WO2014104017A1 - 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体 - Google Patents

有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体 Download PDF

Info

Publication number
WO2014104017A1
WO2014104017A1 PCT/JP2013/084486 JP2013084486W WO2014104017A1 WO 2014104017 A1 WO2014104017 A1 WO 2014104017A1 JP 2013084486 W JP2013084486 W JP 2013084486W WO 2014104017 A1 WO2014104017 A1 WO 2014104017A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
particles
conductive
inorganic hybrid
inorganic
Prior art date
Application number
PCT/JP2013/084486
Other languages
English (en)
French (fr)
Inventor
山内 博史
弘幸 森田
聡 羽根田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2014504115A priority Critical patent/JP5620608B1/ja
Priority to KR1020157001455A priority patent/KR102095290B1/ko
Priority to CN201380044993.6A priority patent/CN104619754B/zh
Publication of WO2014104017A1 publication Critical patent/WO2014104017A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Definitions

  • the present invention relates to a core-shell type organic-inorganic hybrid particle comprising an organic core and an inorganic shell disposed on the surface of the organic core.
  • the present invention also relates to conductive particles, conductive materials and connection structures using the organic-inorganic hybrid particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • the anisotropic conductive material is used to electrically connect electrodes of various connection target members such as a flexible printed circuit (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip to obtain a connection structure. ing.
  • connection target members such as a flexible printed circuit (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip.
  • conductive particles conductive particles having base particles and a conductive layer disposed on the surface of the base particles may be used.
  • Patent Document 1 As an example of the base particles used for the conductive particles, in Patent Document 1 below, the shell is an inorganic compound (A), the core is an organic polymer (b), and the core is covered with the shell. Polymer particles (B) (organic-inorganic hybrid particles) are disclosed. Patent Document 1 also discloses conductive particles in which organic polymer particles (B) are coated with a conductive metal (C).
  • the liquid crystal display element is configured by arranging liquid crystal between two glass substrates.
  • a spacer is used as a gap control material in order to keep the distance (gap) between two glass substrates uniform and constant.
  • resin particles are generally used as the spacer.
  • Patent Document 2 discloses that a polyfunctional silane compound having a polymerizable unsaturated group is hydrolyzed in the presence of a surfactant.
  • organic-inorganic composite particles (organic-inorganic hybrid particles) obtained by polycondensation are disclosed.
  • the polyfunctional silane compound is at least one radical polymerizable group-containing first silicon compound selected from a compound represented by the following formula (X) and a derivative thereof.
  • R1 represents a hydrogen atom or a methyl group
  • R2 represents an optionally substituted divalent organic group having 1 to 20 carbon atoms
  • R3 represents a carbon atom having 1 to 5 carbon atoms
  • R 4 represents an alkyl group or a phenyl group, and R 4 represents at least one monovalent group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, and an acyl group having 2 to 5 carbon atoms.
  • Patent Documents 3 and 4 include a base having a spherical core particle and an elastic coating layer provided on the surface of the spherical core particle. Material particles are disclosed. Patent Documents 3 and 4 also disclose conductive particles having the base material particles and a conductive thin film layer disposed on the surface of the elastic coating layer in the base material particles.
  • organic / inorganic hybrid particles are excellent in flexibility to some extent because organic materials are used, and are sufficiently deformed when compressed under a high load. For this reason, when the organic-inorganic hybrid particle is used as a spacer for a liquid crystal display element and disposed between the substrates to obtain a liquid crystal display element, the spacer for the liquid crystal display element is sufficiently in contact with the substrate.
  • conductive particles having a conductive layer formed on the surface of the organic / inorganic hybrid particles are used to electrically connect the electrodes to obtain a connection structure, the conductive particles sufficiently contact the electrodes. .
  • the connection resistance increases due to the difference in the dispersion density of the conductive particles in the conductive material. Sometimes. Furthermore, insulation failure may occur due to the aggregated conductive particles.
  • silica particles may be used as the base particles in order to improve the adhesion between the base particles and the conductive layer.
  • the conductive layer is formed on the surface of the silica particles, the adhesion between the silica particles and the conductive layer is increased.
  • the flexibility of the conductive particles is reduced.
  • the electrodes are electrically connected using conductive particles in which a conductive layer is formed on the surface of the silica particles, the contact area between the conductive particles and the electrodes is reduced.
  • the connection resistance increases or connection failure tends to occur.
  • a limited object of the present invention is to provide organic-inorganic hybrid particles capable of enhancing the adhesion between an inorganic shell and a conductive layer, and conductive particles, conductive materials and connection structures using the organic-inorganic hybrid particles. Is to provide a body.
  • a further limited object of the present invention is to provide organic-inorganic hybrid particles that can effectively reduce the connection resistance and increase the insulation reliability when the electrodes are electrically connected.
  • the present invention also provides conductive particles, conductive materials, and connection structures using the organic-inorganic hybrid particles.
  • an organic core and an inorganic shell disposed on the surface of the organic core are provided, and the content of silicon atoms contained in the organic core is 10% in 100% by weight of the organic core.
  • the content of carbon atoms contained in the organic core is 50% by weight or more and the content of silicon atoms contained in the inorganic shell is 50% by weight or more in 100% by weight of the inorganic shell.
  • an organic-inorganic hybrid particle in which the content of carbon atoms contained in the shell is 30% by weight or less, and the ratio of the thickness of the inorganic shell to the radius of the organic core is 0.05 or more and 0.70 or less Is done.
  • the organic-inorganic hybrid particles according to the present invention are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer, or used as spacers for liquid crystal display elements.
  • the organic-inorganic hybrid particles according to the present invention are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the thickness of the inorganic shell is 50 nm or more and 2000 nm or less.
  • the organic core has a particle size of 0.5 ⁇ m or more and 100 ⁇ m or less.
  • conductive particles comprising the organic-inorganic hybrid particles described above and a conductive layer disposed on the surface of the organic-inorganic hybrid particles.
  • the conductive particles include a binder resin, and the conductive particles include the organic-inorganic hybrid particles described above, and a conductive layer disposed on the surface of the organic-inorganic hybrid particles.
  • a conductive material is provided.
  • a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the A connection portion connecting the second connection target member, and the connection portion is formed of conductive particles or formed of a conductive material including the conductive particles and a binder resin.
  • the conductive particles include the organic-inorganic hybrid particles described above and a conductive layer disposed on the surface of the organic-inorganic hybrid particles, and the first electrode and the second electrode are the conductive particles.
  • an inorganic shell is disposed on the surface of the organic core, and the content of silicon atoms contained in the organic core is 10% by weight or less in 100% by weight of the organic core.
  • the content of carbon atoms contained in the organic core is 50% by weight or more, and the content of silicon atoms contained in the inorganic shell is 50% by weight or more and contained in the inorganic shell in 100% by weight of the inorganic shell. Since the content of carbon atoms is 30% by weight or less, and the ratio of the thickness of the inorganic shell to the radius of the organic core is 0.05 or more and 0.70 or less, contact between the inorganic shell and the inorganic shell Adhesion with the object can be enhanced.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
  • FIG. 4 is a front cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a liquid crystal display element using the organic-inorganic hybrid particles according to one embodiment of the present invention as a spacer for a liquid crystal display element.
  • the organic-inorganic hybrid particle according to the present invention includes an organic core and an inorganic shell disposed on the surface of the organic core.
  • the content of silicon atoms contained in the organic core is 10% by weight or less and the content of carbon atoms contained in the organic core is 50% by weight in 100% by weight of the organic core. That's it.
  • the content of silicon atoms contained in the inorganic shell is 50% by weight or more and the content of carbon atoms contained in the inorganic shell is 30% in 100% by weight of the inorganic shell. % By weight or less.
  • the organic core contains 50% by weight or more of carbon atoms, it is an organic core containing carbon atoms as a main component.
  • the organic core may contain a silicon atom, but even if it contains a silicon atom, it is called an organic core because a carbon atom is the main component.
  • the inorganic shell contains 50% by weight or more of silicon atoms, it is an inorganic shell containing silicon atoms as a main component. Although the said inorganic shell may contain the carbon atom, even when it contains a carbon atom, since a silicon atom is a main component, it is called an inorganic shell.
  • the ratio of the thickness of the inorganic shell to the radius of the organic core is 0.05 or more and 0.70 or less.
  • the core is the organic core, and the silicon atom contained in the organic core is contained.
  • the amount is 10% by weight or less and the content of carbon atoms contained in the organic core is 50% by weight or more, the flexibility of the organic-inorganic hybrid particles can be enhanced.
  • the organic-inorganic hybrid particles are used as spacers for liquid crystal display elements and disposed between the substrates, or the electrodes are electrically connected using conductive particles in which a conductive layer is formed on the surface of the organic-inorganic hybrid particles.
  • the spacer for liquid crystal display element or the conductive particles is efficiently arranged between the substrates or between the electrodes. Furthermore, the contact area between the spacer for liquid crystal display element or conductive particles and the substrate or electrode can be increased. For this reason, for example, the display quality in the liquid crystal display element is improved, and the connection resistance between the electrodes is further reduced.
  • an inorganic shell is disposed on the surface of the organic core, and the contents of silicon atoms and carbon atoms in the organic core and the inorganic shell satisfy the above-described relationship.
  • the ratio of the thickness of the inorganic shell to the radius of the organic core is not less than 0.05 and not more than 0.70, so that the adhesion between the inorganic shell and the contact object contacting the inorganic shell can be improved. it can.
  • organic / inorganic hybrid particles are used as spacers for liquid crystal display elements and disposed between the substrates, the adhesion of the spacers for liquid crystal display elements to the substrate is enhanced.
  • the adhesion between the organic / inorganic hybrid particles and the conductive layer is increased, the dispersibility of the conductive particles in the binder resin is improved, and the conductive particles are less likely to aggregate. Furthermore, when the electrodes are electrically connected using a conductive material in which conductive particles are dispersed in a binder resin, there is little difference in the dispersion density of the conductive particles in the conductive material. Is difficult to increase. Furthermore, since the aggregated conductive particles are unlikely to be generated, the insulation reliability in the connection structure can be improved.
  • the ratio of the thickness of the inorganic shell to the radius of the organic core is 0.05 or more and 0.70 or less.
  • the ratio (inorganic shell thickness / organic core radius) is preferably 0.10 or more, and preferably 0.60 or less.
  • the content of silicon atoms contained in the organic core is 10% by weight or less, preferably 5% by weight or less.
  • the organic core may not contain silicon atoms.
  • the organic core preferably does not contain a silicon atom.
  • the content of carbon atoms contained in the organic core is 50% by weight or more, preferably 60% by weight or more, more preferably 65% by weight or more. The smaller the silicon atom content in the organic core and the greater the carbon atom content in the organic core, the higher the adhesion between the inorganic shell and the contact object contacting the inorganic shell, and the more organic The flexibility of the organic-inorganic hybrid particles is further increased due to the core.
  • the content of silicon atoms contained in the inorganic shell is 50% by weight or more, preferably 54% by weight or more, more preferably 56% by weight or more, and further preferably 60% by weight or more.
  • the inorganic shell may not contain carbon atoms.
  • the inorganic shell preferably does not contain carbon atoms.
  • the content of carbon atoms contained in the inorganic shell is 30% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less.
  • the adhesion between the inorganic shell and the conductive layer is further enhanced, and if it is 60% by weight or more.
  • the adhesion between the inorganic shell and the conductive layer is considerably increased.
  • the adhesion of the spacer for the liquid crystal display element to the substrate is further increased, and 60% by weight or more. If so, the adhesion of the spacer for the liquid crystal display element to the substrate becomes considerably high.
  • the contents of silicon atoms and carbon atoms in the organic core and the inorganic shell in the organic-inorganic hybrid particles can be measured by line analysis using a TEM / EDS method.
  • the compression elastic modulus when compressed by 10% is relatively high
  • the compression elastic modulus when compressed by 30% is relatively low
  • the organic-inorganic hybrid particles have even better compression deformation characteristics.
  • the use of the organic-inorganic hybrid particles is not particularly limited.
  • the organic-inorganic hybrid particles are suitably used for various applications.
  • the organic-inorganic hybrid particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer, or used as spacers for liquid crystal display elements.
  • the organic-inorganic hybrid particles according to the present invention are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the organic / inorganic hybrid particles are preferably used as spacers for liquid crystal display elements.
  • the organic-inorganic hybrid particles since the adhesion between the inorganic shell and the contact object that contacts the inorganic shell is high, the organic-inorganic hybrid particles are used as spacers for liquid crystal display elements, and are disposed between the substrates, or conductive on the surface.
  • the spacers for liquid crystal display elements or the conductive particles are efficiently arranged between the substrates or between the electrodes.
  • the spacer for the liquid crystal display element corresponds to the variation in the distance between the substrates or the electrodes.
  • the conductive particles are likely to follow and deform easily. For this reason, it is hard to produce the dispersion
  • organic-inorganic hybrid particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber.
  • the organic-inorganic hybrid particles can be used as an alternative such as rubber or spring.
  • Compression modulus when the organic-inorganic hybrid particles 10% compressive deformation (10% K value) is preferably 2000N / mm 2 or more, more preferably 3000N / mm 2 or more, more preferably 4000 N / mm 2 or more, particularly preferably 5000N / mm 2 or more, most preferably 6000 N / mm 2 or more, preferably 15000 N / mm 2 or less, more preferably 10000 N / mm 2, more preferably not more than 8500N / mm 2.
  • the organic-inorganic hybrid particles having the 10% K value of not less than the above lower limit and not more than the above upper limit have good compression deformation characteristics.
  • Compression modulus when the organic-inorganic hybrid particles 30% compressive deformation (30% K value) is preferably 300N / mm 2 or more, more preferably 600N / mm 2 or more, more preferably 800 N / mm 2 or more, particularly preferably 1000 N / mm 2 or more, preferably 5000N / mm 2 or less, more preferably 4500N / mm 2, more preferably not more than 4000 N / mm 2.
  • the organic-inorganic hybrid particles having the 30% K value of not less than the above lower limit and not more than the above upper limit have good compression deformation characteristics.
  • the compression elastic modulus when the organic-inorganic hybrid particles are compressed by 30% ( 30% K value) (10% K value / 30% K value) is preferably 1 or more, more preferably 1.3 or more, still more preferably 1.8 or more, particularly preferably 2.0 or more, preferably 10.0 or less, more preferably 5.0 or less, still more preferably 4.4 or less.
  • the compression modulus (10% K value and 30% K value) of the organic-inorganic hybrid particles can be measured as follows.
  • organic-inorganic hybrid particles are compressed under the conditions of 25 ° C., compression speed of 0.3 mN / second, and maximum test load of 20 mN on the end face of a cylindrical (100 ⁇ m diameter, diamond) smooth indenter.
  • the load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • K value (N / mm 2 ) (3/2 1/2 ) ⁇ F ⁇ S ⁇ 3 / 2 ⁇ R ⁇ 1/2
  • F Load value when organic-inorganic hybrid particles are 10% or 30% compressively deformed
  • S Compression displacement (mm) when organic-inorganic hybrid particles are 10% or 30% compressively deformed
  • R Radius of organic / inorganic hybrid particles (mm)
  • the above-mentioned compression elastic modulus universally and quantitatively represents the hardness of the organic-inorganic hybrid particles.
  • the hardness of the organic-inorganic hybrid particles can be expressed quantitatively and uniquely.
  • the organic core is preferably organic particles.
  • Various organic materials are suitably used as a material for forming the organic core.
  • the material for forming the organic core include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Polymerize one or more of polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, and various polymerizable monomers having ethylenically unsaturated groups The polymer obtained by making it use is used. It is possible to design and synthesize organic-inorganic hybrid particles having physical properties at the time of compression suitable for conductive materials by polymerizing one
  • the organic core is obtained by polymerizing a monomer having an ethylenically unsaturated group
  • the monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer.
  • a polymer a polymer having an ethylenically unsaturated group
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane
  • the organic core can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method.
  • this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • the decomposition temperature of the organic core is preferably more than 200 ° C, more preferably more than 250 ° C, and still more preferably. Exceeds 300 ° C.
  • the decomposition temperature of the organic core may exceed 400 ° C., may exceed 500 ° C., may exceed 600 ° C., and may exceed 800 ° C.
  • the particle size of the organic core is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 20 ⁇ m or less, and most preferably 10 ⁇ m or less. is there.
  • the particle size of the organic core is not less than the above lower limit and not more than the above upper limit, the 10% K value and the 30% K value are even more suitable values, and the organic-inorganic hybrid particles are used as conductive particles and liquid crystal display element spacers. It becomes possible to use suitably for the use of.
  • the particle diameter of the organic core is not less than the lower limit and not more than the upper limit
  • the contact area between the conductive particles and the electrodes is sufficiently large, And it becomes difficult to form the agglomerated conductive particles when forming the conductive layer.
  • interval between the electrodes connected via the electroconductive particle does not become large too much, and it becomes difficult for a conductive layer to peel from the surface of an organic inorganic hybrid particle.
