing flow chart showing a fourth embodiment of the solar cell module of the present invention
  • FIG. 13 is a transparent substrate applied to the transparent solar light of the present invention. It is a diagram showing various application examples of.
  • the solar cell 130 is installed on a transparent substrate, and visible light, near-infrared light, and ultraviolet rays are transmitted through the substrate, and the solar cell 130 is installed in a horizontal arrangement on the substrate, It is installed in a range that does not interfere with the range.
  • a thin-film solar cell type solar cell 130 having a thickness of 10 nm to 10 ⁇ m may be applied, or a double-sided light-receiving silicon solar cell type solar cell 130 having a thickness of 50 to 300 ⁇ m may be applied.
  • the solar cell 130 applied in the present invention is not limited to its type.
  • the above-described thin film solar cell can be classified in various ways according to the thin film deposition temperature, the type of substrate used, and the deposition method, and it is largely classified into amorphous and crystalline silicon thin film solar cells according to the crystal characteristics of the light absorbing layer. Can be.
  • a typical thin film solar cell, amorphous Si (a-Si) solar cell is a solar cell made by injecting amorphous silicon between the glass 120 substrates.
  • thin-film solar cells are manufactured in a multi-junction structure such as a tandem in which a polycrystalline silicon film is further stacked on an amorphous silicon thin film, or a triple junction in which one layer of a silicon film is placed on the amorphous silicon thin film, or in a hybrid structure. Manufacturing to increase conversion efficiency.
  • the aforementioned thin film solar cell type solar cell 130 may include an amorphous silicon thin film solar cell and a compound based thin film solar cell, but is not limited thereto, and the double-sided light-receiving silicon solar cell type solar cell 130 is crystalline. It may include a silicon solar cell, but is not limited thereto.
  • the solar cell 130 having the above characteristics is installed on the transparent substrate 110 or the transparent substrate 110 to which the glass 120 is bonded or the transparent substrate 110 molded on the glass 120 so as to have a transparent function. .
  • the solar cell 130 is formed in a plate shape, and the planar area of the solar cell 130 may be variously applied.
  • the solar cells 130 as described above are installed in a horizontal arrangement on the substrate so as not to interfere with the interference of the incident angle of sunlight and are installed in a range that does not interfere with the range of the human field of view.
  • the horizontal arrangement means installing the solar cell 130 in a vertical line direction between -10° and 10° on one surface of a transparent substrate or glass in a vertically standing state.
  • one surface of the transparent substrate or glass may mean a surface on which incident light is incident.
  • perpendicular lines are 90° and are two straight lines, segments, and semi-straight lines that meet each other, and straight lines that meet at right angles to each other are called orthogonal lines.
  • the horizontal arrangement in the present invention includes an angle in the range of -10° to 10° in the vertical line direction.
  • the solar cells 130 are inserted in a horizontal arrangement inside the substrate, and the solar cells 130 are provided in plural and installed at equal intervals.
  • visible rays, near infrared rays, and ultraviolet rays are transmitted through the transparent substrate in the space between the solar cells 130.
  • the solar cell module configured as described above consists of four embodiments.
  • the first embodiment of the solar cell module 100 of the present invention includes a transparent substrate 110; A solar cell 130 installed inside the transparent substrate 110 to convert sunlight into photoelectricity; However, the solar cell 130 is installed in a horizontal arrangement on the transparent substrate 110.
  • the solar cell module 100 includes a solar cell 300 selected from one of a thin film solar cell type solar cell 300 and a double-sided light-receiving silicon solar cell type solar cell 300. It is preferable to include.
  • grooves are installed on either side of the transparent substrate 110 at equal intervals to insert the solar cell 130 so that the solar cell 130 can be installed inside the transparent substrate 110.
  • the solar cells 130 are arranged in a direction perpendicular to one surface of the transparent substrate 110, and then the transparent substrate 110 is solidified by resin molding so that the solar cells 130 are impregnated. ), the solar cell 130 may be installed in a horizontal arrangement inside the transparent substrate 110.
  • the double-sided light-receiving silicon solar cell type solar cell 130 arranged in a direction perpendicular to one side of the transparent substrate 110 has the same structure as in FIG. 5(a).
  • the thin-film solar cell type solar cell 130 in which grooves are installed at equal intervals on either side of the transparent substrate 110 may have the same structure as 5(b).
  • the first embodiment as described above can be applied to a building as a substitute for the glass 120 by using the transparent substrate 110 in which the solar cell 130 is embedded.
  • the second embodiment of the solar cell module 100 of the present invention is a glass 120; A transparent substrate 110 that is surface bonded to the glass 120; A solar cell 130 installed in a groove formed on one side of the transparent substrate 110 to convert sunlight into photoelectricity; but, the solar cell 130 is installed in a horizontal arrangement on the transparent substrate 110 .
  • the solar cell module 100 according to the second embodiment of the present invention is a thin film solar cell type solar cell 300.
  • grooves are installed on either side of the transparent substrate 110 at equal intervals to insert the solar cell 130 so that the solar cell 130 can be installed inside the transparent substrate 110.
  • the transparent substrate 110 having the solar cell 130 thus manufactured has the advantage of being able to improve the efficiency of heat insulation energy at the same time that it can be applied as a window while performing a transparent function by bonding with the glass 120.
  • the transparent substrate 110 is usually manufactured in a resin molding method.
  • the resin molding includes a plurality of light collection modules ( When 140) are mixed and made into a transparent substrate 110 by solidification, a plurality of light collection modules 140 can be installed between the solar cells 130.
  • FIG. 9A is a cross-sectional view showing a solar cell module in a state in which the solar cells 130 are arranged in a vertical or horizontal arrangement
  • FIG. 9B is a transmittance of visible light when a near-infrared mirror is applied to the solar cell module (left graph).
  • the solar cell 130 may be configured to further include a near-infrared mirror, a light collection module 140, and the like in order to increase light efficiency in the solar cell module in a state in which the solar cells 130 are arranged in a vertical arrangement or a horizontal arrangement.
  • the transmittance of visible light does not change according to the angle of incidence even when the solar cell 130 is aligned in a horizontal arrangement and the horizontal length of the solar cell 130 is changed.
  • the transmittance of visible light decreases as the angle of incidence increases, and decreases significantly as the vertical length of the solar cell 130 increases.
  • the solar cell module 100 causes loss from scattering, re-lighting, and reabsorption of sunlight as the distance W between the solar cells 130 increases, and thus the near-infrared ray collection rate This can be as low as 20% or more.
  • the near-infrared ray collection rate may be improved by installing a plurality of light collection modules 140 between the solar cells 130.
  • the third embodiment of the solar cell module 100 of the present invention is a glass 120; A solar cell 130 installed on one surface of the glass 120 to convert sunlight into photoelectricity; A transparent substrate 110 impregnated with the solar cell 130 by resin molding on one surface of the glass 120; however, the solar cell 130 is installed on the transparent substrate 110 in a horizontal arrangement.
  • the solar cell module 100 according to the third embodiment of the present invention is a double-sided light-receiving silicon solar cell type solar cell 300.
  • a plurality of solar cells 130 are provided, but the solar cells 130 are arranged in a direction perpendicular to one surface of the glass 120, and the transparent substrate 110 is solidified by resin molding so that the solar cells 130 are impregnated.
  • the solar cells 130 are installed in a vertical line direction, which is a horizontal arrangement, inside the transparent substrate 110.
  • a plurality of light collection modules 140 are mixed in the resin molding to form the transparent substrate 110 by solidification, a plurality of light collection modules 140 are installed between the solar cells 130.
  • the light collection module 140 is also referred to as a radiation solar concentrator (LSC), and unlike general solar cells that directly absorb sunlight and convert it into electricity, the light collection module 140 transmits light at a longer wavelength. It absorbs light on a plate including a light emitter that re-emits the absorbed light.
  • LSC radiation solar concentrator
  • An LED light emitter may be installed at the bottom of the solar cell 130 applied to the first, second, and third embodiments as described above.
  • the solar cell 130 may further include a thin film layer 160 expressing color, and a thin film layer 160 expressing color may be installed on the bonding surface of the transparent substrate 110 bonded to the glass 120. I can.
  • the fourth embodiment of the solar cell module 100 of the present invention is a glass 120;
  • It consists of;
  • the solar cell module 100 according to the fourth embodiment of the present invention is preferably a double-sided light-receiving silicon solar cell type solar cell 300.
  • the etching mask is printed on the upper surface of the solar cell 130 disposed at equal intervals.
  • portions except for etching mask printing are etched through a laser ablation process.
  • the solar cells 130 are divided into a plurality and disposed at equal intervals.
  • the solar cell 130 is in a state of being installed in a direction perpendicular to the surface of the glass 120.
  • a passivation or antireflection layer is formed on the front end of the solar cell 130 to protect the solar cell 130.
  • the solar cells 130 are arranged in a direction perpendicular to the surface of the glass 120 and then resin-molded so that the solar cells 130 are impregnated to solidify the transparent substrate 110, the solar cell is placed inside the transparent substrate 110.
  • the cell 130 is to be installed.
  • a plurality of light collection modules 140 are arranged to absorb light transmitted through the transparent substrate, thereby improving light efficiency.
  • a transparent electrode is provided between the transparent substrate 110 and the glass 120 and conducts electricity with the solar cell 130.
  • a light absorbing layer may be coated between the transparent substrate 110 and the glass 120 and on the solar cell 130.
  • the already arranged solar cell 130 is a first solar cell
  • the light absorbing layer may include a second solar cell different from the first solar cell.
  • the transparent substrate 110 manufactured through the first to fourth embodiments is free to change the shape of the cross-section.
  • the solar cell 130 is freely arranged in accordance with the cross-sectional shape of the transparent substrate 110.
  • the solar cell module of the present invention installs the solar cell 130 in a vertical direction on the transparent substrate 110 or the transparent substrate 110 bonded with the glass 120 to provide visible light through the transparent substrate 110, As the near-infrared rays and ultraviolet rays are transmitted, the solar cell 130 is installed at equal intervals in the vertical line direction, so that the solar cell 130 is installed in a range that does not interfere with the field of view, so that it is transparent and can perform a solar cell function.
  • a plurality of light collection modules 140 are installed in the space between the solar cells 130 inside the transparent substrate 110 to absorb light from a plate including a light emitter that re-emits the absorbed light to improve light absorption efficiency. There is an effect of letting go.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명의 시인성이 우수한 태양 전지 모듈은 투명기판; 상기 투명기판 내부에 설치되어 태양광을 광전으로 변환시키는 솔라셀; 로 구성하되, 상기 투명기판에 수평 배열로 솔라셀을 설치함을 특징으로 하는 시인성이 우수한 태양 전지 모듈을 제공한다.

