WO2014103435A1 - ワイヤレス電力伝送システム用測定回路および測定装置 - Google Patents

ワイヤレス電力伝送システム用測定回路および測定装置 Download PDF

Info

Publication number
WO2014103435A1
WO2014103435A1 PCT/JP2013/073892 JP2013073892W WO2014103435A1 WO 2014103435 A1 WO2014103435 A1 WO 2014103435A1 JP 2013073892 W JP2013073892 W JP 2013073892W WO 2014103435 A1 WO2014103435 A1 WO 2014103435A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power
side terminal
circuit
power receiving
Prior art date
Application number
PCT/JP2013/073892
Other languages
English (en)
French (fr)
Inventor
高橋博宣
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201390000844.5U priority Critical patent/CN204578219U/zh
Priority to JP2014554185A priority patent/JP5794400B2/ja
Publication of WO2014103435A1 publication Critical patent/WO2014103435A1/ja
Priority to US14/699,066 priority patent/US9806538B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the power transmission device 90 includes a power transmission module 910, a power transmission side active electrode 920, and a power transmission side passive electrode 930.
  • a power transmission side active electrode 920 and a power transmission side passive electrode 930 are connected to the power transmission module 910.
  • a power supply (not shown) is connected to the power transmission module 910.
  • the power transmission module to be measured is connected to the first and second power transmission side terminals, and the power reception circuit (partial circuit module) and the characteristic measurement unit are simply connected to the first and second power reception side terminals.
  • the electric field coupling state between the device and the power receiving device is simulated.
  • the power receiving module to be measured is connected to the first and second power receiving terminals, and the power transmitting device is simply connected to the power transmitting circuit (partial circuit module) and the characteristic measuring unit to the first and second power transmitting terminals.
  • the electric field coupling state with the power receiving apparatus is simulated. Thereby, the characteristic measurement can be accurately performed without forming the actual arrangement state of the power transmitting device and the power receiving device, that is, the wireless arrangement state (capacitive coupling state).
  • the present invention it is possible to easily and accurately perform characteristic measurement and inspection of a power transmission module and a power reception module for a wireless power transmission system.
  • FIG. 1 is a block diagram of a measurement circuit and a measurement device of a wireless power transmission system according to the first embodiment of the present invention.
  • the aspect of the measuring apparatus which performs the characteristic measurement of the power transmission module of a power transmission apparatus is shown.
  • a capacitor 112 is connected between the first power receiving side terminal Pr1 and the second power receiving side terminal Pr2.
  • the capacitor 112 corresponds to the “second parallel capacitor” of the present invention.
  • the power receiving circuit 12 includes a circuit similar to the power receiving module of the actual machine. For example, when the power receiving module of the actual device is arranged in the housing of the device of the power receiving apparatus, the one obtained by extracting only the circuit portion of the power receiving module is used.
  • the power receiving circuit 12 may include a power receiving module of the actual machine and a circuit corresponding to the load of the actual machine. Alternatively, a circuit corresponding to the load of the actual machine may be separately prepared and connected to the power receiving circuit 12. Good.
  • the power receiving circuit 12 may be a circuit that simulates a power receiving module of an actual machine.
  • the characteristic measurement unit 13 includes an input unit of the power transmission module 910, a first power transmission side terminal Pt1, a second power transmission side terminal Pt2, a first power reception side terminal Pr1, a second power reception side terminal Pr2, and a power reception circuit 12 of the coupling pseudo circuit 11. Connected to the output section.
  • the characteristic measurement unit 13 measures electrical characteristics such as input / output voltage and input / output current for the power transmission module 910 and the power reception circuit 12.
  • the characteristic measurement unit 13 measures various characteristics as a power source such as efficiency from the electrical characteristics.
  • the characteristic measurement unit 13 also transmits the voltage (the voltage between the first and second power transmission side terminals Pt1 and Pt2) and frequency of the power transmission AC (alternating current) and the frequency of the power receiving AC (alternating current) (first). The voltage between the second power receiving side terminals Pr1 and Pr2) and the frequency are measured.
  • the characteristic measurement unit 13 is connected to one end of a control wiring 153.
  • the other end of the control wiring 153 has a shape that can be connected to the power transmission module 910 to be measured.
  • the other end of the control wiring 153 is connected to the control circuit of the power transmission module 910 during measurement.
  • FIG. 2 shows impedance characteristics when the coupling pseudo circuit 11 side (first and second power transmission side terminals Pt1, Pt2 side) is viewed from the power transmission module 910 in the measurement apparatus of the first embodiment, and power transmission in a wirelessly connected actual machine. It is a graph which shows the impedance characteristic which looked at the receiving side from the module. In FIG. 2, the horizontal axis is frequency and the vertical axis is impedance Z.
  • the measurement device 10A of the wireless power transmission system of this embodiment is different from the measurement device 10 according to the first embodiment in the configuration of the combined pseudo circuit 11A (corresponding to the “measurement circuit” of the present invention). Therefore, only a different part from the measuring apparatus 10 which concerns on 1st Embodiment is demonstrated concretely.