  • the particle diameter of the organic core means a diameter when the organic core is a true sphere, and means a maximum diameter when the organic core has a shape other than a true sphere.
  • a particle size means the average value which observed the organic core using the scanning electron microscope, and measured the particle size of 50 organic cores selected arbitrarily with a caliper.
  • the organic / inorganic hybrid particles are core-shell particles.
  • the inorganic shell is disposed on the surface of the organic core.
  • the inorganic shell preferably covers the surface of the organic core.
  • the inorganic shell is preferably formed on the surface of the organic core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material.
  • a sol-gel method it is easy to dispose a shell-like material on the surface of the organic core.
  • the organic-inorganic hybrid particles include the organic core after firing. If the organic core is removed by volatilization or the like after firing, the 10% K value becomes considerably low.
  • an interface sol is prepared by coexisting an inorganic monomer such as tetraethoxysilane in a dispersion containing an organic core, a solvent such as water or alcohol, a surfactant, and a catalyst such as an aqueous ammonia solution.
  • examples include a method of performing a reaction and a method of heteroaggregating a sol-gel reactant on an organic core after performing a sol-gel reaction with an inorganic monomer such as tetraethoxysilane coexisting with a solvent such as water or alcohol and an aqueous ammonia solution.
  • the metal alkoxide is preferably hydrolyzed and polycondensed.
  • the metal alkoxide is preferably made into a shell by a sol-gel method.
  • the surfactant is not particularly limited.
  • the surfactant is appropriately selected and used so as to form a good shell.
  • examples of the surfactant include a cationic surfactant, an anionic surfactant, and a nonionic surfactant. Among these, a cationic surfactant is preferable because a good inorganic shell can be formed.
  • cationic surfactant examples include quaternary ammonium salts and quaternary phosphonium salts. Specific examples of the cationic surfactant include hexadecyl ammonium bromide.
  • the shell-like material is preferably baked.
  • the degree of crosslinking in the inorganic shell can be adjusted by the firing conditions.
  • the 10% K value and the 30% K value of the organic-inorganic hybrid particles are more preferable than those in the case where the firing is not performed.
  • the 10% K value can be sufficiently increased by increasing the degree of crosslinking.
  • the inorganic shell is preferably formed on the surface of the organic core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material at 100 ° C. or higher (firing temperature). .
  • the firing temperature is more preferably 150 ° C. or higher, and further preferably 200 ° C. or higher.
  • the degree of cross-linking in the inorganic shell becomes more appropriate, and the 10% K value and the 30% K value show even more suitable values.
  • the liquid crystal display element spacer can be used more suitably depending on the application.
  • the inorganic shell is formed on the surface of the organic core by forming a metal alkoxide into a shell-like material by a sol-gel method, and then firing the shell-like material at a temperature lower than the decomposition temperature (firing temperature) of the organic core.
  • the firing temperature is preferably 5 ° C. or more lower than the decomposition temperature of the organic core, and more preferably 10 ° C. or more lower than the decomposition temperature of the organic core.
  • the said calcination temperature becomes like this.
  • it is 800 degrees C or less, More preferably, it is 600 degrees C or less, More preferably, it is 500 degrees C or less.
  • the firing temperature is not more than the upper limit, it is possible to suppress thermal deterioration and deformation of the organic core, and organic-inorganic hybrid particles exhibiting favorable values of 10% K value and 30% K value are obtained.
  • the metal alkoxide examples include silane alkoxide, titanium alkoxide, zirconium alkoxide, and aluminum alkoxide.
  • the metal alkoxide is preferably silane alkoxide, titanium alkoxide, zirconium alkoxide or aluminum alkoxide, more preferably silane alkoxide, titanium alkoxide or zirconium alkoxide, and silane alkoxide. More preferably.
  • the metal atom in the metal alkoxide is preferably a silicon atom, a titanium atom, a zirconium atom or an aluminum atom, more preferably a silicon atom, a titanium atom or a zirconium atom. More preferably, it is a silicon atom.
  • the said metal alkoxide only 1 type may be used and 2 or more types may be used together.
  • the metal alkoxide is preferably a metal alkoxide represented by the following formula (1).
  • M is a silicon atom, a titanium atom or a zirconium atom
  • R1 is a phenyl group, an alkyl group having 1 to 30 carbon atoms, an organic group having 1 to 30 carbon atoms having a polymerizable double bond, or It represents an organic group having 1 to 30 carbon atoms having an epoxy group
  • R2 represents an alkyl group having 1 to 6 carbon atoms
  • n represents an integer of 0 to 2.
  • n is 2
  • the plurality of R1s may be the same or different.
  • Several R2 may be the same and may differ.
  • the metal alkoxide is preferably a silane alkoxide represented by the following formula (1A).
  • R1 represents a phenyl group, an alkyl group having 1 to 30 carbon atoms, an organic group having 1 to 30 carbon atoms having a polymerizable double bond, or an organic group having 1 to 30 carbon atoms having an epoxy group.
  • R2 represents an alkyl group having 1 to 6 carbon atoms.
  • n is 2
  • the plurality of R1s may be the same or different.
  • Several R2 may be the same and may differ.
  • n in the above formula (1A) preferably represents 0 or 1, and more preferably represents 0. When the content of silicon atoms contained in the inorganic shell is high, the effect of the present invention is further improved.
  • R1 is an alkyl group having 1 to 30 carbon atoms
  • specific examples of R1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, an n-hexyl group, a cyclohexyl group, an n-octyl group, And an n-decyl group.
  • This alkyl group preferably has 10 or less carbon atoms, more preferably 6 or less.
  • the alkyl group includes a cycloalkyl group.
  • Examples of the polymerizable double bond include a carbon-carbon double bond.
  • R1 is an organic group having 1 to 30 carbon atoms having a polymerizable double bond
  • specific examples of R1 include a vinyl group, an allyl group, an isopropenyl group, and a 3- (meth) acryloxyalkyl group.
  • Examples of the (meth) acryloxyalkyl group include a (meth) acryloxymethyl group, a (meth) acryloxyethyl group, and a (meth) acryloxypropyl group.
  • the number of carbon atoms of the organic group having 1 to 30 carbon atoms having a polymerizable double bond is preferably 2 or more, preferably 30 or less, more preferably 10 or less.
  • (meth) acryloxy means methacryloxy or acryloxy.
  • R1 is an organic group having 1 to 30 carbon atoms having an epoxy group
  • specific examples of R1 include 1,2-epoxyethyl group, 1,2-epoxypropyl group, 2,3-epoxypropyl group, Examples include 3,4-epoxybutyl group, 3-glycidoxypropyl group, and 2- (3,4-epoxycyclohexyl) ethyl group.
  • the organic group having 1 to 30 carbon atoms having an epoxy group preferably has 8 or less carbon atoms, more preferably 6 or less.
  • the organic group having 1 to 30 carbon atoms and having the epoxy group is a group containing an oxygen atom derived from an epoxy group in addition to a carbon atom and a hydrogen atom.
  • R2 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • R2 preferably represents a methyl group or an ethyl group.
  • silane alkoxide examples include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isopropyltrimethoxysilane, isobutyltrimethoxysilane, cyclohexyltrimethoxy.
  • Examples include silane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, and diisopropyldimethoxysilane. Silane alkoxides other than these may be used.
  • the inorganic shell In order to effectively increase the content of silicon atoms contained in the inorganic shell, it is preferable to use tetramethoxysilane or tetraethoxysilane as the material of the inorganic shell.
  • the total content of tetramethoxysilane and tetraethoxysilane is preferably 50% by weight or more (or the total amount may be sufficient).
  • the total content of the skeleton derived from tetramethoxysilane and the skeleton derived from tetraethoxysilane is preferably 50% by weight or more (or the total amount may be sufficient).
  • titanium alkoxide examples include titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, and the like. Titanium alkoxides other than these may be used.
  • zirconium alkoxide examples include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetraisopropoxide, zirconium tetrabutoxide and the like. Other zirconium alkoxides may be used.
  • the metal alkoxide preferably includes a metal alkoxide having a structure in which four oxygen atoms are directly bonded to a metal atom.
  • the metal alkoxide preferably includes a metal alkoxide represented by the following formula (1a).
  • M represents a silicon atom, a titanium atom or a zirconium atom
  • R2 represents an alkyl group having 1 to 6 carbon atoms
  • n represents an integer of 0 to 2.
  • the metal alkoxide preferably includes a silane alkoxide having a structure in which four oxygen atoms are directly bonded to a silicon atom. In this silane alkoxide, generally, four oxygen atoms are bonded to a silicon atom by a single bond.
  • the metal alkoxide preferably includes a silane alkoxide represented by the following formula (1Aa).
  • R2 represents an alkyl group having 1 to 6 carbon atoms. Several R2 may be the same and may differ.
  • the content of each of the silane alkoxides represented by is preferably 20 mol% or more, more preferably 40 mol% or more, still more preferably 50 mol% or more, still more preferably 55 mol% or more, and particularly preferably 60 mol%.
  • the total amount of metal alkoxide used to form the inorganic shell is a metal alkoxide having a structure in which four oxygen atoms are directly bonded to the metal atom, the metal alkoxide represented by the formula (1a), the silicon atom May be a silane alkoxide having a structure in which four oxygen atoms are directly bonded to each other, or a silane alkoxide represented by the above formula (1Aa).
  • the number ratio is preferably 20% or more, more preferably 40% or more, still more preferably 50% or more, still more preferably 55 mol% or more, and particularly preferably 60% or more.
  • the ratio of the number of directly bonded metal atoms is preferably 20% or more, more preferably 40% or more, still more preferably 50% or more, still more preferably 55 mol% or more, and particularly preferably 60% or more.
  • the metal alkoxide is a silane alkoxide and the total number of silicon atoms contained in the inorganic shell is 100.
  • the ratio of the number of silicon atoms in which four —O—Si groups are directly bonded and four oxygen atoms in the four —O—Si groups are directly bonded is preferably 20% or more, More preferably, it is 40% or more, further preferably 50% or more, and particularly preferably 60% or more.
  • a silicon atom in which four —O—Si groups are directly bonded and four oxygen atoms in the four —O—Si groups are directly bonded is represented by, for example, the following formula (11): It is a silicon atom in the structure. Specifically, it is a silicon atom indicated by an arrow A in the structure represented by the following formula (11X).
  • the oxygen atom in the above formula (11) generally forms a siloxane bond with an adjacent silicon atom.
  • the ratio of the number of silicon atoms in which four —O—Si groups are directly bonded and the four oxygen atoms in the four —O—Si groups are directly bonded (the ratio of the number of Q4 (%)).
  • Q4 four —O—Si groups are directly bonded and four oxygen atoms in the four —O—Si groups are directly bonded to each other.
  • the peak area of silicon atoms) and Q1 to Q3 (1 to 3 —O—Si groups are directly bonded, and 1 to 3 oxygen atoms in 1 to 3 of the above —O—Si groups are directly bonded. And a peak area of silicon atoms).
  • the thickness of the inorganic shell is preferably 1 nm or more, more preferably 10 nm or more, still more preferably 50 nm or more, particularly preferably 100 nm or more, preferably 100,000 nm or less, more preferably 10,000 nm or less, still more preferably 2000 nm or less.
  • the thickness of the inorganic shell is not less than the above lower limit and not more than the above upper limit, the 10% K value and the 30% K value exhibit even more suitable values, and the organic / inorganic hybrid particles are used as conductive particles and liquid crystal display element spacers. It becomes possible to use suitably for a use.
  • the thickness of the inorganic shell is an average thickness per organic-inorganic hybrid particle.
  • the thickness of the inorganic shell can be controlled by controlling the sol-gel method.
  • the thickness of the inorganic shell is determined by observing the organic-inorganic hybrid particles using a scanning electron microscope, and measuring the average particle size of 50 arbitrarily selected organic-inorganic hybrid particles with calipers, and the organic core. It can obtain
  • the particle diameter of the organic-inorganic hybrid particles means a diameter when the organic-inorganic hybrid particles are true spherical, and means a maximum diameter when the organic-inorganic hybrid particles have a shape other than the true spherical shape.
  • the aspect ratio of the organic / inorganic hybrid particles is preferably 2 or less, more preferably 1.5 or less, and still more preferably 1.2 or less.
  • the aspect ratio indicates a major axis / minor axis.
  • the organic core and the inorganic shell are not chemically bonded, the inorganic shell is not easily cracked excessively, and the contact area of the electrode and the conductive particles to the connection target member can be increased. The connection resistance between the electrodes can be further reduced.
  • the organic core and the inorganic shell are not chemically bonded, but may be chemically bonded.
  • a functional group capable of reacting with a functional group of the material constituting the inorganic shell is introduced on the surface of the organic core, Examples thereof include a method of forming an inorganic shell with the material constituting the inorganic shell. Specifically, the surface of the organic core is surface-treated with a coupling agent, and then a metal alkoxide is formed into a shell-like material by a sol-gel method on the surface of the organic core.
  • the conductive particles include the organic-inorganic hybrid particles described above and a conductive layer disposed on the surface of the organic-inorganic hybrid particles.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • the conductive particle 1 has an organic-inorganic hybrid particle 11 and a conductive layer 2 disposed on the surface of the organic-inorganic hybrid particle 11.
  • the conductive layer 2 covers the surface of the organic / inorganic hybrid particle 11.
  • the conductive particle 1 is a coated particle in which the surface of the organic-inorganic hybrid particle 11 is coated with the conductive layer 2.
  • the organic / inorganic hybrid particle 11 includes an organic core 12 and an inorganic shell 13 disposed on the surface of the organic core 12.
  • the inorganic shell 13 covers the surface of the organic core 12.
  • the conductive layer 2 is disposed on the surface of the inorganic shell 13.
  • the conductive layer 2 covers the surface of the inorganic shell 13.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • the conductive layer 22 includes a first conductive layer 22A that is an inner layer and a second conductive layer 22B that is an outer layer.
  • the first conductive layer 22 ⁇ / b> A is disposed on the surface of the organic / inorganic hybrid particle 11, the first conductive layer 22 ⁇ / b> A is disposed.
  • the first conductive layer 22A is disposed on the surface of the inorganic shell 13, the first conductive layer 22A is disposed.
  • a second conductive layer 22B is disposed on the surface of the first conductive layer 22A.
  • FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
  • the 3 includes the organic-inorganic hybrid particles 11, the conductive layer 32, a plurality of core substances 33, and a plurality of insulating substances 34.
  • the conductive layer 32 is disposed on the surface of the organic-inorganic hybrid particle 11.
  • a conductive layer 32 is disposed on the surface of the inorganic shell 13.
  • the conductive particles 31 have a plurality of protrusions 31a on the conductive surface.
  • the conductive layer 32 has a plurality of protrusions 32a on the outer surface.
  • the conductive particles may have protrusions on the conductive surface or may have protrusions on the outer surface of the conductive layer.
  • a plurality of core materials 33 are disposed on the surface of the organic-inorganic hybrid particles 11.
  • a plurality of core materials 33 are arranged on the surface of the inorganic shell 13.
  • the plurality of core materials 33 are embedded in the conductive layer 32.
  • the core substance 33 is disposed inside the protrusions 31a and 32a.
  • the conductive layer 32 covers a plurality of core materials 33.
  • the outer surface of the conductive layer 32 is raised by the plurality of core materials 33, and protrusions 31a and 32a are formed.
  • the conductive particles 31 have an insulating substance 34 disposed on the outer surface of the conductive layer 32. At least a part of the outer surface of the conductive layer 32 is covered with an insulating material 34.
  • the insulating substance 34 is made of an insulating material and is an insulating particle.
  • the said electroconductive particle may have the insulating substance arrange
  • the metal for forming the conductive layer is not particularly limited.
  • the metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, and these. And the like.
  • the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes can be made still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is preferable.
  • the conductive layer may be formed of a single layer.
  • the conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers.
  • the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable.
  • the outermost layer is these preferred conductive layers, the connection resistance between the electrodes is further reduced.
  • the outermost layer is a gold layer, the corrosion resistance is further enhanced.
  • the method for forming the conductive layer on the surface of the organic-inorganic hybrid particles is not particularly limited.
  • a method for forming the conductive layer for example, a method using electroless plating, a method using electroplating, a method using physical vapor deposition, and a metal powder or a paste containing a metal powder and a binder are coated on the surface of the organic-inorganic hybrid particles. Methods and the like.
  • the method by electroless plating is preferable.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • the particle diameter of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 520 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m. It is as follows. When the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductive layer When forming the conductive particles, it becomes difficult to form aggregated conductive particles.
  • interval between the electrodes connected via the electroconductive particle does not become large too much, and it becomes difficult for a conductive layer to peel from the surface of an organic inorganic hybrid particle.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
  • the particle diameter of the conductive particles means a diameter when the conductive particles are true spherical, and means a maximum diameter when the conductive particles have a shape other than the true spherical shape.
  • the thickness of the conductive layer is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, still more preferably 0.5 ⁇ m or less, and particularly preferably 0.3 ⁇ m or less. .
  • the thickness of the conductive layer is the thickness of the entire conductive layer when the conductive layer is a multilayer. When the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting the electrodes. .
  • the thickness of the outermost conductive layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably 0. .1 ⁇ m or less.
  • the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is further increased. Lower. Further, when the outermost layer is a gold layer, the thinner the gold layer, the lower the cost.
  • the thickness of the conductive layer can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the conductive particles may have protrusions on the conductive surface.
  • the conductive particles may have protrusions on the outer surface of the conductive layer. It is preferable that there are a plurality of the protrusions.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions are used, the oxide film is effectively eliminated by the protrusions by placing the conductive particles between the electrodes and pressing them. For this reason, an electrode and the conductive layer of electroconductive particle can be contacted still more reliably, and the connection resistance between electrodes can be made low.
  • the conductive particles are provided with an insulating material on the surface, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the conductive particles and the electrodes are separated by protrusions of the conductive particles. Insulating substances or binder resins in between can be effectively eliminated. For this reason, the conduction