Description

시인성이 우수한 태양 전지 모듈
본 발명은 시인성이 우수한 태양 전지 모듈에 관한 것으로서, 더욱 상세하게는 투명 기판 또는 유리와 접합된 투명기판에 솔라셀을 수평 배열로 설치하여 가시광선, 근적외선 및 자외선의 집광률을 향상시키면서 투명성에 영향을 주지 않도록 하는 시인성이 우수한 태양 전지 모듈에 관한 것이다.
일반적으로 태양광 시스템은, 태양전지를 이용하여 빛 에너지를 전기 에너지로 변환시키는 시스템으로서, 일반 가정이나 산업용의 독립 전력원으로 이용되거나, 상용 교류전원의 계통과 연계되어 보조 전력원으로 이용된다.
이러한, 태양광 시스템은 광전 효과를 이용하여 빛에너지를 전기에너지로 변환시키는 반도체 소자로서, 각각이 플러스(+)와 마이너스(-) 극성을 띠는 2장의 반도체 박막으로 구성되며, 다수의 태양전지 셀(cell)들이 직/병렬로 연결되어 사용자가 필요로 하는 전압 및 전류를 발생시키게 되고, 사용자는 이러한 태양전지에서 발생된 전력을 사용할 수 있게 되는 것이다.
통상적으로 사용되고 있는 건물외장형으로 사용되는 계통연계형 태양광 시스템은, 태양에너지를 전기에너지로 변환시키는 다수의 태양 전지판(Solar Cell Array)과, 상기 태양 전지판에서 변환된 전기에너지인 직류전원을 교류전원으로 변환하여 사용처로 공급하는 인버터(Inverter) 등으로 구성된다.
이러한 태양광 시스템은 태양광의 에너지를 얻기 위해 설치되는 태양 전지판의 설치가 시스템의 구성에 있어서 가장 중요한 요소이며, 이러한 태양 전지판의 설치는 별도로 확보된 부지에 설치하거나 또는 건물의 옥상 등에 설치하게 된다.
따라서 건물에 태양광 시스템을 설치하려면 별도의 공간이 확보되어야 하는데, 통상적으로 건물의 옥상에는 냉방장치를 구성하는 냉각탑이 설치되어 있으므로 태양 전지판을 설치하기 위한 장소가 협소하고 한정되어 태양 전지판의 설치에 제한을 받게 되고 설치작업이 어렵게 된다.
이러한 단점을 보완하고자 건축물의 채광 및 환기를 위해 설치된 창호시스템에 태양광 시스템이 적용된 사례가 있다.
즉, 대한민국 등록특허 제10-0765965호에는 태양전지를 이용한 창호가 개시되어 있다.
이러한 종래 기술 중 태양전지를 이용하는 창호에 관하여 도 1을 참조하여 설명한다.
도 1은 종래의 창호의 사시도이다.
도 1을 참조하면, 종래의 창호(20)는 태양에너지를 전기에너지로 변환시키는 태양전지판(1)과, 상기 태양전지판 (1)의 테두리에 결합되며 건물 벽체(2)의 개구부(3)상에 취부되어 고정되는 프레임(4)을 포함하여 구성된다.
즉, 종래의 창호(20)는 직사각형 형태를 이루는 프레임(4)의 내측 중앙부에 태양전지판(1)이 고정되고, 상기 태양전지판(1)의 전면측과 후면측에는 건물 벽체(2)의 외측에 위치하게 되는 외측 유리창과 내측에 위치하게 되는 내측 유리창이 상기 태양전지판(1)과 소정 거리 이격 배치되어 고정된 구조를 이루고 있다.
또 다른 한편, 대부분의 창호 설치시에는 사생활 보호를 위해 블라인드나 버티컬 등의 장치를 별도로 설치하는 경우가 있으며, 이에 따른 비용도 적지 않게 소요되고 있다.
이와 같이 종래에는 창호와 블라인드가 별도로 존재하여 비용이나 공간면에서 효율적이지 못하다.
최근에는 건축물의 유리에 직접 부착되어 설치되는 방법이 제시되고 있다.
즉, 도 2 및 도 3에 도시된 바와 같이, 단결정 또는 다결정으로 만들어진 다수의 태양전지 셀(11) 들을 강화유리 기판(12a, 12b)의 사이에 배치하고, EVA 필름(13)을 이용하여 이들을 부착시켜서 제작된다.
상기와 같이 제작된 종래의 태양전지모듈(10)은 보통 앞면이 도 3(a)에 도시된 바와 같이, 파란색이나 검정색을 띄고, 후면은 도 3(b)에 도시된 바와 같이, 거의 회색 색상을 띄우고 있다.
이와 같은 종래의 태양전지모듈(10)은 태양전지 셀(11)의 후면에 전극 선(13b)을 형성하기 위하여 실버 페이스트(Ag)로 폭 3- 5mm의 2개의 전극 선를 스크린 프린팅 형성하며, 적외선 램프(I.R Lamp)를 장착한 롤 컨베이어에서 건조시킨다. 이와 같이 건조된 전극 선(13b)의 색상은 밝은 회색에 가깝다.
이와 같은 태양전지 셀(11)들은 P-type 웨이퍼에 N층을 증착하거나, N-type 웨이퍼에 P층을 증착하여 만들어진다. P-type을 사용하였을 때, 각각의 태양전지 셀(11)의 뒷면이 플러스(+), 앞면이 마이너스(-)의 전기 극성을 갖는다.
이와 같은 태양전지 셀(11)들을 이용하여 태양전지모듈(10)을 만들 때에는 각각의 태양전지 셀(11)들을 직, 병렬로 연결한다.
이때 태양전지 셀(11)들을 연결하기 위하여 연결 리본(Interconnector Ribbon)(14)을 사용하게 되며, 이와 같은 연결 리본(14)의 재질은 통상 Sn+Pb+Ag, Sn+Ag, Sn+Ag+Cu 로 되어있으며, 직렬연결시 태양전지 셀(11)의 앞면에 형성된 폭 1-3mm의 마이너스(-) 극성의 실버 페이스트 전극 선(13a)을 다른 태양전지 셀의 뒷면에 형성된 폭 3-5mm의 플러스(+) 극성의 실버페이스트 전극 선(13b)에 연결 리본(14)을 통하여 연결한다.
이와 같이 태양전지 셀(11)들을 연결하는 연결 리본(14)의 폭은 1.5 - 3mm, 두께 0.01 - 0.2mm을 사용한다.
그 연결방법은 적외선 램프(IR Lamp), 할로겐 램프, 고온 가열(Hot Air)에 의한 간접 연결방식과 인두기에 의한 직접 연결방식으로 이루어진다.
한편 상기 태양전지모듈(10)의 유리 기판(12a, 12b) 사이에 위치되는 EVA 필름(13)은 온도 80_에서 녹기 시작하여 온도 150_정도에서 맑고 투명하게 되어 태양전지 셀(11)과 유리 기판을 접합하게 되며, 태양전지 셀(11)로 향하여 외부로부터의 습기와 공기의 침투를 막아 태양전지 셀(11)의 실버(silver) 전극 선(13a)(13b)과 리본(14)의 부식이나 쇼트를 방지한다.
이러한 EVA 필름(13)은 라미네이터기(미도시)에 의하여 라미네이팅 시, 태양전지모듈(10)의 이중접합유리 기판(12a)(12b) 사이에서 녹아 맑고 투명하게 보이도록 하며, 이때 태양전지 셀(11)과 연결 리본(14)을 제외하고 나머지 부분이 투명하게 보인다.
