WO2010074477A2 - 박막형 태양전지 및 그 제조방법 - Google Patents

박막형 태양전지 및 그 제조방법 Download PDF

Info

Publication number
WO2010074477A2
WO2010074477A2 PCT/KR2009/007657 KR2009007657W WO2010074477A2 WO 2010074477 A2 WO2010074477 A2 WO 2010074477A2 KR 2009007657 W KR2009007657 W KR 2009007657W WO 2010074477 A2 WO2010074477 A2 WO 2010074477A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode layer
front electrode
thin film
semiconductor layer
Prior art date
Application number
PCT/KR2009/007657
Other languages
English (en)
French (fr)
Other versions
WO2010074477A3 (ko
Inventor
김태훈
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080134804A external-priority patent/KR100977726B1/ko
Priority claimed from KR1020080134802A external-priority patent/KR100973676B1/ko
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to CN2009801512625A priority Critical patent/CN102257631A/zh
Priority to US13/132,070 priority patent/US20110247692A1/en
Publication of WO2010074477A2 publication Critical patent/WO2010074477A2/ko
Publication of WO2010074477A3 publication Critical patent/WO2010074477A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell, and more particularly to a thin film solar cell.
  • Solar cells are devices that convert light energy into electrical energy using the properties of semiconductors.
  • the solar cell has a PN junction structure in which a P (positive) type semiconductor and a N (negative) type semiconductor are bonded to each other. Holes and electrons are generated in the semiconductor by the energy of the incident solar light. At this time, the holes (+) are moved toward the P-type semiconductor by the electric field generated in the PN junction. Negative (-) is the principle that the electric potential is generated by moving toward the N-type semiconductor to generate power.
  • Such solar cells may be classified into a substrate type solar cell and a thin film type solar cell.
  • the substrate type solar cell is a solar cell manufactured by using a semiconductor material such as silicon as a substrate
  • the thin film type solar cell is a solar cell manufactured by forming a semiconductor in the form of a thin film on a substrate such as glass.
  • Substrate-type solar cells although somewhat superior in efficiency compared to thin-film solar cells, there is a limitation in minimizing the thickness in the process and there is a disadvantage that the manufacturing cost is increased because of the use of expensive semiconductor substrates.
  • thin-film solar cells are somewhat less efficient than substrate-type solar cells, they can be manufactured in a thin thickness and inexpensive materials can be used to reduce manufacturing costs, making them suitable for mass production.
  • FIG. 1 is a schematic cross-sectional view of a thin film solar cell according to a conventional embodiment.
  • the front electrode layer 30 is formed on the substrate 10, and the semiconductor layer 40 is formed on the front electrode layer 30.
  • the transparent conductive layer 50 is formed on the semiconductor layer 40, and the rear electrode layer 60 is formed on the transparent conductive layer 50.
  • the conventional thin-film solar cell has a problem in that it is not possible to form a long path of sunlight in the semiconductor layer 40 and thus does not obtain battery efficiency as desired.
  • the substrate 10 uses glass, and alkali ions are contained in the glass, and the alkali ions move to the front electrode layer 30 in the process of high temperature deposition and impurity. As a result, there is a problem that the efficiency of the solar cell is lowered.
  • the present invention has been devised to solve the conventional problems as described above, the present invention is to provide a thin-film solar cell and a method of manufacturing the same that can increase the efficiency of the solar cell by increasing the path of sunlight in the semiconductor layer.
  • the purpose is to provide a thin-film solar cell and a method of manufacturing the same that can increase the efficiency of the solar cell by increasing the path of sunlight in the semiconductor layer. The purpose.
  • Another object of the present invention is to provide a thin film solar cell and a method of manufacturing the same, which can increase the efficiency of a solar cell by preventing the alkali ions contained in the substrate from moving to the front electrode layer.
  • the present invention is a substrate; A light scattering film formed on the substrate and including a bead and a binder to fix the bead; A front electrode layer formed on the light scattering film; A semiconductor layer formed on the front electrode layer; And a back electrode layer formed on the semiconductor layer.
  • the present invention also comprises a substrate comprising a bead therein; A front electrode layer formed on the substrate; A semiconductor layer formed on the front electrode layer; And a back electrode layer formed on the semiconductor layer.
  • the present invention also provides a process for forming a light scattering film comprising a bead and a binder for fixing the bead on a substrate; Forming a front electrode layer on the light scattering film; Forming a semiconductor layer on the front electrode layer; And it provides a method for manufacturing a thin-film solar cell comprising the step of forming a back electrode layer on the semiconductor layer.
  • the present invention also provides a process for preparing a flexible substrate comprising a bead therein; Forming a front electrode layer on the flexible substrate; Forming a semiconductor layer on the front electrode layer; And it provides a method for manufacturing a thin-film solar cell comprising the step of forming a back electrode layer on the semiconductor layer.
  • FIG. 1 is a schematic cross-sectional view of a thin film solar cell according to a conventional embodiment.
  • FIG. 2 is a schematic cross-sectional view of a thin film solar cell according to an embodiment of the present invention.
  • 3A-3C are cross-sectional views of beads according to various embodiments of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a thin film solar cell according to another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a thin film solar cell according to still another embodiment of the present invention.
  • 6A to 6E are cross-sectional views illustrating a manufacturing process of a thin film solar cell according to an embodiment of the present invention.
  • FIG. 7A to 7E are cross-sectional views illustrating a manufacturing process of a thin film solar cell according to another exemplary embodiment of the present invention.
  • 8A to 8E are cross-sectional views illustrating a manufacturing process of a thin film solar cell according to still another embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a thin film solar cell according to an embodiment of the present invention.
  • the thin-film solar cell according to an embodiment of the present invention, the substrate 100, the light scattering film 200, the front electrode layer 300, the semiconductor layer 400, the transparent conductive layer 500, and the back It comprises an electrode layer 600.
  • the substrate 100 mainly uses glass, but may also use transparent plastic.
  • the substrate 100 may use a flexible substrate such as transparent polyethylene terephthalate (PET), polyimide (PI), and polyamide (PA).
  • PET transparent polyethylene terephthalate
  • PI polyimide
  • PA polyamide
  • a flexible thin film solar cell may be obtained.
  • Flexible thin-film solar cells using a flexible substrate can use a roll-to-roll method to reduce manufacturing costs.
  • the light scattering layer 200 is formed on the substrate 100 and includes a bead 220 and a binder 240.
  • the light scattering layer 200 scatters the sunlight passing through the substrate 100 at various angles and prevents impurities contained in the substrate 100 from moving to the front electrode layer 300. do.
  • the light scattering film 200 will be described for scattering the sunlight passing through the substrate 100 at various angles as follows.
  • the light scattering layer 200 includes a bead 220 and a binder 240.
  • the binder 240 is mainly in contact with the substrate 100 and the front electrode layer 300.
  • sunlight transmitted through the substrate 100 may be formed. Since the light is refracted while passing through the binder 240 and the light transmitted through the binder 240 is refracted again while passing through the front electrode layer 300, the light incident on the substrate 100 is eventually reduced. As the light is refracted at various angles, the light is incident on the semiconductor layer 400 so that the path of sunlight in the semiconductor layer 400 is long.
  • the bead 220 may come into contact with the substrate 100 and the front electrode layer 300.
  • the substrate 100 and the substrate may be formed of a material constituting the bead 220.
  • the solar light incident on the substrate 100 is refracted at various angles by the same mechanism as described above and is incident on the semiconductor layer 400.
  • the path of sunlight in the semiconductor layer 400 is long.
  • the refractive index of the glass constituting the substrate 100 is about 1.52
  • the refractive index of the polyethylene terephthalate (PET) which is the flexible substrate 100 is about 1.57
  • the refractive index of the front electrode layer 300 is about 1.9 to 2.0.
  • the material of the bead 220 or the binder 240 may be selected in consideration of the refractive index range of the substrate 100 and the front electrode layer 300.
  • the bead 220 may include SiO 2 , TiO 2 , CeO 2 , and the like
  • examples of the binder 240 may include silicates and the like, but are not necessarily limited thereto.
  • the beads 220 and the binder 240 constituting the light scattering film 200 are made of materials having different refractive indices from each other, sunlight may be variously refracted in the light scattering film 200. That is, when the beads 220 are made of a material having a different refractive index than that of the binder 240, the sunlight transmitted through the beads 220 is refracted while passing through the binder 240, and the binder ( Since the sunlight transmitted through the 240 is refracted while passing through the bead 220, the sunlight may be variously refracted.
  • sunlight may be refracted at various angles while passing through the beads 220 having different values from each other. .
  • bead 220 may be composed of a core part and a skin part, so that sunlight may be refracted at various angles while passing through one bead 220.
  • 3A-3C are cross-sectional views of beads 220 in accordance with various embodiments of the present invention.
  • the bead 220 is composed of a core portion 222 and a skin portion 224 surrounding the core portion 222, the material of the core portion 222 to the skin portion (
  • a material having a refractive index different from that of the material of 224 sunlight is refracted when passing through the core part 222 after passing through the skin part 224, and after passing through the core part 222.
  • sunlight is refracted when passing through the core part 222 after passing through the skin part 224, and after passing through the core part 222.
  • When passing through the skin unit 224 can be made to refract again.
  • the core portion 222 is made of air so that the same effect can be obtained using the hollow bead 220 consisting of only the skin portion 224.
  • the core part 222 may be composed of a plurality of material layers 222a and 222b having different refractive indices, and the skin part 224 may have a plurality of material layers 224a having different refractive indices. 224b).
  • the refractive angle of the sunlight may be variously changed.
  • the refractive angle of solar light may be variously changed.
  • the light scattering film 200 prevents the impurities contained in the substrate 100 from moving to the front electrode layer 300
  • the light scattering film 200 is the substrate 100 and the Since it is formed between the front electrode layer 300, during the deposition process of the front electrode layer 300, the light scattering film 200, in particular the binder 240 constituting the light scattering film 200 acts as a barrier (barrier) Impurities contained in the substrate 100 are blocked from moving to the front electrode layer 300.
  • the front electrode layer 300 is formed on the light scattering film 200, and is formed on the surface where the sunlight is incident, ZnO, ZnO: B, ZnO: Al, SnO 2 , SnO 2 : F or ITO (Indium Tin Oxide) It may be formed using a transparent conductive material such as.
  • the surface of the front electrode layer 300 is formed with a concave-convex structure, and the scattering of the incident sunlight due to the concave-convex structure in various ways to increase the absorption rate of the sunlight in the semiconductor layer 400.
  • the uneven structure of the front electrode layer 300 is formed too large, defects may occur in the semiconductor layer 400 and the transparent conductive layer 500 formed on the front electrode layer 300. Efficiency may be reduced.
  • the scattering effect of sunlight can be sufficiently obtained by the light scattering film 200, it is not necessary to form an uneven structure largely on the surface of the front electrode layer 300, thus the front electrode layer 300
