JP6426913B2 - 突起粒子、導電性粒子、導電材料及び接続構造体 - Google Patents

突起粒子、導電性粒子、導電材料及び接続構造体 Download PDF

Info

Publication number
JP6426913B2
JP6426913B2 JP2014108333A JP2014108333A JP6426913B2 JP 6426913 B2 JP6426913 B2 JP 6426913B2 JP 2014108333 A JP2014108333 A JP 2014108333A JP 2014108333 A JP2014108333 A JP 2014108333A JP 6426913 B2 JP6426913 B2 JP 6426913B2
Authority
JP
Japan
Prior art keywords
particles
particle
conductive
inorganic shell
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014108333A
Other languages
English (en)
Other versions
JP2015007224A (ja
Inventor
弘幸 森田
弘幸 森田
山内 博史
博史 山内
聡 羽根田
聡 羽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2014108333A priority Critical patent/JP6426913B2/ja
Publication of JP2015007224A publication Critical patent/JP2015007224A/ja
Application granted granted Critical
Publication of JP6426913B2 publication Critical patent/JP6426913B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Chemically Coating (AREA)

Description

本発明は、コア粒子と、該コア粒子の表面上に配置された無機シェルとを備える突起粒子に関する。また、本発明は、上記突起粒子を用いた導電性粒子、導電材料及び接続構造体に関する。
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。上記異方性導電材料は、フレキシブルプリント基板(FPC)、ガラス基板、ガラスエポキシ基板及び半導体チップなどの様々な接続対象部材の電極間を電気的に接続し、接続構造体を得るために用いられている。また、上記導電性粒子として、基材粒子と、該基材粒子の表面上に配置された導電層とを有する導電性粒子が用いられることがある。
上記導電性粒子に用いられる上記基材粒子の一例として、下記の特許文献1には、母体粒子の全面に、化学結合により結着している突起物を有するシリカ粒子(突起粒子)が開示されている。上記突起物は、実質上球状又は球冠状である。特許文献1では、具体的には、上記シリカ粒子においては、上記母体粒子と上記突起物との双方が、式:R Si(OR4−nで表されるアルコキシシランに由来する組成を有することが記載されている。また、特許文献1では、上記シリカ粒子と、上記シリカ粒子の表面に形成された導電性被覆層とを有する導電性粒子も開示されている。
下記の特許文献2では、重合性有機基を有する加水分解性シリコン化合物を必須として含むシリコン化合物群を加水分解及び縮合して重合性オルガノポリシロキサン粒子(S1)を得る工程(I)と、該重合性オルガノポリシロキサン粒子(S1)を重合して有機無機複合体粒子(P1)を得る工程(II)と、該有機無機複合体粒子(P1)に重合性モノマー(M1)を添加して有機無機複合体粒子(P2)を得る工程(III)と、該有機無機複合体粒子(P2)を重合してコアシェル型有機無機複合体粒子(P3)を得る工程(IV)とを備えるコアシェル型有機無機複合体粒子の製造方法により得られる有機無機複合体粒子が開示されている。
下記の特許文献3には、上記導電性粒子の一例として、平均粒径が1〜20μmの球状芯材粒子の表面上に、無電解めっき法によりニッケル又はニッケル合金皮膜が形成されている導電性粒子が開示されている。この導電性粒子は、上記皮膜の最表面に0.05〜4μmの微小な突起を有し、かつ上記導電性粒子では、上記皮膜と上記微小な突起とは実質的に連続皮膜である。
また、液晶表示素子は、2枚のガラス基板間に液晶が配置されて構成されている。該液晶表示素子では、2枚のガラス基板の間隔(ギャップ)を均一かつ一定に保つために、ギャップ制御材としてスペーサが用いられている。該スペーサとして、様々な粒子が一般に用いられている。
上記液晶表示素子用スペーサに用いられる粒子の一例として、下記の特許文献4には、コア粒子と、該コア粒子の表面上に形成されている単層又は多層の熱可塑性樹脂皮膜とを有し、表面に突起を有する突起粒子が開示されている。上記熱可塑性樹脂皮膜は、析出重合により形成された皮膜である。
特開2003−212534号公報 特開2010−229303号公報 特開2000−243132号公報 特開2003−192939号公報
特許文献1では、具体的には、上記シリカ粒子においては、上記母体粒子と上記突起物との双方が、式:R Si(OR4−nで表されるアルコキシシランに由来する組成を有することが記載されているにすぎない。このような材料により形成された突起粒子では、母体粒子に由来して、突起粒子の柔軟性が低くなりやすい。
特許文献2に記載の有機無機複合体粒子は、外表面に突起を有さない。
特許文献3に記載の導電性粒子では、ニッケル又はニッケル合金皮膜に突起が形成されている。しかし、上記ニッケル又はニッケル合金皮膜により被覆される球状芯材粒子は、表面に突起を有さない。
特許文献4に記載の突起粒子では、コア粒子の表面上に、熱可塑性樹脂を用いた熱可塑性樹脂膜が形成されているにすぎない。
本発明の目的は、柔軟性が高い突起粒子を提供すること、並びに該突起粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。
本発明の広い局面によれば、コア粒子と、前記コア粒子の表面上に配置された無機シェルとを備え、前記無機シェルが外表面に複数の突起を有し、前記コア粒子が有機コア粒子である、突起粒子が提供される。
本発明に係る突起粒子のある特定の局面では、前記無機シェルが、金属アルコキシドを用いて形成されている。
本発明に係る突起粒子のある特定の局面では、前記無機シェルが、金属アルコキシドを用いて、ゾルゲル法により、外表面に複数の突起を有するように形成されている。
本発明に係る突起粒子のある特定の局面では、前記突起の高さが50nm以上、500nm以下である。
本発明に係る突起粒子のある特定の局面では、前記有機コア粒子が、エチレン性不飽和基を有する単量体を用いて、該エチレン性不飽和基を有する単量体を重合させることにより形成されている。
本発明に係る突起粒子のある特定の局面では、前記無機シェルが、第1の無機シェル部分と、前記第1の無機シェル部分よりも厚みが厚くかつ前記無機シェルの外表面に複数の突起を形成している第2の無機シェル部分とを有し、前記第1の無機シェル部分と前記第2の無機シェル部分とが連なっている。
本発明に係る突起粒子は、表面上に導電層が形成され、前記導電層を有する導電性粒子を得るために用いられるか、又は液晶表示素子用スペーサとして用いられることが好ましい。
本発明の広い局面によれば、上述した突起粒子と、前記突起粒子の表面上に配置されており、かつ外表面に複数の突起を有する導電層とを備える、導電性粒子が提供される。
本発明の広い局面によれば、導電性粒子と、バインダー樹脂とを含み、前記導電性粒子が、上述した突起粒子と、前記突起粒子の表面上に配置されており、かつ外表面に複数の突起を有する導電層とを備える、導電材料が提供される。
本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記導電性粒子が、上述した突起粒子と、前記突起粒子の表面上に配置されており、かつ外表面に複数の突起を有する導電層とを備え、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。
本発明に係る突起粒子は、コア粒子と、上記コア粒子の表面上に配置された無機シェルとを備え、上記無機シェルが外表面に複数の突起を有し、上記コア粒子が有機コア粒子であるので、柔軟性を高めることができる。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 図3は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す正面断面図である。 図4は、本発明の一実施形態に係る突起粒子を液晶表示素子用スペーサとして用いた液晶表示素子を模式的に示す断面図である。
以下、本発明を詳細に説明する。
(突起粒子)
本発明に係る突起粒子は、コア粒子と、上記コア粒子の表面上に配置された無機シェルとを備える。上記無機シェルは、外表面に複数の突起を有する。上記コア粒子は、有機コア粒子である。
本発明に係る突起粒子では、上述した構成が備えられているので、柔軟性を高めることができる。また、本発明では、突起を外れにくくすることができる。
例えば、上記突起粒子を液晶表示素子用スペーサとして用いた場合に、得られる液晶表示素子において、液晶表示素子用スペーサの柔軟性に由来して、基板等が傷つきにくく、得られる液晶表示素子の表示品質を良好にすることができる。
上記突起粒子の表面に導電層を形成して導電性粒子を得て、得られた導電性粒子を用いて電極間を電気的に接続した場合に、突起粒子の柔軟性に由来して、電極と導電層とより一層確実に接触させることができる。また、導電層の表面及び電極の表面に酸化膜が形成されている場合に、上記無機シェルの突起に由来して、上記酸化膜が効果的に排除される。このため、電極と導電性粒子の導電層とをより一層確実に接触させることができ、電極間の接続抵抗を低くすることができる。さらに、導電性粒子が表面に絶縁性物質を備える場合に、又は導電性粒子がバインダー樹脂中に分散されて導電材料として用いられる場合に、上記無機シェルの突起に由来して、導電性粒子と電極との間の絶縁性物質又はバインダー樹脂を効果的に排除できる。このため、電極間の導通信頼性を高めることができる。
上記突起粒子の用途は特に限定されない。上記突起粒子は、様々な用途に好適に用いられる。上記突起粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられるか、又は液晶表示素子用スペーサとして用いられることが好ましい。上記突起粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられることが好ましい。上記突起粒子は、液晶表示素子用スペーサとして用いられることが好ましい。