이러한 종래의 BIPV용 태양전지모듈(10)은 단결정 또는 다결정의 태양전지 셀(11)을 이용하여 제작되는데, 태양전지 셀(11)의 제조 형태에 따라 건물의 이중유리 기판(12a, 12b) 사이에 배치되어 건물 안 밖에서 그대로 보이게 된다.
이와 같이 건물에 장착되는 태양전지모듈(10)은 그 앞면의 색상은 진공장비인 PECVD 및 APCVD(미 도시)에 의한 전극 형성과 반사 방지막을 스크린 프린팅으로 증착하는 과정에서 색상을 띄게 된다. 보통은 전면이 파란색이나 검정색의 색상을 띄게 되지만, 태양전지모듈(10)의 후면(BSF: Back-Surface Field)은 전극을 형성하기 위하여 알루미늄(Al)으로 진공장비(미 도시)에 의하여 증착되기 때문에 색상은 회색을 띄우게 된다.
또한, 상기와 같은 종래의 태양전지모듈(10)은 유리 기판(12a, 12b)의 내부에 수개 내지 수십 개의 태양전지셀(11) 들을 연결 리본(14)으로 연결하고 있으며, 이와 같은 연결 리본(14)들은 일정하게 직선을 유지하지 못하고, 휘고 꾸불거린 상태로 된다.
이 상태에서 태양전지모듈(10)을 라미네이팅하여 완성시키면, 유리 기판(12a, 12b) 내에서 태양전지 셀(11)들을 연결하는 연결 리본(14)의 모양이 전체적으로 휘고, 균일하지 않아 보인다.
또한, 종래의 태양전지모듈(10)에서 연결 리본(14)의 색상은 은색을 띄우며, BIPV용 태양전지모듈(10)을 제작하는 경우, 연결 리본(14)은 그 색상 그대로 앞, 뒷면이 은색으로 노출된다.
따라서, 종래의 태양전지모듈(10)에서는 그 후면과 연결 리본(14)의 색상은 회색과 은색을 띄우고 있기 때문에, 이중 접합 태양전지모듈(10)을 제작할 때, 태양전지모듈(10)의 앞면에서 연결 리본(14)의 은색이 전면 유리 기판(12a)(12b)을 통하여 외부로 노출되고, 후면의 회색과 은색 색상이 그대로 보이며, 연결 리본(14) 선들이 휘고 꾸불꾸불하게 보이기 때문에, 도시 건물의 유리 대용으로 태양전지모듈(10)을 부착하였을 때, 미관상 좋지 않다.
상기와 같은 문제점을 해소하기 위한 본 발명의 시인성이 우수한 태양 전지 모듈은 투명 기판 또는 유리와 접합된 투명기판에 솔라셀을 수평 배열로 설치하여 가시광선, 근적외선, 자외선의 집광률을 향상시키되, 솔라셀을 투명기판 또는 유리의 면과 수평 배열인 수직선 방향에서 등간격으로 설치함에 따라 집광률은 향상시키면서 사람의 시야의 범위에서 간섭되지 않는 범위로 설치되어 투명한 시인성을 확보할 수 있도록 하는 데 있다.
또한, 본 발명의 목적은 투명기판에서 솔라셀을 수평 배열시켜 광대역 가시광 투과율을 균형 있게 흡수할 수 있도록 하는 데 있다.
또한, 본 발명의 목적은 태양광 전지를 통해 광대역 가시광 영역의 높은 평균 투과율을 바탕으로 자연광에 가까운 우수한 연색성 구현하도록 하는 데 있다.
또한, 본 발명의 목적은 투명기판 내부의 솔라셀 사이 공간에 복수의 광수집모듈이 설치되어 흡수된 광을 재방출하는 광방출기를 포함한 판상에서 광을 흡수하여 광 흡수 효율을 향상시키는 데 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 시인성이 우수한 태양 전지 모듈은 투명기판; 상기 투명기판 내부에 설치되어 태양광을 광전으로 변환시키는 솔라셀; 로 구성하되, 상기 투명기판에 수평 배열로 솔라셀을 설치한다.
본 발명의 시인성이 우수한 태양 전지 모듈은 유리; 상기 유리와 면 접합되는 투명기판; 상기 투명기판 일면에 형성된 홈 내부에 설치되어 태양광을 광전으로 변환시키는 솔라셀; 로 구성하되, 상기 투명기판에 수평 배열로 솔라셀을 설치한다.
본 발명의 시인성이 우수한 태양 전지 모듈은 유리; 상기 유리의 일면에 설치되어 태양광을 광전으로 변환시키는 박막의 솔라셀; 상기 유리의 일면에 수지 몰딩시켜 솔라셀을 함침시킨 투명기판;으로 구성하되, 상기 투명기판에 수평 배열로 솔라셀을 설치한다.
본 발명의 시인성이 우수한 태양 전지 모듈은 유리; 상기 유리의 일면에 적층되어 에칭 마스크 프린팅 부위를 제외한 나머지 부위를 습식 식각하여 유리의 면에 수평 배열로 설치되어 태양광을 광전으로 변환시키는 솔라셀; 상기 유리의 일면에 수지 몰딩시켜 솔라셀을 함침시켜 고형화되는 투명기판;으로 구성한다.
본 발명에 따르면, 상기 수평 배열은 기립된 투명기판의 전면과 -10° 내지 10° 사이의 수직선 방향으로 솔라셀이 설치된다.
본 발명에 따르면, 상기 수평 배열은 유리의 전면과 -10° 내지 10° 사이의 수직선 방향으로 솔라셀이 설치된다.
본 발명에 따르면, 상기 솔라셀은 복수개로 구비되어 등간격으로 설치된다.
본 발명에 따르면, 상기 솔라셀은 복수개로 구비되어 투명기판에 등간격으로 설치되되, 상기 솔라셀 사이에 복수의 광수집모듈이 배열되어 설치된다.
본 발명에 따르면, 상기 투명기판과 유리는 면 접합된다.
본 발명에 따르면, 상기 솔라셀에는 LED 발광체가 설치된다.
본 발명에 따르면, 상기 솔라셀은 두께가 10nm~10um인 박막 태양전지형 솔라셀이 적용된다.
본 발명에 따르면, 상기 솔라셀은 두께가 50~300um인 양명수광 실리콘 태양전지형 솔라셀이 적용된다.
본 발명에 따르면, 상기 솔라셀에는 색을 표현하는 박막층이 설치된다.
본 발명에 따르면, 상기 투명기판과 유리 사이에 투명전극이 설치되고 솔라셀과 통전되도록 구성한다.
본 발명에 따르면, 상기 투명기판과 유리 사이 및 솔라셀에 광흡수층이 코팅된다.
본 발명에 따르면, 유리와 접합되는 투명기판의 접합면에 색을 표현하는 박막층이 설치된다.
본 발명에 따르면, 상기 솔라셀의 선단에는 패시베이션 또는 반사방지층이 더 포함된다.
상술한 바와 같은 본 발명의 시인성이 우수한 태양 전지 모듈은 투명 기판 또는 유리와 접합된 투명기판에 솔라셀을 수직선 방향으로 설치시켜 투명기판을 통해 가시광선, 근적외선, 자외선이 투과되는 동시에 솔라셀은 수평 배열로 설치하여 최적의 태양광 입사각도에 맞추어 집광률을 향상시키는 동시에 사람의 시야의 범위에서 간섭되지 않는 범위로 설치되어 투명한 시인성을 확보하면서 집광률 효율이 향상된 태양광 전지 기능을 수행할 수 있도록 하는 효과가 있다.
또한, 본 발명의 시인성이 우수한 태양 전지 모듈은 솔라셀을 등간격으로 수평 배열시킨 투명기판을 통해 광대역 가시광 투과율을 균형있게 흡수할 수 있도록 하는 효과가 있다.
