WO2014103875A1 - 位相シフトマスクおよびその製造方法 - Google Patents

位相シフトマスクおよびその製造方法 Download PDF

Info

Publication number
WO2014103875A1
WO2014103875A1 PCT/JP2013/084089 JP2013084089W WO2014103875A1 WO 2014103875 A1 WO2014103875 A1 WO 2014103875A1 JP 2013084089 W JP2013084089 W JP 2013084089W WO 2014103875 A1 WO2014103875 A1 WO 2014103875A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
pattern
layer
light shielding
etching stopper
Prior art date
Application number
PCT/JP2013/084089
Other languages
English (en)
French (fr)
Inventor
影山 景弘
聖 望月
中村 大介
Original Assignee
アルバック成膜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルバック成膜株式会社 filed Critical アルバック成膜株式会社
Priority to JP2014554380A priority Critical patent/JP5865520B2/ja
Priority to CN201380052684.3A priority patent/CN104718496B/zh
Priority to KR1020157010520A priority patent/KR101785177B1/ko
Publication of WO2014103875A1 publication Critical patent/WO2014103875A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/29Rim PSM or outrigger PSM; Preparation thereof

Definitions

  • the present invention relates to a phase shift mask capable of forming a fine and highly accurate exposure pattern and a manufacturing method thereof, and more particularly to a technique suitable for use in manufacturing a flat panel display.
  • a phase shift mask is used to expose and transfer a fine pattern onto a resist film formed on a substrate made of silicon, glass, or the like. Since the glass substrate for FPD has a larger area than the silicon substrate for semiconductor, in order to expose the FPD substrate with a sufficient amount of exposure light, the composite wavelength of g-line, h-line and i-line Exposure light is used. When such exposure light is used, an edge-enhanced phase shift mask has been conventionally used (see, for example, Patent Document 1).
  • a halftone type phase shift mask is used as a technique for achieving further miniaturization (see, for example, Patent Document 2).
  • this method when the phase is 180 ° at 193 nm, it is possible to set the location where the light intensity becomes zero and improve the patterning accuracy. Further, since there is a portion where the light intensity becomes zero, it is possible to set a large depth of focus, and it is possible to ease exposure conditions or improve patterning yield.
  • a light shielding layer is formed on a transparent substrate, this light shielding layer is etched and patterned, and a phase shift layer is formed so as to cover the patterned light shielding layer.
  • a phase shift mask is manufactured by etching and patterning. When film formation and patterning are alternately performed in this way, the transfer time between the apparatuses and the processing waiting time become long, and the production efficiency is remarkably lowered.
  • the phase shift layer and the light shielding layer cannot be continuously etched through a single mask having a predetermined opening pattern, and it is necessary to form a mask (resist pattern) twice. Will increase. Therefore, there is a problem that the phase shift mask cannot be manufactured with high mass productivity.
  • phase shift mask in which a phase shift layer, an etching stopper layer, and a light shielding layer are provided in this order on the transparent substrate surface is conceivable.
  • the phase shift mask is manufactured by a photolithography method, an edge-enhanced phase shift mask in which the opening width of the pattern formed in the light shielding layer is wider than the opening width of the phase shift pattern, that is, the phase
  • an edge-enhanced phase shift mask in which the phase shift pattern protrudes from the light shielding pattern is obtained.
  • the opening shape differs depending on the layer, which is not preferable.
  • phase shift mask suitable for manufacturing an edge-enhanced phase shift mask with high productivity
  • the phase shift pattern in the pattern region is shielded from light. It is possible to manufacture a phase shift mask capable of high-definition processing by simultaneously forming a wide shape that protrudes from the pattern and a structure in which the phase shift layer, the etching stopper layer, and the light shielding layer have the same planar shape in the light shielding region. It aims at providing the means to do.
  • a phase shift mask includes: a transparent substrate; a phase shift layer containing Cr as a main component formed on a surface of the transparent substrate; and the phase on the side away from the transparent substrate.
  • An etching stopper layer formed mainly on at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W and Hf formed on the surface of the shift layer;
  • a light shielding layer mainly composed of Cr formed on the etching stopper layer on the side away from the surface, and formed in the light shielding layer with respect to the opening width of the phase shift pattern formed in the phase shift layer.
  • a phase-shift region in which the opening width of the light-shielding pattern formed is set wide, and the opening width of the phase-shift pattern formed in the phase-shift layer and the light-shielding layer formed in the light-shielding layer A method of manufacturing a phase shift mask having a light shielding region in which the opening width of a turn is set to be equal, the step of forming the phase shift layer, the etching stopper layer, and the light shielding layer on the transparent substrate Forming a first mask having a predetermined opening pattern on the light shielding layer; and sequentially etching the light shielding layer and the etching stopper layer through the formed first mask to etch the light shielding pattern and the etching mask layer.
  • etching stopper pattern Forming a stopper pattern; etching the phase shift layer over the first mask to form a phase shift pattern; and covering the light shielding pattern exposed on the light shielding pattern surface and the pattern opening,
  • the etching stopper pattern and the phase shift pattern exposed at the pattern opening are Forming a second mask having a predetermined opening pattern so as not to be covered by the light shielding region but to be covered by the phase shift region; and the light shielding pattern and the etching stopper pattern over the formed second mask. And a step of further etching the etching stopper pattern after removing the second mask.
  • an etching solution containing nitric acid can be used for etching the etching stopper layer.
  • a transparent substrate a phase shift layer mainly composed of Cr formed on the surface of the transparent substrate; and formed on the surface of the phase shift layer on the side away from the transparent substrate
  • An etching stopper layer mainly composed of at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W and Hf; and on the side away from the phase shift layer
  • a phase shift region having a wide width, the opening width of the phase shift pattern formed in the phase shift layer, and the opening width of the light shielding pattern formed in the light shielding layer are equal.
  • the opening widths of the phase shift pattern, the etching stopper pattern, and the light-shielding pattern are made equal in the light-shielded area to maintain the alignment mark accuracy.
  • an edge-enhanced phase shift mask that can cope with high definition can be manufactured with high mass productivity.
  • Cr as a main component is composed of any one selected from Cr and Cr oxides, nitrides, carbides, oxynitrides, carbonitrides, and oxycarbonitrides. That means.
  • a transparent substrate a phase shift layer mainly composed of Cr formed on the surface of the transparent substrate; and formed on the surface of the phase shift layer on the side away from the transparent substrate
  • An etching stopper layer mainly composed of at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W and Hf; and on the side away from the phase shift layer
  • a phase shift region having a wide width is equal to the opening width of the phase shift pattern formed in the phase shift layer and the opening width of the light shielding pattern formed in the light shielding layer.
  • a second mask having a predetermined opening pattern so as to be covered in the phase shift region Forming a second mask having a predetermined opening pattern so as to be covered in the phase shift region; etching the light-shielding pattern and the etching stopper pattern sequentially through the formed second mask; A step of further etching the etching stopper pattern after removing the second mask, so that in the edge-emphasized phase shift mask, the phase shift pattern, the etching stopper pattern, and the light shielding pattern in the light shielding region. It becomes possible to manufacture an edge-enhanced phase shift mask that can cope with high definition while maintaining the accuracy of the alignment mark by making the opening widths equal, with high productivity.
  • an etching solution containing nitric acid can be used for etching the etching stopper layer (etching stopper pattern).
  • a resist pattern (first mask) is formed as a single mask having a predetermined opening pattern on the light shielding layer of the phase shift mask blank, and the light shielding layer is etched through the resist pattern.
  • a light shielding pattern having a predetermined width is formed.
  • the etching stopper pattern is formed by etching the etching stopper layer through the resist pattern. At this time, although the side surface of the light shielding pattern is exposed, the light shielding pattern is made of a material different from that of the etching stopper pattern, so that the light shielding pattern and the etching stopper pattern have the same width.
  • a phase shift pattern having the same width as the etching stopper pattern is formed.
  • the opening width of the light shielding pattern becomes wider than the width of the phase shift pattern.
  • the opening width of the light shielding pattern is wider than the opening width of the phase shift pattern by using the first mask.
  • a predetermined opening pattern is formed so that the surface of the light shielding layer and the light shielding layer (side surface) exposed at the pattern opening are covered, and the etching stopper layer and the phase shift layer (phase shift pattern) exposed at the pattern opening are not covered.
  • a second mask is formed.