  • the uneven structure of the surface is preferably adjusted so small that defects do not occur in the semiconductor layer 400 and the transparent conductive layer 500.
  • the semiconductor layer 400 is formed on the front electrode layer 300, and when the surface of the front electrode layer 300 is formed in an uneven structure, the surface of the semiconductor layer 400 may also be formed in an uneven structure.
  • the semiconductor layer 400 has a PIN structure in which a P (positive) type semiconductor layer, an I (intrinsic) type semiconductor layer, and an N (negative) type semiconductor layer are sequentially stacked.
  • the I-type semiconductor layer is depleted by the P-type semiconductor layer and the N-type semiconductor layer to generate an electric field therein, and is generated by sunlight.
  • the holes and electrons are drift by the electric field, holes are collected to the front electrode layer 300 through the P-type semiconductor layer and electrons are collected to the back electrode layer 600 through the N-type semiconductor layer.
  • the semiconductor layer 400 when the semiconductor layer 400 is formed in a PIN structure, it is preferable to form a P-type semiconductor layer on the front electrode 300 and then to form an I-type semiconductor layer and an N-type semiconductor layer.
  • the P-type semiconductor layer is formed close to the light receiving surface in order to maximize the collection efficiency due to incident light.
  • the silicon layer compound may be used as the semiconductor layer 400, a compound such as CIGS (CuInGaSe 2) may be used.
  • the semiconductor layer 400 is the first semiconductor layer 410, the buffer layer 420, and the second semiconductor layer 430 are sequentially stacked so-called tandem (tandem) It may be formed into a structure.
  • the first semiconductor layer 410 and the second semiconductor layer 430 may both be formed in a PIN structure in which a P-type semiconductor layer, an I-type semiconductor layer, and an N-type semiconductor layer are sequentially stacked.
  • the first semiconductor layer 510 may be made of an amorphous semiconductor material having a PIN structure
  • the second semiconductor layer 430 may be made of a microcrystalline semiconductor material having a PIN structure.
  • the amorphous semiconductor material absorbs light of short wavelength well and the microcrystalline semiconductor material absorbs light of long wavelength well, light absorption efficiency may be enhanced when the amorphous semiconductor material and the microcrystalline semiconductor material are combined.
  • the present invention is not limited thereto, and various modifications such as amorphous semiconductor / germanium and microcrystalline semiconductor materials may be used as the first semiconductor layer 410, and amorphous semiconductor materials and amorphous semiconductors may be used as the second semiconductor layer 430.
  • Various modifications such as germanium are available.
  • the buffer layer 420 plays a role of smoothly moving holes and electrons through a tunnel junction between the first semiconductor layer 410 and the second semiconductor layer 430, and is made of a transparent material such as ZnO.
  • the semiconductor layer 400 may be formed in a triple structure including a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a buffer layer formed between each semiconductor layer, in addition to a tandem structure. May be
  • the transparent conductive layer 500 is formed on the semiconductor layer 400 and may be made of a transparent conductive material such as ZnO, ZnO: B, ZnO: Al, SnO 2 , SnO 2 : F, or Indium Tin Oxide (ITO). .
  • the surface of the transparent conductive layer 500 may also be formed in an uneven structure. However, the transparent conductive layer 500 may be omitted.
  • the back electrode layer 600 is formed on the transparent conductive layer 500 and may be made of a metal such as Ag, Al, Ag + Mo, Ag + Ni, Ag + Cu.
  • FIG. 4 is a schematic cross-sectional view of a thin film solar cell according to another embodiment of the present invention.
  • the front electrode layer 300 having the concave-convex structure surface is formed by controlling the deposition process conditions of the front electrode layer 300.
  • the semiconductor layer 400 and the transparency formed on the front electrode layer 300 when the uneven pattern is formed Defects may occur in the entire layer 500.
  • the front electrode layer 300 having a flat surface is deposited once, and then the surface of the front electrode layer 300 is formed in an uneven pattern by a chemical etching process.
  • this method is complicated by the addition of the chemical etching process, there is a problem that the environmental problems due to chemicals and the treatment cost problems are caused.
  • the surface of the front electrode layer 300 is not formed in an uneven structure.
  • a separate uneven structure may be formed on the surface of the front electrode layer 300.
  • the semiconductor layer 400 and the transparent conductive layer 500 formed thereon are also not formed in the uneven structure.
  • the transparent conductive layer 500 may be formed in an uneven structure.
  • FIG. 5 is a schematic cross-sectional view of a thin film solar cell according to still another embodiment of the present invention.
  • the bead 220 is included in the substrate 100, except that Same as the solar cell according to FIG. 2. Therefore, like reference numerals refer to like elements, and detailed descriptions of the same elements will be omitted.
  • the thin film solar cell according to FIG. 5 may be used as a flexible thin film solar cell. Since the bead 220 is included in the flexible substrate 100, sunlight may be scattered at various angles by the bead 220. do. That is, when a material having a refractive index different from that of the flexible substrate 100 and the front electrode layer 300 is used as a material constituting the bead 220, sunlight is emitted from the flexible substrate 100 and the bead. Refractively through the 220 and the front electrode layer 300, the path of sunlight in the semiconductor layer 400 is long.
  • the beads 220 when used in combination with a plurality of beads having different refractive indices, solar light may be refracted at various angles while passing through different beads 220.
  • the bead 220 is composed of a core part and a skin part as shown in FIGS. 3A to 3C, sunlight may be refracted at various angles while passing through one bead 220.
  • 6A to 6E are cross-sectional views illustrating a manufacturing process of a thin film solar cell according to an embodiment of the present invention, which relates to a manufacturing process of a thin film solar cell according to FIG. 2.
  • the light scattering layer 200 including the bead 220 and the binder 240 fixing the beads 220 is formed on the substrate 100.
  • Glass, transparent plastic, or a flexible substrate may be used as the substrate 100.
  • the light scattering layer 200 may be uniformly distributed on the binder 240 to prepare a paste, and then may be formed using a printing method using such a paste, or a sol-gel (Sol- It may be formed using a gel method, a dip coating method, or a spin coating method.
  • the bonding force between the substrate 100 and the light scattering film 200 by additionally performing an infrared firing process or a low temperature / high temperature firing process It is desirable to promote
  • the light scattering layer 200 may have a concave-convex structure on the surface thereof.
  • the printing method, the sol-gel method, the dip coating method, or the spin coating method may be used. After the spin coating method, the surface of the membrane may be formed into an uneven structure through physical contact.
  • the front electrode layer 300 is formed on the light scattering film 200.
  • the front electrode layer 300 is laminated using a transparent conductive material such as ZnO, ZnO: B, ZnO: Al, SnO 2 , SnO 2 : F or ITO (Indium Tin Oxide), and the surface of the front electrode layer 300 may be formed with an uneven structure. Can be.
  • a transparent conductive material such as ZnO, ZnO: B, ZnO: Al, SnO 2 , SnO 2 : F or ITO (Indium Tin Oxide)
  • the front electrode layer having the concave-convex structure may be directly controlled by appropriately adjusting the deposition conditions during a deposition process such as a metal organic chemical vapor deposition (MOCVD) process.
  • MOCVD metal organic chemical vapor deposition
  • the etching process may include an etching process using photolithography, anisotropic etching using a chemical solution, or an etching process using mechanical scribing.
  • the uneven structure of the surface of the front electrode 300 is preferably adjusted so small that defects do not occur in the semiconductor layer and the transparent conductive layer to be formed in a later process.
  • the semiconductor layer 400 is formed on the front electrode layer 300.
  • the semiconductor layer 400 may be formed in a PIN structure in which a silicon-based amorphous semiconductor material is sequentially stacked with a P-type semiconductor layer, an I-type semiconductor layer, and an N-type semiconductor layer by using a plasma CVD method or the like.
  • the semiconductor layer 400 may be formed in a so-called tandem structure by stacking the first semiconductor layer 410, the buffer layer 420, and the second semiconductor layer 430 in order (see FIG. 2). ).
  • the transparent conductive layer 500 is formed on the semiconductor layer 400.
  • the transparent conductive layer 500 is sputtered or MOCVD (Metal Organic Chemical Vapor Deposition) of a transparent conductive material such as ZnO, ZnO: B, ZnO: Al, SnO 2 , SnO 2 : F or ITO (Indium Tin Oxide). It can be formed by laminating using a) method or the like.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • a transparent conductive material such as ZnO, ZnO: B, ZnO: Al, SnO 2 , SnO 2 : F or ITO (Indium Tin Oxide). It can be formed by laminating using a) method or the like.
  • the transparent conductive layer 500 forming process can be omitted.
  • the back electrode layer 600 may be formed by stacking a metal such as Ag, Al, Ag + Mo, Ag + Ni, Ag + Cu using a sputtering method or a printing method.
  • the process according to FIGS. 6A to 6E may be performed using a roll to roll method. Can be.
  • FIG. 7A to 7E are cross-sectional views illustrating a manufacturing process of a thin film solar cell according to another embodiment of the present invention, which relates to the manufacturing process of the thin film solar cell according to FIG. 4. Detailed description of the same configuration as the above-described embodiment will be omitted.
  • a light scattering layer 200 including a bead 220 and a binder 240 fixing the bead 220 is formed on the substrate 100.
  • the front electrode layer 300 is formed on the substrate 100. Since the front electrode layer 300 does not need to have a concave-convex structure, the front electrode layer 300 may be laminated using a general sputtering method.
  • the semiconductor layer 400 is formed on the front electrode layer 300.
  • the transparent conductive layer 500 is formed on the semiconductor layer 400.
  • the transparent conductive layer 500 forming process can be omitted.
  • FIG. 8A to 8E are cross-sectional views illustrating a manufacturing process of a thin film solar cell according to still another embodiment of the present invention, which relates to a manufacturing process of the thin film solar cell according to FIG. 5. Detailed description of the same configuration as the above-described embodiment will be omitted.
  • This may be prepared through a process of forming a thin film form by including beads in the molten liquid for flexible substrate and then curing.
  • the front electrode layer 300 is formed on the substrate 100.
  • the semiconductor layer 400 is formed on the front electrode layer 300.
  • a transparent conductive layer 500 is formed on the semiconductor layer 400.
  • the transparent conductive layer 500 forming process can be omitted.
  • the present invention is not limited to the above-described embodiment.
  • the present invention is applicable to a structure in which a plurality of unit cells are separated and a plurality of unit cells are connected in series when the facing substrate is applied.
  • the sunlight can be variously refracted to lengthen the path of sunlight in the semiconductor layer. Therefore, the efficiency of the solar cell is improved.
  • the light scattering film since the light scattering film is formed between the substrate and the front electrode layer, the light scattering film acts as a barrier in the process of depositing the front electrode layer so that impurities contained in the substrate move to the front electrode layer. It is blocked, there is an effect that the decrease in efficiency of the solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 기판; 상기 기판 상에 형성되며, 비드 및 상기 비드를 고정하는 바인더를 포함하여 이루어진 광산란막; 상기 광산란막 상에 형성된 전면전극층; 상기 전면전극층 상에 형성된 반도체층; 및 상기 반도체층 상에 형성된 후면전극층을 포함하여 이루어진 박막형 태양전지, 및 그 제조방법에 관한 것으로서, 본 발명은 기판과 전면전극층 사이에 광산란막을 형성함으로써 태양광을 다양하게 굴절시킬 수 있어 반도체층 내에서 태양광의 경로를 길게할 수 있다. 따라서, 태양전지의 효율이 증진되는 효과가 있다.