  • a method of forming protrusions on the surface of the conductive particles a method of forming a conductive layer by electroless plating after attaching a core substance to the surface of the organic-inorganic hybrid particles, and a method of forming no protrusion on the surface of the organic-inorganic hybrid particles.
  • Examples include a method of forming a conductive layer by electrolytic plating, attaching a core substance, and further forming a conductive layer by electroless plating.
  • the core material may not be used to form the protrusion.
  • the conductive particles may include an insulating material disposed on the outer surface of the conductive layer.
  • an insulating material disposed on the outer surface of the conductive layer.
  • an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes.
  • the insulating substance between the conductive layer of an electroconductive particle and an electrode can be easily excluded by pressurizing electroconductive particle with two electrodes in the case of the connection between electrodes.
  • the insulating substance is preferably an insulating resin layer or insulating particles, and more preferably insulating particles.
  • the insulating particles are preferably insulating resin particles.
  • the conductive material includes the conductive particles described above and a binder resin.
  • the conductive particles are preferably dispersed in a binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection of electrodes.
  • the conductive material is preferably a circuit connection material.
  • the binder resin is not particularly limited.
  • a known insulating resin is used.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers.
  • the said binder resin only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • a filler for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the method for dispersing the conductive particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used.
  • Examples of a method for dispersing the conductive particles in the binder resin include a method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. The conductive particles are dispersed in water. Alternatively, after uniformly dispersing in an organic solvent using a homogenizer or the like, it is added to the binder resin and kneaded with a planetary mixer or the like, and the binder resin is diluted with water or an organic solvent. Then, the method of adding the said electroconductive particle, kneading with a planetary mixer etc. and disperse
  • distributing is mentioned.
  • the conductive material can be used as a conductive paste and a conductive film.
  • the conductive material according to the present invention is a conductive film
  • a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
  • the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, more preferably 20% by weight or less, More preferably, it is 10 weight% or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
  • connection structure can be obtained by connecting the connection target members using the conductive particles described above or using a conductive material including the conductive particles described above and a binder resin.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member, and the connection portion.
  • connection portion connecting the first connection target member and the second connection target member, and the connection portion.
  • the connection part is the conductive particles. That is, the first and second connection target members are connected by the conductive particles.
  • the conductive material used for obtaining the connection structure is preferably an anisotropic conductive material.
  • the first connection object member preferably has a first electrode on the surface.
  • the second connection target member preferably has a second electrode on the surface. It is preferable that the first electrode and the second electrode are electrically connected by the conductive particles.
  • FIG. 4 is a front cross-sectional view schematically showing a connection structure using the conductive particles 1 shown in FIG.
  • connection structure 51 shown in FIG. 4 is a connection that connects the first connection target member 52, the second connection target member 53, and the first connection target member 52 and the second connection target member 53.
  • the connection part 54 is formed of a conductive material containing the conductive particles 1 and a binder resin.
  • the conductive particles 1 are schematically shown for convenience of illustration. Instead of the conductive particles 1, other conductive particles such as the conductive particles 21 and 31 may be used.
  • the first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface).
  • the second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface).
  • the first electrode 52 a and the second electrode 53 a are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1.
  • the manufacturing method of the connection structure is not particularly limited.
  • a method of manufacturing a connection structure a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • the pressure applied to connect the electrode of the flexible printed board, the electrode disposed on the resin film, and the electrode of the touch panel is about 9.8 ⁇ 10 4 to 1.0 ⁇ 10 6 Pa.
  • connection target member examples include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards.
  • the conductive material is preferably a conductive material for connecting electronic components.
  • the conductive paste is a paste-like conductive material, and is preferably applied on the connection target member in a paste-like state.
  • connection target member is preferably a flexible printed circuit board or a connection target member in which an electrode is disposed on the surface of a resin film.
  • the connection target member is preferably a flexible printed board, and is preferably a connection target member in which an electrode is disposed on the surface of the resin film.
  • the flexible printed board generally has electrodes on the surface.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
  • the organic-inorganic hybrid particles are preferably used as a spacer for a liquid crystal display element. That is, the organic / inorganic hybrid particle includes a pair of substrates constituting a liquid crystal cell, a liquid crystal sealed between the pair of substrates, and a liquid crystal display element spacer disposed between the pair of substrates. It is suitably used for obtaining an element.
  • FIG. 5 is a cross-sectional view of a liquid crystal display element using organic / inorganic hybrid particles according to an embodiment of the present invention as a spacer for a liquid crystal display element.
  • a liquid crystal display element 81 shown in FIG. 5 has a pair of transparent glass substrates 82.
  • the transparent glass substrate 82 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 .
  • a transparent electrode 83 is formed on the insulating film in the transparent glass substrate 82. Examples of the material of the transparent electrode 83 include ITO.
  • the transparent electrode 83 can be formed by patterning, for example, by photolithography.
  • An alignment film 84 is formed on the transparent electrode 83 on the surface of the transparent glass substrate 82. Examples of the material of the alignment film 84 include polyimide.
  • a liquid crystal 85 is sealed between the pair of transparent glass substrates 82.
  • a plurality of organic-inorganic hybrid particles 11 are disposed between the pair of transparent glass substrates 82.
  • the organic / inorganic hybrid particle 11 is used as a spacer for a liquid crystal display element.
  • the space between the pair of transparent glass substrates 82 is regulated by the plurality of organic-inorganic hybrid particles 11.
  • a sealing agent 86 is disposed between the edges of the pair of transparent glass substrates 82. Outflow of the liquid crystal 85 to the outside is prevented by the sealing agent 86.
  • the arrangement density of spacers for liquid crystal display elements per 1 mm 2 is preferably 10 pieces / mm 2 or more, and preferably 1000 pieces / mm 2 or less.
  • the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform.
  • the arrangement density is 1000 / mm 2 or less, the contrast of the liquid crystal display element is further improved.
  • organic-inorganic hybrid particles (Example 1) As an organic core, “Micropearl EYP-00375” (acrylic polymer, average particle size 3.75 ⁇ m) manufactured by Sekisui Chemical Co., Ltd. was prepared. 100 parts by weight of this organic core and 40 parts by weight of hexadecyltrimethylammonium bromide as a surfactant were dispersed in a mixed solvent of 1800 parts by weight of ethanol and 200 parts by weight of water, and placed in a separable flask. 80 parts by weight of 25% by weight aqueous ammonia solution was added and stirred while applying ultrasonic waves.
  • “Micropearl EYP-00375” acrylic polymer, average particle size 3.75 ⁇ m) manufactured by Sekisui Chemical Co., Ltd. was prepared. 100 parts by weight of this organic core and 40 parts by weight of hexadecyltrimethylammonium bromide as a surfactant were dispersed in a mixed solvent of
  • a solution prepared by dissolving 600 parts by weight of tetraethoxysilane in 1200 parts by weight of ethanol was added and stirred at 25 ° C. for 24 hours while applying ultrasonic waves.
  • the reaction solution is taken out, suction filtered through a membrane filter made of PTFE (polytetrafluoroethylene), washed with ethanol twice, dried in a vacuum dryer at 50 ° C. for 24 hours, and organic-inorganic hybrid particles are removed. Obtained.
  • Example 2 Example 1 except that the organic core was changed to “Micropearl EX-00375” (styrene polymer, average particle size 3.75 ⁇ m) manufactured by Sekisui Chemical Co., Ltd., and the addition amount of tetraethoxysilane was changed to 300 parts by weight. In the same manner, organic-inorganic hybrid particles and conductive particles were obtained.
  • Example 3 The organic core was changed to Sekisui Chemical Co., Ltd. “Micropearl ELP-00375” (styrene / acrylic copolymer, average particle size 3.75 ⁇ m), ethanol was changed to isopropanol, and the amount of tetraethoxysilane added was 900 wt.
  • Organic-inorganic hybrid particles and conductive particles were obtained in the same manner as in Example 1 except that the part was changed to the part.
  • Example 4 The organic core was changed to Sekisui Chemical Co., Ltd. “Micropearl ELP-00375” (styrene / acrylic copolymer, average particle size 3.75 ⁇ m), ethanol was changed to isopropanol, and the amount of tetraethoxysilane added was 1200 weight
  • Organic-inorganic hybrid particles and conductive particles were obtained in the same manner as in Example 1 except that the part was changed to the part.
  • Example 5 Example 1 except that the organic core was changed to “Micropearl EX-00375” (styrene polymer, average particle size 3.75 ⁇ m) manufactured by Sekisui Chemical Co., Ltd., and the addition amount of tetraethoxysilane was changed to 100 parts by weight. In the same manner, organic-inorganic hybrid particles and conductive particles were obtained.
  • Example 6 Palladium adhesion process
  • the organic-inorganic hybrid particles obtained in Example 1 were prepared.
  • the organic / inorganic hybrid particles were etched and washed with water.
  • organic-inorganic hybrid particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • Organic / inorganic hybrid particles were added to 0.5 wt% dimethylamine borane solution at pH 6 to obtain organic / inorganic hybrid particles to which palladium was attached.
  • Electroless nickel plating step In the same manner as in Example 1, a nickel layer was formed on the surface of the organic-inorganic hybrid particles to produce conductive particles.
  • the nickel layer had a thickness of 0.1 ⁇ m.
  • Example 7 (1) Preparation of insulating particles Into a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl Ion-exchanged water containing a monomer composition containing 1 mmol of —N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
  • the insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • Example 6 10 g of the conductive particles obtained in Example 6 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • Example 8 Organic-inorganic hybrid particles and conductive particles were obtained in the same manner as in Example 1 except that 600 parts by weight of tetraethoxysilane was changed to 550 parts by weight of tetraethoxysilane and 50 parts by weight of methyltrimethoxysilane.
  • Example 9 Organic-inorganic hybrid particles and conductive particles were obtained in the same manner as in Example 1 except that 600 parts by weight of tetraethoxysilane was changed to 500 parts by weight of tetraethoxysilane and 100 parts by weight of methyltrimethoxysilane.
  • Example 10 Organic-inorganic hybrid particles and conductive particles were obtained in the same manner as in Example 1 except that the addition amount of the 25 wt% aqueous ammonia solution was changed from 80 parts by weight to 20 parts by weight.
  • Example 11 As an organic core, instead of “Micropearl EYP-00375” (acrylic polymer, average particle size 3.75 ⁇ m) manufactured by Sekisui Chemical Co., Ltd., “Micropearl EYP-0025” (acrylic polymer, average polymer manufactured by Sekisui Chemical Co., Ltd.) Organic-inorganic hybrid particles and conductive particles were obtained in the same manner as in Example 1 except that the particle size was changed to 2.5 ⁇ m.
  • Comparative Example 1 Silica particles “Micropearl SI-GH038” (silica, average particle size 3.80 ⁇ m) manufactured by Sekisui Chemical Co., Ltd. were used as the particles (inorganic particles) of Comparative Example 1. Using these particles, conductive particles were obtained in the same manner as in Example 1.
  • Comparative Example 2 “Micropearl ELP-00375” (particle size 3.75 ⁇ m) manufactured by Sekisui Chemical Co., Ltd. was used as particles (organic polymer particles) of Comparative Example 2. Using these particles, conductive particles were obtained in the same manner as in Example 1.
  • the particle size of the organic core used when producing the organic / inorganic hybrid particles was measured by the same method as described above.
  • the thickness of the inorganic shell was determined from the difference between the particle size of the organic-inorganic hybrid particle and the particle size of the organic core.
  • Dispersibility 1 The obtained organic-inorganic hybrid particles (other particles) were used as spacers for liquid crystal display elements. In addition, about the organic inorganic hybrid particle obtained in Example 6, 7, dispersibility 1 was not evaluated. To a dispersion medium containing 70 parts by weight of isopropyl alcohol and 30 parts by weight of water, a spacer for a liquid crystal display element is added so as to have a solid content concentration of 2% by weight in 100% by weight of the obtained spacer dispersion, and stirred. A spacer dispersion liquid for a liquid crystal display element was obtained.
  • the obtained spacer dispersion liquid for a liquid crystal display element was left at 25 ° C. for 1 minute. It was observed whether or not the spacers for liquid crystal display elements were settled in the dispersion after being allowed to stand. Dispersibility 1 was determined according to the following criteria.
  • the conductive material (resin composition) was obtained by adding and dispersing.
  • Dispersibility 1 was determined according to the following criteria.
  • connection resistance Fabrication of connection structure The resin composition (conductive material) (before standing) obtained by the evaluation of (6) Dispersibility 2 was prepared. This conductive material was left at 25 ° C. for 1 hour.
  • the conductive material after standing was applied to a PET (polyethylene terephthalate) film having a thickness of 50 ⁇ m on which one side was released, and dried with hot air at 70 ° C. for 5 minutes to prepare an anisotropic conductive film.
  • the thickness of the obtained anisotropic conductive film was 12 ⁇ m.
  • the obtained anisotropic conductive film was cut into a size of 5 mm ⁇ 5 mm.
  • the two-layer flexible printed circuit board width 2cm, length 1cm
  • a laminate of the PET substrate and the two-layer flexible printed circuit board was thermocompression bonded under pressure bonding conditions of 10 N, 180 ° C., and 20 seconds to obtain a connection structure.
  • the two-layer flexible printed board by which the copper electrode was formed in the polyimide film and the copper electrode surface was Au-plated was used.
  • connection resistance between the opposing electrodes of the obtained connection structure was measured by the 4-terminal method. Connection resistance was determined according to the following criteria.
  • connection resistance is 3.0 ⁇ or less ⁇ : Connection resistance exceeds 3.0 ⁇ , 4.0 ⁇ or less ⁇ : Connection resistance exceeds 4.0 ⁇ , 5.0 ⁇ or less ⁇ : Connection resistance exceeds 5.0 ⁇
  • connection reliability The connection structure obtained by the above (7) connection resistance evaluation was left in an atmosphere of 85 ° C. and 85% for 100 hours. Thereafter, it was measured at 25 locations whether the adjacent electrodes were insulative or conductive. Insulation reliability was judged according to the following criteria.
  • Adhesiveness 1 between inorganic shell and conductive layer 1.0 g of the obtained conductive particles, 45 g of zirconia balls having a diameter of 1 mm (“YTZ-10” manufactured by ASONE) and 17 g of toluene were placed in a 200 mL beaker (inner diameter 6.7 cm), and a three-one motor agitator (manufactured by HEIDON). Using “BL1200”), the mixture was stirred at 25 ° C. for 6 minutes at 400 rpm. Next, the organic / inorganic hybrid particles after stirring were separated so that the inorganic shell of the organic / inorganic hybrid particles after stirring was not broken. Thereafter, the conductive particles were observed with a scanning electron microscope.
  • the adhesion 1 between the inorganic shell and the conductive layer was determined according to the following criteria.
  • Adhesion between inorganic shell and conductive layer 2 In the evaluation of the adhesion 1 between the inorganic shell and the conductive layer, the adhesion 2 between the inorganic shell and the conductive layer was the same except that the stirring condition using a three-one motor stirrer was changed to 600 rpm at 25 ° C. for 12 minutes. Evaluated. Adhesion 2 between the inorganic shell and the conductive layer was determined based on the same criteria as the determination criteria for the adhesion 1 between the inorganic shell and the conductive layer.
  • the results are shown in Tables 1 and 2 below.
  • the aspect ratios of the organic-inorganic hybrid particles obtained in Examples 1 to 5 and 8 to 11 were all 1.2 or less.
  • the evaluation results of the connection resistance in Examples 1, 3, 4, 6 to 9, 11 are all “ ⁇ ”, but the connection resistance in Examples 1, 3, 4, 6, 7, 9, and 11 is The value was lower than the value of connection resistance in Example 8.
  • connection resistance values in Examples 6 and 7 are lower than the connection resistance values in Examples 1, 3, 4, 9, and 11, and the connection resistance value in Example 6 is the connection resistance in Example 7. It was lower than the value of. Protrusions are thought to be influencing.
  • Example of use as spacer for liquid crystal display element Production of STN type liquid crystal display element Into a dispersion medium containing 70 parts by weight of isopropyl alcohol and 30 parts by weight of water, the spacers (organic-inorganic hybrid particles) for liquid crystal display elements of Examples 1 to 5 and 8 to 11 were solidified in 100% by weight of the obtained spacer dispersion liquid. It added so that a partial concentration might be 2 weight%, it stirred, and the spacer dispersion liquid for liquid crystal display elements was obtained.
  • An SiO 2 film was deposited on one surface of a pair of transparent glass plates (length 50 mm, width 50 mm, thickness 0.4 mm) by a CVD method, and then an ITO film was formed on the entire surface of the SiO 2 film by sputtering.
  • a polyimide alignment film composition (SE3510, manufactured by Nissan Chemical Industries, Ltd.) was applied to the obtained glass substrate with an ITO film by spin coating, and baked at 280 ° C. for 90 minutes to form a polyimide alignment film. After the rubbing treatment for the alignment film, the liquid crystal display element spacers were wet-sprayed on the alignment film side of one substrate so that the number of spacers for a liquid crystal display element was 100 to 200 per 1 mm 2 .
  • this substrate and the substrate on which the spacers were spread were placed opposite to each other so that the rubbing direction was 90 °, and both were bonded together. Then, it processed at 160 degreeC for 90 minute (s), the sealing agent was hardened, and the empty cell (screen which does not contain a liquid crystal) was obtained. An STN type liquid crystal containing a chiral agent (made by DIC) was injected into the obtained empty cell, and then the injection port was closed with a sealant, followed by heat treatment at 120 ° C. for 30 minutes to produce an STN type liquid crystal display element. Obtained.
  • the distance between the substrates was well regulated by the spacers for liquid crystal display elements of Examples 1 to 5 and 8 to 11. Moreover, the liquid crystal display element showed favorable display quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Conductive Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Liquid Crystal (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Wire Bonding (AREA)