さらに、上記突起粒子は、無機充填材、トナーの添加剤、衝撃吸収剤又は振動吸収剤としても好適に用いられる。例えば、ゴム又はバネ等の代替品として、上記突起粒子を用いることができる。
上記無機シェルは金属アルコキシドを用いて形成されていることが好ましい。金属アルコキシドを用いて突起を形成するために、ゾルゲル法を用いることが好ましい。上記無機シェルは、金属アルコキシドを用いて、ゾルゲル法により、外表面に複数の突起を有するように形成されていることが好ましい。
上記突起の高さは、好ましくは10nm以上、好ましくは1000nm以下、より好ましくは500nm以下である。上記突起の高さは、50nm以上、500nm以下であることがより好ましい。上記突起の高さは、50nm以上、200nm以下であることが更に好ましい。上記突起の高さが上記下限以上であると、突起があることによる効果が、突起がない場合と比べて、より一層効果的に得られる。上記突起の高さが上記上限以下であると、突起がより一層外れにくくなる。
上記突起の高さは、突起粒子における複数の突起の高さの平均である。上記突起の高さは、突起がない無機シェル部分を基準としたときに、1つの突起がある無機シェル部分の隆起している高さの最大値を測定することにより求めることができる。上記突起の高さは、走査型電子顕微鏡により確認することができる。
上記突起の個数は、突起粒子1個の表面上において、好ましくは10個以上存在しており、より好ましくは50個以上、更に好ましくは90個以上存在している。上記突起の個数は、走査型電子顕微鏡により確認することができる。
上記突起の形状は特に限定されない。上記突起の形状は、球体の一部の形状、回転楕円体の一部の形状、円錐状、円柱状、角錘状及び角柱状等が挙げられる。
上記無機シェルが、第1の無機シェル部分と、上記第1の無機シェル部分よりも厚みが厚くかつ上記無機シェルの外表面に複数の突起を形成している第2の無機シェル部分とを有し、上記第1の無機シェル部分と上記第2の無機シェル部分とが連なっていることが好ましい。また、上記無機シェルの突起を除く部分と上記無機シェルの突起とが1段階工程で同時に形成されていることが好ましく、無機シェルの突起を除く部分と上記無機シェルの突起とが一体構造を有していることがより好ましい。これらの場合には、突起が外れるのをより一層抑えることができる。
上記無機シェルの厚みの、上記コア粒子の半径に対する比(無機シェルの厚み/コア粒子の半径)は好ましくは0.05以上、より好ましくは0.1以上、更に好ましくは0.15以上、好ましくは0.7以下、より好ましくは0.65以下、更に好ましくは0.6以下である。上記比が上記下限以上及び上記上限以下であると、突起粒子の10%K値を十分に高くすることができ、電極間の接続抵抗を低くすることができ、絶縁信頼性を高くすることができる。
上記突起粒子を10%圧縮変形したときの圧縮弾性率(10%K値)は、好ましくは2000N/mm以上、より好ましくは3000N/mm以上、更に好ましくは4000N/mm以上、特に好ましくは5000N/mm以上、最も好ましくは6000N/mm以上、好ましくは15000N/mm以下、より好ましくは10000N/mm以下、更に好ましくは8500N/mm以下である。上記10%K値が上記下限以上及び上記上限以下である突起粒子は、良好な圧縮変形特性を有する。
上記突起粒子を30%圧縮変形したときの圧縮弾性率(30%K値)は、好ましくは300N/mm以上、より好ましくは600N/mm以上、更に好ましくは800N/mm以上、特に好ましくは1000N/mm以上、好ましくは5000N/mm以下、より好ましくは4500N/mm以下、更に好ましくは4000N/mm以下である。上記30%K値が上記下限以上及び上記上限以下である突起粒子は、良好な圧縮変形特性を有する。
良好な圧縮変形特性が得られることから、上記突起粒子を10%圧縮したときの圧縮弾性率(10%K値)の、上記突起粒子を30%圧縮したときの圧縮弾性率(30%K値)に対する比(10%K値/30%K値)は好ましくは1以上、より好ましくは1.3以上、更に好ましくは1.8以上、特に好ましくは2.0以上、好ましくは10.0以下、より好ましくは5.0以下、更に好ましくは4.4以下である。
上記突起粒子における上記圧縮弾性率(10%K値及び30%K値)は、以下のようにして測定できる。
微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で突起粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH−100」等が用いられる。
K値(N/mm)=(3/21/2)・F・S−3/2・R−1/2
F:突起粒子が10%又は30%圧縮変形したときの荷重値(N)
S:突起粒子が10%又は30%圧縮変形したときの圧縮変位(mm)
R:突起粒子の半径(mm)
上記圧縮弾性率は、突起粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、突起粒子の硬さを定量的かつ一義的に表すことができる。
上記コア粒子100重量%中、上記コア粒子に含まれるケイ素原子の含有量は好ましくは10重量%以下、より好ましくは5重量%以下である。上記コア粒子は、ケイ素原子を含んでいなくてもよい。上記コア粒子はケイ素原子を含まないことが好ましい。上記コア粒子100重量%中、上記コア粒子に含まれる炭素原子の含有量は好ましくは50重量%以上、より好ましくは60重量%以上、更に好ましくは65重量%以上である。上記コア粒子におけるケイ素原子の含有量が少ないほど、また上記コア粒子における炭素原子の含有量が多いほど、コア粒子に由来して突起粒子自体の柔軟性はより一層高くなる。
上記無機シェル100重量%中、上記無機シェルに含まれるケイ素原子の含有量は好ましくは50重量%以上、より好ましくは54重量%以上、更に好ましくは56重量%以上である。上記無機シェル100重量%中、上記無機シェルに含まれる炭素原子の含有量は好ましくは30重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記無機シェルは炭素原子を含まないことが好ましい。上記無機シェルにおけるケイ素原子の含有量が多いほど、また上記無機シェルにおける炭素原子の含有量が少ないほど、無機シェルに由来して圧縮初期の硬さがより一層良好になる。
上記突起粒子におけるコア粒子及び無機シェル中でのケイ素原子及び炭素原子の含有量は、TEM/EDS法による線分析により測定することができる。
上記コア粒子としては、金属コア粒子を除く無機コア粒子、有機コア粒子及び金属コア粒子等が挙げられる。本発明に係る突起粒子では、コア粒子は、有機コア粒子である。上記有機コア粒子の使用により、コア粒子に由来して突起粒子自体の柔軟性はより一層高くなる。さらに、導電性粒子により接続された電極間の接続抵抗が低くなり、かつ液晶表示素子用スペーサが用いられた液晶表示素子の表示品質が良好になる。
上記有機コア粒子を形成するための材料として、種々の有機物が好適に用いられる。上記有機コア粒子を形成するための材料として、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が用いられる。柔軟性がより一層高くなることから、上記有機コア粒子は、エチレン性不飽和基を有する単量体を用いて、該エチレン性不飽和基を有する単量体を重合させることにより形成されていることが好ましい。エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させることにより、導電材料に適した任意の圧縮時の物性を有する突起粒子を設計及び合成することが容易である。
上記有機コア粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合には、上記エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。
上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記有機コア粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
無機シェルの形成時及び突起粒子の使用時にコア粒子の変形を抑制する観点からは、上記コア粒子の分解温度は、好ましくは200℃を超え、より好ましくは250℃を超え、より一層好ましくは300℃を超える。上記コア粒子の分解温度は、400℃を超えていてもよく、500℃を超えていてもよく、600℃を超えていてもよく、800℃を超えていてもよい。
上記コア粒子のアスペクト比は、好ましくは2以下、より好ましくは1.5以下、更に好ましくは1.2以下である。上記アスペクト比は、長径/短径を示す。
上記コア粒子の粒径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。上記コア粒子の粒径が上記下限以上及び上記上限以下であると、10%K値及び30%K値がより一層好適な値を示し、突起粒子を導電性粒子及び液晶表示素子用スペーサの用途に好適に使用可能になる。例えば、上記コア粒子の粒径が上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が突起粒子の表面から剥離し難くなる。
上記コア粒子の粒径は、上記コア粒子が真球状である場合には直径を意味し、上記コア粒子が真球状以外の形状である場合には最大径を意味する。また、本発明において、粒径とは、コア粒子を走査型電子顕微鏡を用いて観察し、任意に選択した50個のコア粒子の粒径をノギスで測定した平均値を意味する。
上記突起粒子は、コアシェル粒子である。上記無機シェルは、上記コア粒子の表面上に配置されている。上記無機シェルは、上記コア粒子の表面を被覆していることが好ましい。
上記無機シェルは、上記コア粒子の表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。ゾルゲル法では、上記コア粒子の表面上にシェル状物を配置することが容易である。上記焼成を行う場合に、上記突起粒子では、焼成後に、上記コア粒子は、揮発等により除去されずに、残存している。上記突起粒子は、焼成後に、上記コア粒子を備える。なお、仮に焼成後に上記コア粒子が揮発等により除去されると、上記10%K値がかなり低くなる。
上記ゾルゲル法の具体的な方法としては、コア粒子、水やアルコール系及び非プロトン系等の溶媒、界面活性剤、及びアンモニア水溶液等の触媒を含む分散液に、金属アルコキシドを共存させて界面ゾル反応を行う方法、並びに水やアルコール系及び非プロトン系等の溶媒、及びアンモニア水溶液と共存させた金属アルコキシドによりゾルゲル反応を行った後、コア粒子にゾルゲル反応物をヘテロ凝集させる方法等が挙げられる。上記ゾルゲル法において、上記金属アルコキシドは、加水分解及び重縮合することが好ましい。