Description

박막형 태양전지 및 그 제조방법
본 발명은 태양전지(Solar Cell)에 관한 것으로서, 보다 구체적으로는 박막형 태양전지에 관한 것이다.
태양전지는 반도체의 성질을 이용하여 빛 에너지를 전기 에너지로 변환시키는 장치이다.
태양전지의 구조 및 원리에 대해서 간단히 설명하면, 태양전지는 P(positive)형 반도체와 N(negative)형 반도체를 접합시킨 PN접합 구조를 하고 있으며, 이러한 구조의 태양전지에 태양광이 입사되면, 입사된 태양광이 가지고 있는 에너지에 의해 상기 반도체 내에서 정공(hole)과 전자(electron)가 발생하고, 이때, PN접합에서 발생한 전기장에 의해서 상기 정공(+)는 P형 반도체쪽으로 이동하고 상기 전자(-)는 N형 반도체쪽으로 이동하게 되어 전위가 발생하게 됨으로써 전력을 생산할 수 있게 되는 원리이다.
이와 같은 태양전지는 기판형 태양전지와 박막형 태양전지로 구분할 수 있다.
기판형 태양전지는 실리콘과 같은 반도체물질 자체를 기판으로 이용하여 태양전지를 제조한 것이고, 박막형 태양전지는 유리 등과 같은 기판 상에 박막의 형태로 반도체를 형성하여 태양전지를 제조한 것이다.
기판형 태양전지는 박막형 태양전지에 비하여 효율이 다소 우수하기는 하지만, 공정상 두께를 최소화하는데 한계가 있고 고가의 반도체 기판을 이용하기 때문에 제조비용이 상승되는 단점이 있다.
박막형 태양전지는 기판형 태양전지에 비하여 효율이 다소 떨어지기는 하지만, 얇은 두께로 제조가 가능하고 저가의 재료를 이용할 수 있어 제조비용이 감소되는 장점이 있어 대량생산에 적합하다.
이하 도면을 참조로 종래의 박막형 태양전지에 대해서 설명하기로 한다.
도 1은 종래의 일 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 1에서 알 수 있듯이, 종래의 일 실시예에 따른 박막형 태양전지는 기판(10) 상에 전면전극층(30)이 형성되고, 상기 전면전극층(30) 상에 반도체층(40)이 형성되고, 상기 반도체층(40) 상에 투명도전층(50)이 형성되고, 상기 투명도전층(50) 상에 후면전극층(60)이 형성되어 이루어진다.
그러나, 이와 같은 종래의 박막형 태양전지는 다음과 같은 문제점이 있다.
첫째, 태양전지의 효율향상을 위해서는 태양광이 상기 반도체층(40)을 경유하는 경로를 길게하여 상기 반도체층(40) 내에서 정공(hole)과 전자(electron)의 발생율을 증가시킬 필요가 있다. 그러나, 종래의 박막형 태양전지는 상기 반도체층(40) 내의 태양광의 경로를 길게 형성할 수 없어 원하는 만큼의 전지효율을 얻지 못하는 문제점이 있다.
둘째, 일반적으로 상기 기판(10)은 유리를 이용하게 되는데, 유리 내에는 알칼리이온들이 함유되어 있고, 이와 같은 알칼리이온들이 고온의 증착공정을 진행하는 과정에서 상기 전면전극층(30)으로 이동하여 불순물로 작용함으로써 태양전지의 효율이 저하되는 문제점이 있다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 고안된 것으로서, 본 발명은 반도체층 내에서 태양광의 경로를 길게 함으로써 태양전지의 효율을 상승시킬 수 있는 박막형 태양전지 및 그 제조방법을 제공하는 것을 일 목적으로 한다.
본 발명은 기판 내에 함유된 알칼리이온들이 전면전극층으로 이동하는 것을 방지함으로써 태양전지의 효율을 상승시킬 수 있는 박막형 태양전지 및 그 제조방법을 제공하는 것을 다른 목적으로 한다.
상기 목적을 달성하기 위해서, 본 발명은 기판; 상기 기판 상에 형성되며, 비드 및 상기 비드를 고정하는 바인더를 포함하여 이루어진 광산란막; 상기 광산란막 상에 형성된 전면전극층; 상기 전면전극층 상에 형성된 반도체층; 및 상기 반도체층 상에 형성된 후면전극층을 포함하여 이루어진 박막형 태양전지를 제공한다.
본 발명은 또한, 내부에 비드를 포함하여 이루어진 기판; 상기 기판 상에 형성된 전면전극층; 상기 전면전극층 상에 형성된 반도체층; 및 상기 반도체층 상에 형성된 후면전극층을 포함하여 이루어진 박막형 태양전지를 제공한다.
본 발명은 또한, 기판 상에 비드 및 상기 비드를 고정하는 바인더를 포함하여 이루어진 광산란막을 형성하는 공정; 상기 광산란막 상에 전면전극층을 형성하는 공정; 상기 전면전극층 상에 반도체층을 형성하는 공정; 및 상기 반도체층 상에 후면전극층을 형성하는 공정을 포함하여 이루어진 박막형 태양전지의 제조방법을 제공한다.
본 발명은 또한 내부에 비드를 포함하여 이루어진 플렉시블 기판을 준비하는 공정; 상기 플렉시블 기판 상에 전면전극층을 형성하는 공정; 상기 전면전극층 상에 반도체층을 형성하는 공정; 및 상기 반도체층 상에 후면전극층을 형성하는 공정을 포함하여 이루어진 박막형 태양전지의 제조방법을 제공한다.
도 1은 종래의 일 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 2는 본 발명의 일 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 3a 내지 도 3c는 본 발명의 다양한 실시예에 따른 비드의 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 5는 본 발명의 또 다른 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 6a 내지 도 6e는 본 발명의 일 실시예에 따른 박막형 태양전지의 제조공정을 도시한 단면도이다.
도 7a 내지 도 7e는 본 발명의 다른 실시예에 따른 박막형 태양전지의 제조공정을 도시한 단면도이다.
도 8a 내지 도 8e는 본 발명의 또 다른 실시예에 따른 박막형 태양전지의 제조공정을 도시한 단면도이다.
이하, 도면을 참조로 본 발명의 바람직한 실시예에 대해서 상세히 설명하기로 한다.
<박막형 태양전지>
도 2는 본 발명의 일 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 2에서 알 수 있듯이, 본 발명의 일 실시예에 따른 박막형 태양전지는 기판(100), 광산란막(200), 전면전극층(300), 반도체층(400), 투명도전층(500), 및 후면전극층(600)을 포함하여 이루어진다.
상기 기판(100)은 주로 유리를 이용하지만 투명한 플라스틱을 이용할 수도 있다. 경우에 따라서 상기 기판(100)은 투명한 폴레에틸렌테레프탈레이트(PET), 폴리이미드(PI), 및 폴리아미드(PA) 등과 같은 플렉시블 기판을 이용할 수 있으며, 이 경우 플렉시블 박막형 태양전지를 얻을 수 있다. 플렉시블 기판을 이용한 플렉시블 박막형 태양전지는 롤투롤(roll to roll) 방식을 이용할 수 있어 제조단가를낮출 수 있다.
상기 광산란막(200)은 상기 기판(100) 상에 형성되며, 비드(bead)(220) 및 바인더(binder)(240)를 포함하여 이루어진다. 이와 같은 광산란막(200)은 상기 기판(100)을 통과하는 태양광을 다양한 각도로 산란시킴과 더불어 상기 기판(100) 내에 함유된 불순물이 상기 전면전극층(300)으로 이동하는 것을 방지하는 역할을 한다.