또한, 본 발명의 시인성이 우수한 태양 전지 모듈은 태양광 전지를 통해 광대역 가시광 영역의 높은 평균 투과율을 바탕으로 자연광에 가까운 우수한 연색성 구현하도록 하는 효과가 있다.
또한, 본 발명의 시인성이 우수한 태양 전지 모듈은 투명기판 내부의 솔라셀 사이 공간에 복수의 광수집모듈이 설치되어 흡수된 광을 재 방출하는 광방출기를 포함한 판상에서 광을 흡수하여 광 흡수 효율을 향상시키는 효과가 있다.
또한, 본 발명의 시인성이 우수한 태양 전지 모듈은 건축물의 지붕, 벽 이외에 창문에 적용할 수 있어 기존 옥상 또는 벽면 등의 설치장소 이외에 외벽이 창문으로 적용된 건축물에 적용 가능하여 태양광 단위만큼 많은 전력을 얻을 수 있는 효과가 있다.
도 1은 종래의 창호의 사시도.
도 2는 종래의 태양전지 모듈을 나타낸 단면도.
도 3은 종래의 태양전지 모듈을 나타낸 정면도 및 후면도.
도 4는 본 발명의 태양 전지 모듈의 제1실시예를 나타낸 사시도.
도 5는 본 발명의 태양 전지 모듈의 제1실시예를 나타낸 단면도.
도 6은 본 발명의 태양 전지 모듈의 제2실시예를 나타낸 사시도.
도 7은 본 발명의 태양 전지 모듈의 제2실시예를 나타낸 단면도.
도 8은 본 발명의 태양 전지 모듈의 제2실시예에서 광수집모듈을 적용한 상태를 나타낸 단면도.
도 9a는 본 발명의 태양 전지 모듈의 솔라셀 배열 상태를 나타낸 구성도.
도 9b는 본 발명의 태양 전지 모듈에 근적외선 거울을 적용하였을 경우 나타나는 가시광선의 투과율 및 근적외선의 수집율을 나타낸 그래프이다.
도 10a는 본 발명의 태양 전지 모듈의 솔라셀 및 광수집모듈의 배열 상태를 나타낸 구성도.
도 10b는 본 발명의 태양 전지 모듈의 솔라셀 및 광수집모듈의 설치에 따른 광수집률 상태를 나타낸 구성도.
도 11은 본 발명의 태양 전지 모듈의 제3실시예를 나타낸 제조 순서도.
도 12는 본 발명의 태양 전지 모듈의 제4실시예를 나타낸 제조 순서도.
도 13은 본 발명의 투명 태양광에 적용된 투명기판의 다양한 적용 사례를 나타낸 도면.
이하 본 발명에 첨부된 도면을 참조하여 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다.
우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 동일한 참조부호로 나타내고 있음에 유의하여야 한다 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않기 위하여 생략한다.
도 1은 종래의 창호의 사시도이고, 도 2는 종래의 태양전지 모듈을 나타낸 단면도이며, 도 3은 종래의 태양전지 모듈을 나타낸 정면도 및 후면도이고, 도 4는 본 발명의 태양 전지 모듈의 제1실시예를 나타낸 사시도이며, 도 5는 본 발명의 태양 전지 모듈의 제1실시예를 나타낸 단면도이고, 도 6은 본 발명의 태양 전지 모듈의 제2실시예를 나타낸 사시도이며, 도 7은 본 발명의 태양 전지 모듈의 제2실시예를 나타낸 단면도이고, 도 8은 본 발명의 태양 전지 모듈의 제2실시예에서 광수집모듈을 적용한 상태를 나타낸 단면도이며, 도 9a는 본 발명의 태양 전지 모듈의 솔라셀 배열 상태를 나타낸 구성도이고, 도 9b는 본 발명의 태양 전지 모듈에 근적외선 거울을 적용하였을 경우 나타나는 가시광선의 투과율 및 근적외선의 수집율을 나타낸 그래프이고, 도 10a는 본 발명의 태양 전지 모듈의 솔라셀 및 광수집모듈의 배열 상태를 나타낸 구성도이고, 도 10b는 본 발명의 태양 전지 모듈의 솔라셀 및 광수집모듈의 설치에 따른 광수집률 상태를 나타낸 구성도이며, 도 11은 본 발명의 태양 전지 모듈의 제3실시예를 나타낸 제조 순서도이고, 도 12는 본 발명의 태양 전지 모듈의 제4실시예를 나타낸 제조 순서도이며, 도 13은 본 발명의 투명 태양광에 적용된 투명기판의 다양한 적용 사례를 나타낸 도면이다.
본 발명의 태양 전지 모듈(100)는 투명 기판에 솔라셀(130)을 설치하되, 기판을 통해 가시광선, 근적외선, 자외선이 투과되고, 솔라셀(130)은 기판에서 수평 배열로 설치되어 시야의 범위에서 간섭되지 않는 범위에 설치된다.
이를 통해, 투명기판(110)을 통해 태양광의 투과도와 육안의 시인성을 확보할 수 있다.
여기서, 상기 솔라셀(130)은 두께가 10nm~10um인 박막 태양전지형 솔라셀(130)이 적용되거나, 두께가 50~300um인 양면수광 실리콘 태양전지형 솔라셀(130)이 적용될 수 있다.
구체적으로, 본 발명에서 적용되는 솔라셀(130)은 그 종류에 제한을 두지 않는다.
상기한 박막 태양전지는 박막 증착 온도, 사용되는 기판의 종류 및 증착방법에 따라 다양하게 분류될 수 있는데, 광흡수층의 결정 특성에 따라 크게 비정질(amorphous)과 결정질(crystalline) 실리콘 박막 태양전지로 분류될 수 있다.
대표적인 박막 태양전지인 비정질 실리콘(amorphous Si, a-Si) 태양전지는 비정질 실리콘을 유리(120) 기판 사이에 주입해 만드는 태양전지이다.
또한, 박막 태양전지는 비정질 실리콘 박막 위에 다결정 실리콘 막을 한 접 더 적층하는 이중접합(tandem) 또는 그 위에 실리콘 막을 한 겹 더 얹는 삼중접합(triple junction) 등의 다중접합 구조로 제조하거나, 하이브리드 구조로 제조하여 전환 효율을 높이고 있다.
더하여, 앞서 설명한 박막 태양전지형 솔라셀(130)은 비정질 실리콘 박막 태양전지 및 화합물계 박막 태양전지를 포함할 수 있으나, 이에 제한되는 것은 아니며, 양면수광 실리콘 태양전지형 솔라셀(130)은 결정질 실리콘 태양전지를 포함할 수 있으나, 이에 제한되는 것은 아니다.
상기와 같은 특징을 갖는 솔라셀(130)은 투명 기능을 갖도록 투명기판(110) 또는 유리(120)가 접합된 투명기판(110) 또는 유리(120)에 몰딩된 투명기판(110)에 설치된다.
여기서, 상기 솔라셀(130)은 판재 형태로 형성되고, 상기 솔라셀(130)의 평면 면적은 다양하게 적용될 수 있다.
상기와 같은 솔라셀(130)은 기판에서 수평 배열로 설치되어 태양광의 입사각의 간섭에 방해되지 않고, 사람의 시야의 범위에서 간섭되지 않는 범위로 설치된다.