上記ゾルゲル法では、界面活性剤を用いることが好ましい。界面活性剤の存在下で、上記金属アルコキシドをゾルゲル法によりシェル状物にすることが好ましい。上記界面活性剤は特に限定されない。上記界面活性剤は、良好なシェル状物を形成するように適宜選択して用いられる。上記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤及びノニオン性界面活性剤等が挙げられる。なかでも、良好な無機シェルを形成できることから、カチオン性界面活性剤が好ましい。
上記カチオン性界面活性剤としては、4級アンモニウム塩及び4級ホスホニウム塩等が挙げられる。上記カチオン性界面活性剤の具体例としては、ヘキサデシルアンモニウムブロミド等が挙げられる。
上記コア粒子の表面上で、上記無機シェルを形成するために、上記シェル状物は焼成されることが好ましい。焼成条件により、無機シェルにおける架橋度を調整可能である。また、焼成を行うことで、焼成を行わない場合と比べて、上記突起粒子の10%K値及び30%K値がより一層好適な値を示すようになる。特に架橋度を高めることで、10%K値を十分に高くすることができる。
上記無機シェルは、上記コア粒子の表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を100℃以上(焼成温度)で焼成させることにより形成されていることが好ましい。上記焼成温度はより好ましくは150℃以上、更に好ましくは200℃以上である。上記焼成温度が上記下限以上であると、無機シェルにおける架橋度がより一層適度になり、10%K値及び30%K値がより一層好適な値を示し、突起粒子を導電性粒子及び液晶表示素子用スペーサの用途により一層好適に使用可能になる。
上記無機シェルは、上記コア粒子の表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を上記コア粒子の分解温度以下(焼成温度)で焼成させることにより形成されていることが好ましい。上記焼成温度は、上記コア粒子の分解温度よりも5℃以上低い温度であることが好ましく、上記コア粒子の分解温度よりも10℃以上低い温度であることがより好ましい。また、上記焼成温度は、好ましくは800℃以下、より好ましくは600℃以下、更に好ましくは500℃以下である。上記焼成温度が上記上限以下であると、上記コア粒子の熱劣化及び変形を抑制でき、10%K値及び30%K値が良好な値を示す突起粒子が得られる。
上記金属アルコキシドとしては、シランアルコキシド、チタンアルコキシド、ジルコニウムアルコキシド及びアルミニウムアルコキシド等が挙げられる。良好な無機シェルを形成する観点からは、上記金属アルコキシドは、シランアルコキシド、チタンアルコキシド、ジルコニウムアルコキシド又はアルミニウムアルコキシドであることが好ましく、シランアルコキシド、チタンアルコキシド又はジルコニウムアルコキシドであることがより好ましく、シランアルコキシドであることが更に好ましい。良好な無機シェルを形成する観点からは、上記金属アルコキシドにおける金属原子は、ケイ素原子、チタン原子、ジルコニウム原子又はアルミニウム原子であることが好ましく、ケイ素原子、チタン原子又はジルコニウム原子であることがより好ましく、ケイ素原子であることが更に好ましい。上記金属アルコキシドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
良好な無機シェルを形成する観点からは、上記金属アルコキシドは、下記式(1)で表される金属アルコキシドであることが好ましい。
M(R1)(OR2)4−n ・・・式(1)
上記式(1)中、Mはケイ素原子、チタン原子又はジルコニウム原子であり、R1はフェニル基、炭素数1〜30のアルキル基、重合性二重結合を有する炭素数1〜30の有機基又はエポキシ基を有する炭素数1〜30の有機基を表し、R2は炭素数1〜6のアルキル基を表し、nは0〜2の整数を表す。nが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。
良好な無機シェルを形成する観点からは、上記金属アルコキシドは、下記式(1A)で表されるシランアルコキシドであることが好ましい。
Si(R1)(OR2)4−n ・・・式(1A)
上記式(1A)中、R1はフェニル基、炭素数1〜30のアルキル基、重合性二重結合を有する炭素数1〜30の有機基又はエポキシ基を有する炭素数1〜30の有機基を表し、R2は炭素数1〜6のアルキル基を表し、nは0〜2の整数を表す。nが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。無機シェルに含まれるケイ素原子の含有量を効果的に高めるために、上記式(1A)中のnは0又は1を表すことが好ましく、0を表すことがより好ましい。無機シェルに含まれるケイ素原子の含有量が高いと、本発明の効果により一層優れる。
上記R1が炭素数1〜30のアルキル基である場合、R1の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、n−ヘキシル基、シクロヘキシル基、n−オクチル基、及びn−デシル基等が挙げられる。このアルキル基の炭素数は好ましくは10以下、より好ましくは6以下である。なお、アルキル基には、シクロアルキル基が含まれる。
上記重合性二重結合としては、炭素−炭素二重結合が挙げられる。上記R1が重合性二重結合を有する炭素数1〜30の有機基である場合に、R1の具体例としては、ビニル基、アリル基、イソプロペニル基、及び3−(メタ)アクリロキシアルキル基等が挙げられる。上記(メタ)アクリロキシアルキル基としては、(メタ)アクリロキシメチル基、(メタ)アクリロキシエチル基及び(メタ)アクリロキシプロピル基等が挙げられる。上記重合性二重結合を有する炭素数1〜30の有機基の炭素数は好ましくは2以上、好ましくは30以下、より好ましくは10以下である。上記「(メタ)アクリロキシ」は、メタクリロキシ又はアクリロキシを意味する。
上記R1がエポキシ基を有する炭素数1〜30の有機基である場合、R1の具体例としては、1,2−エポキシエチル基、1,2−エポキシプロピル基、2,3−エポキシプロピル基、3,4−エポキシブチル基、3−グリシドキシプロピル基、及び2−(3,4−エポキシシクロヘキシル)エチル基等が挙げられる。上記エポキシ基を有する炭素数1〜30の有機基の炭素数は好ましくは8以下、より好ましくは6以下である。なお、上記エポキシ基を有する炭素数1〜30の有機基は、炭素原子及び水素原子に加えて、エポキシ基に由来する酸素原子を含む基である。
上記R2の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、及びイソブチル基等が挙げられる。無機シェルに含まれるケイ素原子の含有量を効果的に高めるために、上記R2は、メチル基又はエチル基を表すことが好ましい。
上記シランアルコキシドの具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−オクチルトリエトキシシラン、n−デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、及びジイソプロピルジメトキシシラン等が挙げられる。これら以外のシランアルコキシドを用いてもよい。
無機シェルに含まれるケイ素原子の含有量を効果的に高めるために、上記無機シェルの材料として、テトラメトキシシラン又はテトラエトキシシランを用いることが好ましい。上記無機シェルの材料の100重量%中、テトラメトキシシランとテトラエトキシシランとの合計の含有量は好ましくは50重量%以上である(全量でもよい)。上記無機シェル100重量%中、テトラメトキシシランに由来する骨格とテトラエトキシシランに由来する骨格との合計の含有量は好ましくは50重量%以上である(全量でもよい)。
上記チタンアルコキシドの具体例としては、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド、及びチタンテトラブトキシド等が挙げられる。これら以外のチタンアルコキシドを用いてもよい。
上記ジルコニウムアルコキシドの具体例としては、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトライソプロポキシド、及びジルコニウムテトラブトキシド等が挙げられる。これら以外のジルコニウムアルコキシドを用いてもよい。
上記金属アルコキシドは、金属原子に4つの酸素原子が直接結合している構造を有する金属アルコキシドを含むことが好ましい。上記金属アルコキシドは、下記式(1a)で表される金属アルコキシドを含むことが好ましい。
M(OR2) ・・・式(1a)
上記式(1a)中、Mはケイ素原子、チタン原子又はジルコニウム原子であり、R2は炭素数1〜6のアルキル基を表し、複数のR2は同一であってもよく、異なっていてもよい。
上記金属アルコキシドは、ケイ素原子に4つの酸素原子が直接結合している構造を有するシランアルコキシドを含むことが好ましい。このシランアルコキシドでは、一般にケイ素原子に4つの酸素原子が単結合により結合している。上記金属アルコキシドは、下記式(1Aa)で表されるシランアルコキシドを含むことが好ましい。
Si(OR2) ・・・式(1Aa)
上記式(1Aa)中、R2は炭素数1〜6のアルキル基を表す。複数のR2は同一であってもよく、異なっていてもよい。
10%K値を効果的に高くし、かつ30%K値を効果的に低くする観点からは、上記無機シェルを形成するために用いる金属アルコキシド100モル%中、上記金属原子に4つの酸素原子が直接結合している構造を有する金属アルコキシド、上記式(1a)で表される金属アルコキシド、上記ケイ素原子に4つの酸素原子が直接結合している構造を有するシランアルコキシド、又は上記式(1Aa)で表されるシランアルコキシドの各含有量は、好ましくは20モル%以上、より好ましくは40モル%以上、更に好ましくは50モル%以上、更に一層好ましくは55モル%以上、特に好ましくは60モル%以上、100モル%以下である。上記無機シェルを形成するために用いる金属アルコキシドの全量が、上記金属原子に4つの酸素原子が直接結合している構造を有する金属アルコキシド、上記式(1a)で表される金属アルコキシド、上記ケイ素原子に4つの酸素原子が直接結合している構造を有するシランアルコキシド、又は上記式(1Aa)で表されるシランアルコキシドであってもよい。