우선, 상기 광산란막(200)이 상기 기판(100)을 통과하는 태양광을 다양한 각도로 산란시키는 것에 대해 설명하면 다음과 같다.
상기 광산란막(200)은 비드(220) 및 바인더(240)를 포함하여 이루어지는데, 주로 상기 바인더(240)가 상기 기판(100) 및 상기 전면전극층(300)과 접촉하게 된다. 이 경우, 상기 바인더(240)를 구성하는 물질로서 상기 기판(100) 및 상기 전면전극층(300)을 구성하는 물질과 굴절율이 상이한 물질을 이용하게 되면, 상기 기판(100)을 투과한 태양광이 상기 바인더(240)를 통과하면서 굴절하게 되고 또한 상기 바인더(240)를 투과한 태양광이 상기 전면전극층(300)을 통과하면서 다시 굴절하게 되므로, 결국, 상기 기판(100)으로 입사한 태양광이 다양한 각도로 굴절되면서 상기 반도체층(400)으로 입사하게 되어 반도체층(400) 내에서 태양광의 경로가 길게된다.
경우에 따라서는 상기 비드(220)가 상기 기판(100) 및 상기 전면전극층(300)과 접촉하게 될 수도 있을 것인데, 이 경우에는, 상기 비드(220)를 구성하는 물질로서 상기 기판(100) 및 상기 전면전극층(300)을 구성하는 물질과 굴절율이 상이한 물질을 이용하게 되면, 전술한 바와 동일한 매커니즘으로 상기 기판(100)으로 입사한 태양광이 다양한 각도로 굴절되면서 상기 반도체층(400)으로 입사하게 되어 반도체층(400) 내에서 태양광의 경로가 길게된다.
일반적으로 기판(100)을 구성하는 유리의 굴절율은 약 1.52 정도이고 플렉시블 기판(100)인 폴레에틸렌테레프탈레이트(PET)의 굴절율은 약 1.57이고, 상기 전면전극층(300)의 굴절율은 약 1.9 ~2.0 정도이므로, 이와 같은 기판(100) 및 전면전극층(300)의 굴절율 범위를 고려하여 상기 비드(220) 또는 바인더(240)의 구성물질을 선택하면 될 것이다. 상기 비드(220)의 예로는 SiO2, TiO2, CeO2 등을 들수 있고, 상기 바인더(240)의 예로는 실리케이트 등을 들 수 있지만, 반드시 그에 한정되는 것은 아니다.
또한, 상기 광산란막(200)을 구성하는 비드(220) 및 바인더(240)를 서로 굴절율이 상이한 재료를 이용할 경우, 상기 광산란막(200) 내에서도 태양광을 다양하게 굴절시킬 수 있게 된다. 즉, 상기 비드(220)를 상기 바인더(240)와 굴절율이 상이한 재료를 이용하게 되면, 상기 비드(220)를 투과한 태양광이 상기 바인더(240)를 통과하면서 굴절하게 되고, 또한 상기 바인더(240)를 투과한 태양광이 상기 비드(220)를 통과하면서 굴절하게 되므로 태양광을 다양하게 굴절시킬 수 있다.
또한, 상기 비드(220)를 동일한 물질로 형성하는 대신에 굴절율이 서로 상이한 복수개의 비드들을 조합하여 사용할 경우 태양광이 서로 상이한 비드(220)들을 거치면서 다양한 각도로 굴절하게 되는 효과를 얻을 수 있다.
또한, 상기 비드(220)를 코어(core)부 및 스킨(skim)부로 구성함으로써, 태양광이 하나의 비드(220)를 통과하면서도 다양한 각도로 굴절하게 할 수도 있다.
도 3a 내지 도 3c는 본 발명의 다양한 실시예에 따른 비드(220)의 단면을 보여주는 도면이다.
도 3a에서 알 수 있듯이, 상기 비드(220)는 코어부(222) 및 상기 코어부(222)를 둘러싸고 있는 스킨부(224)로 구성하며, 상기 코어부(222)의 물질을 상기 스킨부(224)의 물질과 굴절율이 상이한 물질을 이용함으로써, 태양광이 상기 스킨부(224)를 투과한 후 상기 코어부(222)를 통과할 때 굴절하고 또한 상기 코어부(222)를 투과한 후 상기 스킨부(224)를 통과할 때 다시 굴절하게 할 수 있다.
도 3b에서 알 수 있듯이, 코어부(222)가 공기로 이루어지도록 하여 스킨부(224)만으로 구성된 중공상태의 비드(220)를 이용하여도 동일한 효과를 얻을 수 있다.
도 3c에서 알 수 있듯이, 상기 코어부(222)를 서로 굴절율이 상이한 복수 개의 물질층(222a, 222b)으로 구성할 수도 있고, 상기 스킨부(224)를 서로 굴절율이 상이한 복수 개의 물질층(224a, 224b)으로 구성할 수도 있을 것이다.
상기 비드(220)의 단면을 원형, 타원형 등 다양한 형태로 변경함으로써 태양광의 굴절각을 다양하게 변경할 수도 있다.
또한, 도 2의 확대도에서 알 수 있듯이, 상기 광산란막(200)을 그 표면이 요철구조가 되도록 형성함으로써 태양광의 굴절각을 다양하게 변경할 수도 있다.
다음, 상기 광산란막(200)이 상기 기판(100) 내에 함유된 불순물이 상기 전면전극층(300)으로 이동하는 것을 방지하는 것에 대해서 설명하면, 상기 광산란막(200)이 상기 기판(100)과 상기 전면전극층(300) 사이에 형성되기 때문에, 상기 전면전극층(300) 증착과정에서 상기 광산란막(200), 특히 상기 광산란막(200)을 구성하는 바인더(240)가 배리어(barrier)로 작용하여 상기 기판(100) 내에 함유된 불순물이 상기 전면전극층(300)으로 이동하는 것을 차단하게 된다.
상기 전면전극층(300)는 상기 광산란막(200) 위에 형성되며, 태양광이 입사되는 면에 형성되므로 ZnO, ZnO:B, ZnO:Al, SnO2, SnO2:F 또는 ITO(Indium Tin Oxide) 등과 같은 투명한 도전물질을 이용하여 형성할 수 있다.
상기 전면전극층(300)의 표면은 요철구조로 형성되며, 이와 같은 요철구조로 인해서 입사되는 태양광을 다양하게 산란시켜 상기 반도체층(400)에서 태양광의 흡수율을 증진시키게 된다.
한편, 상기 전면전극층(300) 표면의 요철구조가 너무 크게 형성되게 되면, 상기 전면전극층(300) 상부에 형성되는 반도체층(400) 및 투명도전층(500)에 결함이 생길 수 있어 오히려 태양전지의 효율이 떨어질 수 있다. 본 발명의 경우는 상기 광산란막(200)에 의해서 태양광의 산란효과를 충분히 얻을 수 있기 때문에 상기 전면전극층(300) 표면의 요철구조를 무리하게 크게 형성할 필요가 없으며, 따라서 상기 전면전극층(300) 표면의 요철구조는 상기 반도체층(400) 및 투명도전층(500)에 결함이 생기지 않을 정도로 작게 조절하는 것이 바람직하다.
상기 반도체층(400)은 상기 전면전극층(300) 위에 형성되며, 상기 전면전극층(300)의 표면이 요철구조로 형성될 경우 상기 반도체층(400)의 표면도 요철구조로 형성될 수 있다.
상기 반도체층(400)은 P(positive)형 반도체층, I(intrinsic)형 반도체층, 및 N(negative)형 반도체층이 순서대로 적층된 PIN구조로 형성된다. 이와 같이 상기 반도체층(400)이 PIN구조로 형성되면, I형 반도체층이 P형 반도체층과 N형 반도체층에 의해 공핍(depletion)이 되어 내부에 전기장이 발생하게 되고, 태양광에 의해 생성되는 정공 및 전자가 상기 전기장에 의해 드리프트(drift)되어, 결국 정공은 P형 반도체층을 통해 전면전극층(300)으로 수집되고 전자는 N형 반도체층을 통해 후면전극층(600)으로 수집된다. 한편, 상기 반도체층(400)이 PIN구조로 형성될 경우에는 상기 전면전극(300) 상부에 P형 반도체층을 형성하고 이어서 I형 반도체층 및 N형 반도체층을 형성하는 것이 바람직한데, 그 이유는 일반적으로 정공의 드리프트 이동도(drift mobility)가 전자의 드리프트 이동도에 의해 낮기 때문에 입사광에 의한 수집효율을 극대화하기 위해서 P형 반도체층을 수광면에 가깝게 형성하기 위함이다.