즉, 수평 배열이란, 수직으로 기립된 상태의 투명기판 또는 유리의 일면에서 -10° 내지 10° 사이의 수직선 방향으로 솔라셀(130)을 설치하는 것을 의미한다.
여기서, 투명기판 또는 유리의 일면은 입사광이 입사하는 면을 의미할 수 있다.
통상적으로 수직선(perpendicular lines)은 90°를 이루며 만나는 두 직선이나 선분, 반직선을 말하고, 서로 직각으로 만나는 직선들을 수직선(orthogonal lines)이라고 한다.
본 발명에서의 수평 배열은 수직선 방향으로 -10° 내지 10°범위의 각도를 포함한다.
상기와 같이, 솔라셀(130)은 기판의 내부에 수평 배열로 내입되되, 상기 솔라셀(130)은 복수개로 구비되어 등간격으로 설치된다.
그리고, 상기 솔라셀(130)의 사이 공간의 투명 기판을 통해 가시광선, 근적외선, 자외선이 투과된다.
물론, 투명기판(110)을 통해 빛이 투과되어 시인성을 갖고 동시에 솔라셀(130)의 사이 간격을 통해 시야 간섭을 받지 않아 투명기판(110)의 투과성을 보장받는다.
상기와 같이 구성되는 태양 전지 모듈은 4가지 실시예로 이루어진다.
도 4 및 도 5에서 도시한 바와 같이, 본 발명의 태양 전지 모듈(100)의 제1실시예는 투명기판(110); 상기 투명기판(110) 내부에 설치되어 태양광을 광전으로 변환시키는 솔라셀(130); 로 구성하되, 상기 투명기판(110)에 수평 배열로 솔라셀(130)을 설치한다.
또한, 본 발명의 제1실시예에 따른 태양 전지 모듈(100)은 박막 태양전지형 솔라셀(300) 및 양면수광 실리콘 태양전지형 솔라셀(300) 중 어느 하나로 선택되는 솔라셀(300)을 포함하는 것이 바람직하다.
이를 가능하도록 상기 투명기판(110) 어느 한 면에 홈을 등간격으로 설치하여 솔라셀(130)을 내입시켜 투명기판(110) 내부에 솔라셀(130)이 설치될 수 있도록 한다.
또는, 솔라셀(130)을 복수로 마련하되, 투명기판(110)의 일면과 수직선 방향으로 솔라셀(130)을 배열시킨 다음 솔라셀(130)이 함침되도록 수지몰딩시켜 고형화로 투명기판(110)을 제작하면 투명기판(110)의 내부에 솔라셀(130)이 수평 배열로 설치될 수 있다.
도 5(a) 및 도 5(b)를 참조하면, 투명기판(110)의 일면과 수직선 방향으로 배열시킨 양면수광 실리콘 태양전지형 솔라셀(130)은 도 5(a)와 같은 구조를 가질 수 있으며, 투명기판(110) 어느 한 면에 홈을 등간격으로 설치하여 내입시킨 박막 태양전지형 솔라셀(130)은 5(b)와 같은 구조를 가질 수 있다.
상기와 같은 제1실시예는 솔라셀(130)을 내입한 투명기판(110)을 이용하여 건축물에 유리(120) 대용으로 적용이 가능하다.
또한, 도 6 내지 도 8에서 도시한 바와 같이, 본 발명의 태양 전지 모듈(100)의 제2실시예는 유리(120); 상기 유리(120)와 면 접합되는 투명기판(110); 상기 투명기판(110)의 일면에 형성된 홈 내부에 설치되어 태양광을 광전으로 변환시키는 솔라셀(130);로 구성하되, 상기 투명기판(110)에 수평 배열로 솔라셀(130)을 설치한다.
또한, 본 발명의 제2실시예에 따른 태양 전지 모듈(100)은 박막 태양전지형 솔라셀(300)인 것이 바람직하다.
이를 가능하도록, 투명기판(110) 어느 한 면에 홈을 등간격으로 설치하여 솔라셀(130)을 내입시켜 투명기판(110) 내부에 솔라셀(130)이 설치될 수 있도록 한다.
이렇게 제조된 솔라셀(130)을 갖는 투명기판(110)은 유리(120)와 접합시켜 투명의 기능을 수행하면서 창호로 적용이 가능한 동시에 단열 에너지의 효율을 향상시킬 수 있는 장점이 있다.
더불어 제1실시예의 도 4와 제2실시예의 도 6 및 도 8에서 도시한 바와 같이, 투명기판(110)을 통상적으로 수지몰딩 방식으로 제작하게 되는데, 이때, 수지몰딩에는 복수의 광수집모듈(140)을 혼합시켜 고형화에 의해 투명기판(110)으로 제작되면 솔라셀(130) 사이에 복수의 광수집모듈(140)을 설치할 수 있도록 한다.
또한, 도 9a는 솔라셀(130)을 수직배열 또는 수평 배열로 정렬시킨 상태의 태양 전지 모듈을 나타낸 단면도이고, 도 9b는 태양 전지 모듈에 근적외선 거울을 적용하였을 경우 나타나는 가시광선의 투과율(왼쪽 그래프) 및 근적외선의 수집량(오른쪽 그래프)을 나타낸 그래프이다.
본 발명에서는 솔라셀(130)을 수직배열 또는 수평 배열로 정렬시킨 상태의 태양 전지 모듈에 광효율을 증대시키기 위하여 근적외선 거울, 광수집모듈(140) 등을 더 포함하도록 구성할 수 있다.
도 9b의 왼쪽 그래프을 참조하면, 솔라셀(130)을 수평 배열로 정렬시킨 후 상기 솔라셀(130)의 가로 길이를 변화시켜도 가시광선의 투과율은 입사각(angle)에 따라 변화하지 않는 것을 확인할 수 있으며, 솔라셀(130)을 수직배열로 정렬시키면 가시광선의 투과율은 입사각(angle)이 증가함에 따라 감소하고, 솔라셀(130)의 세로 길이가 증가할수록 크게 감소하는 것을 확인할 수 있다.
더하여, 도 9b의 오른쪽 그래프를 참조하면, 솔라셀(130)을 수평 배열로 정렬시키면 근적외선의 수집량(Jsc)은 입사각(angle)이 증가함에 따라 증가하고, 솔라셀(130)의 가로 길이가 증가할수록 근적외선의 수집량(Jsc)이 높은 것을 확인할 수 있다.
아래 [표 1]은, 입사각(angle)이 0도일 때, 태양 전지 모듈에 근적외선 거울과 광수집모듈(140)을 모두 적용한 경우, 솔라셀(130)의 수직배열 또는 수평 배열 상태에 따른 근적외선의 수집량(Jsc) 및 집광율을 나타낸 것이다.
입사각0도 가로 2mm 가로 3mm 가로 4mm 세로 2mm 세로 3mm 세로 4mm
Jsc(mA/cm2) 26.2 26.4 26.4 28.8 31.3 33.5
집광률 3.6 2.4 1.8 4 2.9 2.3
아래 [표 2]는, 입사각(angle)이 0도일 때, 태양전지에 근적외선 거울과 광수집모듈(140)을 모두 적용하지 않은 경우, 솔라셀(130)의 수직배열 또는 수평 배열 상태에 따른 근적외선의 수집량(Jsc) 및 집광율을 나타낸 것이다.
입사각0도 가로 2mm 가로 3mm 가로 4mm 세로 2mm 세로 3mm 세로 4mm
Jsc(mA/cm2) 13.73 16.78 21.3 14.4 18.0 21.2