10%K値を効果的に高くし、かつ30%K値を効果的に低くする観点からは、上記無機シェルに含まれる上記金属アルコキシドに由来する金属原子の全個数100%中、4つの酸素原子が直接結合している金属原子の個数の割合、4つの−O−Si基が直接結合しておりかつ上記4つの−O−Si基における4つの酸素原子が直接結合しているケイ素原子の個数の割合はそれぞれ、好ましくは20%以上、より好ましくは40%以上、更に好ましくは50%以上、更に一層好ましくは55%以上、特に好ましくは60%以上である。
また、10%K値を効果的に高くし、かつ30%K値を効果的に低くする観点からは、上記無機シェルに含まれている金属原子の全個数100%中、4つの酸素原子が直接結合している金属原子の個数の割合は、好ましくは20%以上、より好ましくは40%以上、更に好ましくは50%以上更に一層好ましくは55%以上、特に好ましくは60%以上である。10%K値を効果的に高くし、かつ30%K値を効果的に低くする観点からは、上記金属アルコキシドがシランアルコキシドであり、かつ上記無機シェルに含まれているケイ素原子の全個数100%中、4つの−O−Si基が直接結合しておりかつ上記4つの−O−Si基における4つの酸素原子が直接結合しているケイ素原子の個数の割合は、好ましくは20%以上、より好ましくは40%以上、更に好ましくは50%以上、特に好ましくは60%以上である。
なお、4つの−O−Si基が直接結合しておりかつ上記4つの−O−Si基における4つの酸素原子が直接結合しているケイ素原子は、例えば、下記式(11)で表される構造におけるケイ素原子である。具体的には、下記式(11X)で表される構造における矢印Aを付して示すケイ素原子である。
Figure 0006426913
なお、上記式(11)における酸素原子は、一般に隣接するケイ素原子とシロキサン結合を形成している。
Figure 0006426913
4つの−O−Si基が直接結合しておりかつ上記4つの−O−Si基における4つの酸素原子が直接結合しているケイ素原子の個数の割合(Q4の個数の割合(%))を測定する方法としては、例えば、NMRスペクトル解析装置を用いて、Q4(4つの−O−Si基が直接結合しておりかつ上記4つの−O−Si基における4つの酸素原子が直接結合しているケイ素原子)のピーク面積と、Q1〜Q3(1〜3つの−O−Si基が直接結合しておりかつ1〜3つの上記−O−Si基における1〜3つの酸素原子が直接結合しているケイ素原子)のピーク面積とを比較する方法が挙げられる。この方法により、上記無機シェルに含まれているケイ素原子の全個数100%中、4つの−O−Si基が直接結合しておりかつ上記4つの−O−Si基における4つの酸素原子が直接結合しているケイ素原子の個数の割合(Q4の個数の割合)を求めることができる。なお、後述する実施例のQ4の個数の割合を求めたNMR測定結果では、4つの−O−Si基が直接結合しておりかつ上記4つの−O−Si基における4つの酸素原子が直接結合しているケイ素原子に由来するピークを評価している。
上記無機シェルの厚みは、好ましくは10nm以上、より好ましくは50nm以上、特に好ましくは100nm以上、好ましくは100000nm以下、より好ましくは10000nm以下、更に好ましくは2000nm以下である。上記無機シェルの厚みが上記下限以上及び上記上限以下であると、10%K値及び30%K値がより一層好適な値を示し、突起粒子を導電性粒子及び液晶表示素子用スペーサの用途に好適に使用可能になる。上記無機シェルの厚みは、突起粒子1個あたりの平均厚みである。ゾルゲル法の制御によって、上記無機シェルの厚みを制御可能である。
上記無機シェルの突起を除く部分と上記無機シェルの突起との形成方法に関しては、上記コア粒子の表面上で、シランアルコキシドをゾルゲル法によりシェル状物とさせながら、過剰量のアンモニア水溶液等の触媒を適宜添加していくことで、上記無機シェルの突起を除く部分と上記無機シェルの突起とを1段階工程で同時に形成させることができる。
本発明において無機シェルの厚みは、突起粒子を、走査型電子顕微鏡を用いて観察し、任意に選択した50個の突起粒子の粒径をノギスで測定した平均値と、コア粒子の粒径の平均値との差から求めることができる。上記突起粒子の粒径は、上記突起粒子が真球状である場合には直径を意味し、上記突起粒子が真球状以外の形状である場合には最大径を意味する。
上記コア粒子と上記無機シェルとの間で化学結合していないことが好ましい。上記コア粒子と上記無機シェルとの間で化学結合していない場合には、無機シェルが過度に割れにくくなり、更に電極と導電性粒子との接続対象部材に対する接触面積を大きくすることができ、電極間の接続抵抗をより一層低くすることができる。
上記コア粒子と上記無機シェルとの間で化学結合していていないことが好ましいが、化学結合していてもよい。上記コア粒子と上記無機シェルとの間で化学結合させる方法としては、コア粒子の表面に、無機シェルを構成する材料の官能基と反応可能な官能基を導入した後、コア粒子の表面上で上記無機シェルを構成する材料により無機シェルを形成する方法等が挙げられる。具体的には、コア粒子の表面をカップリング剤により表面処理した後に、上記コア粒子の表面上で、金属アルコキシドをゾルゲル法によりシェル状物とする方法等が挙げられる。
(導電性粒子)
上記導電性粒子は、上述した突起粒子と、該突起粒子の表面上に配置された導電層とを備える。上記導電層は、外表面に複数の突起を有することが好ましい。上記導電層の突起は、上記無機シェルの突起に由来して、容易に形成可能である。
図1に、本発明の第1の実施形態に係る導電性粒子を断面図で示す。
図1に示す導電性粒子1は、突起粒子11と、突起粒子11の表面上に配置された導電層2とを有する。導電層2は、突起粒子11の表面を被覆している。導電性粒子1は、突起粒子11の表面が導電層2により被覆された被覆粒子である。導電層2は、外表面に突起2aを有する。導電性粒子1は、導電性の表面に突起を有する。
突起粒子11は、コア粒子12と、コア粒子12の表面上に配置された無機シェル13とを備える。無機シェル13は、コア粒子12の表面を被覆している。導電層2は、無機シェル13の表面上に配置されている。導電層2は、無機シェル13の表面を被覆している。無機シェル13は外表面に突起13aを有する。
無機シェル13は、第1の無機シェル部分13Aと、第1の無機シェル部分13Aよりも厚みが厚く、無機シェル13の外表面に複数の突起13aを形成している第2の無機シェル部分13Bとを有する。第1の無機シェル部分13Aと第2の無機シェル部分13Bとは連なっている。複数の突起13aを除く部分が、第1の無機シェル部分13Aである。複数の突起13aは、無機シェル13の厚みが厚い第2の無機シェル部分13Bに位置している。
突起2aは、突起13aに由来して形成されている。すなわち、無機シェル13の外表面が突起13aにより隆起していることで、突起2aが形成されている。
導電性粒子1では、無機シェル13の外表面に突起13aを形成するために、コア粒子12と無機シェル13との間に、突起を形成するための他の部材(粒子など)は用いられていない。
図2に、本発明の第2の実施形態に係る導電性粒子を断面図で示す。
図2に示す導電性粒子21は、突起粒子11と、突起粒子11の表面上に配置された導電層22と、導電層22の外表面上に配置された複数の絶縁性物質3とを有する。導電層22は、外表面に突起22aを有する。導電性粒子21は、導電性の表面に突起を有する。
導電層22は、内層である第1の導電層22Aと、外層である第2の導電層22Bとを有する。突起粒子11の表面上に、第1の導電層22Aが配置されている。無機シェル13の表面上に、第1の導電層22Aが配置されている。第1の導電層22Aの表面上に、第2の導電層22Bが配置されている。無機シェル13と第2の導電層22Bとの間に、第1の導電層22Aが配置されている。第1の導電層22Aは、外表面に突起22Aaを有する。第2の導電層22Bは、外表面に突起22Baを有する。
突起22a,22Aa,22Baは、突起13aに由来して形成されている。すなわち、無機シェル13の外表面が突起13aにより隆起していることで、突起22a,22Aa,22Baが形成されている。
導電性粒子21は、導電層22の外表面上に配置された絶縁性物質3を有する。導電層22の外表面の少なくとも一部の領域が、絶縁性物質3により被覆されている。絶縁性物質3は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、上記導電性粒子は、導電層の外表面上に配置された絶縁性物質を有していてもよい。
また、導電性粒子1,21のように、上記導電性粒子は導電性の表面に突起を有することが好ましい。上記導電性粒子は、上記導電層の外表面に突起を有することが好ましい。
上記導電層を形成するための金属は特に限定されない。該金属としては、例えば、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗をより一層低くすることができるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムが好ましい。
導電性粒子1のように、上記導電層は、1つの層により形成されていてもよい。導電性粒子21のように、導電層は、複数の層により形成されていてもよい。すなわち、導電層は、2層以上の積層構造を有していてもよい。導電層が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層であることがより好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が金層である場合には、耐腐食性がより一層高くなる。
上記突起粒子において導電層を形成する方法は特に限定されない。導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを突起粒子の表面にコーティングする方法等が挙げられる。なかでも、導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。
上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは520μm以下、より好ましくは500μm以下、より一層好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下である。導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が突起粒子の表面から剥離し難くなる。また、導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を導電材料の用途に好適に使用可能である。
上記導電性粒子の粒子径は、導電性粒子が真球状である場合には直径を意味し、導電性粒子が真球状以外の形状である場合には最大径を意味する。