또한, 상기 반도체층(400)은 실리콘계 화합물을 이용할 수도 있지만 CIGS(CuInGaSe2)와 같은 화합물을 이용할 수도 있다.
한편, 도 2의 확대도에서 알 수 있듯이, 상기 반도체층(400)은 제1 반도체층(410), 버퍼층(420), 및 제2 반도체층(430)이 순서대로 적층되어 소위 탠덤(tandem)구조로 형성될 수 있다.
상기 제1 반도체층(410) 및 제2 반도체층(430)은 모두 P형 반도체층, I형 반도체층 및 N형 반도체층이 순서대로 적층된 PIN구조로 형성될 수 있다.
상기 제1 반도체층(510)은 PIN구조의 비정질 반도체물질로 이루어지고, 상기 제2 반도체층(430)은 PIN구조의 미세결정질 반도체물질로 이루어질 수 있다.
상기 비정질 반도체물질은 단파장의 광을 잘 흡수하고 상기 미세결정질 반도체물질은 장파장의 광을 잘 흡수하는 특성이 있기 때문에, 비정질 반도체물질과 미세결정질 반도체물질을 조합할 경우 광흡수효율이 증진될 수 있다. 다만, 반드시 이에 한정되는 것은 아니고, 상기 제1 반도체층(410)으로서 비정질반도체/게르마늄, 미세결정질 반도체 물질 등 다양하게 변경 이용할 수 있고, 상기 제2 반도체층(430)으로서 비정질 반도체물질, 비정질반도체/게르마늄 등 다양하게 변경 이용할 수 있다.
상기 버퍼층(420)은 상기 제1 반도체층(410) 및 제2 반도체층(430)의 사이에서 터널접합을 통해 정공 및 전자의 이동을 원활히 하는 역할을 하는 것으로서, ZnO와 같은 투명한 물질로 이루어진다.
또한, 상기 반도체층(400)은 탠덤(tandem)구조 이외에, 제1반도체층, 제2반도체층, 제3반도체층, 및 각각의 반도체층 사이에 형성된 버퍼층을 포함하는 트리플(triple) 구조로 형성될 수도 있다.
상기 투명도전층(500)은 상기 반도체층(400) 위에 형성되며, ZnO, ZnO:B, ZnO:Al, SnO2, SnO2:F 또는 ITO(Indium Tin Oxide) 등과 같은 투명한 도전물질로 이루어질 수 있다. 상기 투명도전층(500)의 표면도 요철구조로 형성될 수 있다. 다만, 상기 투명도전층(500)은 생략이 가능하다.
상기 후면전극층(600)은 상기 투명도전층(500) 위에 형성되며, Ag, Al, Ag+Mo, Ag+Ni, Ag+Cu 과 같은 금속으로 이루어질 수 있다.
도 4는 본 발명의 다른 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 4에 도시한 본 발명의 다른 실시예에 따른 박막형 태양전지는 기판(100), 광산란막(200), 전면전극층(300), 반도체층(400), 투명도전층(500), 및 후면전극층(600)을 포함하여 이루어지는데, 상기 전면전극층(300)을 요철구조로 형성하지 않은 것을 제외하고 전술한 도 2에 따른 박막형 태양전지와 동일하다. 따라서, 동일한 구성에 대한 반복 설명은 생략하기로 한다.
상기 전면전극층(300)의 표면을 요철구조로 형성하기 위한 하나의 방법으로 상기 전면전극층(300)의 증착공정 조건을 조절하여 증착과 동시에 요철구조의 표면을 구비한 전면전극층(300)을 형성하는 방법이 있는데, 이 방법은 증착공정 조건의 조절이 어려워 원하는 요철패턴을 얻기가 용이하지 않고, 원하지 않는 요철패턴이 형성될 경우에는 상기 전면전극층(300) 상부에 형성되는 반도체층(400) 및 투명도전층(500)에 결함이 생길 수 있다.
또한, 상기 전면전극층(300)의 표면을 요철구조로 형성하기 위한 다른 방법으로 일단 평탄한 표면을 구비한 전면전극층(300)을 증착한 후 화학적 식각공정으로 전면전극층(300)의 표면을 요철패턴으로 형성하는 방법이 있는데, 이 방법은 화학적 식각공정이 추가됨으로써 그만큼 공정이 복잡해지며 화학약품으로 인한 환경문제 및 그 처리비용 문제 등이 유발되는 문제점이 있다.
따라서, 도 4에 따른 본 발명의 다른 실시예에서는 상기 전면전극층(300)의 표면을 요철구조로 형성하지 않은 것이다. 본 발명의 경우 상기 광산란막(200)을 통해 태양광을 다양한 각으로 굴절시키기 때문에 상기 전면전극층(300)의 표면에 별도의 요철구조를 형성하지 않아도 무방하다.
이와 같이, 상기 전면전극층(300)의 표면이 요철구조로 형성되지 않음에 따라 그 위에 형성되는 상기 반도체층(400) 및 투명도전층(500) 또한 요철구조로 형성되지 않는다. 다만, 상기 투명도전층(500)을 요철구조로 형성할 수는 있다.
도 5는 본 발명의 또 다른 실시예에 따른 박막형 태양전지의 개략적인 단면도이다.
도 5에 따른 박막형 태양전지는, 기판(100)과 전면전극층(300) 사이에 광산란막(200)을 형성하는 대신에 기판(100) 내부에 비드(220)를 포함시킨 것을 제외하고, 전술한 도 2에 따른 태양전지와 동일하다. 따라서, 동일한 구성에 대해서는 동일한 도면부호를 부여하였고, 동일한 구성에 대한 구체적인 설명은 생략하기로 한다.
도 5에 따른 박막형 태양전지는 플렉시블 박막형 태양전지로 이용될 수 있는데, 플렉시블 기판(100) 내부에 비드(220)가 포함되어 있기 때문에, 상기 비드(220)에 의해 태양광이 다양한 각도로 산란되게 된다. 즉, 상기 비드(220)를 구성하는 물질로서 상기 플렉시블 기판(100) 및 상기 전면전극층(300)을 구성하는 물질과 굴절율이 상이한 물질을 이용하게 되면, 태양광이 상기 플렉시블 기판(100), 비드(220), 및 전면전극층(300)을 거치면서 다양하게 굴절되어 상기 반도체층(400) 내에서 태양광의 경로가 길게된다.
또한, 전술한 바와 마찬가지로, 상기 비드(220)를 굴절율이 서로 상이한 복수개의 비드들을 조합하여 사용할 경우 태양광이 서로 상이한 비드(220)들을 거치면서 다양한 각도로 굴절하게 되는 효과를 얻을 수 있다. 또한, 상기 비드(220)를 도 3a 내지 도 3c와 같은 코어(core)부 및 스킨(skim)부로 구성함으로써, 태양광이 하나의 비드(220)를 통과하면서도 다양한 각도로 굴절하게 할 수 있다.
<박막형 태양전지의 제조방법>
도 6a 내지 도 6e는 본 발명의 일 실시예에 따른 박막형 태양전지의 제조공정을 도시한 단면도로서, 이는 도 2에 따른 박막형 태양전지의 제조공정에 관한 것이다.
우선, 도 6a에서 알 수 있듯이, 기판(100) 상에 비드(220) 및 상기 비드(220)를 고정하는 바인더(240)를 포함하여 이루어진 광산란막(200)을 형성한다.
상기 기판(100)으로는 유리, 투명한 플라스틱, 또는 플렉시블 기판을 이용할 수 있다.
상기 광산란막(200)은 상기 비드(220)를 상기 바인더(240)에 균일하게 분포시켜 페이스트를 준비한 후 이와 같은 페이스트를 이용하여 프린팅(Printing) 방법으로 형성할 수도 있고, 졸-겔(Sol-Gel) 방법, 딥 코팅(Dip Coating) 방법, 또는 스핀 코팅(Spin Coating) 방법을 이용하여 형성할 수도 있다.