  • the side surfaces of the light shielding pattern, the etching stopper pattern, and the phase shift pattern exposed on the surface of the light shielding pattern and the pattern opening are all covered with the second mask. That is, a second mask having a predetermined width narrower than the opening width of the light shielding pattern, the etching stopper pattern, and the phase shift pattern is formed.
  • the phase shift pattern having the same opening width as the opening width of the light shielding pattern is formed by etching the side face of the phase shift pattern exposed to the pattern opening through the resist pattern.
  • the light shielding pattern exposed to the pattern opening is protected by the second mask and is not etched.
  • the etching stopper pattern is further etched. At this time, by setting only the side surface of the etching stopper pattern, the light shielding pattern and the etching stopper pattern are set to have the same side surface.
  • the side surfaces of the phase shift pattern and the light shielding pattern are exposed, but the phase shift pattern and the light shielding pattern are not etched because they are made of a material different from the etching stopper pattern, and the phase shift pattern, the light shielding pattern, and the etching stopper are not etched.
  • the pattern is the same.
  • the etching stopper pattern is etched also in the phase shift region.
  • the phase shift mask can be manufactured in the light shielding region only by patterning the previously formed phase shift mask blanks. For this reason, it can be manufactured more efficiently compared to the case where film formation and patterning are performed alternately as in the conventional example, and the number of manufacturing steps can be reduced compared to the conventional example, so that a phase shift mask can be manufactured with high mass productivity. it can.
  • the phase shift layer containing Cr as a main component is composed of any one selected from the oxides, nitrides, carbides, oxynitrides, carbonitrides, and oxycarbonitrides of the Cr,
  • the film thickness is set so that the phase shift effect is sufficiently exhibited.
  • the etching time becomes longer than 1 time with respect to the etching time of the light shielding layer, but the adhesion strength between the layers is sufficient. Since it is high, it is possible to form a favorable pattern as a photomask having a substantially straight line roughness and a substantially vertical pattern cross section.
  • the adhesion strength between the light shielding film containing Cr and the phase shift layer containing Cr can be sufficiently increased.
  • the etching liquid penetrates from the interface between the light shielding layer and the etching stopper layer or the interface between the etching stopper layer and the phase shift layer. Therefore, the CD accuracy of the formed light-shielding pattern and phase shift pattern can be increased, and the cross-sectional shape of the film can be made to be a shape close to a favorable vertical for the photomask.
  • a wide shape in which the phase shift pattern in the pattern region protrudes from the light shielding pattern, and light shielding It is possible to form a high-definition mask by forming a structure in which the phase shift pattern, the etching stopper pattern, and the light shielding pattern in the region have the same planar shape.
  • FIG. 1 and FIG. 2 are process diagrams schematically showing a method of manufacturing a phase shift mask according to the present embodiment, where MB is a phase shift mask blank.
  • the phase shift mask blank MB of the present invention includes a transparent substrate S, a phase shift layer 11 formed on the transparent substrate S, and an etching formed on the phase shift layer 11. It comprises a stopper layer 12 and a light shielding layer 13 formed on the etching stopper layer 12.
  • the transparent substrate S a material having excellent transparency and optical isotropy is used.
  • a quartz glass substrate or a glass substrate can be used.
  • size in particular of the transparent substrate S is not restrict
  • the present invention can be applied to a substrate having a diameter of about 100 mm, a rectangular substrate having a side of about 50 to 100 mm to a side of 300 mm or more, and further, a quartz substrate having a length of 450 mm, a width of 550 mm, and a thickness of 8 mm, A substrate having a thickness of 1000 mm or more and a thickness of 10 mm or more can also be used.
  • the flatness of the transparent substrate S may be reduced by polishing the surface of the transparent substrate S.
  • the flatness of the transparent substrate S can be set to 20 ⁇ m or less, for example. As a result, the depth of focus of the mask is increased, and it is possible to greatly contribute to the formation of a fine and highly accurate pattern. Further, the flatness is preferably as small as 10 ⁇ m or less.
  • the phase shift layer 11 and the light shielding layer 13 are mainly composed of Cr, and specifically, Cr alone, oxides, nitrides, carbides, oxynitrides, carbonitrides, and oxycarbonitrides of Cr. It can be composed of one selected from a product, or two or more selected from these can be laminated.
  • the phase shift layer 11 has a thickness (for example, 90 to 170 nm) that can give a phase difference of about 180 ° to any light in the wavelength region of 300 to 500 nm (for example, i-line having a wavelength of 365 nm). ).
  • the light shielding layer 13 is formed with a thickness (for example, 80 nm to 200 nm) that provides predetermined optical characteristics.
  • a material mainly composed of at least one metal selected from Ni, Co, Fe, Ti, Si, Al, Nb, Mo, W, and Hf can be used.
  • a —Ti—Nb—Mo film can be used.
  • the phase shift layer 11, the etching stopper layer 12, and the light shielding layer 13 can be formed by, for example, a sputtering method, an electron beam evaporation method, a laser evaporation method, an ALD method, or the like.
  • the phase shift mask M of the present embodiment has a phase shift layer (phase shift pattern) 11 capable of giving a phase difference of 180 °, and the opening width of the phase shift pattern 11a formed in the phase shift layer 11.
  • the phase shift area PSA in which the opening width d2 of the light shielding pattern 13b formed in the light shielding layer 13 is set wider than d1 and the opening width d5 of the phase shift pattern 11b formed in the phase shift layer 11 and the light shielding layer 13 are formed.
  • an alignment mark AM can be provided in the light shielding area MSA, and the light shielding area MSA can be provided around the periphery of the transparent substrate S so as to surround the phase shift area PSA in plan view. .
  • phase shift mask M by using a composite wavelength including light in the above-described wavelength region, particularly g-line (436 nm), h-line (405 nm), and i-line (365 nm) as exposure light, the phase inversion action A region where the light intensity is minimized can be formed to make the exposure pattern clearer.
  • the phase shift layer can be formed of a chromium oxynitride-based material, and the thickness of the phase shift layer can be set to have a phase difference of about 180 ° with respect to i-line.
  • phase shift layer may be formed with a thickness capable of giving a phase difference of about 180 ° with respect to the h-line or the g-line.
  • substantially 180 ° means 180 ° or near 180 °, and is, for example, 180 ° ⁇ 10 ° or less.
  • this phase shift mask it is possible to improve the pattern accuracy based on the phase shift effect by using the light in the wavelength region, and it is possible to form a fine and highly accurate pattern. Thereby, a high-quality flat panel display can be manufactured.
  • the phase shift mask of the present embodiment can be configured as a patterning mask for an FPD glass substrate, for example.
  • a composite wavelength of i-line, h-line and g-line is used for exposure light.
  • the phase shift mask blank MB of the present embodiment has a phase shift layer 11 containing Cr as a main component on a glass substrate S using a DC sputtering method, and Ni as a main component.
  • the etching stopper layer 12 and the light shielding layer 13 mainly composed of Cr are sequentially formed.
  • a method of manufacturing a phase shift mask for manufacturing the phase shift mask M from the phase shift mask blanks MB will be described.
  • a photoresist layer PR1a is formed on the light shielding layer 13 which is the uppermost layer of the phase shift mask blank MB.
  • the photoresist layer PR1a may be a positive type or a negative type.
  • a liquid resist is used as the photoresist layer PR1a, but a dry film resist may be used.
  • the photoresist layer PR1a is exposed and developed to remove the region PR1b and form a resist pattern RP1 on the light shielding layer 13.
  • the resist pattern RP1 functions as an etching mask for the light shielding layer 13, and the shape is appropriately determined according to the etching pattern of the light shielding layer 13.
  • the phase shift area PSA is set to have a shape having an opening width d1 equal to the opening width dimension d1 of the phase shift pattern to be formed.
  • the light shielding layer 13 is wet etched using the first etching solution over the resist pattern RP1.
  • an etching solution containing cerium diammonium nitrate can be used.
  • cerium diammonium nitrate containing an acid such as nitric acid or perchloric acid is preferably used.
  • the etching stopper layer 12 has high resistance to the first etching solution, only the light shielding layer 13 is patterned to form the light shielding pattern 13a.
  • the light shielding pattern 13a has a shape having an opening width d1 equal to the resist pattern RP1.
  • the etching stopper layer 12 is wet-etched using the second etching solution over the resist pattern RP.
  • the second etching solution a solution obtained by adding at least one selected from acetic acid, perchloric acid, aqueous hydrogen peroxide and hydrochloric acid to nitric acid can be suitably used.
  • the etching stopper layer 12 is patterned to form the etching stopper pattern 12a.
  • the etching stopper pattern 12a has a shape having an opening width d1 equal to the opening width dimension d1 of the light shielding pattern 13a and the resist pattern RP1.