上記導電層の厚み(導電層が多層である場合には導電層全体の厚み)は、好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.5μm以下、特に好ましくは0.3μm以下である。導電層の厚みが上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。
上記導電層が複数の層により形成されている場合に、最外層の導電層の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電層の厚みが上記下限以上及び上記上限以下であると、最外層の導電層による被覆が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗がより一層低くなる。また、上記最外層が金層である場合の金層の厚みが薄いほど、コストが低くなる。
上記導電層の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。
上記導電性粒子は、上記導電層の外表面上に配置された絶縁性物質を備えていてもよい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電層と電極との間の絶縁性物質を容易に排除できる。導電性粒子が上記導電層の表面に突起を有する場合には、導電性粒子の導電層と電極との間の絶縁性物質をより一層容易に排除できる。上記絶縁性物質は、絶縁性樹脂層又は絶縁性粒子であることが好ましく、絶縁性粒子であることがより好ましい。上記絶縁性粒子は、絶縁性樹脂粒子であることが好ましい。
(導電材料)
上記導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、及びスチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン−ブタジエン共重合ゴム、及びアクリロニトリル−スチレンブロック共重合ゴム等が挙げられる。
上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
上記バインダー樹脂中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法、上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法、並びに上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法等が挙げられる。
上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。
上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。
上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。
(接続構造体及び液晶表示素子)
上述した導電性粒子を用いて、又は上述した導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1の接続対象部材と第2の接続対象部材とを接続している接続部とを備え、該接続部が上述した導電性粒子により形成されているか、又は上述した導電性粒子とバインダー樹脂とを含む導電材料により形成されている接続構造体であることが好ましい。導電性粒子が単独で用いられた場合には、接続部自体が導電性粒子である。すなわち、第1,第2の接続対象部材が導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は、異方性導電材料であることが好ましい。
上記第1の接続対象部材は、第1の電極を表面に有することが好ましい。上記第2の接続対象部材は、第2の電極を表面に有することが好ましい。上記第1の電極と上記第2の電極とが、上記導電性粒子により電気的に接続されていることが好ましい。
図3は、図1に示す導電性粒子1を用いた接続構造体を模式的に示す正面断面図である。
図3に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1の接続対象部材52と第2の接続対象部材53とを接続している接続部54とを備える。接続部54は、導電性粒子1とバインダー樹脂とを含む導電材料により形成されている。図3では、図示の便宜上、導電性粒子1は略図的に示されている。導電性粒子1にかえて、導電性粒子21などの他の導電性粒子を用いてもよい。
第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。
上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10〜4.9×10Pa程度である。上記加熱の温度は、120〜220℃程度である。フレキシブルプリント基板の電極、樹脂フィルム上に配置された電極及びタッチパネルの電極を接続するための上記加圧の圧力は9.8×10〜1.0×10Pa程度である。
上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記導電材料は、電子部品を接続するための導電材料であることが好ましい。上記導電ペーストはペースト状の導電材料であり、ペースト状の状態で接続対象部材上に塗工されることが好ましい。
上記導電性粒子及び上記導電材料は、タッチパネルにも好適に用いられる。従って、上記接続対象部材は、フレキシブルプリント基板であるか、又は樹脂フィルムの表面上に電極が配置された接続対象部材であることも好ましい。上記接続対象部材は、フレキシブルプリント基板であることが好ましく、樹脂フィルムの表面上に電極が配置された接続対象部材であることが好ましい。上記フレキシブルプリント基板は、一般に電極を表面に有する。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
また、上記突起粒子は、液晶表示素子用スペーサとして好適に用いられる。すなわち、上記突起粒子は、液晶セルを構成する一対の基板と、該一対の基板間に封入された液晶と、上記一対の基板間に配置された液晶表示素子用スペーサとを備える液晶表示素子を得るために好適に用いられる。
図4に、本発明の一実施形態に係る突起粒子を液晶表示素子用スペーサとして用いた液晶表示素子を断面図で示す。
図4に示す液晶表示素子81は、一対の透明ガラス基板82を有する。透明ガラス基板82は、対向する面に絶縁膜(図示せず)を有する。絶縁膜の材料としては、例えば、SiO等が挙げられる。透明ガラス基板82における絶縁膜上に透明電極83が形成されている。透明電極83の材料としては、ITO等が挙げられる。透明電極83は、例えば、フォトリソグラフィーによりパターニングして形成可能である。透明ガラス基板82の表面上の透明電極83上に、配向膜84が形成されている。配向膜84の材料としては、ポリイミド等が挙げられている。
一対の透明ガラス基板82間には、液晶85が封入されている。一対の透明ガラス基板82間には、複数の突起粒子11が配置されている。突起粒子11は、液晶表示素子用スペーサとして用いられている。複数の突起粒子11により、一対の透明ガラス基板82の間隔が規制されている。一対の透明ガラス基板82の縁部間には、シール剤86が配置されている。シール剤86によって、液晶85の外部への流出が防がれている。
上記液晶表示素子において1mmあたりの液晶表示素子用スペーサの配置密度は、好ましくは10個/mm以上、好ましくは1000個/mm以下である。上記配置密度が10個/mm以上であると、セルギャップがより一層均一になる。上記配置密度が1000個/mm以下であると、液晶表示素子のコントラストがより一層良好になる。
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
(実施例1)
(1)突起粒子の作製
コア粒子として、有機コア粒子である積水化学工業社製「ミクロパールELP−00375」(スチレン・アクリル共重合ポリマー、平均粒径3.75μm)を用意した。この有機コア粒子100重量部と、界面活性剤であるヘキサデシルトリメチルアンミニウムブロミド40重量部とを、アセトン1800重量部と水200重量部との混合溶媒に分散させ、セパラブルフラスコ内に入れた。25重量%アンモニア水溶液160重量部を加え、超音波をかけながら攪拌した。テトラエトキシシラン600重量部をアセトン1200重量部に溶解させた液を加え、超音波をかけながら25℃で24時間撹拌した。反応液を取り出し、PTFE(ポリテトラフルオロエチレン)製のメンブレンフィルターで吸引濾過し、アセトンを用いた洗浄を2回繰り返した後、50℃の真空乾燥機で24時間乾燥させ、焼成前突起粒子を得た。
得られた焼成前突起粒子を200℃で6時間焼成し、突起粒子を得た。
(2)導電性粒子の作製
得られた突起粒子を洗浄し、乾燥した後、無電解めっき法により、得られた突起粒子の表面に、ニッケル層を形成し、導電性粒子を作製した。なお、ニッケル層の厚さは0.1μmであった。
(実施例2)
有機コア粒子として、積水化学工業社製「ミクロパールELP−00375」(スチレン・アクリル共重合ポリマー、平均粒径3.75μm)を用意した。この有機コア粒子100重量部と、界面活性剤であるヘキサデシルトリメチルアンミニウムブロミド40重量部とを、アセトニトリル1800重量部と水200重量部との混合溶媒に分散させ、セパラブルフラスコ内に入れた。25重量%アンモニア水溶液160重量部を加え、超音波をかけながら攪拌した。テトラエトキシシラン600重量部をアセトニトリル1200重量部に溶解させた液を加え、超音波をかけながら25℃で24時間撹拌した。反応液を取り出し、PTFE(ポリテトラフルオロエチレン)製のメンブレンフィルターで吸引濾過し、アセトニトリルを用いた洗浄を2回繰り返した後、50℃の真空乾燥機で24時間乾燥させ、焼成前突起粒子を得た。
得られた焼成前突起粒子を200℃で6時間焼成し、突起粒子を得た。得られた突起粒子を用いて、実施例1と同様にして、導電性粒子を得た。
(実施例3)
有機コア粒子として、積水化学工業社製「ミクロパールELP−00375」(スチレン・アクリル共重合ポリマー、平均粒径3.75μm)を用意した。この有機コア粒子100重量部と、界面活性剤であるヘキサデシルトリメチルアンミニウムブロミド40重量部とを、アセトン1800重量部と水200重量部との混合溶媒に分散させ、セパラブルフラスコ内に入れた。25重量%アンモニア水溶液320重量部を加え、超音波をかけながら攪拌した。テトラエトキシシラン600重量部をアセトン1200重量部に溶解させた液を加え、超音波をかけながら25℃で24時間撹拌した。反応液を取り出し、PTFE(ポリテトラフルオロエチレン)製のメンブレンフィルターで吸引濾過し、アセトンを用いた洗浄を2回繰り返した後、50℃の真空乾燥機で24時間乾燥させ、焼成前突起粒子を得た。