상기 광산란막(200)을 형성함에 있어서, 상기와 같은 방법으로 막을 형성한 후, 적외선 소성공정 또는 저온/고온 소성공정을 추가로 수행함으로써 상기 기판(100)과 상기 광산란막(200) 사이의 결합력을 증진시키는 것이 바람직하다.
상기 광산란막(200)은 그 표면을 요철구조로 형성할 수 있으며, 이 경우에는 상기 프린팅(Printing) 방법, 졸-겔(Sol-Gel) 방법, 딥 코팅(Dip Coating) 방법, 또는 스핀 코팅(Spin Coating) 방법을 수행한 후 물리적 접촉을 통해 막 표면을 요철구조로 형성할 수 있다.
상기 광산란막(200)을 구성하는 상기 비드(220) 및 바인더(240)의 구성은 전술한 바와 동일하므로 구체적인 설명은 생략하기로 한다.
다음, 도 6b에서 알 수 있듯이, 상기 광산란막(200) 상에 전면전극층(300)을 형성한다.
상기 전면전극층(300)은 ZnO, ZnO:B, ZnO:Al, SnO2, SnO2:F 또는 ITO(Indium Tin Oxide) 등과 같은 투명한 도전물질을 이용하여 적층하며, 그 표면은 요철구조로 형성할 수 있다.
이와 같이 표면이 요철구조로 형성된 전면전극층(300)을 형성하는 방법으로는, MOCVD(Metal Organic Chemical Vapor Deposition)공정과 같은 증착공정시 증착조건을 적절히 조절함으로써 표면이 요철구조로 형성된 전면전극층을 직접 형성하는 방법, 또는 스퍼터링(Sputtering)공정과 같은 증착공정을 통해 균일한 표면의 전면전극층을 형성한 후 식각공정을 통해 그 표면을 요철구조로 형성하는 방법이 있다. 상기 식각공정으로는 포토리소그라피법(photolithography)을 이용한 식각공정, 화학용액을 이용한 이방성 식각공정(anisotropic etching), 또는 기계적 스크라이빙(mechanical scribing)을 이용한 식각공정 등을 이용할 수 있다.
전술한 바와 같이, 전면전극(300) 표면의 요철구조는 이후 공정에서 형성할 반도체층 및 투명도전층에 결함이 생기지 않을 정도로 작게 조절하는 것이 바람직하다.
다음, 도 6c에서 알 수 있듯이, 상기 전면전극층(300) 상에 반도체층(400)을 형성한다.
상기 반도체층(400)은 실리콘계의 비정질 반도체물질을 플라즈마 CVD법 등을 이용하여 P형 반도체층, I형 반도체층, 및 N형 반도체층을 순서대로 적층한 PIN구조로 형성할 수 있다.
다만, 상기 반도체층(400)은 제1 반도체층(410), 버퍼층(420), 및 제2 반도체층(430)을 순서대로 적층하여 소위 탠덤(tandem)구조로 형성할 수도 있다(도 2 참조).
다음, 도 6d에서 알 수 있듯이, 상기 반도체층(400) 상에 투명도전층(500)을 형성한다.
상기 투명도전층(500)은 ZnO, ZnO:B, ZnO:Al, SnO2, SnO2:F 또는 ITO(Indium Tin Oxide) 등과 같은 투명한 도전물질을 스퍼터링(Sputtering)법 또는 MOCVD(Metal Organic Chemical Vapor Deposition)법 등을 이용하여 적층하여 형성할 수 있다. 상기 투명도전층(500) 형성공정은 생략이 가능하다.
다음, 도 6e에서 알 수 있듯이, 상기 투명도전층(500) 상에 후면전극층(600)을 형성한다.
상기 후면전극층(600)은 Ag, Al, Ag+Mo, Ag+Ni, Ag+Cu 과 같은 금속을 스퍼터링(Sputtering)법 또는 인쇄법 등을 이용하여 적층하여 형성할 수 있다.
이상과 같은 도 6a 내지 도 6e에 따른 공정이 플렉시블 기판을 이용한 플렉시블 박막형 태양전지를 제조하는 공정에 적용될 경우에는 도 6a 내지 도 6e에 따른 공정을 롤투롤(roll to roll) 방식을 이용하여 수행할 수 있다.
도 7a 내지 도 7e는 본 발명의 다른 실시예에 따른 박막형 태양전지의 제조공정을 도시한 단면도로서 이는 도 4에 따른 박막형 태양전지의 제조공정에 관한 것이다. 전술한 실시예와 동일한 구성에 대한 구체적인 설명은 생략하기로 한다.
우선, 도 7a에서 알 수 있듯이, 기판(100) 상에 비드(220) 및 상기 비드(220)를 고정하는 바인더(240)를 포함하여 이루어진 광산란막(200)을 형성한다.
다음, 도 7b에서 알 수 있듯이, 상기 기판(100) 상에 전면전극층(300)을 형성한다. 상기 전면전극층(300)은 그 표면을 요철구조로 형성할 필요가 없기 때문에 일반적인 스퍼터링법을 이용하여 적층할 수 있다.
다음, 도 7c에서 알 수 있듯이, 상기 전면전극층(300) 상에 반도체층(400)을 형성한다.
다음, 도 7d에서 알 수 있듯이, 상기 반도체층(400) 상에 투명도전층(500)을 형성한다. 상기 투명도전층(500) 형성공정은 생략이 가능하다.
다음, 도 7e에서 알 수 있듯이, 상기 투명도전층(500) 상에 후면전극층(600)을 형성한다.
도 8a 내지 도 8e는 본 발명의 또 다른 실시예에 따른 박막형 태양전지의 제조공정을 도시한 단면도로서 이는 도 5에 따른 박막형 태양전지의 제조공정에 관한 것이다. 전술한 실시예와 동일한 구성에 대한 구체적인 설명은 생략하기로 한다.
우선, 도 8a에서 알 수 있듯이, 내부에 비드(220)를 포함하여 이루어진 기판(100)을 준비한다.
이는 플렉시블 기판용 용융액에 비드를 포함시켜 박막 형태를 만든 후 경화시키는 공정을 통해서 준비할 수 있다.
상기 비드(200)에 대한 구체적인 구성은 전술한 바와 동일하다.
다음, 도 8b에서 알 수 있듯이, 상기 기판(100) 상에 전면전극층(300)을 형성한다.
다음, 도 8c에서 알 수 있듯이, 상기 전면전극층(300) 상에 반도체층(400)을 형성한다.
다음, 도 8d에서 알 수 있듯이, 상기 반도체층(400) 상에 투명도전층(500)을 형성한다. 상기 투명도전층(500) 형성공정은 생략이 가능하다.
다음, 도 8e에서 알 수 있듯이, 상기 투명도전층(500) 상에 후면전극층(600)을 형성한다.
이상은 본 발명의 일 실시예에 따른 박막형 태양전지 및 그 제조방법에 대해서 설명하였는데, 본 발명이 전술한 실시예에 한정되는 것은 아니다. 특히, 본 발명은 대면기판 적용시 복수개의 단위셀로 분리하고 복수개의 단위셀을 직렬로 연결한 구조에도 적용가능하다.
상기와 같은 본 발명에 따르면 다음과 같은 효과가 있다.
본 발명은 기판과 전면전극층 사이에 광산란막을 형성함으로써 태양광을 다양하게 굴절시킬 수 있어 반도체층 내에서 태양광의 경로를 길게할 수 있다. 따라서, 태양전지의 효율이 증진되는 효과가 있다.
또한, 상기 광산란막을 구성하는 비드 및 바인더의 구성물질 및 패턴을 적절히 변경함으로써 태양광의 굴절패턴을 용이하게 조절할 수 있어 태양전지의 효율증진을 위한 최적화가 가능하다.
또한, 본 발명은 상기 광산란막이 상기 기판과 상기 전면전극층 사이에 형성되기 때문에, 상기 전면전극층 증착과정에서 상기 광산란막이 배리어(barrier)로 작용하여 상기 기판 내에 함유된 불순물이 상기 전면전극층으로 이동하는 것이 차단되어, 태양전지의 효율저하가 방지되는 효과가 있다.