집광률 1.9 1.6 1.5 2 1.7 1.5
상기 [표 1]과 [표 2]와 같이, 태양 전지 모듈에 근적외선 거울과 광수집모듈(140)이 모두 적용됨에 따라서, 근적외선의 수집량(Jsc)과 집광율이 증가한 것을 확인할 수 있다.
또한, 도 10a 및 도10b에서 도시한 바와 같이, 태양 전지 모듈(100)은 솔라셀(130) 사이 간격(W)이 넓을수록 태양광의 산란, 재발광 및 재흡수로부터 손실이 발생하여 근적외선 수집률이 20% 이상 낮아질 수 있다.
즉, 본 발명은 솔라셀(130) 사이에 복수의 광수집모듈(140)을 설치하여 근적외선 수집률을 향상시킬 수 있다.
그리고, 도 11 내지 도 13에서 도시한 바와 같이, 본 발명의 태양 전지 모듈(100)의 제3실시예는 유리(120); 상기 유리(120)의 일면에 설치되어 태양광을 광전으로 변환시키는 솔라셀(130); 상기 유리(120)의 일면에 수지 몰딩시켜 솔라셀(130)을 함침시킨 투명기판(110);으로 구성하되, 상기 투명기판(110)에 수평 배열로 솔라셀(130)을 설치한다.
또한, 본 발명의 제3실시예에 따른 태양 전지 모듈(100)은 양면수광 실리콘 태양전지형 솔라셀(300)인 것이 바람직하다.
즉, 솔라셀(130)을 복수로 마련하되, 유리(120)의 일면과 수직선 방향으로 솔라셀(130)을 배열시킨 다음 솔라셀(130)이 함침되도록 수지몰딩시켜 고형화로 투명기판(110)을 제작하면 투명기판(110)의 내부에 솔라셀(130)이 수평 배열인 수직선 방향으로 설치된다.
여기서, 수지몰딩에는 복수의 광수집모듈(140)이 혼합되어 고형화에 의해 투명기판(110)으로 제작되면 솔라셀(130) 사이에 복수의 광수집모듈(140)이 설치된다.
여기서, 광수집모듈(140)은 방사 태양 집중기(LSC)라고도 칭하며, 통상 태양광을 직접 흡수하고 이를 전기로 전환하는 일반적인 태양전지들과 달리 광수집모듈(140)은 광을 이후 긴 파장에서 흡수된 광을 재방출하는 광방출기를 포함한 판상에서 광을 흡수한다.
상기와 같은 제1실시예, 제2실시예 및 제3실시예에 적용된 솔라셀(130) 밑단에 LED 발광체가 설치될 수 있다.
이는, LED 발광체를 통해 다양한 빛의 발광을 통해 소비자 맞춤형 디자인 연출이 가능하다.
또는, 상기 솔라셀(130)에는 색을 표현하는 박막층(160)이 더 포함될 수 있고, 유리(120)와 접합되는 투명기판(110)의 접합면에 색을 표현하는 박막층(160)이 설치될 수 있다.
이를 통해, 투명 태양전지를 통해 투과도, 색상, 연색성, 사생활보호용으로 다양한 기능 수행이 가능하도록 한다.
도 12에서 도시한 바와 같이, 본 발명의 태양 전지 모듈(100)의 제4실시예는 유리(120); 상기 유리(120)의 일면에 적층되어 에칭 마스크 프린팅 부위를 제외한 나머지 부위를 습식 식각하여 유리(120)의 면에 수평 배열로 설치되어 태양광을 광전으로 변환시키는 솔라셀(130); 상기 유리(120)의 일면에 수지 몰딩시켜 솔라셀(130)을 함침시켜 고형화되는 투명기판(110);으로 구성한다.
또한, 본 발명의 제4실시예에 따른 태양 전지 모듈(100)은 양면수광 실리콘 태양전지형 솔라셀(300)인 것이 바람직하다.
즉, 유리(120)와 솔라셀(130)은 접합된 상태에서 등간격으로 배치된 솔라셀(130)의 상면에 에칭마스크 프린팅을 실시한다.
이후, 습식식각(laser ablation) 과정을 통해 에칭 마스크 프린팅을 제외한 부분이 식각시킨다.
이를 통해, 솔라셀(130)은 복수로 구분되면서 등간격으로 배치된다.
이때, 솔라셀(130)은 유리(120)의 면과 수직선 방향으로 입설된 상태이다.
또한, 상기 솔라셀(130)의 선단에는 패시베이션 또는 반사방지층을 형성하여 솔라셀(130)을 보호한다.
이렇게, 유리(120) 면과 수직선 방향으로 솔라셀(130)을 배열시킨 다음 솔라셀(130)이 함침되도록 수지몰딩시켜 고형화로 투명기판(110)을 제작하면 투명기판(110)의 내부에 솔라셀(130)이 설치되도록 한다.
상기와 같이 제1실시예 내지 제4실시예에서 설명된 솔라셀(130) 사이에는 복수의 광수집모듈(140)들이 배열되어 투명기판으로 투과된 광을 흡수하도록 하여 광 효율을 향상시킨다.
그리고, 제1실시예 내지 제4실시예에서 상기 투명기판(110)과 유리(120) 사이에 투명전극이 설치되고 솔라셀(130)과 통전되도록 한다.
또한, 제1실시예 내지 제4실시예에서 상기 투명기판(110)과 유리(120) 사이 및 솔라셀(130)에 광흡수층이 코팅될 수 있다.
여기서, 이미 배치된 솔라셀(130)은 제1솔라셀이고, 상기 광흡수층은 상기 제1 솔라셀과 서로 다른 제2솔라셀을 포함할 수 있다.
특히, 도 13에서 도시한 바와 같이, 제1실시예 내지 제4실시예를 통해 제조되는 투명기판(110)은 단면의 형상의 변화가 자유롭다.
또한, 상기 솔라셀(130)은 투명기판(110)의 단면 형상에 맞추어 배치 상태가 자유롭다.
이와 같은, 본 발명의 태양 전지 모듈은 투명 기판(110) 또는 유리(120)와 접합된 투명기판(110)에 솔라셀(130)을 수직선 방향으로 설치시켜 투명기판(110)을 통해 가시광선, 근적외선, 자외선이 투과되는 동시에 솔라셀(130)은 수직선 방향에 등간격으로 설치됨에 따라 시야의 범위에서 간섭되지 않는 범위로 설치되어 투명하면서 태양광 전지 기능을 수행할 수 있도록 하는 효과가 있다.
또한, 솔라셀(130)을 등간격으로 수직 배열시킨 투명기판(110)을 통해 광대역 가시광 투과율을 균형있게 흡수할 수 있도록 하는 효과가 있다.
또한, 태양광 전지를 통해 광대역 가시광 영역의 높은 평균 투과율을 바탕으로 자연광에 가까운 우수한 연색성 구현하도록 하는 효과가 있다.
또한, 투명기판(110) 내부의 솔라셀(130) 사이 공간에 복수의 광수집모듈(140)이 설치되어 흡수된 광을 재 방출하는 광방출기를 포함한 판상에서 광을 흡수하여 광 흡수 효율을 향상시키는 효과가 있다.
또한, 건축물의 지붕, 벽 이외에 창문에 적용할 수 있어 기존 옥상 또는 벽면 등의 설치장소 이외에 외벽이 창문으로 적용된 건축물에 적용 가능하여 태양광 단위만큼 많은 전력을 얻을 수 있는 효과가 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.