得られた焼成前突起粒子を200℃で6時間焼成し、突起粒子を得た。得られた突起粒子を用いて、実施例1と同様にして、導電性粒子を得た。
(実施例4)
有機コア粒子として、積水化学工業社製「ミクロパールELP−00375」(スチレン・アクリル共重合ポリマー、平均粒径3.75μm)を用意した。この有機コア粒子100重量部と、界面活性剤であるヘキサデシルトリメチルアンミニウムブロミド40重量部とを、アセトニトリル1800重量部と水200重量部との混合溶媒に分散させ、セパラブルフラスコ内に入れた。25重量%アンモニア水溶液320重量部を加え、超音波をかけながら攪拌した。テトラエトキシシラン600重量部をアセトニトリル1200重量部に溶解させた液を加え、超音波をかけながら25℃で24時間撹拌した。反応液を取り出し、PTFE(ポリテトラフルオロエチレン)製のメンブレンフィルターで吸引濾過し、アセトニトリルを用いた洗浄を2回繰り返した後、50℃の真空乾燥機で24時間乾燥させ、焼成前突起粒子を得た。
得られた焼成前突起粒子を200℃で6時間焼成し、突起粒子を得た。得られた突起粒子を用いて、実施例1と同様にして、導電性粒子を得た。
(比較例1)
有機コア粒子である積水化学工業社製「ミクロパールELP−00375」(スチレン・アクリル共重合ポリマー、平均粒径3.75μm)を、無機コア粒子である積水化学工業社製「ミクロパールSI−0038」(シリカ粒子、平均粒径3.80μm)に変更し、更にテトラエトキシシランをメチルトリメトキシシランに変更したこと以外は実施例1と同様にして、突起粒子及び導電性粒子を得た。
(比較例2)
有機コア粒子として、積水化学工業社製「ミクロパールELP−00375」(スチレン・アクリル共重合ポリマー、平均粒径3.75μm)を用意した。この有機コア粒子100重量部と、界面活性剤であるヘキサデシルトリメチルアンミニウムブロミド40重量部とを、イソプロピルアルコール1800重量部と水200重量部との混合溶媒に分散させ、セパラブルフラスコ内に入れた。25重量%アンモニア水溶液80重量部を加え、超音波をかけながら攪拌した。テトラエトキシシラン600重量部をイソプロピルアルコール1200重量部に溶解させた液を加え、超音波をかけながら25℃で24時間撹拌した。反応液を取り出し、PTFE(ポリテトラフルオロエチレン)製のメンブレンフィルターで吸引濾過し、アセトンを用いた洗浄を2回繰り返した後、50℃の真空乾燥機で24時間乾燥させ、突起未形成粒子を得た。得られた突起未形成粒子を用いて、実施例1と同様にして、導電性粒子を得た。
(比較例3)
有機コア粒子として、積水化学工業社製「ミクロパールELP−00375」(スチレン・アクリル共重合ポリマー、平均粒径3.75μm)を用意した。この有機コア粒子の分散液にシリカ粒子(平均粒径100nm)を添加することで、シリカ粒子を吸着させた突起粒子を得た。得られた突起粒子を用いて、実施例1と同様にして、導電性粒子を得た。
(評価)
(1)突起粒子の突起の高さ、突起粒子の突起の個数、突起粒子の組成分析および構造解析、突起粒子の粒径、コア粒子の粒径及びシェルの厚み
得られた突起粒子について、走査型電子顕微鏡(日立ハイテクノロジー社製「S−3500N」)にて3000倍の粒子画像を撮影し、得られた画像中の粒子50個の粒径をノギスで測定し、個数平均を求めて突起粒子の粒径を求めた。また、得られた画像を用いて、突起の高さおよび突起の個数を評価した。
また、得られた突起粒子を、FIBにより切片を作製し、原子分解能分析電子顕微鏡(JEM−ARM200F)にて、EDS元素像測定した。
突起粒子を作製する際に使用したコア粒子についても、上記と同様の方法により粒径を測定した。突起粒子の粒径とコア粒子の粒径との差から、シェルの厚みを求めた。
(2)4つの−O−Si基が直接結合しておりかつ上記4つの−O−Si基における4つの酸素原子が直接結合しているケイ素原子の個数の割合(Q4の個数の割合(%))
得られた突起粒子における無機シェルにおいて、NMRスペクトル解析装置(JEOL社製「ECX400」)を用い、固体29Si NMRスペクトル解析(測定周波数:79.4254MHz、パルス幅:3.7、試料ホルダー:4mm、試料回転数:10kHz、積算回数:3600、測定温度、25℃、待ち時間:最大ピークが検出された時間の5倍)によって得られたQ4(4つの酸素原子が直接結合しているケイ素原子)のピーク面積とQ1〜Q3(1〜3つの酸素原子が直接結合しているケイ素原子)のピーク面積とを比較することにより、上記無機シェルに含まれているケイ素原子の全個数100%中、4つの−O−Si基が直接結合しておりかつ4つの上記−O−Si基における4つの酸素原子が直接結合しているケイ素原子の個数の割合(Q4の個数の割合)を求めた。
(3)突起粒子の上記圧縮弾性率(10%K値及び30%K値)
得られた突起粒子の上記圧縮弾性率(10%K値及び30%K値)を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH−100」)を用いて測定した。
(4)突起の外れやすさ
得られた突起粒子1.0gを自動乳鉢(日陶社製「AMM−140D」)の乳鉢部に入れ、乳棒部10rpm、乳鉢部6rpmで1分間撹拌した。撹拌後に、突起が外れている割合を走査型電子顕微鏡で評価した。突起の外れやすさを下記の基準で判定した。
[突起の外れやすさの判定基準]
○○:突起粒子100個当たり、少なくとも1個の突起が外れている突起粒子の割合が5個未満
○:突起粒子100個当たり、少なくとも1個の突起が外れている突起粒子の割合が5個以上、10個未満
△:突起粒子100個当たり、少なくとも1個の突起が外れている突起粒子の割合が10個以上、20個未満
×:突起粒子100個当たり、少なくとも1個の突起が外れている突起粒子の割合が20個以上
(5)接続抵抗
接続構造体の作製:
ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、得られた導電性粒子(加熱前の有機無機ハイブリッド粒子を使用)を含有量が3重量%となるように添加し、分散させ、樹脂組成物を得た。
得られた樹脂組成物を、片面が離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)フィルムに塗布し、70℃の熱風で5分間乾燥し、異方性導電フィルムを作製した。得られた異方性導電フィルムの厚さは12μmであった。
得られた異方性導電フィルムを5mm×5mmの大きさに切断した。切断された異方性導電フィルムを、一方に抵抗測定用の引き回し線を有するITO(高さ0.1μm、L/S=20μm/20μm)が設けられたPET基板(幅3cm、長さ3cm)のITO電極側のほぼ中央に貼り付けた。次いで、同じ金電極が設けられた2層フレキシブルプリント基板(幅2cm、長さ1cm)を、電極同士が重なるように位置合わせをしてから貼り合わせた。このPET基板と2層フレキシブルプリント基板との積層体を、10N、180℃、及び20秒間の圧着条件で熱圧着し、加熱前の有機無機ハイブリッド粒子を用いた接続構造体Xを得た。なお、ポリイミドフィルムに銅電極が形成され、銅電極表面がAuめっきされている、2層フレキシブルプリント基板を用いた。
得られた接続構造体Xの対向する電極間の接続抵抗を4端子法により測定した。接続抵抗を下記の基準で判定した。
[接続抵抗の評価基準]
○○:接続抵抗が3.0Ω以下
○:接続抵抗が3.0Ωを超え、4.0Ω以下
△:接続抵抗が4.0Ωを超え、5.0Ω以下
×:接続抵抗が5.0Ωを超える
(6)光散乱性
得られた突起粒子10重量部と、市販品のポリエチレン樹脂ペレット10000重量部とを混合し、押出機にて、成形温度100℃、スクリュー回転速度15〜30rpm、バレル滞留時間5〜20分の条件下で混練し、突起粒子を含有する樹脂フィルムを得た。
次いで、蛍光灯下の机にMSゴシックの書体で大きさが8ポイントの1から9の数字を印刷した紙を置いた。上記で得られたPEフィルムを通して30cmの距離から観察して、数字が判別できなくなるフィルムと紙の間の距離を測定し、光散乱性を以下の基準で評価した。
[光散乱性の判定基準]
○:数字が見えなくなる距離が5cm未満であり、光散乱性が良好
△:数字が見えなくなる距離が5cm以上10cm未満であり、光散乱性がやや良好
×:数字が見えなくなる距離が10cmを超え、光散乱性が不良
結果を下記の表1に示す。
Figure 0006426913
(7)液晶表示素子用スペーサとしての使用例
STN型液晶表示素子の作製:
イソプロピルアルコール70重量部と水30重量部とを含む分散媒に、得られるスペーサ分散液100重量%中で実施例1〜4及び比較例1の液晶表示素子用スペーサ(突起粒子)を固形分濃度が2重量%となるように添加し、撹拌し、液晶表示素子用スペーサ分散液を得た。
一対の透明ガラス板(縦50mm、横50mm、厚さ0.4mm)の一面に、CVD法によりSiO膜を蒸着した後、SiO膜の表面全体にスパッタリングによりITO膜を形成した。得られたITO膜付きガラス基板に、スピンコート法によりポリイミド配向膜組成物(日産化学社製「SE3510」)を塗工し、280℃で90分間焼成することによりポリイミド配向膜を形成した。配向膜にラビング処理を施した後、一方の基板の配向膜側に、液晶表示素子用スペーサを1mm当たり100〜200個となるように湿式散布した。他方の基板の周辺にシール剤を形成した後、この基板とスペーサを散布した基板とをラビング方向が90°になるように対向配置させ、両者を貼り合わせた。その後、160℃で90分間処理してシール剤を硬化させて、空セル(液晶の入ってない画面)を得た。得られた空セルに、カイラル剤入りのSTN型液晶(DIC社製)を注入し、次に注入口を封止剤で塞いだ後、120℃で30分間熱処理してSTN型液晶表示素子を得た。
得られた液晶表示素子では、実施例1〜4の液晶表示素子用スペーサにより基板間の間隔が良好に規制されていた。また、実施例1〜4の液晶表示素子用スペーサを用いた液晶表示素子は、良好な表示品質を示した。また、実施例1〜4の液晶表示素子用スペーサを用いた場合には、比較例1の液晶表示素子用スペーサを用いた場合よりも表示品質がより一層優れていた。
1…導電性粒子
2…導電層
2a…突起
3…絶縁性物質
11…突起粒子
12…コア粒子
13…無機シェル
13a…突起
13A…第1の無機シェル部分
13B…第2の無機シェル部分
21…導電性粒子
22…導電層
22a…突起
22A…第1の導電層
22Aa…突起
22B…第2の導電層
22Ba…突起
51…接続構造体
52…第1の接続対象部材
52a…第1の電極
53…第2の接続対象部材
53a…第2の電極
54…接続部
81…液晶表示素子
82…透明ガラス基板
83…透明電極
84…配向膜
85…液晶
86…シール剤