  • the phase shift layer 11 is wet etched using the first etching solution over the resist pattern RP1, that is, without removing the resist pattern RP1.
  • the phase shift layer 11 is patterned to form the phase shift pattern 11a.
  • the phase shift pattern 11a has a shape having an opening width dimension d1.
  • the light shielding pattern 13a is further side-etched to form a light shielding pattern 13b having an opening width d2 larger than the opening width dimension d1 of the phase shift pattern 11a.
  • the etching stopper pattern 12a and the phase shift pattern 11a have a shape having an opening width d1 equal to the resist pattern RP1.
  • the resist pattern RP1 is removed. Since a known resist stripping solution can be used for removing the resist pattern RP1, detailed description thereof is omitted here. So far, the dimensions in the phase shift area PSA have been described.
  • the etching stopper pattern 12a and the phase shift pattern 11a have a shape having an opening width d3 equal to the resist pattern RP1, and the light shielding pattern.
  • Reference numeral 13b denotes a shape having an opening width d5 larger than the opening width dimension d3 of the phase shift pattern 11a.
  • the etching stopper pattern 12a and the phase shift pattern 11a have a shape having an opening width d6 equal to the resist pattern RP1, and the light shielding pattern.
  • Reference numeral 13b denotes a shape having an opening width d4 larger than the opening width dimension d6 of the phase shift pattern 11a.
  • a photoresist layer PR2a is formed on the entire surface of the glass substrate S.
  • the photoresist layer PR2a is provided so as to cover the entire surface of the glass substrate S including the inside of the opening formed by the light shielding pattern 13b, the phase shift pattern 11a, and the etching stopper pattern 12a.
  • the photoresist layer PR2a is exposed and developed to remove the region PR2b and form a resist pattern RP2.
  • the resist pattern RP2 is provided so as to cover the entire opening pattern on the glass substrate S including the inside of the opening formed by the light shielding pattern 13b, the phase shift pattern 11a, and the etching stopper pattern 12a.
  • the resist pattern RP2 has a pattern shape similar to the opening pattern on the glass substrate S, that is, a planar shape similar to the resist pattern RP1, and is formed to have different opening width dimensions.
  • the resist pattern RP2 has an opening width smaller than the opening width dimensions d1 and d6 of the resist pattern RP1.
  • the shape has d10 and d7. That is, the resist pattern RP2 has a light shielding pattern 13b, a phase shift pattern 11a, and an etching stopper pattern 12a in a pattern portion whose main purpose is to improve the patterning accuracy by setting a portion where the light intensity becomes zero.
  • the width dimension is set so as to cover the side surface inside the opening pattern in which are stacked.
  • the resist pattern RP2 has an opening width equal to the opening width dimension d3 of the resist pattern RP1, and covers only the side surface of the light shielding pattern 13b among the stacked side surfaces inside the opening.
  • the width dimension is set so that the side surfaces of the phase shift pattern 11a and the etching stopper pattern 12a are exposed.
  • the phase shift pattern 11a is wet-etched using the first etching solution over the resist pattern RP2, that is, in a state covered with the resist pattern RP2.
  • the light shielding pattern 13b is not etched because it is covered with the resist pattern RP2 in both the phase shift area PSA and the light shielding area MSA.
  • the phase shift pattern 11a is not etched because it is covered with the resist pattern RP2.
  • the phase shift pattern 11a made of a Cr-based material is side-etched to form the phase shift pattern 11b.
  • the phase shift pattern 11b has a shape having opening width dimensions d5 and d9.
  • the light shielding pattern 13b is not etched.
  • the opening width dimension of the phase shift pattern 11b can be set to be the same opening width d5 as that of the light shielding pattern 13b.
  • the etching stopper pattern 12a remains in a shape having opening widths d3 and d6 equal to those before this step.
  • the resist pattern RP2 is removed.
  • the resist pattern RP2 can be removed in the same manner as the resist pattern RP1.
  • the etching stopper pattern 12a is further wet etched using the second etching solution. Thereby, the opening width of the etching stopper pattern 12b is made the same as the opening widths d2, d4, d5 of the light shielding pattern 13b.
  • a shift mask M is obtained.
  • phase shift mask M in the light shielding area MSA, the phase shift pattern 11b, the light shielding pattern 13b, and the opening width d5 of the etching stopper pattern 12b are equal, that is, the phase shift pattern 11b in the opening pattern serving as the alignment mark AM,
  • the side surfaces of the light shielding pattern 13b and the etching stopper pattern 12b are flush with each other, and have a shape substantially equal to the exposure direction of the exposure process.
  • An enhanced phase shift mask M is obtained.
  • the side surfaces of the phase shift pattern 11b, the light shielding pattern 13b, and the etching stopper pattern 12b in the opening pattern on the light shielding area MSA side are flush with each other, and the shape is substantially the same as the exposure direction of the exposure process.
  • the width (d2-d1) of the phase shift pattern 11a exposed outside the light shielding pattern 13b is determined by the etching rate of the light shielding pattern 13b when the phase shift layer 11 is wet etched.
  • the etching rate of the light shielding pattern 13 a is affected by the composition of the light shielding layer 13 and the interface state between the etching stopper layer 12 and the light shielding layer 13.
  • the ratio of the chromium component in the layer mainly composed of chromium can be increased.
  • the etching amount of the light shielding pattern 13a can be set, for example, within a range of 200 nm to 1000 nm.
  • the phase shift mask blanks MB are configured by laminating the phase shift layer 11, the etching stopper layer 12, and the light shielding layer 13 in this order on the transparent substrate S.
  • the edge emphasis type with high positional accuracy of the alignment mark AM The phase shift mask M can be manufactured. Therefore, since the number of manufacturing steps can be reduced and the production efficiency can be increased as compared with the conventional example in which film formation and etching are repeated, the phase shift mask M with high mass productivity and high visibility can be manufactured.
  • the phase shift layer 11 is composed of any one selected from Cr oxide, nitride, carbide, oxynitride, carbonitride, and oxycarbonitride, and exhibits a phase shift effect sufficiently. It has a film thickness. In order to have such a film thickness that the phase shift effect is sufficiently exerted, the etching time becomes longer than 1 time with respect to the etching time of the light shielding layer 13, but the adhesion strength between the respective layers is increased. Since it is sufficiently high, it is possible to form a favorable pattern as a photomask having a line roughness that is approximately linear and a pattern cross section that is approximately vertical.
  • the adhesion strength between the light shielding layer 13 containing Cr and the phase shift layer 11 containing Cr can be sufficiently increased. Therefore, when the light shielding layer 13, the etching stopper layer 12 and the phase shift layer 11 are etched with a wet etching solution, the interface between the light shielding layer 13 and the etching stopper layer 12, or the interface between the etching stopper layer 12 and the phase shift layer 11 is used. Therefore, the CD accuracy of the formed light-shielding pattern 13b and phase shift pattern 11a can be increased, and the cross-sectional shape of the film can be made close to a good vertical shape for the photomask.
  • a chromium oxynitride carbide film as the phase shift layer 11 is formed to a thickness of 120 nm by sputtering, and a Ni—Ti—Nb—Mo film as the etching stopper layer 12 is formed to a thickness of 30 nm.
  • a film composed of two layers of a chromium main component layer and a chromium oxide main component layer as the light shielding layer 13 is formed with a total thickness of 100 nm to obtain a phase shift mask blank MB. It was.
  • a resist pattern RP1 is formed on the phase shift mask blanks MB, and the light shielding layer 13 is etched through the resist pattern RP1 using a mixed etching solution of cerium diammonium nitrate and perchloric acid to form a light shielding pattern 13a. Further, the etching stopper layer 12 was etched using a mixed etching solution of nitric acid and perchloric acid to form an etching stopper pattern 12a. Next, the phase shift layer 11 was etched using a mixed etching solution of ceric ammonium nitrate and perchloric acid to form a phase shift pattern 11a.
  • a resist pattern RP2 was formed, and the phase shift pattern 11b was formed by side-etching the phase shift pattern 11a through the resist pattern RP2 using a mixed etching solution of cerium diammonium nitrate and perchloric acid.
  • the resist pattern RP2 is removed, and then the etching stopper pattern 12a is etched using a mixed etching solution of nitric acid and perchloric acid to form the etching stopper pattern 12b.
  • phase shift mask M Using the thus obtained phase shift mask M, exposure is performed using exposure light having a composite wavelength of g-line, h-line, and i-line, the line width of the exposed pattern is measured, and the target line width (2. As a result of obtaining the deviation with respect to 5 ⁇ m), it was confirmed that it can be suppressed to about 10%. At the same time, it was confirmed that the contour visibility of the alignment mark AM was good. Thus, it was found that the phase shift mask M that can be manufactured with high mass productivity can be used for FPD.
  • MB phase shift mask blanks, S ... glass substrate (transparent substrate), 11 ... phase shift layer, 11a ... phase shift pattern, 12 ... etching stopper layer, 12a, 12b ... etching stopper pattern, 13 ... light shielding layer, 13a, 13b ... light-shielding pattern.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