Abstract

無機シェルと無機シェルに接触する接触対象物との密着性を高めることができる有機無機ハイブリッド粒子を提供する。 本発明に係る有機無機ハイブリッド粒子(11)は、有機コア(12)と、有機コア(12)の表面上に配置された無機シェル(13)とを備える。有機コア(12)の100重量%中、有機コア(12)に含まれる珪素原子の含有量が10重量%以下かつ有機コア(12)に含まれる炭素原子の含有量が50重量%以上である。無機シェル(13)の100重量%中、無機シェル(13)に含まれる珪素原子の含有量が50重量%以上かつ無機シェル(13)に含まれる炭素原子の含有量が30重量%以下である。無機シェル(13)の厚みの、有機コア(12)の半径に対する比は、0.05以上かつ0.70以下である。

Description

有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
 本発明は、有機コアと、該有機コアの表面上に配置された無機シェルとを備えるコアシェル型の有機無機ハイブリッド粒子に関する。また、本発明は、上記有機無機ハイブリッド粒子を用いた導電性粒子、導電材料及び接続構造体に関する。
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
 上記異方性導電材料は、フレキシブルプリント基板(FPC)、ガラス基板、ガラスエポキシ基板及び半導体チップなどの様々な接続対象部材の電極間を電気的に接続し、接続構造体を得るために用いられている。また、上記導電性粒子として、基材粒子と、該基材粒子の表面上に配置された導電層とを有する導電性粒子が用いられることがある。
 上記導電性粒子に用いられる基材粒子の一例として、下記の特許文献1では、シェルが無機化合物(A)であり、コアが有機ポリマー(b)であり、コアがシェルにより被覆されている有機ポリマー粒子(B)(有機無機ハイブリッド粒子)が開示されている。また、特許文献1では、有機ポリマー粒子(B)が導電性金属(C)により被覆されている導電性粒子も開示されている。
 また、液晶表示素子は、2枚のガラス基板間に液晶が配置されて構成されている。該液晶表示素子では、2枚のガラス基板の間隔(ギャップ)を均一かつ一定に保つために、ギャップ制御材としてスペーサが用いられている。該スペーサとして、樹脂粒子が一般に用いられている。
 上記導電性粒子又は上記液晶表示素子用スペーサに用いられる粒子の一例として、下記の特許文献2には、重合性不飽和基を有する多官能性シラン化合物を、界面活性剤の存在下で加水分解及び重縮合させることにより得られる有機質無機質複合体粒子(有機無機ハイブリッド粒子)が開示されている。特許文献2では、上記多官能性シラン化合物が、下記式(X)で表される化合物及びその誘導体から選ばれた少なくとも1つのラジカル重合性基含有第1シリコン化合物である。
Figure JPOXMLDOC01-appb-C000001
 前記式(X)中、R1は水素原子又はメチル基を示し、R2は置換基を有していてもよい炭素数1~20の2価の有機基を示し、R3は炭素数1~5のアルキル基又はフェニル基を示し、R4は水素原子と、炭素数1~5のアルキル基と、炭素数2~5のアシル基とからなる群から選ばれる少なくとも1つの1価基を示す。
 また、上記導電性粒子に用いられる基材粒子の他の例として、下記の特許文献3,4には、球状コア粒子と、該球状コア粒子の表面に設けられた弾性被覆層とを有する基材粒子が開示されている。また、特許文献3,4では、上記基材粒子と、上記基材粒子における上記弾性被覆層の表面上に配置された導電性薄膜層とを有する導電性粒子も開示されている。
特開2006-156068号公報 特開2000-204119号公報 特開2001-11503号公報 特開2008-117759号公報
 有機無機ハイブリッド粒子では、一般に、有機材料が用いられているために柔軟性にある程度優れており、高い荷重をかけて圧縮したときに十分に変形する。このため、上記有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いて基板間に配置して液晶表示素子を得た場合に、液晶表示素子用スペーサが基板に十分に接触する。また、上記有機無機ハイブリッド粒子の表面に導電層を形成した導電性粒子を用いて、電極間を電気的に接続して接続構造体を得た場合に、導電性粒子が電極に十分に接触する。
 しかしながら、特許文献1,2に記載のような従来の有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いて基板間に配置すると、液晶表示素子用スペーサの基板に対する密着性が悪いことがある。また、特許文献1,2に記載のような従来の有機無機ハイブリッド粒子の表面に導電層を形成した場合に、有機無機ハイブリッド粒子と導電層との密着性が悪いことがある。このため、導電層が有機無機ハイブリッド粒子の表面から剥離することがある。
 また、特許文献3,4に記載の基材粒子では、コアに有機材料が用いられているものの、上記シェルに含まれる珪素原子の含有量が50重量%よりもかなり少ない。このため、特許文献3,4に記載のような従来の基材粒子を液晶表示素子用スペーサとして用いて基板間に配置しても、液晶表示素子用スペーサの基板に対する密着性が悪いことがある。また、特許文献3,4に記載のような従来の基材粒子の表面に導電層を形成した場合に、基材粒子と導電層との密着性が悪いことがある。このため、導電層が基材粒子の表面から剥離することがある。
 また、有機無機ハイブリッド粒子と導電層との密着性が悪いと、バインダー樹脂中での導電性粒子の分散性が低下し、導電性粒子が凝集しやすくなる。さらに、バインダー樹脂中に導電性粒子を分散させた導電材料を用いて、電極間を電気的に接続した場合に、導電材料中での導電性粒子の分散密度の違いから、接続抵抗が高くなることがある。さらに、凝集した導電性粒子によって、絶縁不良が生じることがある。
 一方で、基材粒子と導電層との密着性を高めるために、基材粒子としてシリカ粒子が用いられることがある。シリカ粒子の表面上に導電層を形成した場合には、シリカ粒子と導電層との密着性は高くなる。しかしながら、導電性粒子の柔軟性が低下する。このため、シリカ粒子の表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電性粒子と電極との接触面積が小さくなる。導電性粒子と電極との接触面積が小さいと、接続抵抗が高くなったり、接続不良が生じやすくなったりする。
 本発明の目的は、無機シェルと無機シェルに接触する接触対象物との密着性を高めることができる有機無機ハイブリッド粒子を提供することである。また、本発明の目的は、上記有機無機ハイブリッド粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。
 本発明の限定的な目的は、無機シェルと導電層との密着性を高めることができる有機無機ハイブリッド粒子を提供すること、並びに該有機無機ハイブリッド粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。
 本発明の更に限定的な目的は、電極間を電気的に接続した場合に、接続抵抗を効果的に低くすることができ、かつ絶縁信頼性を高めることができる有機無機ハイブリッド粒子を提供すること、並びに該有機無機ハイブリッド粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。
 本発明の広い局面によれば、有機コアと、前記有機コアの表面上に配置された無機シェルとを備え、前記有機コア100重量%中、前記有機コアに含まれる珪素原子の含有量が10重量%以下かつ前記有機コアに含まれる炭素原子の含有量が50重量%以上であり、前記無機シェル100重量%中、前記無機シェルに含まれる珪素原子の含有量が50重量%以上かつ前記無機シェルに含まれる炭素原子の含有量が30重量%以下であり、前記無機シェルの厚みの、前記有機コアの半径に対する比が0.05以上かつ0.70以下である、有機無機ハイブリッド粒子が提供される。
 本発明に係る有機無機ハイブリッド粒子は、表面上に導電層が形成され、前記導電層を有する導電性粒子を得るために用いられるか、又は液晶表示素子用スペーサとして用いられることが好ましい。本発明に係る有機無機ハイブリッド粒子は、表面上に導電層が形成され、前記導電層を有する導電性粒子を得るために用いられることが好ましい。
 本発明に係る有機無機ハイブリッド粒子のある特定の局面では、前記有機コアと前記無機コアとの間で化学結合していない。
 本発明に係る有機無機ハイブリッド粒子のある特定の局面では、前記無機シェルの厚みが50nm以上かつ2000nm以下である。
 本発明に係る有機無機ハイブリッド粒子のある特定の局面では、前記有機コアの粒径が0.5μm以上かつ100μm以下である。
 前記無機シェルに含まれている珪素原子の全個数100%中、4つの-O-Si基が直接結合しておりかつ4つの前記-O-Si基における4つの酸素原子が直接結合している珪素原子の個数の割合は50%以上である。
 本発明の広い局面によれば、上述した有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備える、導電性粒子が提供される。
 本発明の広い局面によれば、導電性粒子と、バインダー樹脂とを含み、前記導電性粒子が、上述した有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備える、導電材料が提供される。
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記導電性粒子が、上述した有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備え、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。
 本発明に係る有機無機ハイブリッド粒子では、有機コアの表面上に無機シェルが配置されており、更に上記有機コア100重量%中、上記有機コアに含まれる珪素原子の含有量が10重量%以下かつ上記有機コアに含まれる炭素原子の含有量が50重量%以上であり、上記無機シェル100重量%中、上記無機シェルに含まれる珪素原子の含有量が50重量%以上かつ上記無機シェルに含まれる炭素原子の含有量が30重量%以下であり、上記無機シェルの厚みの、上記有機コアの半径に対する比が0.05以上かつ0.70以下であるので、無機シェルと無機シェルに接触する接触対象物との密着性を高めることができる。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す正面断面図である。 図5は、本発明の一実施形態に係る有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いた液晶表示素子を模式的に示す断面図である。
 以下、本発明の詳細を説明する。
 (有機無機ハイブリッド粒子)
 本発明に係る有機無機ハイブリッド粒子は、有機コアと、該有機コアの表面上に配置された無機シェルとを備える。本発明に係る有機無機ハイブリッド粒子では、上記有機コア100重量%中、上記有機コアに含まれる珪素原子の含有量が10重量%以下かつ上記有機コアに含まれる炭素原子の含有量が50重量%以上である。さらに、本発明に係る有機無機ハイブリッド粒子では、上記無機シェル100重量%中、上記無機シェルに含まれる珪素原子の含有量が50重量%以上かつ上記無機シェルに含まれる炭素原子の含有量が30重量%以下である。
 上記有機コアは炭素原子を50重量%以上含むので、炭素原子を主成分として含む有機コアである。上記有機コアは、珪素原子を含んでいてもよいが、珪素原子を含む場合でも炭素原子が主成分であるので有機コアと呼ぶ。上記無機シェルは、珪素原子を50重量%以上含むので、珪素原子を主成分として含む無機シェルである。上記無機シェルは、炭素原子を含んでいてもよいが、炭素原子を含む場合でも珪素原子が主成分であるので無機シェルと呼ぶ。
 また、本発明に係る有機無機ハイブリッド粒子では、上記無機シェルの厚みの、上記有機コアの半径に対する比(無機シェルの厚み/有機コアの半径)が0.05以上かつ0.70以下である。
 本発明に係る有機無機ハイブリッド粒子では、有機コアの表面上に無機シェルが配置されているので、特にコアシェル型の粒子において、コアが有機コアであり、かつ上記有機コアに含まれる珪素原子の含有量が10重量%以下かつ上記有機コアに含まれる炭素原子の含有量が50重量%以上であることによって、有機無機ハイブリッド粒子の柔軟性を高めることができる。このため、上記有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いて基板間に配置したり、有機無機ハイブリッド粒子の表面に導電層を形成した導電性粒子を用いて電極間を電気的に接続したりした場合に、液晶表示素子用スペーサ又は導電性粒子が、基板間又は電極間に効率的に配置される。さらに、液晶表示素子用スペーサ又は導電性粒子と、基板又は電極との接触面積を大きくすることができる。このため、例えば、液晶表示素子における表示品質が良好になり、更に電極間の接続抵抗が低くなる。
 さらに、本発明に係る有機無機ハイブリッド粒子では、有機コアの表面上に無機シェルが配置されており、更に上記有機コア及び上記無機シェルにおける珪素原子及び炭素原子の含有量が上述した関係を満足し、かつ上記無機シェルの厚みの、上記有機コアの半径に対する比が0.05以上かつ0.70以下であることで、無機シェルと無機シェルに接触する接触対象物との密着性を高めることができる。例えば、有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いて基板間に配置すると、液晶表示素子用スペーサの基板に対する密着性が高くなる。また、有機無機ハイブリッド粒子の表面に導電層を形成した場合に、有機無機ハイブリッド粒子と導電層との密着性が高くなる。このため、導電層が有機無機ハイブリッド粒子の表面から剥離し難くなり、導電性粒子により接続された電極間の接続抵抗が低くなる。
 さらに、有機無機ハイブリッド粒子と導電層との密着性が高くなるので、バインダー樹脂中での導電性粒子の分散性が良好になり、導電性粒子が凝集し難くなる。さらに、バインダー樹脂中に導電性粒子を分散させた導電材料を用いて、電極間を電気的に接続した場合に、導電材料中での導電性粒子の分散密度の違いが少ないことから、接続抵抗が高くなり難い。さらに、凝集した導電性粒子が生じ難いため、接続構造体における絶縁信頼性を高めることができる。
 上記無機シェルの厚みの、上記有機コアの半径に対する比(無機シェルの厚み/有機コアの半径)は、0.05以上かつ0.70以下である。上記比(無機シェルの厚み/有機コアの半径)は、好ましくは0.10以上、好ましくは0.60以下である。上記比が上記下限以上及び上記上限以下であると、無機シェルと無機シェルに接触する接触対象物との密着性が効果的に高くなる。また、導電性粒子により電気的に接続された電極間の接続抵抗を低くすることができ、絶縁信頼性を高めることができる。
 上記有機コア100重量%中、上記有機コアに含まれる珪素原子の含有量は10重量%以下、好ましくは5重量%以下である。上記有機コアは、珪素原子を含んでいなくてもよい。上記有機コアは珪素原子を含まないことが好ましい。上記有機コア100重量%中、上記有機コアに含まれる炭素原子の含有量は50重量%以上、好ましくは60重量%以上、より好ましくは65重量%以上である。上記有機コアにおける珪素原子の含有量が少ないほど、また上記有機コアにおける炭素原子の含有量が多いほど、無機シェルと無機シェルに接触する接触対象物との密着性がより一層高くなり、更に有機コアに由来して有機無機ハイブリッド粒子の柔軟性がより一層高くなる。
 上記無機シェル100重量%中、上記無機シェルに含まれる珪素原子の含有量は50重量%以上、好ましくは54重量%以上、より好ましくは56重量%以上、更に好ましくは60重量%以上である。上記無機シェルは、炭素原子を含んでいなくてもよい。上記無機シェルは炭素原子を含まないことが好ましい。上記無機シェル100重量%中、上記無機シェルに含まれる炭素原子の含有量は30重量%以下、好ましくは20重量%以下、より好ましくは10重量%以下である。上記無機シェルにおける珪素原子の含有量が多いほど、また上記無機シェルにおける炭素原子の含有量が少ないほど、無機シェルと無機シェルに接触する接触対象物との密着性がより一層高くなり、更に無機シェルに由来して圧縮初期の硬さがより一層良好になる。
 上記無機シェル100重量%中、上記無機シェルに含まれる珪素原子の含有量が54重量%以上であれば、無機シェルと導電層との密着性がより一層高くなり、60重量%以上であれば、無機シェルと導電層との密着性がかなり高くなる。また、上記無機シェル100重量%中、上記無機シェルに含まれる珪素原子の含有量が54重量%以上であれば、液晶表示素子用スペーサの基板に対する密着性がより一層高くなり、60重量%以上であれば、液晶表示素子用スペーサの基板に対する密着性がかなり高くなる。
 上記有機無機ハイブリッド粒子における有機コア及び無機シェル中での珪素原子及び炭素原子の含有量は、TEM/EDS法による線分析により測定することができる。
 上記無機シェルに含まれている珪素原子の全個数100%中、4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子の個数の割合は50%以上であることが好ましい。この場合には、10%圧縮したときの圧縮弾性率が比較的高くなり、30%圧縮したときの圧縮弾性率が比較的低くなり、有機無機ハイブリッド粒子がより一層良好な圧縮変形特性を有する。
 上記有機無機ハイブリッド粒子の用途は特に限定されない。上記有機無機ハイブリッド粒子は、様々な用途に好適に用いられる。上記有機無機ハイブリッド粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられるか、又は液晶表示素子用スペーサとして用いられることが好ましい。本発明に係る有機無機ハイブリッド粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられることが好ましい。上記有機無機ハイブリッド粒子は、液晶表示素子用スペーサとして用いられることが好ましい。上記有機無機ハイブリッド粒子では、無機シェルと無機シェルに接触する接触対象物との密着性が高いので、上記有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いて基板間に配置したり、表面に導電層を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、液晶表示素子用スペーサ又は導電性粒子が、基板間又は電極間に効率的に配置される。さらに、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体に衝撃が加わったときに、基板又は電極の間隔の変動に対応して、液晶表示素子用スペーサ又は導電性粒子が十分に追従して変形しやすい。このため、基板間又は電極間の間隔のばらつきが生じ難く、電極間の接続不良が生じ難くなる。