Claims (10)

  1. 表面上に導電層が形成され、前記導電層を有する導電性粒子を得るために用いられる突起粒子であり、
    コア粒子と、前記コア粒子の表面上に配置された無機シェルとを備え、
    前記無機シェルが、金属アルコキシドを用いて形成されており、
    前記無機シェルが外表面に複数の突起を有し、
    前記コア粒子が有機コア粒子である、突起粒子。
  2. 前記無機シェルが、金属アルコキシドを用いて、ゾルゲル法により、外表面に複数の突起を有するように形成されている、請求項に記載の突起粒子。
  3. 前記突起の高さが50nm以上、500nm以下である、請求項1又は2に記載の突起粒子。
  4. 前記有機コア粒子が、エチレン性不飽和基を有する単量体を用いて、該エチレン性不飽和基を有する単量体を重合させることにより形成されている、請求項1〜のいずれか1項に記載の突起粒子。
  5. 前記無機シェルが、第1の無機シェル部分と、前記第1の無機シェル部分よりも厚みが厚くかつ前記無機シェルの外表面に複数の突起を形成している第2の無機シェル部分とを有し、前記第1の無機シェル部分と前記第2の無機シェル部分とが連なっている、請求項1〜のいずれか1項に記載の突起粒子。
  6. コア粒子と、前記コア粒子の表面上に配置された無機シェルとを備え、
    前記無機シェルが外表面に複数の突起を有し、
    前記コア粒子が有機コア粒子であり、
    前記無機シェルが、金属アルコキシドを用いて形成されており、
    前記無機シェルが、第1の無機シェル部分と、前記第1の無機シェル部分よりも厚みが厚くかつ前記無機シェルの外表面に複数の突起を形成している第2の無機シェル部分とを有し、前記第1の無機シェル部分と前記第2の無機シェル部分とが連なっている、突起粒子。
  7. 請求項1〜のいずれか1項に記載の突起粒子と、
    前記突起粒子の表面上に配置されており、かつ外表面に複数の突起を有する導電層とを備える、導電性粒子。
  8. 前記導電層の外表面上に配置された絶縁性物質を備える、請求項に記載の導電性粒子。
  9. 導電性粒子と、バインダー樹脂とを含み、
    前記導電性粒子が、請求項1〜のいずれか1項に記載の突起粒子と、前記突起粒子の表面上に配置されており、かつ外表面に複数の突起を有する導電層とを備える、導電材料。
  10. 第1の電極を表面に有する第1の接続対象部材と、
    第2の電極を表面に有する第2の接続対象部材と、
    前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
    前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
    前記導電性粒子が、請求項1〜のいずれか1項に記載の突起粒子と、前記突起粒子の表面上に配置されており、かつ外表面に複数の突起を有する導電層とを備え、
    前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
JP2014108333A 2013-05-29 2014-05-26 突起粒子、導電性粒子、導電材料及び接続構造体 Active JP6426913B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108333A JP6426913B2 (ja) 2013-05-29 2014-05-26 突起粒子、導電性粒子、導電材料及び接続構造体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013112843 2013-05-29
JP2013112843 2013-05-29
JP2014108333A JP6426913B2 (ja) 2013-05-29 2014-05-26 突起粒子、導電性粒子、導電材料及び接続構造体