 位相シフトマスクの製造方法は、表面およびパターン開口に露出した遮光層(13)が覆われるとともに、パターン開口に露出したエッチングストッパー層(12)と位相シフト層(11)とが、遮光領域では覆われず、位相シフト領域では覆われるように所定の開口パターンを有する第2のマスク(RP2)を形成する工程を有する。

Description

位相シフトマスクおよびその製造方法
 本発明は、微細かつ高精度な露光パターンを形成することが可能な位相シフトマスクおよびその製造方法に関し、特にフラットパネルディスプレイの製造に用いて好適な技術に関する。
 本願は、2012年12月27日に、日本に出願された日本国特願2012-285846号に基づき優先権を主張し、その内容をここに援用する。
 半導体デバイスやFPDの製造工程では、シリコンやガラス等からなる基板に形成されたレジスト膜に微細パターンを露光、転写するために位相シフトマスクが用いられている。FPD用のガラス基板は半導体用のシリコン基板に比べて大面積であることから、FPD用の基板に対して十分な露光光量で露光するために、g線、h線及びi線の複合波長の露光光が用いられている。このような露光光を用いる場合、従来より、エッジ強調型の位相シフトマスクが用いられている(例えば、特許文献1参照)。
 一方、より微細化を達成するための手法としてハーフトーン型位相シフトマスクが用いられている(例えば特許文献2参照)。この方法によれば、193nmにて位相が180°となることで、光強度がゼロとなる箇所を設定してパターニング精度を向上させることが可能となる。また、光強度がゼロになる箇所があることで、焦点深度を大きく設定することが可能となり、露光条件の緩和もしくはパターニングの歩留まり向上が図れる。
 然し、上記従来例のものでは、透明基板上に遮光層を成膜し、この遮光層をエッチングしパターニングし、パターニングした遮光層を覆うように位相シフト層を成膜し、この位相シフト層をエッチングしてパターニングすることにより位相シフトマスクが製造される。このように成膜とパターニングとを交互に行うと、装置間の搬送時間や処理待ち時間が長くなり生産効率が著しく低下する。しかも、所定の開口パターンを持つ単一のマスク越しに、位相シフト層と遮光層とを連続してエッチングすることができず、マスク(レジストパターン)を2回形成する必要があり、製造工程数が多くなる。従って、高い量産性で位相シフトマスクを製造できないという問題があった。
日本国特開2011-13283号公報 日本国特開2006-78953号公報
 上記の点に鑑み、透明基板表面に位相シフト層とエッチングストッパー層と遮光層とをこの順に設けた位相シフトマスクが考えられる。このような構成であると、位相シフトマスクをフォトリソ法で製造した場合、遮光層に形成されたパターンの開口幅が位相シフトパターンの開口幅よりも広いエッジ強調型の位相シフトマスク、つまり、位相シフトマスクを平面視した際、遮光パターンから位相シフトパターンがはみ出したエッジ強調型の位相シフトマスクが得られる。
 ところが、エッジ強調型の位相シフトマスクとしてのパターン領域では、このように、位相シフトパターンが遮光パターンからはみ出した幅広の形状が好ましいが、本来、平面視した形状が同等でなければならないアライメントマークなどの部分でも階層によって開口形状(幅寸法)が異なってしまうため好ましくないという問題があった。
 本発明に係る態様は上記課題を解決するためになされたものであり、エッジ強調型の位相シフトマスクを高い量産性で製造するのに適した位相シフトマスクにおいて、パターン領域における位相シフトパターンが遮光パターンからはみ出した幅広の形状と、遮光領域における位相シフト層とエッチングストッパー層と遮光層との平面視形状が等しい構造とを同時に形成し、高精細な処理が可能な位相シフトマスクを製造可能とする手段を提供することを目的とする。
(1)本発明に係る一態様の位相シフトマスクは、透明基板と;該透明基板の表面に形成された、Crを主成分とする位相シフト層と;前記透明基板から離間する側の前記位相シフト層表面に形成された、Ni、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするエッチングストッパー層と;前記位相シフト層から離間する側の前記エッチングストッパー層上に形成された、Crを主成分とする遮光層と、を備え、前記位相シフト層に形成された位相シフトパターンの開口幅よりも前記遮光層に形成された遮光パターンの開口幅が広く設定された位相シフト領域と、前記位相シフト層に形成された前記位相シフトパターンの前記開口幅と前記遮光層に形成された前記遮光パターンの前記開口幅とが等しく設定された遮光領域とを有することを特徴とする。
(2)本発明に係る一態様の位相シフトマスクの製造方法は、透明基板と;該透明基板の表面に形成された、Crを主成分とする位相シフト層と;前記透明基板から離間する側の前記位相シフト層表面に形成された、Ni、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするエッチングストッパー層と;前記位相シフト層から離間する側の前記エッチングストッパー層上に形成された、Crを主成分とする遮光層と、を備え、前記位相シフト層に形成された位相シフトパターンの開口幅よりも前記遮光層に形成された遮光パターンの開口幅が広く設定された位相シフト領域と、前記位相シフト層に形成された前記位相シフトパターンの前記開口幅と前記遮光層に形成された前記遮光パターンの前記開口幅とが等しく設定された遮光領域とを有する位相シフトマスクを製造する方法であって、前記透明基板に、前記位相シフト層と前記エッチングストッパー層と前記遮光層とを形成する工程と;前記遮光層上に所定の開口パターンを有する第1のマスクを形成する工程と;この形成した第1のマスク越しに前記遮光層と前記エッチングストッパー層とを順次エッチングして遮光パターンとエッチングストッパーパターンとを形成する工程と;前記第1のマスク越しに前記位相シフト層をエッチングし位相シフトパターンを形成する工程と;前記遮光パターン表面およびパターン開口に露出した遮光パターンが覆われるとともに、前記パターン開口に露出した前記エッチングストッパーパターンと前記位相シフトパターンとが、前記遮光領域では覆われず前記位相シフト領域では覆われるように、所定の開口パターンを有する第2のマスクを形成する工程と;この形成した第2のマスク越しに前記遮光パターンと前記エッチングストッパーパターンとを順次エッチングする工程と;前記第2のマスクを除去した後、前記エッチングストッパーパターンを更にエッチングする工程と、を有することを特徴とする。
(3)上記(2)の態様において、前記エッチングストッパー層のエッチングに硝酸を含むエッチング液を用いることができる。
 上記(1)の態様によれば、透明基板と;該透明基板の表面に形成された、Crを主成分とする位相シフト層と;前記透明基板から離間する側の前記位相シフト層表面に形成された、Ni、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするエッチングストッパー層と;前記位相シフト層から離間する側の前記エッチングストッパー層上に形成された、Crを主成分とする遮光層と、を備え、前記位相シフト層に形成された位相シフトパターンの開口幅よりも前記遮光層に形成された遮光パターンの開口幅が広く設定された位相シフト領域と、前記位相シフト層に形成された前記位相シフトパターンの前記開口幅と前記遮光層に形成された前記遮光パターンの前記開口幅とが等しく設定された遮光領域とを有することにより、エッジ強調型の位相シフトマスクにおいて、遮光領域において、位相シフトパターンとエッチングストッパーパターンと遮光パターンとの開口幅を等しくして、アライメントマークの正確性を維持しながら、高精細化に対応可能なエッジ強調型の位相シフトマスクを高い量産性で製造することが可能となる。
 尚、本発明において、Crを主成分とするとは、Cr並びにCrの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物及び酸化炭化窒化物から選択される何れか1種で構成されることをいう。
 上記(2)の態様によれば、透明基板と;該透明基板の表面に形成された、Crを主成分とする位相シフト層と;前記透明基板から離間する側の前記位相シフト層表面に形成された、Ni、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするエッチングストッパー層と;前記位相シフト層から離間する側の前記エッチングストッパー層上に形成された、Crを主成分とする遮光層と、を備え、前記位相シフト層に形成された位相シフトパターンの開口幅よりも前記遮光層に形成された遮光パターンの開口幅が広く設定された位相シフト領域と、前記位相シフト層に形成された前記位相シフトパターンの前記開口幅と前記遮光層に形成された前記遮光パターンの前記開口幅とが等しく設定された遮光領域とを有する位相シフトマスクを製造する方法であって、前記透明基板に、前記位相シフト層と前記エッチングストッパー層と前記遮光層とを形成する工程と;前記遮光層上に所定の開口パターンを有する第1のマスクを形成する工程と;この形成した第1のマスク越しに前記遮光層と前記エッチングストッパー層とを順次エッチングして遮光パターンとエッチングストッパーパターンとを形成する工程と;前記第1のマスク越しに前記位相シフト層をエッチングし位相シフトパターンを形成する工程と;前記遮光パターン表面およびパターン開口に露出した遮光パターンが覆われるとともに、前記パターン開口に露出した前記エッチングストッパーパターンと前記位相シフトパターンとが、前記遮光領域では覆われず前記位相シフト領域では覆われるように、所定の開口パターンを有する第2のマスクを形成する工程と;この形成した第2のマスク越しに前記遮光パターンと前記エッチングストッパーパターンとを順次エッチングする工程と;前記第2のマスクを除去した後、前記エッチングストッパーパターンを更にエッチングする工程と、を有することにより、エッジ強調型の位相シフトマスクにおいて、遮光領域では位相シフトパターンとエッチングストッパーパターンと遮光パターンとの開口幅を等しくして、アライメントマークの正確性を維持しながら、高精細化に対応可能なエッジ強調型の位相シフトマスクを高い量産性で製造することが可能となる。
 上記(3)の場合、前記エッチングストッパー層(エッチングストッパーパターン)のエッチングに硝酸を含むエッチング液を用いることができる。
 位相シフト領域においては、位相シフトマスクブランクスの遮光層上に所定の開口パターンを持つ単一のマスクとしてレジストパターン(第1のマスク)を形成し、このレジストパターン越しに遮光層をエッチングすることで、所定幅の遮光パターンが形成される。
 さらに、上記レジストパターン越しにエッチングストッパー層をエッチングすることで、エッチングストッパーパターンが形成される。このとき、遮光パターンの側面は露出しているが、遮光パターンはエッチングストッパーパターンとは異なる材料で構成されるためエッチングされず、遮光パターンとエッチングストッパーパターンとが同一幅となる。
 次いで、上記レジストパターン越しに位相シフト層をエッチングすることで、エッチングストッパーパターンと同一幅の位相シフトパターンが形成される。このとき、位相シフトパターンと同じCr系の材料で構成される遮光パターンもエッチングされるため、位相シフトパターンの幅よりも遮光パターンの開口幅が広くなる。以上の工程を経ることにより、遮光パターンの開口幅が位相シフトパターンおよびエッチングストッパーパターンの開口幅よりも広くなる。