 さらに、上記有機無機ハイブリッド粒子は、無機充填材、トナーの添加剤、衝撃吸収剤又は振動吸収剤としても好適に用いられる。例えば、ゴム又はバネ等の代替品として、上記有機無機ハイブリッド粒子を用いることができる。
 上記有機無機ハイブリッド粒子を10%圧縮変形したときの圧縮弾性率(10%K値)は、好ましくは2000N/mm以上、より好ましくは3000N/mm以上、更に好ましくは4000N/mm以上、特に好ましくは5000N/mm以上、最も好ましくは6000N/mm以上、好ましくは15000N/mm以下、より好ましくは10000N/mm以下、更に好ましくは8500N/mm以下である。上記10%K値が上記下限以上及び上記上限以下である有機無機ハイブリッド粒子は、良好な圧縮変形特性を有する。
 上記有機無機ハイブリッド粒子を30%圧縮変形したときの圧縮弾性率(30%K値)は、好ましくは300N/mm以上、より好ましくは600N/mm以上、更に好ましくは800N/mm以上、特に好ましくは1000N/mm以上、好ましくは5000N/mm以下、より好ましくは4500N/mm以下、更に好ましくは4000N/mm以下である。上記30%K値が上記下限以上及び上記上限以下である有機無機ハイブリッド粒子は、良好な圧縮変形特性を有する。
 良好な圧縮変形特性が得られることから、上記有機無機ハイブリッド粒子を10%圧縮したときの圧縮弾性率(10%K値)の、上記有機無機ハイブリッド粒子を30%圧縮したときの圧縮弾性率(30%K値)に対する比(10%K値/30%K値)は好ましくは1以上、より好ましくは1.3以上、更に好ましくは1.8以上、特に好ましくは2.0以上、好ましくは10.0以下、より好ましくは5.0以下、更に好ましくは4.4以下である。
 上記有機無機ハイブリッド粒子における上記圧縮弾性率(10%K値及び30%K値)は、以下のようにして測定できる。
 微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で有機無機ハイブリッド粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
 K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:有機無機ハイブリッド粒子が10%又は30%圧縮変形したときの荷重値(N)
 S:有機無機ハイブリッド粒子が10%又は30%圧縮変形したときの圧縮変位(mm)
 R:有機無機ハイブリッド粒子の半径(mm)
 上記圧縮弾性率は、有機無機ハイブリッド粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、有機無機ハイブリッド粒子の硬さを定量的かつ一義的に表すことができる。
 上記有機コアは、有機粒子であることが好ましい。上記有機コアを形成するための材料として、種々の有機物が好適に用いられる。上記有機コアを形成するための材料として、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が用いられる。エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させることにより、導電材料に適した任意の圧縮時の物性を有する有機無機ハイブリッド粒子を設計及び合成することが容易である。
 上記有機コアを、エチレン性不飽和基を有する単量体を重合させて得る場合には、上記エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記有機コアを得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
 無機シェルの形成時及び有機無機ハイブリッド粒子の使用時に有機コアの変形を抑制する観点からは、上記有機コアの分解温度は、好ましくは200℃を超え、より好ましくは250℃を超え、より一層好ましくは300℃を超える。上記有機コアの分解温度は、400℃を超えていてもよく、500℃を超えていてもよく、600℃を超えていてもよく、800℃を超えていてもよい。
 上記有機コアの粒径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。上記有機コアの粒径が上記下限以上及び上記上限以下であると、10%K値及び30%K値がより一層好適な値を示し、有機無機ハイブリッド粒子を導電性粒子及び液晶表示素子用スペーサの用途に好適に使用可能になる。例えば、上記有機コアの粒径が上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が有機無機ハイブリッド粒子の表面から剥離し難くなる。
 上記有機コアの粒径は、上記有機コアが真球状である場合には直径を意味し、上記有機コアが真球状以外の形状である場合には最大径を意味する。また、本発明において、粒径とは、有機コアを走査型電子顕微鏡を用いて観察し、任意に選択した50個の有機コアの粒径をノギスで測定した平均値を意味する。
 上記有機無機ハイブリッド粒子は、コアシェル粒子である。上記無機シェルは、上記有機コアの表面上に配置されている。上記無機シェルは、上記有機コアの表面を被覆していることが好ましい。
 上記無機シェルは、上記有機コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。ゾルゲル法では、上記有機コアの表面上にシェル状物を配置することが容易である。上記焼成を行う場合に、上記有機無機ハイブリッド粒子では、焼成後に、上記有機コアは、揮発等により除去されずに、残存している。上記有機無機ハイブリッド粒子は、焼成後に、上記有機コアを備える。なお、仮に焼成後に上記有機コアが揮発等により除去されると、上記10%K値がかなり低くなる。
 上記ゾルゲル法の具体的な方法としては、有機コア、水やアルコール等の溶媒、界面活性剤、及びアンモニア水溶液等の触媒を含む分散液に、テトラエトキシシラン等の無機モノマーを共存させて界面ゾル反応を行う方法、並びに水やアルコール等の溶媒、及びアンモニア水溶液と共存させたテトラエトキシシラン等の無機モノマーによりゾルゲル反応を行った後、有機コアにゾルゲル反応物をヘテロ凝集させる方法等が挙げられる。上記ゾルゲル法において、上記金属アルコキシドは、加水分解及び重縮合することが好ましい。
 上記ゾルゲル法では、界面活性剤を用いることが好ましい。界面活性剤の存在下で、上記金属アルコキシドをゾルゲル法によりシェル状物にすることが好ましい。上記界面活性剤は特に限定されない。上記界面活性剤は、良好なシェル状物を形成するように適宜選択して用いられる。上記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤及びノニオン性界面活性剤等が挙げられる。なかでも、良好な無機シェルを形成できることから、カチオン性界面活性剤が好ましい。
 上記カチオン性界面活性剤としては、4級アンモニウム塩及び4級ホスホニウム塩等が挙げられる。上記カチオン性界面活性剤の具体例としては、ヘキサデシルアンモニウムブロミド等が挙げられる。
 上記有機コアの表面上で、上記無機シェルを形成するために、上記シェル状物は焼成されることが好ましい。焼成条件により、無機シェルにおける架橋度を調整可能である。また、焼成を行うことで、焼成を行わない場合と比べて、上記有機無機ハイブリッド粒子の10%K値及び30%K値がより一層好適な値を示すようになる。特に架橋度を高めることで、10%K値を十分に高くすることができる。
 上記無機シェルは、上記有機コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を100℃以上(焼成温度)で焼成させることにより形成されていることが好ましい。上記焼成温度はより好ましくは150℃以上、更に好ましくは200℃以上である。上記焼成温度が上記下限以上であると、無機シェルにおける架橋度がより一層適度になり、10%K値及び30%K値がより一層好適な値を示し、有機無機ハイブリッド粒子を導電性粒子及び液晶表示素子用スペーサの用途により一層好適に使用可能になる。
 上記無機シェルは、上記有機コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を上記有機コアの分解温度以下(焼成温度)で焼成させることにより形成されていることが好ましい。上記焼成温度は、上記有機コアの分解温度よりも5℃以上低い温度であることが好ましく、上記有機コアの分解温度よりも10℃以上低い温度であることがより好ましい。また、上記焼成温度は、好ましくは800℃以下、より好ましくは600℃以下、更に好ましくは500℃以下である。上記焼成温度が上記上限以下であると、上記有機コアの熱劣化及び変形を抑制でき、10%K値及び30%K値が良好な値を示す有機無機ハイブリッド粒子が得られる。
 上記金属アルコキシドとしては、シランアルコキシド、チタンアルコキシド、ジルコニウムアルコキシド及びアルミニウムアルコキシド等が挙げられる。良好な無機シェルを形成する観点からは、上記金属アルコキシドは、シランアルコキシド、チタンアルコキシド、ジルコニウムアルコキシド又はアルミニウムアルコキシドであることが好ましく、シランアルコキシド、チタンアルコキシド又はジルコニウムアルコキシドであることがより好ましく、シランアルコキシドであることが更に好ましい。良好な無機シェルを形成する観点からは、上記金属アルコキシドにおける金属原子は、珪素原子、チタン原子、ジルコニウム原子又はアルミニウム原子であることが好ましく、珪素原子、チタン原子又はジルコニウム原子であることがより好ましく、珪素原子であることが更に好ましい。上記金属アルコキシドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 良好な無機シェルを形成する観点からは、上記金属アルコキシドは、下記式(1)で表される金属アルコキシドであることが好ましい。
 M(R1)(OR2)4-n  ・・・式(1)
 上記式(1)中、Mは珪素原子、チタン原子又はジルコニウム原子であり、R1はフェニル基、炭素数1~30のアルキル基、重合性二重結合を有する炭素数1~30の有機基又はエポキシ基を有する炭素数1~30の有機基を表し、R2は炭素数1~6のアルキル基を表し、nは0~2の整数を表す。nが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。
 良好な無機シェルを形成する観点からは、上記金属アルコキシドは、下記式(1A)で表されるシランアルコキシドであることが好ましい。
 Si(R1)(OR2)4-n  ・・・式(1A)
 上記式(1A)中、R1はフェニル基、炭素数1~30のアルキル基、重合性二重結合を有する炭素数1~30の有機基又はエポキシ基を有する炭素数1~30の有機基を表し、R2は炭素数1~6のアルキル基を表す。nが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。無機シェルに含まれる珪素原子の含有量を効果的に高めるために、上記式(1A)中のnは0又は1を表すことが好ましく、0を表すことがより好ましい。無機シェルに含まれる珪素原子の含有量が高いと、本発明の効果により一層優れる。
 上記R1が炭素数1~30のアルキル基である場合、R1の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、及びn-デシル基等が挙げられる。このアルキル基の炭素数は好ましくは10以下、より好ましくは6以下である。なお、アルキル基には、シクロアルキル基が含まれる。
 上記重合性二重結合としては、炭素-炭素二重結合が挙げられる。上記R1が重合性二重結合を有する炭素数1~30の有機基である場合に、R1の具体例としては、ビニル基、アリル基、イソプロペニル基、及び3-(メタ)アクリロキシアルキル基等が挙げられる。上記(メタ)アクリロキシアルキル基としては、(メタ)アクリロキシメチル基、(メタ)アクリロキシエチル基及び(メタ)アクリロキシプロピル基等が挙げられる。上記重合性二重結合を有する炭素数1~30の有機基の炭素数は好ましくは2以上、好ましくは30以下、より好ましくは10以下である。上記「(メタ)アクリロキシ」は、メタクリロキシ又はアクリロキシを意味する。
 上記R1がエポキシ基を有する炭素数1~30の有機基である場合、R1の具体例としては、1,2-エポキシエチル基、1,2-エポキシプロピル基、2,3-エポキシプロピル基、3,4-エポキシブチル基、3-グリシドキシプロピル基、及び2-(3,4-エポキシシクロヘキシル)エチル基等が挙げられる。上記エポキシ基を有する炭素数1~30の有機基の炭素数は好ましくは8以下、より好ましくは6以下である。なお、上記エポキシ基を有する炭素数1~30の有機基は、炭素原子及び水素原子に加えて、エポキシ基に由来する酸素原子を含む基である。
 上記R2の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、及びイソブチル基等が挙げられる。無機シェルに含まれる珪素原子の含有量を効果的に高めるために、上記R2は、メチル基又はエチル基を表すことが好ましい。
 上記シランアルコキシドの具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、及びジイソプロピルジメトキシシラン等が挙げられる。これら以外のシランアルコキシドを用いてもよい。
 無機シェルに含まれる珪素原子の含有量を効果的に高めるために、上記無機シェルの材料として、テトラメトキシシラン又はテトラエトキシシランを用いることが好ましい。上記無機シェルの材料の100重量%中、テトラメトキシシランとテトラエトキシシランとの合計の含有量は好ましくは50重量%以上である(全量でもよい)。上記無機シェル100重量%中、テトラメトキシシランに由来する骨格とテトラエトキシシランに由来する骨格との合計の含有量は好ましくは50重量%以上である(全量でもよい)。
 上記チタンアルコキシドの具体例としては、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド、及びチタンテトラブトキシド等が挙げられる。これら以外のチタンアルコキシドを用いてもよい。
 上記ジルコニウムアルコキシドの具体例としては、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトライソプロポキシド、及びジルコニウムテトラブトキシド等が挙げられる。これら以外のジルコニウムアルコキシドを用いてもよい。
 上記金属アルコキシドは、金属原子に4つの酸素原子が直接結合している構造を有する金属アルコキシドを含むことが好ましい。上記金属アルコキシドは、下記式(1a)で表される金属アルコキシドを含むことが好ましい。
 M(OR2)  ・・・式(1a)
 上記式(1a)中、Mは珪素原子、チタン原子又はジルコニウム原子であり、R2は炭素数1~6のアルキル基を表し、nは0~2の整数を表す。複数のR2は同一であってもよく、異なっていてもよい。
 上記金属アルコキシドは、珪素原子に4つの酸素原子が直接結合している構造を有するシランアルコキシドを含むことが好ましい。このシランアルコキシドでは、一般に珪素原子に4つの酸素原子が単結合により結合している。上記金属アルコキシドは、下記式(1Aa)で表されるシランアルコキシドを含むことが好ましい。
 Si(OR2)  ・・・式(1Aa)
 上記式(1Aa)中、R2は炭素数1~6のアルキル基を表す。複数のR2は同一であってもよく、異なっていてもよい。
 10%K値を効果的に高くし、かつ30%K値を効果的に低くする観点からは、上記無機シェルを形成するために用いる金属アルコキシド100モル%中、上記金属原子に4つの酸素原子が直接結合している構造を有する金属アルコキシド、上記式(1a)で表される金属アルコキシド、上記珪素原子に4つの酸素原子が直接結合している構造を有するシランアルコキシド、又は上記式(1Aa)で表されるシランアルコキシドの各含有量は、好ましくは20モル%以上、より好ましくは40モル%以上、更に好ましくは50モル%以上、更に一層好ましくは55モル%以上、特に好ましくは60モル%以上、100モル%以下である。上記無機シェルを形成するために用いる金属アルコキシドの全量が、上記金属原子に4つの酸素原子が直接結合している構造を有する金属アルコキシド、上記式(1a)で表される金属アルコキシド、上記珪素原子に4つの酸素原子が直接結合している構造を有するシランアルコキシド、又は上記式(1Aa)で表されるシランアルコキシドであってもよい。
 10%K値を効果的に高くし、かつ30%K値を効果的に低くする観点からは、上記無機シェルに含まれる上記金属アルコキシドに由来する金属原子の全個数100%中、4つの酸素原子が直接結合している金属原子の個数の割合、4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子の個数の割合はそれぞれ、好ましくは20%以上、より好ましくは40%以上、更に好ましくは50%以上、更に一層好ましくは55モル%以上、特に好ましくは60%以上である。
 また、10%K値を効果的に高くし、かつ30%K値を効果的に低くする観点からは、上記無機シェルに含まれている金属原子の全個数100%中、4つの酸素原子が直接結合している金属原子の個数の割合は、好ましくは20%以上、より好ましくは40%以上、更に好ましくは50%以上、更に一層好ましくは55モル%以上、特に好ましくは60%以上である。10%K値を効果的に高くし、かつ30%K値を効果的に低くする観点からは、上記金属アルコキシドがシランアルコキシドであり、かつ上記無機シェルに含まれている珪素原子の全個数100%中、4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子の個数の割合は、好ましくは20%以上、より好ましくは40%以上、更に好ましくは50%以上、特に好ましくは60%以上である。