Claims (25)

  1. 기판;
    상기 기판 상에 형성되며, 비드 및 상기 비드를 고정하는 바인더를 포함하여 이루어진 광산란막;
    상기 광산란막 상에 형성된 전면전극층;
    상기 전면전극층 상에 형성된 반도체층; 및
    상기 반도체층 상에 형성된 후면전극층을 포함하여 이루어진 박막형 태양전지.
  2. 제1항에 있어서,
    상기 기판과 접촉하는 광산란막은 상기 기판 또는 상기 전면전극층과 굴절율이 서로 상이한 것을 특징으로 하는 박막형 태양전지.
  3. 제1항에 있어서,
    상기 광산란막을 구성하는 비드 및 바인더는 굴절율이 서로 상이한 것을 특징으로 하는 박막형 태양전지.
  4. 제1항에 있어서,
    상기 비드는 굴절율이 서로 상이한 복수개의 비드들의 조합으로 이루어진 것을 특징으로 하는 박막형 태양전지.
  5. 제1항에 있어서,
    상기 비드는 코어부 및 상기 코어부를 둘러싸고 있는 스킨부로 이루어지고, 상기 코어부 및 스킨부는 굴절율이 서로 상이한 물질로 이루어진 것을 특징으로 하는 박막형 태양전지.
  6. 제1항에 있어서,
    상기 광산란막은 그 표면이 요철구조로 형성된 것을 특징으로 하는 박막형 태양전지.
  7. 제1항에 있어서,
    상기 전면전극층은 그 표면이 요철구조로 형성되지 않은 것을 특징으로 하는 박막형 태양전지.
  8. 제1항에 있어서,
    상기 반도체층은 버퍼층을 사이에 두고 형성된 제1 반도체층 및 제2 반도체층을 포함하여 이루어진 것을 특징으로 하는 박막형 태양전지.
  9. 제1항에 있어서,
    상기 반도체층과 후면전극층 사이에 투명도전층이 추가로 형성된 것을 특징으로 하는 박막형 태양전지.
  10. 내부에 비드를 포함하여 이루어진 기판;
    상기 기판 상에 형성된 전면전극층;
    상기 전면전극층 상에 형성된 반도체층; 및
    상기 반도체층 상에 형성된 후면전극층을 포함하여 이루어진 박막형 태양전지.
  11. 제10항에 있어서,
    상기 비드는 상기 기판 및 상기 전면전극층과 굴절율이 서로 상이한 것을 특징으로 하는 박막형 태양전지.
  12. 기판 상에 비드 및 상기 비드를 고정하는 바인더를 포함하여 이루어진 광산란막을 형성하는 공정;
    상기 광산란막 상에 전면전극층을 형성하는 공정;
    상기 전면전극층 상에 반도체층을 형성하는 공정; 및
    상기 반도체층 상에 후면전극층을 형성하는 공정을 포함하여 이루어진 박막형 태양전지의 제조방법.
  13. 제12항에 있어서,
    상기 광산란막을 형성하는 공정은 페이스트를 이용한 프린팅 방법, 졸-겔 방법, 딥 코팅 방법, 또는 스핀 코팅 방법을 이용하여 수행하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  14. 제13항에 있어서,
    상기 광산란막을 형성하는 공정은 상기 기판과 상기 광산란막 사이의 결합력을 증진시키기 위해서 막 형성 후 소성공정을 추가로 수행하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  15. 제12항에 있어서,
    상기 광산란막은 상기 기판 또는 상기 전면전극층과 굴절율이 서로 상이하도록 형성하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  16. 제12항에 있어서,
    상기 비드 및 바인더는 굴절율이 서로 상이한 것을 특징으로 하는 박막형 태양전지의 제조방법.
  17. 제12항에 있어서,
    상기 비드는 굴절률이 서로 상이한 복수개의 비드들의 조합을 이용하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  18. 제12항에 있어서,
    상기 비드는 코어부 및 상기 코어부를 둘러싸고 있는 스킨부로 이루어지며, 상기 코어부 및 스킨부는 굴절율이 서로 상이한 물질을 이용하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  19. 제12항에 있어서,
    상기 광산란막은 그 표면을 요철구조로 형성하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  20. 제12항에 있어서,
    상기 전면전극층을 형성하는 공정은, 증착공정을 통해 그 표면이 요철구조로 형성된 전면전극층을 형성하거나, 또는 증착공정을 통해 균일한 표면의 전면전극층을 형성한 후 식각공정을 통해 그 표면을 요철구조로 형성하는 공정으로 이루어진 것을 특징으로 하는 박막형 태양전지의 제조방법.
  21. 제12항에 있어서,
    상기 전면전극층은 요철구조로 형성하지 않는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  22. 제12항에 있어서,
    상기 반도체층과 후면전극층 사이에 투명도전층을 형성하는 공정을 추가로 포함하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  23. 제12항에 있어서,
    상기 반도체층은 버퍼층을 사이에 두고 형성된 제1 반도체층 및 제2 반도체층을 포함하여 이루어진 것을 특징으로 하는 박막형 태양전지의 제조방법.
  24. 내부에 비드를 포함하여 이루어진 플렉시블 기판을 준비하는 공정;
    상기 플렉시블 기판 상에 전면전극층을 형성하는 공정;
    상기 전면전극층 상에 반도체층을 형성하는 공정; 및
    상기 반도체층 상에 후면전극층을 형성하는 공정을 포함하여 이루어진 박막형 태양전지의 제조방법.
  25. 제24항에 있어서,
    상기 비드는 상기 플렉시블 기판 및 전면전극층과 굴절율이 서로 상이한 물질을 이용하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
PCT/KR2009/007657 2008-12-26 2009-12-22 박막형 태양전지 및 그 제조방법 WO2010074477A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801512625A CN102257631A (zh) 2008-12-26 2009-12-22 薄膜型太阳能电池及其制造方法
US13/132,070 US20110247692A1 (en) 2008-12-26 2009-12-22 Thin Film Type Solar Cell and Method for Manufacturing the Same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2008-0134804 2008-12-26
KR1020080134804A KR100977726B1 (ko) 2008-12-26 2008-12-26 박막형 태양전지 및 그 제조방법
KR10-2008-0134802 2008-12-26
KR1020080134802A KR100973676B1 (ko) 2008-12-26 2008-12-26 박막형 태양전지 및 그 제조방법
KR10-2009-0018479 2009-03-04
KR20090018479 2009-03-04