 遮光領域においても、同様に第1のマスクを用いることにより、遮光パターンの開口幅が位相シフトパターンの開口幅よりも広くなっている。次いで、遮光層表面およびパターン開口に露出した遮光層(側面)が覆われるとともに、パターン開口に露出したエッチングストッパー層と位相シフト層(位相シフトパターン)とが覆われないように所定の開口パターンを有する第2のマスクを形成する。
 このとき、位相シフト領域では遮光領域と異なり、遮光パターン表面およびパターン開口に露出した遮光パターンとエッチングストッパーパターンと位相シフトパターンとの側面がすべて第2のマスクにより覆われる。つまり、遮光パターンとエッチングストッパーパターンと位相シフトパターンとの開口幅よりも狭い所定幅を有する第2のマスクを形成する。
 次いで、このレジストパターン越しにパターン開口に露出した位相シフトパターンの側面をエッチングすることで、遮光パターンの開口幅と同じ開口幅を有する位相シフトパターンを形成する。このとき、パターン開口に露出した遮光パターンは第2のマスクにより保護されエッチングされない。この後、第2のマスクを除去した後、最後に、エッチングストッパーパターンを更にエッチングする。このとき、エッチングストッパーパターンの側面のみをエッチングすることで、遮光パターンとエッチングストッパーパターンとが面一である側面を有するように設定する。このとき、位相シフトパターンおよび遮光パターンの側面は露出しているが、位相シフトパターンおよび遮光パターンはエッチングストッパーパターンとは異なる材料で構成されるためエッチングされず、位相シフトパターンと遮光パターンとエッチングストッパーパターンとが面一となる。
 同時に、位相シフト領域においても、エッチングストッパーパターンはエッチングされる。以上の工程を経ることにより、遮光パターンおよびエッチングストッパーパターンの開口幅が位相シフトパターンの開口幅よりも広いエッジ強調型の位相シフトマスクが得られる。
 このように、予め形成した位相シフトマスクブランクスをパターニングするだけで遮光領域において位相シフトマスクを製造できる。このため、従来例のごとく成膜とパターニングを交互に行う場合に比べて効率よく製造でき、しかも、従来例に比べて製造工程数を減らすことができることから、高い量産性で位相シフトマスクを製造できる。
 本発明において、Crを主成分とした位相シフト層は、上記Crの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物及び酸化炭化窒化物から選択される何れか1種で構成され、位相シフト効果が十分に発揮される膜厚に設定される。このような位相シフト効果が十分に発揮される膜厚を有するためには、エッチング時間が遮光層のエッチング時間に対して1倍を越えるように長くなってしまうが、各層間の付着強度が十分高いことから、ラインラフネスが概直線状であり、かつ、パターン断面が概垂直となる、フォトマスクとして良好なパターンの形成を行うことが可能となる。
 また、エッチングストッパー層としてNiを含む膜を使用することで、Crを含む遮光膜およびCrを含む位相シフト層との付着強度を十分高めることができる。このため、ウェットエッチング液にて遮光層、エッチングストッパー層及び位相シフト層をエッチングするときに、遮光層とエッチングストッパー層との界面や、エッチングストッパー層と位相シフト層との界面からエッチング液がしみ込まないので、形成される遮光パターン、位相シフトパターンのCD精度を高めることができ、かつ、膜の断面形状をフォトマスクにとって良好な垂直に近い形状とすることができる。
 本発明に係る態様によれば、エッジ強調型の位相シフトマスクを高い量産性で製造するのに適した位相シフトマスクにおいて、パターン領域における位相シフトパターンが遮光パターンからはみ出した幅広の形状と、遮光領域における位相シフトパターンとエッチングストッパーパターンと遮光パターンとの平面視形状が等しい構造とを形成し、高精細なマスクを製造可能とすることができる。
本発明の第1の実施形態に係る位相シフトマスクの製造方法を説明する工程図である。 本発明の第1の実施形態に係る位相シフトマスクの製造方法を説明する工程図である。
<第1の実施形態>
 以下では、本発明に係る位相シフトマスクの製造方法の一実施形態について、図面に基づいて説明する。
 図1、図2は、本実施形態に係る位相シフトマスクの製造方法を模式的に示す工程図であり、図において、MBは位相シフトマスクブランクスである。
 本発明の位相シフトマスクブランクスMBは、図1(a)に示すように、透明基板Sと、この透明基板S上に形成された位相シフト層11と、位相シフト層11上に形成されたエッチングストッパー層12と、このエッチングストッパー層12上に形成された遮光層13とで構成される。
 透明基板Sとしては、透明性及び光学的等方性に優れた材料が用いられ、例えば、石英ガラス基板や、ガラス基板を用いることができる。透明基板Sの大きさは特に制限されず、当該マスクを用いて露光する基板(例えばFPD用基板、半導体基板)に応じて適宜選定される。本実施形態では、径寸法100mm程度の基板や、一辺50~100mm程度から、一辺300mm以上の矩形基板に適用可能であり、更に、縦450mm、横550mm、厚み8mmの石英基板や、最大辺寸法1000mm以上で、厚み10mm以上の基板も用いることができる。
 また、透明基板Sの表面を研磨することで、透明基板Sのフラットネスを低減するようにしてもよい。透明基板Sのフラットネスは、例えば、20μm以下とすることができる。これにより、マスクの焦点深度が深くなり、微細かつ高精度なパターン形成に大きく貢献することが可能となる。さらにフラットネスは10μm以下と、小さい方が良好である。
 位相シフト層11及び遮光層13は、Crを主成分とするものであり、具体的には、Cr単体、並びにCrの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物及び酸化炭化窒化物から選択される1つで構成することができ、また、これらの中から選択される2種以上を積層して構成することもできる。
 位相シフト層11は、300nm以上500nm以下の波長領域の何れかの光(例えば、波長365nmのi線)に対して略180°の位相差をもたせることが可能な厚さ(例えば、90~170nm)で形成される。遮光層13は、所定の光学特性が得られる厚み(例えば、80nm~200nm)で形成される。エッチングストッパー層12としては、Ni、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするものを用いることができ、例えば、Ni-Ti-Nb-Mo膜を用いることができる。これら位相シフト層11、エッチングストッパー層12及び遮光層13は、例えば、スパッタリング法、電子ビーム蒸着法、レーザ蒸着法、ALD法等により成膜できる。
 本実施形態の位相シフトマスクMは、180°の位相差をもたせることが可能な位相シフト層(位相シフトパターン)11を有し、この位相シフト層11に形成された位相シフトパターン11aの開口幅d1よりも遮光層13に形成された遮光パターン13bの開口幅d2が広く設定された位相シフト領域PSAと、位相シフト層11に形成された位相シフトパターン11bの開口幅d5と遮光層13に形成された遮光パターン13bの開口幅d5とが等しく設定された遮光領域MSAとを有する。
 遮光領域MSAには、例えば、アライメントマークAMを設けることができ、遮光領域MSAは、平面視して位相シフト領域PSAの周囲を囲むように透明基板Sの周縁部に周設されることができる。
 当該位相シフトマスクMによれば、上記波長領域の光、特にg線(436nm)、h線(405nm)、i線(365nm)を含む複合波長を露光光として用いることで、位相の反転作用により光強度が最小となる領域を形成して、露光パターンをより鮮明にすることができる。このような位相シフト効果により、パターン精度が大幅に向上し、微細かつ高精度なパターン形成が可能となる。位相シフト層は酸化窒化クロム系材料で形成することができ、上記位相シフト層の厚みは、i線に対して略180°の位相差をもたせる厚みとすることができる。さらに、h線またはg線に対して略180°の位相差をもたせることが可能な厚みで上記位相シフト層を形成してもよい。ここで「略180°」とは、180°又は180°近傍を意味し、例えば、180°±10°以下である。この位相シフトマスクによれば、上記波長領域の光を用いることで位相シフト効果に基づくパターン精度の向上を図ることができ、微細かつ高精度なパターン形成が可能となる。これにより、高画質のフラットパネルディスプレイを製造することができる。
 本実施形態の位相シフトマスクは、例えばFPD用ガラス基板に対するパターニング用マスクとして構成することができる。後述するように、当該マスクを用いたガラス基板のパターニングには、露光光にi線、h線及びg線の複合波長が用いられる。
 本実施形態の位相シフトマスクブランクスMBは、図1(a)に示すように、ガラス基板S上に、DCスパッタリング法を用いて、Crを主成分とする位相シフト層11、Niを主成分とするエッチングストッパー層12及びCrを主成分とする遮光層13を順に成膜することで製造される。以下、上記位相シフトマスクブランクスMBから位相シフトマスクMを製造する位相シフトマスクの製造方法について説明する。
 次に、図1(b)に示すように、位相シフトマスクブランクスMBの最上層である遮光層13の上にフォトレジスト層PR1aが形成される。フォトレジスト層PR1aは、ポジ型でもよいしネガ型でもよい。フォトレジスト層PR1aとしては、液状レジストが用いられるが、ドライフィルムレジストが用いられてもよい。
 続いて、図1(c)(d)に示すように、フォトレジスト層PR1aを露光及び現像することで、領域PR1bを除去して遮光層13の上にレジストパターンRP1が形成される。レジストパターンRP1は、遮光層13のエッチングマスクとして機能し、遮光層13のエッチングパターンに応じて適宜形状が定められる。一例として、位相シフト領域PSAにおいては、形成する位相シフトパターンの開口幅寸法d1と等しい開口幅d1を有する形状に設定される。
 次いで、図1(e)に示すように、このレジストパターンRP1越しに第1エッチング液を用いて遮光層13をウェットエッチングする。第1エッチング液としては、硝酸セリウム第2アンモニウムを含むエッチング液を用いることができ、例えば、硝酸や過塩素酸等の酸を含有する硝酸セリウム第2アンモニウムを用いることが好ましい。ここで、エッチングストッパー層12は第1エッチング液に対して高い耐性を有するため、遮光層13のみがパターニングされて遮光パターン13aが形成される。遮光パターン13aは、レジストパターンRP1と等しい開口幅d1を有する形状とされる。
 次いで、図1(f)に示すように、上記レジストパターンRP越しに第2エッチング液を用いてエッチングストッパー層12をウェットエッチングする。第2エッチング液としては、硝酸に酢酸、過塩素酸、過酸化水素水及び塩酸から選択した少なくとも1種を添加したものを好適に用いることができる。ここで、遮光層13及び位相シフト層11は第2エッチング液に対して高い耐性を有するため、エッチングストッパー層12のみがパターニングされてエッチングストッパーパターン12aが形成される。エッチングストッパーパターン12aは、遮光パターン13aおよびレジストパターンRP1の開口幅寸法d1と等しい開口幅d1を有する形状とされる。