Claims (17)

  1. 투명기판;
    상기 투명기판 내부에 설치되어 태양광을 광전으로 변환시키는 솔라셀; 로 구성하되,
    상기 투명기판에 수평 배열로 솔라셀을 설치함을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  2. 유리;
    상기 유리와 면 접합되는 투명기판;
    상기 투명기판의 일면에 형성된 홈 내부에 설치되어 태양광을 광전으로 변환시키는 솔라셀; 로 구성하되,
    상기 투명기판에 수평 배열로 솔라셀을 설치함을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  3. 유리;
    상기 유리의 일면에 설치되어 태양광을 광전으로 변환시키는 솔라셀;
    상기 유리의 일면에 수지 몰딩시켜 솔라셀을 함침시킨 투명기판;으로 구성하되,
    상기 투명기판에 수평 배열로 솔라셀을 설치함을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  4. 유리;
    상기 유리의 일면에 적층되어 에칭 마스크 프린팅 부위를 제외한 나머지 부위를 습식 식각하여 유리의 면에 수평 배열로 설치되어 태양광을 광전으로 변환시키는 솔라셀;
    상기 유리의 일면에 수지 몰딩시켜 솔라셀을 함침시켜 고형화되는 투명기판;으로 구성한 것을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 수평 배열은 기립된 투명기판의 일면과 -10° 내지 10° 사이의 수직선 방향으로 솔라셀이 설치됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  6. 제4항에 있어서,
    상기 수평 배열은 유리의 일면과 -10° 내지 10° 사이의 수직선 방향으로 솔라셀이 설치됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 솔라셀은 복수개로 구비되어 등간격으로 설치됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  8. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 솔라셀은 복수개로 구비되어 투명기판에 등간격으로 설치되되,
    상기 솔라셀 사이에 복수의 광수집모듈이 배열되어 설치됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  9. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 투명기판과 유리는 면 접합되는 것을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  10. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 솔라셀에는 LED 발광체가 설치됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  11. 제1항 내지 제2항 중 어느 한 항에 있어서,
    상기 솔라셀은 두께가 10nm~10um인 박막 태양전지형 솔라셀이 적용됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  12. 제1항, 제3항 내지 제4항 중 어느 한 항에 있어서,
    상기 솔라셀은 두께가 50~300um인 양면수광 실리콘 태양전지형 솔라셀이 적용됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  13. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 솔라셀에는 색을 표현하는 박막층이 설치됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  14. 제2항 내지 제4항 중 어느 한 항에 있어서,
    상기 투명기판과 유리 사이에 투명전극이 설치되고 솔라셀과 통전되도록 구성한 것을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  15. 제2항 내지 제4항 중 어느 한 항에 있어서,
    상기 투명기판과 유리 사이 및 솔라셀에 광흡수층이 코팅되는 것을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  16. 제2항 내지 제4항 중 어느 한 항에 있어서,
    유리와 접합되는 투명기판의 접합면에 색을 표현하는 박막층이 설치됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
  17. 제4항에 있어서,
    상기 솔라셀의 선단에는 패시베이션 또는 반사방지층이 더 포함됨을 특징으로 하는 시인성이 우수한 태양 전지 모듈.
PCT/KR2020/007967 2019-08-27 2020-06-19 시인성이 우수한 태양 전지 모듈 WO2021040211A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/682,293 US20220190178A1 (en) 2019-08-27 2022-02-28 Solar cell module having excellent visibility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0104959 2019-08-27
KR1020190104959A KR102255573B1 (ko) 2019-08-27 2019-08-27 시인성이 우수한 태양 전지 모듈