Publications (2)

Publication Number Publication Date
WO2010074477A2 true WO2010074477A2 (ko) 2010-07-01
WO2010074477A3 WO2010074477A3 (ko) 2010-09-30

Family

ID=42288272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007657 WO2010074477A2 (ko) 2008-12-26 2009-12-22 박막형 태양전지 및 그 제조방법

Country Status (4)

Country Link
US (1) US20110247692A1 (ko)
CN (1) CN102257631A (ko)
TW (1) TW201031001A (ko)
WO (1) WO2010074477A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130133739A1 (en) * 2010-08-31 2013-05-30 Corning Incorporated A New York Corporation Process for particle doping of scattering superstrates

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132312A1 (ja) * 2013-02-26 2014-09-04 三洋電機株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
TWI485870B (zh) * 2013-05-13 2015-05-21 Univ Southern Taiwan Sci & Tec 具勻光之太陽能模組

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960015500B1 (ko) * 1992-03-03 1996-11-14 캐논 가부시기가이샤 광기전력장치
JPH10326903A (ja) * 1997-05-23 1998-12-08 Sharp Corp 微粒子塗布膜およびそれを用いた光電変換素子と光拡散体
JP2005037737A (ja) * 2003-07-16 2005-02-10 Nitto Denko Corp 粒子分散系樹脂シート、画像表示装置用基板および画像表示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190321A (en) * 1977-02-18 1980-02-26 Minnesota Mining And Manufacturing Company Microstructured transmission and reflectance modifying coating
US5656098A (en) * 1992-03-03 1997-08-12 Canon Kabushiki Kaisha Photovoltaic conversion device and method for producing same
JP4076028B2 (ja) * 1997-02-18 2008-04-16 大日本印刷株式会社 偏光分離フィルム、バックライト及び液晶表示装置
JP2001056653A (ja) * 1999-06-11 2001-02-27 Ricoh Co Ltd 電気泳動表示用表示液、表示粒子及び、それらを利用した表示媒体、表示装置、表示方法、表示カード、記録シート、ディスプレイ、可逆表示型看板
EP1443527A4 (en) * 2001-10-19 2007-09-12 Asahi Glass Co Ltd SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM AND METHOD OF MANUFACTURING THEREOF AND PHOTOELECTRIC IMPLEMENTATION ELEMENT
ATE356440T1 (de) * 2002-05-17 2007-03-15 Jason E Schripsema Photovoltaisches modul mit einstellbarem kühlkörper und herstellungsverfahren
JP4315665B2 (ja) * 2002-10-30 2009-08-19 シャープ株式会社 太陽電池モジュールの端面封止部材及びそれを用いた太陽電池モジュール
US20080241262A1 (en) * 2004-03-29 2008-10-02 The University Of Houston System Nanoshells and Discrete Polymer-Coated Nanoshells, Methods For Making and Using Same
KR20060029391A (ko) * 2004-10-01 2006-04-06 삼성전자주식회사 광학 필름과, 이를 갖는 백라이트 어셈블리 및 표시 장치
JP4959127B2 (ja) * 2004-10-29 2012-06-20 三菱重工業株式会社 光電変換装置及び光電変換装置用基板
WO2006054730A1 (ja) * 2004-11-19 2006-05-26 Nippon Sheet Glass Company, Limited 薄膜付きガラス板の製造方法
US7563508B2 (en) * 2007-05-30 2009-07-21 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. Diffusion beads with core-shell structure
JP5952561B2 (ja) * 2008-12-12 2016-07-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光発電装置及び光発電装置で使用する導波路
EP2553737A4 (en) * 2010-04-01 2015-05-20 Morgan Solar Inc INTEGRATED PHOTOVOLTAIC MODULE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960015500B1 (ko) * 1992-03-03 1996-11-14 캐논 가부시기가이샤 광기전력장치
JPH10326903A (ja) * 1997-05-23 1998-12-08 Sharp Corp 微粒子塗布膜およびそれを用いた光電変換素子と光拡散体
JP2005037737A (ja) * 2003-07-16 2005-02-10 Nitto Denko Corp 粒子分散系樹脂シート、画像表示装置用基板および画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130133739A1 (en) * 2010-08-31 2013-05-30 Corning Incorporated A New York Corporation Process for particle doping of scattering superstrates

Also Published As

Publication number Publication date
CN102257631A (zh) 2011-11-23
US20110247692A1 (en) 2011-10-13
WO2010074477A3 (ko) 2010-09-30
TW201031001A (en) 2010-08-16

Similar Documents

Publication Publication Date Title
WO2011053077A2 (ko) 태양전지 및 이의 제조방법
WO2009107955A2 (en) Solar cell and method for manufacturing the same
WO2011122853A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2010110510A1 (en) Solar cell and fabrication method thereof
WO2011002230A2 (ko) 태양전지 및 이의 제조방법
WO2010114314A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011040780A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2012015151A2 (ko) 태양전지 및 이의 제조방법
WO2013077547A1 (ko) 후면 tco층을 구비한 cis/cigs계 태양전지 및 그 제조방법
WO2012033274A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2011053025A2 (ko) 태양전지 및 이의 제조방법
WO2015046845A1 (ko) 태양전지
WO2011002211A2 (ko) 태양전지 및 이의 제조방법
WO2010074477A2 (ko) 박막형 태양전지 및 그 제조방법
WO2012015286A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2012015150A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2013055008A1 (en) Solar cell and solar cell module
WO2012046934A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2010123196A1 (en) Thin film type solar cell, and method for manufacturing the same
WO2013058521A1 (en) Solar cell and method of fabricating the same
WO2012161521A2 (ko) 태양전지 및 그 제조방법
WO2011083995A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011040785A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2012036364A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2013183949A1 (ko) 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151262.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835243

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13132070

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09835243

Country of ref document: EP

Kind code of ref document: A2