 次いで、図1(g)に示すように、レジストパターンRP1越しに、つまり、レジストパターンRP1を除去しない状態で、第1エッチング液を用いて位相シフト層11をウェットエッチングする。ここで、遮光パターン13aは位相シフト層11と同じCr系材料で構成され、遮光パターン13aの側面は露出しているため、位相シフト層11がパターニングされて位相シフトパターン11aが形成される。位相シフトパターン11aは開口幅寸法d1を有する形状とされる。同時に、遮光パターン13aもさらにサイドエッチングされて、位相シフトパターン11aの開口幅寸法d1よりも大きな開口幅d2を有する形状の遮光パターン13bが形成される。このとき、エッチングストッパーパターン12aおよび位相シフトパターン11aはレジストパターンRP1と等しい開口幅d1を有する形状となっている。
 次いで、図2(h)に示すように、レジストパターンRP1を除去する。レジストパターンRP1の除去には、公知のレジスト剥離液を用いることができるため、ここでは詳細な説明を省略する。
 ここまで、位相シフト領域PSAにおける寸法について説明してきたが、遮光領域MSAにおいては、例えば、エッチングストッパーパターン12aおよび位相シフトパターン11aは、レジストパターンRP1と等しい開口幅d3を有する形状とされ、遮光パターン13bは位相シフトパターン11aの開口幅寸法d3よりも大きな開口幅d5を有する形状とされている。
 また、位相シフト領域PSAと遮光領域MSAとの境界付近に位置する開口においては、例えば、エッチングストッパーパターン12aおよび位相シフトパターン11aは、レジストパターンRP1と等しい開口幅d6を有する形状とされ、遮光パターン13bは位相シフトパターン11aの開口幅寸法d6よりも大きな開口幅d4を有する形状とされている。
 次いで、図2(j)に示すように、ガラス基板S上の全面に、フォトレジスト層PR2aを形成する。このとき、フォトレジスト層PR2aは、遮光パターン13b、位相シフトパターン11a、エッチングストッパーパターン12aによって形成された開口の内部も含めて、ガラス基板S上の全面を覆って設けられる。
 続いて、図2(k)(m)に示すように、フォトレジスト層PR2aを露光及び現像することで、領域PR2bを除去してレジストパターンRP2を形成する。このとき、レジストパターンRP2は、遮光パターン13b、位相シフトパターン11a、エッチングストッパーパターン12aによって形成された開口の内部も含めて、ガラス基板S上の開口パターン全面を覆って設けられる。レジストパターンRP2は、ガラス基板S上の開口パターンに類似したパターン形状、つまり、レジストパターンRP1と類似した平面形状とされ、その開口幅寸法が異なるものとなるように形成されている。
 具体的には、位相シフト領域PSAおよび、位相シフト領域PSAと遮光領域MSAとの境界付近に位置する開口においては、レジストパターンRP2は、レジストパターンRP1の開口幅寸法d1,d6よりも小さな開口幅d10,d7を有する形状とされている。つまり、レジストパターンRP2は、これら、光強度がゼロとなる箇所を設定してパターニング精度を向上させることを主眼とするパターン部分においては、これらの遮光パターン13b、位相シフトパターン11a、エッチングストッパーパターン12aが積層された開口パターン内部の側面を覆うようにその幅寸法が設定される。
 また、遮光領域MSAにおいては、レジストパターンRP2は、レジストパターンRP1の開口幅寸法d3と等しい開口幅を有する形状とされて、開口内部の積層された側面のうち、遮光パターン13bの側面のみを覆うとともに、位相シフトパターン11a、エッチングストッパーパターン12aの側面を露出させるようにその幅寸法が設定される。
 次いで、図2(n)に示すように、レジストパターンRP2越しに、つまり、レジストパターンRP2で覆われた状態で、第1エッチング液を用いて位相シフトパターン11aをウェットエッチングする。ここで、遮光パターン13bは、位相シフト領域PSAおよび遮光領域MSAのいずれにおいても、レジストパターンRP2で覆われているのでエッチングされない。
 同時に、位相シフト領域PSAにおいて、位相シフトパターン11aは、レジストパターンRP2で覆われているのでエッチングされない。
 また、遮光領域MSAにおいては、Cr系材料で構成された位相シフトパターン11aがサイドエッチングされて位相シフトパターン11bが形成される。位相シフトパターン11bは開口幅寸法d5,d9を有する形状とされる。同時に、遮光パターン13bはエッチングされない。その結果、位相シフトパターン11bの開口幅寸法を、遮光パターン13bと同じ開口幅d5とするように設定することができる。なお、エッチングストッパーパターン12aは、この工程の前と等しい開口幅d3,d6を有する形状のままとなっている。
 次いで、図2(p)に示すように、レジストパターンRP2を除去する。レジストパターンRP2は、レジストパターンRP1と同様に除去することができる。
 そして、図2(q)に示すように、上記第2エッチング液を用いてエッチングストッパーパターン12aを更にウェットエッチングする。これにより、エッチングストッパーパターン12bの開口幅が遮光パターン13bの開口幅d2,d4,d5と同一にされる。
 以上により、図2(q)に示すように、位相シフト領域PSAにおいて、位相シフトパターン11bの開口幅d1よりも遮光パターン13b(及びエッチングストッパーパターン12b)の開口幅d2が広いエッジ強調型の位相シフトマスクMが得られる。
 この位相シフトマスクMにおいては、遮光領域MSAにおいては、位相シフトパターン11b、遮光パターン13b、エッチングストッパーパターン12bの開口幅d5が等しい、つまり、アライメントマークAMとなる開口パターン内の位相シフトパターン11b、遮光パターン13b、エッチングストッパーパターン12bの側面が面一となって、露光処理の露光方向とほぼ等しい形状となっている。
 また、位相シフト領域PSAと遮光領域MSAとの境界付近に位置する開口においては、例えば、位相シフトパターン11bの開口幅d9よりも遮光パターン13b(及びエッチングストッパーパターン12b)の開口幅d4が広いエッジ強調型の位相シフトマスクMが得られる。同時に、遮光領域MSA側の開口パターン内の位相シフトパターン11b、遮光パターン13b、エッチングストッパーパターン12bの側面が面一となって、露光処理の露光方向とほぼ等しい形状となっている。
 尚、位相シフト領域PSAにおいて、遮光パターン13bの外側に露出する位相シフトパターン11aの幅(d2-d1)は、位相シフト層11をウェットエッチングするときの遮光パターン13bのエッチング速度によって決まる。ここで、この遮光パターン13aのエッチング速度は、遮光層13の組成やエッチングストッパー層12と遮光層13との界面状態の影響を受ける。例えば遮光層13を、クロムを主成分とした層と酸化クロムを主成分とした層との2層の膜で構成した場合に、クロムを主成分とした層のクロム成分の比率を高くすればエッチング速度を高くできる一方で、クロム成分の比率を低くすればエッチング速度を低くできる。遮光パターン13aのエッチング量としては、例えば、200nm~1000nmの範囲内で設定できる。
 上記実施形態によれば、透明基板S上に、位相シフト層11、エッチングストッパー層12及び遮光層13をこの順で積層して位相シフトマスクブランクスMBを構成した。この位相シフトマスクブランクスMBの遮光層13上にレジストパターンRP1,RP2を形成し、このレジストパターンRP1,RP2を用いて各層をウェットエッチングすることで、アライメントマークAMの位置正確度の高いエッジ強調型の位相シフトマスクMを製造できる。従って、成膜とエッチングを繰り返す従来例に比べて製造工程数を減らすことができると共に生産効率を高めることができるため、高い量産性で高精細な視認性の高い位相シフトマスクMを製造できる。
 また、位相シフト層11は、Crの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物及び酸化炭化窒化物から選択される何れか1種で構成され、位相シフト効果が十分に発揮される膜厚を有する。このような位相シフト効果が十分に発揮される膜厚を有するためには、エッチング時間が遮光層13のエッチング時間に対して1倍を越えるように長くなってしまうが、各層間の付着強度が十分高いことから、ラインラフネスが概直線状であり、かつ、パターン断面が概垂直となる、フォトマスクとして良好なパターンの形成を行うことが可能となる。
 また、エッチングストッパー層12としてNiを含む膜を使用することで、Crを含む遮光層13およびCrを含む位相シフト層11との付着強度を十分高めることができる。
 このため、ウェットエッチング液にて遮光層13、エッチングストッパー層12及び位相シフト層11をエッチングするときに、遮光層13とエッチングストッパー層12の界面や、エッチングストッパー層12と位相シフト層11の界面からエッチング液がしみ込まないので、形成される遮光パターン13b、位相シフトパターン11aのCD精度を高めることができ、かつ、膜の断面形状をフォトマスクにとって良好な垂直に近い形状とすることができる。
 上記効果を確認するため、次の実験を行った。即ち、ガラス基板S上に、スパッタリング法により、位相シフト層11たるクロムの酸化窒化炭化膜を120nmの厚さで成膜し、エッチングストッパー層12たるNi-Ti-Nb-Mo膜を30nmの厚さで成膜し、遮光層13たるクロム主成分の層と酸化クロム主成分の層との2層で構成される膜を100nmの合計厚さで成膜して、位相シフトマスクブランクスMBを得た。
 この位相シフトマスクブランクスMB上にレジストパターンRP1を形成し、このレジストパターンRP1越しに硝酸セリウム第2アンモニウムと過塩素酸との混合エッチング液を用いて遮光層13をエッチングして遮光パターン13aを形成し、さらに硝酸と過塩素酸との混合エッチング液を用いてエッチングストッパー層12をエッチングしてエッチングストッパーパターン12aを形成した。次いで、硝酸セリウム第2アンモニウムと過塩素酸との混合エッチング液を用いて位相シフト層11をエッチングして位相シフトパターン11aを形成した。
 次いで、レジストパターンRP2を形成し、このレジストパターンRP2越しに硝酸セリウム第2アンモニウムと過塩素酸との混合エッチング液を用いて位相シフトパターン11aをサイドエッチングして位相シフトパターン11bを形成した。次いで、レジストパターンRP2を除去し、次いで、硝酸と過塩素酸との混合エッチング液を用いてエッチングストッパーパターン12aをエッチングしてエッチングストッパーパターン12bを形成することで、エッジ強調型の位相シフトマスクMを得た。
 このようにして得た位相シフトマスクMを用い、g線、h線及びi線の複合波長の露光光を用いて露光し、露光されたパターンの線幅を測定し、目標線幅(2.5μm)に対するずれを求めた結果、10%程度に抑えられることができることが確認された。同時に、アライメントマークAMの輪郭視認性が良好であることを確認した。これにより、高い量産性で製造可能な位相シフトマスクMをFPD用に使用可能であることが判った。
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
 MB…位相シフトマスクブランクス、S…ガラス基板(透明基板)、11…位相シフト層、11a…位相シフトパターン、12…エッチングストッパー層、12a,12b…エッチングストッパーパターン、13…遮光層、13a,13b…遮光パターン。