Publications (2)

Publication Number Publication Date
JP2015007224A JP2015007224A (ja) 2015-01-15
JP6426913B2 true JP6426913B2 (ja) 2018-11-21

Family

ID=52337713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108333A Active JP6426913B2 (ja) 2013-05-29 2014-05-26 突起粒子、導電性粒子、導電材料及び接続構造体

Country Status (1)

Country Link
JP (1) JP6426913B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139396A (ja) * 1998-11-11 2000-05-23 Mikado Nosan Kk ムラサキイモ類の加工方法
JP3524008B2 (ja) * 1999-01-20 2004-04-26 触媒化成工業株式会社 ポリオルガノシロキサン被覆弾性微粒子の製造方法および液晶表示装置
US8758854B2 (en) * 2008-04-25 2014-06-24 Nikko Rica Corporation Process for producing sugar-plum-shaped particle
WO2012014925A1 (ja) * 2010-07-28 2012-02-02 積水化学工業株式会社 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、異方性導電材料及び接続構造体

Also Published As

Publication number Publication date
JP2015007224A (ja) 2015-01-15

Similar Documents

Publication Publication Date Title
JP6200808B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP5559947B1 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6333626B2 (ja) 突起粒子、導電性粒子、導電材料及び接続構造体
JP5571271B1 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP5620608B1 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP6266973B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP2020037705A (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6613326B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6951398B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6426913B2 (ja) 突起粒子、導電性粒子、導電材料及び接続構造体
JP6460673B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6130784B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP6345536B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP2014111725A (ja) コアシェル粒子、コアシェル粒子の製造方法、導電性粒子、導電材料及び接続構造体
JP6322016B2 (ja) 有機無機ハイブリッド粒子の製造方法、導電性粒子の製造方法、導電材料の製造方法及び接続構造体の製造方法
JP2015110743A (ja) 有機無機ハイブリッド粒子の製造方法、導電性粒子、導電材料及び接続構造体
JP6696721B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP6212380B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP6084886B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181026

R151 Written notification of patent or utility model registration

Ref document number: 6426913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151