 なお、4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子は、例えば、下記式(11)で表される構造における珪素原子である。具体的には、下記式(11X)で表される構造における矢印Aを付して示す珪素原子である。
Figure JPOXMLDOC01-appb-C000002
 なお、上記式(11)における酸素原子は、一般に隣接する珪素原子とシロキサン結合を形成している。
Figure JPOXMLDOC01-appb-C000003
 4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子の個数の割合(Q4の個数の割合(%))を測定する方法としては、例えば、NMRスペクトル解析装置を用いて、Q4(4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子)のピーク面積と、Q1~Q3(1~3つの-O-Si基が直接結合しておりかつ1~3つの上記-O-Si基における1~3つの酸素原子が直接結合している珪素原子)のピーク面積とを比較する方法が挙げられる。この方法により、上記無機シェルに含まれている珪素原子の全個数100%中、4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子の個数の割合(Q4の個数の割合)を求めることができる。なお、後述する実施例のQ4の個数の割合を求めたNMR測定結果では、4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子に由来するピークを評価している。
 上記無機シェルの厚みは、好ましくは1nm以上、より好ましくは10nm以上、更に好ましくは50nm以上、特に好ましくは100nm以上、好ましくは100000nm以下、より好ましくは10000nm以下、更に好ましくは2000nm以下である。上記無機シェルの厚みが上記下限以上及び上記上限以下であると、10%K値及び30%K値がより一層好適な値を示し、有機無機ハイブリッド粒子を導電性粒子及び液晶表示素子用スペーサの用途に好適に使用可能になる。上記無機シェルの厚みは、有機無機ハイブリッド粒子1個あたりの平均厚みである。ゾルゲル法の制御によって、上記無機シェルの厚みを制御可能である。
 本発明において無機シェルの厚みは、有機無機ハイブリッド粒子を、走査型電子顕微鏡を用いて観察し、任意に選択した50個の有機無機ハイブリッド粒子の粒径をノギスで測定した平均値と、有機コアの粒径の平均値との差から求めることができる。上記有機無機ハイブリッド粒子の粒径は、上記有機無機ハイブリッド粒子が真球状である場合には直径を意味し、上記有機無機ハイブリッド粒子が真球状以外の形状である場合には最大径を意味する。
 上記有機無機ハイブリッド粒子のアスペクト比は、好ましくは2以下、より好ましくは1.5以下、更に好ましくは1.2以下である。上記アスペクト比は、長径/短径を示す。
 上記有機コアと上記無機シェルとの間で化学結合していないことが好ましい。上記有機コアと上記無機シェルとの間で化学結合していない場合には、無機シェルが過度に割れにくくなり、更に電極と導電性粒子との接続対象部材に対する接触面積を大きくすることができ、電極間の接続抵抗をより一層低くすることができる。
 上記有機コアと上記無機シェルとの間で化学結合していていないことが好ましいが、化学結合していてもよい。上記有機コアと上記無機シェルとの間で化学結合させる方法としては、有機コアの表面に、無機シェルを構成する材料の官能基と反応可能な官能基を導入した後、有機コアの表面上で上記無機シェルを構成する材料により無機シェルを形成する方法等が挙げられる。具体的には、有機コアの表面をカップリング剤により表面処理した後に、上記有機コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とする方法等が挙げられる。
 (導電性粒子)
 上記導電性粒子は、上述した有機無機ハイブリッド粒子と、該有機無機ハイブリッド粒子の表面上に配置された導電層とを備える。
 図1に、本発明の第1の実施形態に係る導電性粒子を断面図で示す。
 図1に示す導電性粒子1は、有機無機ハイブリッド粒子11と、有機無機ハイブリッド粒子11の表面上に配置された導電層2とを有する。導電層2は、有機無機ハイブリッド粒子11の表面を被覆している。導電性粒子1は、有機無機ハイブリッド粒子11の表面が導電層2により被覆された被覆粒子である。
 有機無機ハイブリッド粒子11は、有機コア12と、有機コア12の表面上に配置された無機シェル13とを備える。無機シェル13は、有機コア12の表面を被覆している。導電層2は、無機シェル13の表面上に配置されている。導電層2は、無機シェル13の表面を被覆している。
 図2に、本発明の第2の実施形態に係る導電性粒子を断面図で示す。
 図2に示す導電性粒子21は、有機無機ハイブリッド粒子11と、有機無機ハイブリッド粒子11の表面上に配置された導電層22とを有する。導電層22は、内層である第1の導電層22Aと外層である第2の導電層22Bとを有する。有機無機ハイブリッド粒子11の表面上に、第1の導電層22Aが配置されている。無機シェル13の表面上に、第1の導電層22Aが配置されている。第1の導電層22Aの表面上に、第2の導電層22Bが配置されている。
 図3に、本発明の第3の実施形態に係る導電性粒子を断面図で示す。
 図3に示す導電性粒子31は、有機無機ハイブリッド粒子11と、導電層32と、複数の芯物質33と、複数の絶縁性物質34とを有する。
 導電層32は、有機無機ハイブリッド粒子11の表面上に配置されている。無機シェル13の表面上に導電層32が配置されている。
 導電性粒子31は導電性の表面に、複数の突起31aを有する。導電層32は外表面に、複数の突起32aを有する。このように、上記導電性粒子は、導電性の表面に突起を有していてもよく、導電層の外表面に突起を有していてもよい。複数の芯物質33が、有機無機ハイブリッド粒子11の表面上に配置されている。無機シェル13の表面上に、複数の芯物質33が配置されている。複数の芯物質33は導電層32内に埋め込まれている。芯物質33は、突起31a,32aの内側に配置されている。導電層32は、複数の芯物質33を被覆している。複数の芯物質33により導電層32の外表面が隆起されており、突起31a,32aが形成されている。
 導電性粒子31は、導電層32の外表面上に配置された絶縁性物質34を有する。導電層32の外表面の少なくとも一部の領域が、絶縁性物質34により被覆されている。絶縁性物質34は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、上記導電性粒子は、導電層の外表面上に配置された絶縁性物質を有していてもよい。
 上記導電層を形成するための金属は特に限定されない。該金属としては、例えば、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、珪素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗をより一層低くすることができるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムが好ましい。
 導電性粒子1,31のように、上記導電層は、1つの層により形成されていてもよい。導電性粒子21のように、導電層は、複数の層により形成されていてもよい。すなわち、導電層は、2層以上の積層構造を有していてもよい。導電層が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層であることがより好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が金層である場合には、耐腐食性がより一層高くなる。
 上記有機無機ハイブリッド粒子の表面上に導電層を形成する方法は特に限定されない。導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを有機無機ハイブリッド粒子の表面にコーティングする方法等が挙げられる。なかでも、導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。
 上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは520μm以下、より好ましくは500μm以下、より一層好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下である。導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が有機無機ハイブリッド粒子の表面から剥離し難くなる。また、導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を導電材料の用途に好適に使用可能である。
 上記導電性粒子の粒子径は、導電性粒子が真球状である場合には直径を意味し、導電性粒子が真球状以外の形状である場合には最大径を意味する。
 上記導電層の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.5μm以下、特に好ましくは0.3μm以下である。上記導電層の厚みは、導電層が多層である場合には導電層全体の厚みである。導電層の厚みが上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。
 上記導電層が複数の層により形成されている場合に、最外層の導電層の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電層の厚みが上記下限以上及び上記上限以下であると、最外層の導電層による被覆が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗がより一層低くなる。また、上記最外層が金層である場合に、金層の厚みが薄いほど、コストが低くなる。
 上記導電層の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。
 上記導電性粒子は、導電性の表面に突起を有していてもよい。上記導電性粒子は、上記導電層の外表面に突起を有していてもよい。該突起は複数であることが好ましい。導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。突起を有する導電性粒子を用いた場合には、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜が効果的に排除される。このため、電極と導電性粒子の導電層とをより一層確実に接触させることができ、電極間の接続抵抗を低くすることができる。さらに、導電性粒子が表面に絶縁性物質を備える場合に、又は導電性粒子がバインダー樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性物質又はバインダー樹脂を効果的に排除できる。このため、電極間の導通信頼性を高めることができる。
 上記導電性粒子の表面に突起を形成する方法としては、有機無機ハイブリッド粒子の表面に芯物質を付着させた後、無電解めっきにより導電層を形成する方法、並びに有機無機ハイブリッド粒子の表面に無電解めっきにより導電層を形成した後、芯物質を付着させ、更に無電解めっきにより導電層を形成する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いなくてもよい。
 上記導電性粒子は、上記導電層の外表面上に配置された絶縁性物質を備えていてもよい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電層と電極との間の絶縁性物質を容易に排除できる。導電性粒子が上記導電層の表面に突起を有する場合には、導電性粒子の導電層と電極との間の絶縁性物質をより一層容易に排除できる。上記絶縁性物質は、絶縁性樹脂層又は絶縁性粒子であることが好ましく、絶縁性粒子であることがより好ましい。上記絶縁性粒子は、絶縁性樹脂粒子であることが好ましい。
 (導電材料)
 上記導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
 上記バインダー樹脂中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法、上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法、並びに上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法等が挙げられる。
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。 
 上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。
 上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。
 (接続構造体及び液晶表示素子)
 上述した導電性粒子を用いて、又は上述した導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1の接続対象部材と第2の接続対象部材とを接続している接続部とを備え、該接続部が上述した導電性粒子により形成されているか、又は上述した導電性粒子とバインダー樹脂とを含む導電材料により形成されている接続構造体であることが好ましい。導電性粒子が単独で用いられた場合には、接続部自体が導電性粒子である。すなわち、第1,第2の接続対象部材が導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は、異方性導電材料であることが好ましい。
 上記第1の接続対象部材は、第1の電極を表面に有することが好ましい。上記第2の接続対象部材は、第2の電極を表面に有することが好ましい。上記第1の電極と上記第2の電極とが、上記導電性粒子により電気的に接続されていることが好ましい。
 図4は、図1に示す導電性粒子1を用いた接続構造体を模式的に示す正面断面図である。
 図4に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1の接続対象部材52と第2の接続対象部材53とを接続している接続部54とを備える。接続部54は、導電性粒子1とバインダー樹脂とを含む導電材料により形成されている。図4では、図示の便宜上、導電性粒子1は略図的に示されている。導電性粒子1にかえて、導電性粒子21,31などの他の導電性粒子を用いてもよい。
 第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。フレキシブルプリント基板の電極、樹脂フィルム上に配置された電極及びタッチパネルの電極を接続するための上記加圧の圧力は9.8×10~1.0×10Pa程度である。
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記導電材料は、電子部品を接続するための導電材料であることが好ましい。上記導電ペーストはペースト状の導電材料であり、ペースト状の状態で接続対象部材上に塗工されることが好ましい。
 上記導電性粒子及び上記導電材料は、タッチパネルにも好適に用いられる。従って、上記接続対象部材は、フレキシブルプリント基板であるか、又は樹脂フィルムの表面上に電極が配置された接続対象部材であることも好ましい。上記接続対象部材は、フレキシブルプリント基板であることが好ましく、樹脂フィルムの表面上に電極が配置された接続対象部材であることが好ましい。上記フレキシブルプリント基板は、一般に電極を表面に有する。
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 また、上記有機無機ハイブリッド粒子は、液晶表示素子用スペーサとして好適に用いられる。すなわち、上記有機無機ハイブリッド粒子は、液晶セルを構成する一対の基板と、該一対の基板間に封入された液晶と、上記一対の基板間に配置された液晶表示素子用スペーサとを備える液晶表示素子を得るために好適に用いられる。
 図5に、本発明の一実施形態に係る有機無機ハイブリッド粒子を液晶表示素子用スペーサとして用いた液晶表示素子を断面図で示す。
 図5に示す液晶表示素子81は、一対の透明ガラス基板82を有する。透明ガラス基板82は、対向する面に絶縁膜(図示せず)を有する。絶縁膜の材料としては、例えば、SiO等が挙げられる。透明ガラス基板82における絶縁膜上に透明電極83が形成されている。透明電極83の材料としては、ITO等が挙げられる。透明電極83は、例えば、フォトリソグラフィーによりパターニングして形成可能である。透明ガラス基板82の表面上の透明電極83上に、配向膜84が形成されている。配向膜84の材料としては、ポリイミド等が挙げられている。
 一対の透明ガラス基板82間には、液晶85が封入されている。一対の透明ガラス基板82間には、複数の有機無機ハイブリッド粒子11が配置されている。有機無機ハイブリッド粒子11は、液晶表示素子用スペーサとして用いられている。複数の有機無機ハイブリッド粒子11により、一対の透明ガラス基板82の間隔が規制されている。一対の透明ガラス基板82の縁部間には、シール剤86が配置されている。シール剤86によって、液晶85の外部への流出が防がれている。
 上記液晶表示素子において1mmあたりの液晶表示素子用スペーサの配置密度は、好ましくは10個/mm以上、好ましくは1000個/mm以下である。上記配置密度が10個/mm以上であると、セルギャップがより一層均一になる。上記配置密度が1000個/mm以下であると、液晶表示素子のコントラストがより一層良好になる。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (1)有機無機ハイブリッド粒子の作製
 (実施例1)