Claims (3)

  1.  透明基板と;
     該透明基板の表面に形成された、Crを主成分とする位相シフト層と;
     前記透明基板から離間する側の前記位相シフト層表面に形成された、Ni、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするエッチングストッパー層と;
     前記位相シフト層から離間する側の前記エッチングストッパー層上に形成された、Crを主成分とする遮光層と、を備え、
     前記位相シフト層に形成された位相シフトパターンの開口幅よりも前記遮光層に形成された遮光パターンの開口幅が広く設定された位相シフト領域と、
     前記位相シフト層に形成された前記位相シフトパターンの前記開口幅と前記遮光層に形成された前記遮光パターンの前記開口幅とが等しく設定された遮光領域とを有することを特徴とする位相シフトマスク。
  2.  透明基板と;
     該透明基板の表面に形成された、Crを主成分とする位相シフト層と;
     前記透明基板から離間する側の前記位相シフト層表面に形成された、Ni、Co、Fe、Ti、Si、Al、Nb、Mo、W及びHfから選択された少なくとも1種の金属を主成分とするエッチングストッパー層と;
     前記位相シフト層から離間する側の前記エッチングストッパー層上に形成された、Crを主成分とする遮光層と、を備え、
     前記位相シフト層に形成された位相シフトパターンの開口幅よりも前記遮光層に形成された遮光パターンの開口幅が広く設定された位相シフト領域と、前記位相シフト層に形成された前記位相シフトパターンの前記開口幅と前記遮光層に形成された前記遮光パターンの前記開口幅とが等しく設定された遮光領域とを有する位相シフトマスクを製造する方法であって、
     前記透明基板に、前記位相シフト層と前記エッチングストッパー層と前記遮光層とを形成する工程と;
     前記遮光層上に所定の開口パターンを有する第1のマスクを形成する工程と;
     この形成した第1のマスク越しに前記遮光層と前記エッチングストッパー層とを順次エッチングして遮光パターンとエッチングストッパーパターンとを形成する工程と;
     前記第1のマスク越しに前記位相シフト層をエッチングし位相シフトパターンを形成する工程と;
     前記遮光パターン表面およびパターン開口に露出した遮光パターンが覆われるとともに、前記パターン開口に露出した前記エッチングストッパーパターンと前記位相シフトパターンとが、前記遮光領域では覆われず前記位相シフト領域では覆われるように、所定の開口パターンを有する第2のマスクを形成する工程と;
     この形成した第2のマスク越しに前記遮光パターンと前記エッチングストッパーパターンとを順次エッチングする工程と;
     前記第2のマスクを除去した後、前記エッチングストッパーパターンを更にエッチングする工程と、を有することを特徴とする位相シフトマスクの製造方法。
  3.  前記エッチングストッパー層のエッチングに硝酸を含むエッチング液を用いることを特徴とする請求項2記載の位相シフトマスクの製造方法。
PCT/JP2013/084089 2012-12-27 2013-12-19 位相シフトマスクおよびその製造方法 WO2014103875A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014554380A JP5865520B2 (ja) 2012-12-27 2013-12-19 位相シフトマスクおよびその製造方法
CN201380052684.3A CN104718496B (zh) 2012-12-27 2013-12-19 相移掩膜的制造方法
KR1020157010520A KR101785177B1 (ko) 2012-12-27 2013-12-19 위상 시프트 마스크 및 그의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012285846 2012-12-27
JP2012-285846 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103875A1 true WO2014103875A1 (ja) 2014-07-03