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/682,293 Continuation US20220190178A1 (en) 2019-08-27 2022-02-28 Solar cell module having excellent visibility

Publications (2)

Publication Number Publication Date
WO2021040211A2 true WO2021040211A2 (ko) 2021-03-04
WO2021040211A3 WO2021040211A3 (ko) 2021-04-29

Family

ID=74684499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007967 WO2021040211A2 (ko) 2019-08-27 2020-06-19 시인성이 우수한 태양 전지 모듈

Country Status (3)

Country Link
US (1) US20220190178A1 (ko)
KR (1) KR102255573B1 (ko)
WO (1) WO2021040211A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200121679A (ko) 2019-04-16 2020-10-26 주식회사 그레이트컨텐츠 다채널을 활용한 콘텐츠 제공 시스템
KR102387997B1 (ko) * 2020-05-22 2022-04-20 한국과학기술연구원 형광체가 도핑된 고분자 수지를 구비한 발광형 태양 집광 장치
KR102590394B1 (ko) * 2021-05-04 2023-10-16 고려대학교 산학협력단 고투광성 태양광 모듈
KR20230029054A (ko) 2021-08-23 2023-03-03 주식회사 메카로에너지 태양광 발전모듈 및 그 제조 방법
KR20230053018A (ko) * 2021-10-13 2023-04-21 (주)에스케이솔라에너지 Led 투명 필름을 활용한 미디어 구현 건물 일체형 태양광 모듈
KR102660795B1 (ko) * 2022-03-17 2024-04-24 고려대학교 산학협력단 태양광 모듈

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3538986C3 (de) * 1985-11-02 1994-11-24 Deutsche Aerospace Verfahren zur Herstellung eines Solargenerators
WO2008045511A2 (en) * 2006-10-11 2008-04-17 Gamma Solar Photovoltaic solar module comprising bifacial solar cells
US20090229652A1 (en) * 2008-01-14 2009-09-17 Mapel Jonathan K Hybrid solar concentrator
KR20090094503A (ko) * 2008-03-03 2009-09-08 배병성 박막형 태양전지
NL2002766C2 (nl) * 2009-04-20 2010-10-22 Stichting Energie Zonnepaneel en werkwijze voor het vervaardigen daarvan.
WO2010127348A2 (en) * 2009-05-01 2010-11-04 Garrett Bruer Device and method for converting incident radiation into electrical energy using an upconversion photoluminescent solar concentrator
KR101091372B1 (ko) * 2009-12-24 2011-12-07 엘지이노텍 주식회사 태양광 발전장치
EP2559074A1 (en) * 2010-04-13 2013-02-20 The University Of Sydney Luminescent solar concentrator and method for making the same
KR20120117085A (ko) 2011-04-14 2012-10-24 주식회사 동진쎄미켐 염료감응 태양전지 모듈을 구비한 커튼월 및 창호 시스템
KR20130059170A (ko) 2011-11-28 2013-06-05 전경순 태양광 발전용 블라인드
KR101210213B1 (ko) * 2012-09-28 2012-12-07 엘지이노텍 주식회사 태양광 발전장치
TWI493744B (zh) * 2012-11-30 2015-07-21 太陽能電池模組及其製造方法
CN105637654B (zh) * 2013-08-19 2017-11-28 特罗皮格拉斯科技有限公司 用于产生电能的装置
US20160276514A1 (en) * 2013-11-12 2016-09-22 Nitto Denko Corporation Solar energy collection systems utilizing holographic optical elements useful for building integrated photovoltaics
US10340842B2 (en) * 2013-12-04 2019-07-02 Jesse Timron Brown Multi-orthogonal photonic energy collection system
JP6628047B2 (ja) * 2014-06-13 2020-01-08 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP2017183720A (ja) * 2016-03-28 2017-10-05 学校法人立命館 発電装置および発電システム
WO2017214100A1 (en) * 2016-06-07 2017-12-14 AMI Research & Development, LLC Scanning device
US20180337630A1 (en) * 2017-05-18 2018-11-22 Andersen Corporation Insulating glazing unit with photovoltaic power source
KR102379143B1 (ko) * 2017-07-07 2022-03-25 주성엔지니어링(주) 태양전지, 태양전지의 제조 방법 및 이를 포함하는 자동차
US20190051776A1 (en) * 2017-08-09 2019-02-14 Electronics And Telecommunications Research Institute Bi-facial transparent solar cell
EP3599649B1 (de) * 2018-07-27 2021-10-06 (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd. Solarmodul mit strukturierter deckplatte und optischer interferenzschicht

Also Published As

Publication number Publication date
KR102255573B1 (ko) 2021-05-24
US20220190178A1 (en) 2022-06-16
KR20210025235A (ko) 2021-03-09
WO2021040211A3 (ko) 2021-04-29

Similar Documents

Publication Publication Date Title
WO2021040211A2 (ko) 시인성이 우수한 태양 전지 모듈
WO2011037373A2 (en) Solar cell module and method of manufacturing the same
WO2010114196A1 (ko) 디자인층을 구비한 건물 일체형 태양전지 모듈
US20120118359A1 (en) Insulating glass composite comprising diagonally arranged photovoltaic cells, and method for the production and use thereof
WO2010147260A1 (en) Solar cell and method of manufacturing the same
WO2009107955A2 (en) Solar cell and method for manufacturing the same
WO2011122853A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2010114314A9 (ko) 태양광 발전장치 및 이의 제조방법
US20120031465A1 (en) Solar module in an insulating glass composite method for production and use
WO2023101292A1 (ko) Bipv 적용 가능한 고출력 슁글드 태양광 모듈 및 그 제조 방법
WO2018052222A1 (ko) 플렉시블 솔라 패널{flexible solar panels}
WO2020204527A1 (ko) 태양전지 패널 및 그 제조 방법
WO2015072707A1 (en) Glass frit composition, paste composition for solar cell electrodes including the same and solar cell module
WO2021167227A1 (ko) 태양 전지 모듈
WO2022260244A1 (ko) 태양광 모듈 및 이의 제조 방법
WO2016137048A1 (ko) 박막형 태양전지를 이용한 구조물
WO2011053087A2 (ko) 태양전지 및 이의 제조방법
KR102514016B1 (ko) 마이크로 led가 설치된 태양광 모듈 및 이의 제조 방법
WO2013180339A1 (ko) 태양전지 모듈 및 그 제조방법
WO2012057516A2 (ko) 도전성 접착 필름, 상기 필름을 구비한 태양전지 패널 및 상기 패널의 제조 방법
WO2021177514A1 (ko) 병렬 및 직렬 연결 구조를 갖는 태양전지 모듈
WO2021162184A1 (ko) 태양전지 및 이를 포함하는 태양전지 모듈
WO2021162239A1 (ko) 컬러 태양 전지 모듈
WO2010074477A2 (ko) 박막형 태양전지 및 그 제조방법
WO2020013464A1 (ko) 태양광 발전 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857347

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857347

Country of ref document: EP

Kind code of ref document: A2