 有機コアとして、積水化学工業社製「ミクロパールEYP-00375」(アクリル系ポリマー、平均粒径3.75μm)を用意した。この有機コア100重量部と、界面活性剤であるヘキサデシルトリメチルアンミニウムブロミド40重量部とを、エタノール1800重量部と水200重量部との混合溶媒に分散させ、セパラブルフラスコ内に入れた。25重量%アンモニア水溶液80重量部を加え、超音波をかけながら攪拌した。テトラエトキシシラン600重量部をエタノール1200重量部に溶解した液を加え、超音波をかけながら25℃で24時間撹拌した。反応液を取り出し、PTFE(ポリテトラフルオロエチレン)製のメンブレンフィルターで吸引濾過し、エタノールを用いた洗浄を2回繰り返した後、50℃の真空乾燥機で24時間乾燥させ、有機無機ハイブリッド粒子を得た。
 (2)導電性粒子の作製
 得られた有機無機ハイブリッド粒子を洗浄し、乾燥した後、無電解めっき法により、得られた有機無機ハイブリッド粒子の表面に、ニッケル層を形成し、導電性粒子を作製した。なお、ニッケル層の厚さは0.1μmであった。
 (実施例2)
 有機コアを積水化学工業社製「ミクロパールEX-00375」(スチレン系ポリマー、平均粒径3.75μm)に変更し、テトラエトキシシランの添加量を300重量部に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子及び導電性粒子を得た。
 (実施例3)
 有機コアを積水化学工業社製「ミクロパールELP-00375」(スチレン・アクリル共重合ポリマー、平均粒径3.75μm)に変更し、エタノールをイソプロパノールに変更し、テトラエトキシシランの添加量を900重量部に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子及び導電性粒子を得た。
 (実施例4)
 有機コアを積水化学工業社製「ミクロパールELP-00375」(スチレン・アクリル共重合ポリマー、平均粒径3.75μm)に変更し、エタノールをイソプロパノールに変更し、テトラエトキシシランの添加量を1200重量部に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子及び導電性粒子を得た。
 (実施例5)
 有機コアを積水化学工業社製「ミクロパールEX-00375」(スチレン系ポリマー、平均粒径3.75μm)に変更し、テトラエトキシシランの添加量を100重量部に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子及び導電性粒子を得た。
 (実施例6)
 (1)パラジウム付着工程
 実施例1で得られた有機無機ハイブリッド粒子を用意した。この有機無機ハイブリッド粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に有機無機ハイブリッド粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に有機無機ハイブリッド粒子を添加し、パラジウムが付着された有機無機ハイブリッド粒子を得た。
 (2)芯物質付着工程
 パラジウムが付着された有機無機ハイブリッド粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、金属ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された有機無機ハイブリッド粒子を得た。
 (3)無電解ニッケルめっき工程
 実施例1と同様にして、有機無機ハイブリッド粒子の表面上に、ニッケル層を形成し、導電性粒子を作製した。なお、ニッケル層の厚さは0.1μmであった。
 (実施例7)
 (1)絶縁性粒子の作製
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
 実施例6で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
 走査型電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。
 (実施例8)
 テトラエトキシシラン600重量部をテトラエトキシシラン550重量部とメチルトリメトキシシラン50重量部に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子及び導電性粒子を得た。
 (実施例9)
 テトラエトキシシラン600重量部をテトラエトキシシラン500重量部とメチルトリメトキシシラン100重量部に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子及び導電性粒子を得た。
 (実施例10)
 25重量%アンモニア水溶液の添加量を80重量部から20重量部に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子及び導電性粒子を得た。
 (実施例11)
 有機コアとして、積水化学工業社製「ミクロパールEYP-00375」(アクリル系ポリマー、平均粒径3.75μm)の代わりに、積水化学工業社製「ミクロパールEYP-0025」(アクリル系ポリマー、平均粒径2.5μm)に変更したこと以外は実施例1と同様にして、有機無機ハイブリッド粒子及び導電性粒子を得た。
 (比較例1)
 シリカ粒子である積水化学工業社製「ミクロパールSI-GH038」(シリカ、平均粒径3.80μm)を、比較例1の粒子(無機粒子)とした。この粒子を用いて、実施例1と同様にして、導電性粒子を得た。
 (比較例2)
 積水化学工業社製「ミクロパールELP-00375」(粒径3.75μm)を、比較例2の粒子(有機ポリマー粒子)とした。この粒子を用いて、実施例1と同様にして、導電性粒子を得た。
 (比較例3)
 イオン交換水1600重量部をセパラブルフラスコに入れた。25重量%アンモニア水溶液10重量部を加え、静かに攪拌した。その上層にメチルトリメトキシシラン100重量部を、界面が乱れないようにゆっくりと加えた。油水界面が消失してから25重量%アンモニア水溶液30重量部を加え、さらに24時間撹拌した。反応液を取り出し、PTFE製のメンブレンフィルターで吸引濾過し、エタノールを用いた洗浄を2回繰り返した後、50℃の真空乾燥機で24時間乾燥させ、非コアシェル型の有機無機ハイブリッド粒子を得た。得られた有機無機ハイブリッド粒子を用いて、実施例1と同様にして、導電性粒子を得た。
 (比較例4)
 ポリエチレンテレフタレート6.5重量部に、トルエン10重量部を添加し、更にジフェニルメタンジイソシアネート1.42重量部を添加し、トルエン還流下、120℃で5時間反応を行った。その後、室温に冷却し、エチレンジアミン0.35重量部と、アミノ系シランカップリング剤(信越化学工業社製「KBM-9103」)0.1重量部とを添加し、60℃で5時間反応を行った。次に、トルエンを減圧下で留去し、両末端に水酸基を有し、かつウレタン結合及びウレア結合を有するポリウレタン樹脂を得た。
 得られたポリウレタン樹脂400重量部と、黄酸化鉄12重量部と、酢酸エチル380重量部とを混合し、混合物を得た。得られた混合物をポリビニルアルコール0.5重量%水溶液2000重量部に滴下しながら分散させ、樹脂を得た。得られた樹脂を濾紙により濾過して、水中より取り出し、50℃の真空乾燥機で24時間乾燥させ、シランカップリング剤が結合したポリウレタン微粒子を得た。
 得られたポリウレタン微粒子100重量部を1Lのフラスコ内に入れ、メタノール75重量部と、水25重量部と、テトラエトキシシラン2重量部と、25重量%アンモニア水溶液10重量部とを含むテトラエトキシシラン液を加え、2時間、攪拌下で反応させた。濾過及び洗浄後に、得られた粒子をさらにもう一度、前記テトラエトキシシラン液と同様の処理液で同じ処理を行った。反応液を取り出し、PTFE製のメンブレンフィルターで吸引濾過し、エタノールを用いた洗浄を2回繰り返した後、50℃の真空乾燥機で24時間乾燥させ、有機無機ハイブリッド粒子を得た。この有機無機ハイブリッド粒子を用いて、実施例1と同様にして、導電性粒子を得た。
 (比較例5)
 テトラエトキシシランの添加量を20重量部に変更したこと以外は比較例4と同様にして有機無機ハイブリッド粒子を得た。この有機無機ハイブリッド粒子を用いて、実施例1と同様にして、導電性粒子を得た。
 (評価)
 (1)有機無機ハイブリッド粒子(その他の粒子)における有機コア及び無機シェル中での珪素原子及び炭素原子の含有量
 TEM/EDS法による線分析で、有機無機ハイブリッド粒子における有機コア及び無機シェル中での珪素原子、炭素原子、酸素原子及び窒素原子の含有量を測定した。珪素原子、炭素原子、酸素原子及び窒素原子の合計100重量%に対する各原子の重量%を含有量とした。なお、実施例における有機無機ハイブリッド粒子では、有機コア及び無機シェルに、珪素原子、炭素原子、酸素原子及び窒素原子以外の原子は含まれていなかった。また、その他の粒子における珪素原子、炭素原子、酸素原子及び窒素原子の含有量を測定した。
 (2)有機無機ハイブリッド粒子(その他の粒子)の粒径、有機コアの粒径及び無機シェルの厚み
 得られた有機無機ハイブリッド粒子(その他の粒子)を、走査型電子顕微鏡(日立ハイテクノロジー社製「S-3500N」)にて3000倍の粒子画像を撮影し、得られた画像中の粒子50個の粒径をノギスで測定し、個数平均を求めて有機無機ハイブリッド粒子(その他の粒子)の粒径を求めた。
 有機無機ハイブリッド粒子を作製する際に使用した有機コアについても、上記と同様の方法により粒径を測定した。有機無機ハイブリッド粒子の粒径と有機コアの粒径との差から、無機シェルの厚みを求めた。
 (3)有機無機ハイブリッド粒子(その他の粒子)の上記圧縮弾性率(10%K値及び30%K値)
 得られた有機無機ハイブリッド粒子(その他の粒子)の上記圧縮弾性率(10%K値及び30%K値)を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
 (4)4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子の個数の割合(Q4の個数の割合(%))
 得られた有機無機ハイブリッド粒子における無機シェルにおいて、NMRスペクトル解析装置(JEOL、ECX400)を用い、固体29Si NMRスペクトル解析(測定周波数:79.4254MHz、パルス幅:3.7、試料ホルダー:8mm、試料回転数:7kHz、積算回数:3600、測定温度、25℃、待ち時間:60秒)によって得られたQ4(4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合した珪素原子)のピーク面積とQ1~Q3(1~3つの-O-Si基が直接結合しておりかつ1~3つの上記-O-Si基における1~3つの酸素原子が直接結合した珪素原子)のピーク面積とを比較することにより、上記無機シェルに含まれている珪素原子の全個数100%中、4つの-O-Si基が直接結合しておりかつ4つの上記-O-Si基における4つの酸素原子が直接結合している珪素原子の個数の割合(Q4の個数の割合)を求めた。
 (5)分散性1
 得られた有機無機ハイブリッド粒子(その他の粒子)を液晶表示素子用スペーサとして用いた。なお、実施例6,7で得られた有機無機ハイブリッド粒子については、分散性1の評価を行わなかった。イソプロピルアルコール70重量部と水30重量部とを含む分散媒に、得られるスペーサ分散液100重量%中で液晶表示素子用スペーサを固形分濃度が2重量%となるように添加し、撹拌し、液晶表示素子用スペーサ分散液を得た。
 得られた液晶表示素子用スペーサ分散液を25℃で1分間放置した。放置後の分散液中で、液晶表示素子用スペーサが沈降しているか否かを観察した。分散性1を下記の基準で判定した。
 [分散性1の判定基準]
 ○:放置後の分散液中で、液晶表示素子用スペーサの沈降物が容器底部に見られない
 ×:放置後の分散液中で、液晶表示素子用スペーサの沈降物が容器底部に確認できる
 (6)分散性2
 ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、得られた導電性粒子を含有量が3重量%となるように添加し、分散させ、導電材料(樹脂組成物)を得た。
 得られた導電材料を25℃で1時間放置した。放置後の分散液中で、導電性粒子が沈降しているか否かを観察した。分散性1を下記の基準で判定した。
 [分散性2の判定基準]
 ○:放置後の分散液中で、導電性粒子が沈降しておらず、かつ凝集していない
 ×:放置後の分散液中で、導電性粒子が沈降しているか、又は凝集している
 (7)接続抵抗
 接続構造体の作製:
 上記(6)分散性2の評価で得られた樹脂組成物(導電材料)(放置前)を用意した。この導電材料を25℃で1時間放置した。
 この放置後の導電材料を、片面が離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)フィルムに塗布し、70℃の熱風で5分間乾燥し、異方性導電フィルムを作製した。得られた異方性導電フィルムの厚さは12μmであった。
 得られた異方性導電フィルムを5mm×5mmの大きさに切断した。切断された異方性導電フィルムを、一方に抵抗測定用の引き回し線を有するITO電極(高さ0.1μm、L/S=20μm/20μm)が設けられたPET基板(幅3cm、長さ3cm)のITO電極側のほぼ中央に貼り付けた。次いで、同じ金電極が設けられた2層フレキシブルプリント基板(幅2cm、長さ1cm)を、電極同士が重なるように位置合わせをしてから貼り合わせた。このPET基板と2層フレキシブルプリント基板との積層体を、10N、180℃、及び20秒間の圧着条件で熱圧着し、接続構造体を得た。なお、ポリイミドフィルムに銅電極が形成され、銅電極表面がAuめっきされている、2層フレキシブルプリント基板を用いた。
 得られた接続構造体の対向する電極間の接続抵抗を4端子法により測定した。接続抵抗を下記の基準で判定した。
 [接続抵抗の評価基準]
 ○○:接続抵抗が3.0Ω以下
 ○:接続抵抗が3.0Ωを超え、4.0Ω以下
 △:接続抵抗が4.0Ωを超え、5.0Ω以下
 ×:接続抵抗が5.0Ωを超える
 (8)絶縁信頼性
 上記(7)接続抵抗の評価で得られた接続構造体を、85℃、及び85%の雰囲気中に100時間放置した。その後、隣接する電極間が絶縁状態か導通状態かを25か所で測定した。絶縁信頼性を下記の基準で判定した。
 [絶縁信頼性の判定基準]
 ○○:絶縁状態の電極間が25か所
 ○:絶縁状態の電極間が20か所以上、25か所未満
 △:絶縁状態の電極間が15か所以上、20か所未満
 ×:絶縁状態の電極間が15か所未満
 (9)無機シェルと導電層との密着性1
 得られた導電性粒子1.0gと直径1mmのジルコニアボール(アズワン社製「YTZ-10」)45gとトルエン17gとを200mLのビーカー(内径6.7cm)に入れ、スリーワンモーター攪拌機(HEIDON社製「BL1200」)を用いて、25℃で6分間、400rpmで撹拌した。次に、撹拌後の有機無機ハイブリッド粒子を、撹拌後の有機無機ハイブリッド粒子の無機シェルが割れないように分別した。その後、走査型電子顕微鏡で導電性粒子を観察した。
 上記観察により、撹拌後の導電性粒子100個中、導電層の剥離が見られた導電性粒子の個数を数えた。無機シェルと導電層との密着性1を下記の基準で判定した。
 [無機シェルと導電層との密着性1の判定基準]
 ○:導電層の剥離が見られた導電性粒子の個数が5個未満
 △:導電層の剥離が見られた導電性粒子の個数が5個以上、10個未満
 ×:導電層の剥離が見られた導電性粒子の個数が10個以上
 (10)無機シェルと導電層との密着性2
 無機シェルと導電層との密着性1の評価において、スリーワンモーター攪拌機を用いた撹拌条件を25℃で12分間、600rpmに変更したこと以外は同様にして、無機シェルと導電層との密着性2を評価した。上記無機シェルと導電層との密着性1の判定基準と同様の基準で、無機シェルと導電層との密着性2を判定した。
 結果を下記の表1,2に示す。なお、実施例1~5,8~11で得られた有機無機ハイブリッド粒子のアスペクト比はいずれも1.2以下であった。なお、実施例1,3,4,6~9,11における接続抵抗の評価結果はいずれも「○」であるが、実施例1,3,4,6,7,9,11における接続抵抗の値は、実施例8における接続抵抗の値よりも低かった。
 また、実施例6,7における接続抵抗の値は、実施例1,3,4,9,11における接続抵抗の値よりも低く、実施例6における接続抵抗の値は、実施例7における接続抵抗の値よりも低かった。突起が影響していると考えられる。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 (11)液晶表示素子用スペーサとしての使用例
 STN型液晶表示素子の作製:
 イソプロピルアルコール70重量部と水30重量部とを含む分散媒に、得られるスペーサ分散液100重量%中で実施例1~5,8~11の液晶表示素子用スペーサ(有機無機ハイブリッド粒子)を固形分濃度が2重量%となるように添加し、撹拌し、液晶表示素子用スペーサ分散液を得た。
 一対の透明ガラス板(縦50mm、横50mm、厚さ0.4mm)の一面に、CVD法によりSiO膜を蒸着した後、SiO膜の表面全体にスパッタリングによりITO膜を形成した。得られたITO膜付きガラス基板に、スピンコート法によりポリイミド配向膜組成物(日産化学社製、SE3510)を塗工し、280℃で90分間焼成することによりポリイミド配向膜を形成した。配向膜にラビング処理を施した後、一方の基板の配向膜側に、液晶表示素子用スペーサを1mm当たり100~200個となるように湿式散布した。他方の基板の周辺にシール剤を形成した後、この基板とスペーサを散布した基板とをラビング方向が90°になるように対向配置させ、両者を貼り合わせた。その後、160℃で90分間処理してシール剤を硬化させて、空セル(液晶の入ってない画面)を得た。得られた空セルに、カイラル剤入りのSTN型液晶(DIC社製)を注入し、次に注入口を封止剤で塞いだ後、120℃で30分間熱処理してSTN型液晶表示素子を得た。
 得られた液晶表示素子では、実施例1~5,8~11の液晶表示素子用スペーサにより基板間の間隔が良好に規制されていた。また、液晶表示素子は、良好な表示品質を示した。
 1…導電性粒子
 2…導電層
 11…有機無機ハイブリッド粒子
 12…有機コア
 13…無機シェル
 21…導電性粒子
 22…導電層
 22A…第1の導電層
 22B…第2の導電層
 31…導電性粒子
 31a…突起
 32…導電層
 32a…突起
 33…芯物質
 34…絶縁性物質
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部
 81…液晶表示素子
 82…透明ガラス基板
 83…透明電極
 84…配向膜
 85…液晶
 86…シール剤