Family

ID=51020962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084089 WO2014103875A1 (ja) 2012-12-27 2013-12-19 位相シフトマスクおよびその製造方法

Country Status (5)

Country Link
JP (1) JP5865520B2 (ja)
KR (1) KR101785177B1 (ja)
CN (1) CN104718496B (ja)
TW (1) TWI592739B (ja)
WO (1) WO2014103875A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188881A (ja) * 2015-03-28 2016-11-04 Hoya株式会社 フォトマスクの製造方法、フォトマスク及びフラットパネルディスプレイの製造方法
CN111025840A (zh) * 2018-10-09 2020-04-17 爱发科成膜株式会社 掩模坯、半色调掩模、掩模坯的制造方法及半色调掩模的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322370C (zh) * 1999-06-29 2007-06-20 3M创新有限公司 用于投影显示的光学系统
JP6391495B2 (ja) * 2015-02-23 2018-09-19 Hoya株式会社 フォトマスク、フォトマスクセット、フォトマスクの製造方法、及び表示装置の製造方法
EP3410215B1 (en) * 2016-01-27 2020-06-17 LG Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450942A (ja) * 1990-06-15 1992-02-19 Fujitsu Ltd レチクルおよびその製造方法
JPH08292550A (ja) * 1995-04-21 1996-11-05 Toppan Printing Co Ltd 位相シフトマスク及びその製造方法
JPH08334886A (ja) * 1995-06-02 1996-12-17 Toppan Printing Co Ltd ハーフトーン型位相シフトマスク及びその製造方法
JPH08334885A (ja) * 1995-06-02 1996-12-17 Toppan Printing Co Ltd ハーフトーン型位相シフトマスク及びその製造方法
JP2008203374A (ja) * 2007-02-16 2008-09-04 Clean Surface Gijutsu:Kk ハーフトーンブランクス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429860B1 (ko) * 1997-05-27 2004-06-16 삼성전자주식회사 교번형 위상반전 마스크 및 그 제조방법
US7029803B2 (en) * 2003-09-05 2006-04-18 Schott Ag Attenuating phase shift mask blank and photomask
JP2005208660A (ja) * 2004-01-22 2005-08-04 Schott Ag 超高透過率の位相シフト型のマスクブランク
JP2005257962A (ja) * 2004-03-11 2005-09-22 Semiconductor Leading Edge Technologies Inc 位相シフトマスク及び位相シフトマスクの製造方法
JP4693451B2 (ja) * 2005-03-22 2011-06-01 Hoya株式会社 グレートーンマスクの製造方法及び薄膜トランジスタ基板の製造方法
JP4987075B2 (ja) * 2007-11-01 2012-07-25 アルバック成膜株式会社 ハーフトーンマスク、ハーフトーンマスクブランクス、及びハーフトーンマスクの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450942A (ja) * 1990-06-15 1992-02-19 Fujitsu Ltd レチクルおよびその製造方法
JPH08292550A (ja) * 1995-04-21 1996-11-05 Toppan Printing Co Ltd 位相シフトマスク及びその製造方法
JPH08334886A (ja) * 1995-06-02 1996-12-17 Toppan Printing Co Ltd ハーフトーン型位相シフトマスク及びその製造方法
JPH08334885A (ja) * 1995-06-02 1996-12-17 Toppan Printing Co Ltd ハーフトーン型位相シフトマスク及びその製造方法
JP2008203374A (ja) * 2007-02-16 2008-09-04 Clean Surface Gijutsu:Kk ハーフトーンブランクス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188881A (ja) * 2015-03-28 2016-11-04 Hoya株式会社 フォトマスクの製造方法、フォトマスク及びフラットパネルディスプレイの製造方法
CN111025840A (zh) * 2018-10-09 2020-04-17 爱发科成膜株式会社 掩模坯、半色调掩模、掩模坯的制造方法及半色调掩模的制造方法
KR20200040656A (ko) * 2018-10-09 2020-04-20 알박 세이마쿠 가부시키가이샤 마스크 블랭크스, 하프톤 마스크, 마스크 블랭크스의 제조 방법, 및 하프톤 마스크의 제조 방법
KR102220600B1 (ko) 2018-10-09 2021-02-26 알박 세이마쿠 가부시키가이샤 마스크 블랭크스, 하프톤 마스크, 마스크 블랭크스의 제조 방법, 및 하프톤 마스크의 제조 방법
CN111025840B (zh) * 2018-10-09 2023-10-24 爱发科成膜株式会社 掩模坯、半色调掩模、掩模坯的制造方法及半色调掩模的制造方法

Also Published As

Publication number Publication date
TWI592739B (zh) 2017-07-21
JP5865520B2 (ja) 2016-02-17
TW201432370A (en) 2014-08-16
JPWO2014103875A1 (ja) 2017-01-12
KR20150063093A (ko) 2015-06-08
CN104718496A (zh) 2015-06-17
CN104718496B (zh) 2019-06-28
KR101785177B1 (ko) 2017-11-06

Similar Documents

Publication Publication Date Title
JP5661973B2 (ja) 位相シフトマスクの製造方法
JP4570632B2 (ja) 4階調フォトマスクの製造方法、及びフォトマスクブランク加工品
KR102295453B1 (ko) 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 장치의 제조 방법
JP5669203B2 (ja) 多階調フォトマスク、多階調フォトマスクの製造方法、及びパターン転写方法
JP4642140B2 (ja) 4階調フォトマスク、4階調フォトマスクの使用方法、及び液晶表示装置の製造方法
JP5865520B2 (ja) 位相シフトマスクおよびその製造方法
JP5948495B2 (ja) 位相シフトマスクの製造方法および位相シフトマスク
KR101443531B1 (ko) 포토 마스크의 제조 방법, 포토 마스크, 패턴 전사 방법 및 플랫 패널 디스플레이의 제조 방법
JP5662032B2 (ja) マスクブランクス及びハーフトーンマスク
TW201329615A (zh) 光罩之製造方法、光罩、圖案轉印方法及平面顯示器之製造方法
JP6198238B2 (ja) 位相シフトマスクの製造方法
JP3818171B2 (ja) 位相シフトマスクブランク及びその製造方法
KR20170113083A (ko) 위상 시프트 마스크 블랭크, 위상 시프트 마스크 및 표시 장치의 제조 방법
JP5982013B2 (ja) 位相シフトマスクおよびその製造方法
JP6233873B2 (ja) 位相シフトマスクの製造方法
JP6154132B2 (ja) 位相シフトマスクの製造方法、位相シフトマスク
JP6456748B2 (ja) フォトマスクの製造方法、フォトマスク及びフラットパネルディスプレイの製造方法
JP7062377B2 (ja) 位相シフトマスクの製造方法および位相シフトマスク
JP4073882B2 (ja) ハーフトーン型位相シフトマスクブランク
JP6428120B2 (ja) フォトマスクブランク、それを用いたフォトマスクの製造方法とフォトマスク、それを用いて作製したマイクロレンズ
JP6207006B2 (ja) 位相シフトマスクの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554380

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157010520

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867163

Country of ref document: EP

Kind code of ref document: A1