Claims (10)

  1.  有機コアと、前記有機コアの表面上に配置された無機シェルとを備え、
     前記有機コア100重量%中、前記有機コアに含まれる珪素原子の含有量が10重量%以下かつ前記有機コアに含まれる炭素原子の含有量が50重量%以上であり、
     前記無機シェル100重量%中、前記無機シェルに含まれる珪素原子の含有量が50重量%以上かつ前記無機シェルに含まれる炭素原子の含有量が30重量%以下であり、
     前記無機シェルの厚みの、前記有機コアの半径に対する比が0.05以上かつ0.70以下である、有機無機ハイブリッド粒子。
  2.  表面上に導電層が形成され、前記導電層を有する導電性粒子を得るために用いられるか、又は液晶表示素子用スペーサとして用いられる、請求項1に記載の有機無機ハイブリッド粒子。
  3.  表面上に導電層が形成され、前記導電層を有する導電性粒子を得るために用いられる、請求項2に記載の有機無機ハイブリッド粒子。
  4.  前記有機コアと前記無機シェルとの間で化学結合していない、請求項1~3のいずれか1項に記載の有機無機ハイブリッド粒子。
  5.  前記無機シェルの厚みが50nm以上かつ2000nm以下である、請求項1~4のいずれか1項に記載の有機無機ハイブリッド粒子。
  6.  前記有機コアの粒径が0.5μm以上かつ100μm以下である、請求項1~5のいずれか1項に記載の有機無機ハイブリッド粒子。
  7.  前記無機シェルに含まれている珪素原子の全個数100%中、4つの-O-Si基が直接結合しておりかつ4つの前記-O-Si基における4つの酸素原子が直接結合している珪素原子の個数の割合は50%以上である、請求項1~6のいずれか1項に記載の有機無機ハイブリッド粒子。
  8.  請求項1~7のいずれか1項に記載の有機無機ハイブリッド粒子と、
     前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備える、導電性粒子。
  9.  導電性粒子と、バインダー樹脂とを含み、
     前記導電性粒子が、請求項1~7のいずれか1項に記載の有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備える、導電材料。
  10.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
     前記導電性粒子が、請求項1~7のいずれか1項に記載の有機無機ハイブリッド粒子と、前記有機無機ハイブリッド粒子の表面上に配置された導電層とを備え、
     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
PCT/JP2013/084486 2012-12-28 2013-12-24 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体 WO2014104017A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014504115A JP5620608B1 (ja) 2012-12-28 2013-12-24 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
KR1020157001455A KR102095290B1 (ko) 2012-12-28 2013-12-24 유기 무기 하이브리드 입자, 도전성 입자, 도전 재료 및 접속 구조체
CN201380044993.6A CN104619754B (zh) 2012-12-28 2013-12-24 有机无机杂化粒子、导电性粒子、导电材料及连接结构体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-287509 2012-12-28
JP2012287509 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104017A1 true WO2014104017A1 (ja) 2014-07-03

Family

ID=51021098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084486 WO2014104017A1 (ja) 2012-12-28 2013-12-24 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体

Country Status (5)

Country Link
JP (1) JP5620608B1 (ja)
KR (1) KR102095290B1 (ja)
CN (1) CN104619754B (ja)
TW (1) TWI574283B (ja)
WO (1) WO2014104017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018118880A1 (en) * 2016-12-21 2018-06-28 3M Innovative Properties Company Conductive particles, articles, and methods

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6212380B2 (ja) * 2012-12-28 2017-10-11 積水化学工業株式会社 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP6266973B2 (ja) * 2012-12-28 2018-01-24 積水化学工業株式会社 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
CN105044994B (zh) * 2015-09-18 2018-06-15 京东方科技集团股份有限公司 封框胶、显示面板及显示装置
CN106125410B (zh) * 2016-06-28 2019-08-02 京东方科技集团股份有限公司 导电球及其制备方法、各向异性导电胶、显示装置
CN106647051A (zh) * 2017-02-10 2017-05-10 京东方科技集团股份有限公司 隔垫物、其制备方法及封框胶和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204352A (ja) * 1999-01-18 2000-07-25 Toshiba Corp 半導体装置の製造に用いる化学機械研磨用複合粒子及びその製造方法並びに水系分散体
JP2000212442A (ja) * 1999-01-20 2000-08-02 Catalysts & Chem Ind Co Ltd ポリオルガノシロキサン被覆弾性微粒子、その製造方法および液晶表示装置
JP2004075996A (ja) * 2002-06-19 2004-03-11 Nippon Shokubai Co Ltd 有機質無機質複合体微粒子およびその用途
JP2006117850A (ja) * 2004-10-22 2006-05-11 Nippon Shokubai Co Ltd 重合体微粒子およびその製造方法、導電性微粒子
JP2006156068A (ja) * 2004-11-29 2006-06-15 Sanyo Chem Ind Ltd 導電性微粒子
JP2009091466A (ja) * 2007-10-09 2009-04-30 Nikko Rika Kk 球状コア/シェル型複合微粒子およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2745816A1 (fr) * 1996-03-06 1997-09-12 Rhone Poulenc Chimie Particules composites comprenant un polymere organique et un oxyde, particules creuses a base d'oxyde, leur preparation et leurs utilisations
JP4163316B2 (ja) 1999-01-14 2008-10-08 株式会社日本触媒 有機質無機質複合体粒子、その製造方法およびその用途
KR100447551B1 (ko) * 1999-01-18 2004-09-08 가부시끼가이샤 도시바 복합 입자 및 그의 제조 방법, 수계 분산체, 화학 기계연마용 수계 분산체 조성물 및 반도체 장치의 제조 방법
JP2001011503A (ja) 1999-06-25 2001-01-16 Catalysts & Chem Ind Co Ltd 新規な導電性微粒子、および該微粒子の用途
KR100722493B1 (ko) * 2005-09-02 2007-05-28 제일모직주식회사 절연 전도성 미립자 및 이를 이용한 이방 전도성 접착필름
JP4860587B2 (ja) 2007-10-01 2012-01-25 日揮触媒化成株式会社 新規な導電性微粒子の製造方法および該微粒子の用途
KR101815336B1 (ko) * 2010-09-30 2018-01-04 세키스이가가쿠 고교가부시키가이샤 도전성 입자, 이방성 도전 재료 및 접속 구조체
KR101309821B1 (ko) * 2010-12-31 2013-09-23 제일모직주식회사 이방 전도성 필름 조성물
KR101232433B1 (ko) * 2011-02-23 2013-02-12 세키스이가가쿠 고교가부시키가이샤 도전성 입자, 도전성 입자의 제조 방법, 이방성 도전 재료 및 접속 구조체
KR20150072381A (ko) * 2012-10-15 2015-06-29 세키스이가가쿠 고교가부시키가이샤 유기 무기 하이브리드 입자, 도전성 입자, 도전 재료 및 접속 구조체
WO2014115468A1 (ja) * 2013-01-24 2014-07-31 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体
CN104684970B (zh) * 2013-01-24 2018-01-30 积水化学工业株式会社 基材粒子、导电性粒子、导电材料及连接结构体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204352A (ja) * 1999-01-18 2000-07-25 Toshiba Corp 半導体装置の製造に用いる化学機械研磨用複合粒子及びその製造方法並びに水系分散体
JP2000212442A (ja) * 1999-01-20 2000-08-02 Catalysts & Chem Ind Co Ltd ポリオルガノシロキサン被覆弾性微粒子、その製造方法および液晶表示装置
JP2004075996A (ja) * 2002-06-19 2004-03-11 Nippon Shokubai Co Ltd 有機質無機質複合体微粒子およびその用途
JP2006117850A (ja) * 2004-10-22 2006-05-11 Nippon Shokubai Co Ltd 重合体微粒子およびその製造方法、導電性微粒子
JP2006156068A (ja) * 2004-11-29 2006-06-15 Sanyo Chem Ind Ltd 導電性微粒子
JP2009091466A (ja) * 2007-10-09 2009-04-30 Nikko Rika Kk 球状コア/シェル型複合微粒子およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018118880A1 (en) * 2016-12-21 2018-06-28 3M Innovative Properties Company Conductive particles, articles, and methods
US10964441B2 (en) 2016-12-21 2021-03-30 3M Innovative Properties Company Conductive particles, articles, and methods

Also Published As

Publication number Publication date
JPWO2014104017A1 (ja) 2017-01-12
KR20150100601A (ko) 2015-09-02
TWI574283B (zh) 2017-03-11
TW201430865A (zh) 2014-08-01
CN104619754B (zh) 2017-06-09
KR102095290B1 (ko) 2020-03-31
CN104619754A (zh) 2015-05-13
JP5620608B1 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
JP6200808B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP5559947B1 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP5620608B1 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
KR102172940B1 (ko) 기재 입자, 도전성 입자, 도전 재료 및 접속 구조체
JP6333626B2 (ja) 突起粒子、導電性粒子、導電材料及び接続構造体
JP6266973B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP2020037705A (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6613326B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6188392B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6130784B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP6460673B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6212380B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP6306876B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP2015110743A (ja) 有機無機ハイブリッド粒子の製造方法、導電性粒子、導電材料及び接続構造体
JP6345536B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6322016B2 (ja) 有機無機ハイブリッド粒子の製造方法、導電性粒子の製造方法、導電材料の製造方法及び接続構造体の製造方法
JP6084886B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP6426913B2 (ja) 突起粒子、導電性粒子、導電材料及び接続構造体
JP6696721B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP2014111725A (ja) コアシェル粒子、コアシェル粒子の製造方法、導電性粒子、導電材料及び接続構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014504115

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157001455

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867987

Country of ref document: EP

Kind code of ref document: A1