  • FIG. 4 shows the coupling pseudo circuit 11A side (first and second power transmission side terminals Pt1, Pt2 side) from the primary side of the step-up transformer (not shown) of the power transmission module 910 in the measurement apparatus of the second embodiment. It is a graph which shows the impedance characteristic which looked at the power receiving side from the power transmission module in the real machine connected wirelessly.
  • the horizontal axis is frequency and the vertical axis is impedance Z.
  • the capacitances C1, C2, and C3 of the capacitors 111, 112, and 113 of the coupling pseudo circuit 11A are appropriately adjusted, and the resistance value R1 of the resistor 114 is appropriately set, so that the wirelessly connected real machine It is possible to realize an impedance characteristic that more accurately matches the impedance characteristic. This is presumably because the loss in the non-contact coupling state that occurs in the actual machine mode can be simulated by the resistance value R1 of the resistor 114.
  • the characteristic measurement of the power transmission module of the power transmission device in the wireless power transmission system can be reliably and more accurately (highly accurate).
  • the measurement of the characteristics of the power transmission module is shown for the measurement device, but in this embodiment, the aspect of the measurement device that measures the characteristics of the power reception module of the power reception device is shown. Therefore, only the parts different from the first embodiment will be specifically described.
  • the measuring apparatus 10B includes a coupling pseudo circuit 11, a characteristic measuring unit 13, and a power transmission circuit 14.
  • the power transmission circuit 14 includes a circuit similar to the actual power transmission module. For example, when the actual power transmission module is arranged in the casing of the power transmission device, a module obtained by extracting only the circuit portion of the power transmission module is used.
  • the power transmission circuit 14 may include an actual power transmission module and a circuit corresponding to a power source, or a power source may be separately prepared and connected to the power transmission circuit 14.
  • the power transmission circuit 14 may be a circuit that simulates a power transmission module of an actual machine.
  • the power transmission circuit 14 is connected to the first power transmission side terminal Pt1 and the second power transmission side terminal Pt2 of the coupling pseudo circuit 11.
  • This connection specification is based on the connection specification between the actual power transmission module and the power transmission side active electrode and the power transmission side passive electrode. However, it is directly connected instead of the wireless arrangement state by capacitive coupling as in actuality.
  • the first power receiving side wiring 161 and the second power receiving side wiring 162 are based on the connection specifications between the power receiving module of the actual machine, the power receiving side active electrode, and the power receiving side passive electrode. However, it is directly connected instead of the wireless arrangement state by capacitive coupling as in actuality.
  • the characteristic measuring unit 13 transmits a control signal to the power transmission circuit 14 via the control wiring 153 to control the power ON / OFF. Power is transmitted from the power transmission circuit 14 in accordance with the control content. The transmitted power is received by the power receiving module 810 through the coupling pseudo circuit 11. At this time, since the coupling pseudo circuit 11 has the above-described configuration, the power receiving module 810 can receive power in substantially the same power receiving manner as that of the actual device.
  • the characteristic measurement unit 13 measures the electric characteristics of the power receiving module 810, the power transmission circuit 14, and the coupling pseudo circuit 11.
  • the characteristic measuring unit 13 inspects the power receiving module 810 based on the measurement result of the electric characteristics.
  • the power receiving device 80 is manufactured by assembling the power receiving module 810 that is determined to be a non-defective product by inspection into the housing of the power receiving device 80.
  • FIG. 6 is a circuit diagram of a measurement circuit (coupling pseudo circuit) of a wireless power transmission system according to the fourth embodiment of the present invention.
  • the coupling pseudo circuit 11C of this embodiment is used by replacing the coupling pseudo circuit 11 and 11A shown in the above-described embodiments, and the basic configuration as a measuring apparatus is the same as the configuration of each of the above-described embodiments. It is.
  • the coupling pseudo circuit 11C is obtained by adding a capacitor 114 to the coupling pseudo circuit 11 shown in the first embodiment.
  • the capacitor 114 corresponds to a “second series capacitor” of the present invention.
  • the capacitor 114 is connected in series between the second power transmission side terminal Pt2 and the second power reception side power transmission terminal Pr2. At this time, the capacitor 114 is connected between a connection point between the second power transmission side terminal Pt2 and the capacitor 111 and a connection point between the second power reception side terminal Pt2 and the capacitor 112.
  • the coupling pseudo circuit 11C reproduces the equivalent circuit constant of the generation unit of the actual coupling capacity by appropriately setting the capacitances C1, C2, C3, and C4 of the capacitors 111, 112, 113, and 114. .
  • the coupling capacitance can be reproduced with higher accuracy. Thereby, characteristic measurement can be performed with higher accuracy.
  • a resistor as shown in the second embodiment may be added to the configuration of the present embodiment, and with this configuration, more accurate characteristic measurement can be realized.
  • FIG. 7 is a circuit diagram of a measurement circuit (coupling pseudo circuit) of a wireless power transmission system according to the fifth embodiment of the present invention.
  • the coupling pseudo circuit 11D of this embodiment is used by replacing the coupling pseudo circuit 11, 11A, 11C shown in the above-described embodiment, and the basic configuration as a measuring apparatus is the same as the configuration of each of the above-described embodiments. The same.
  • the combined pseudo circuit 11D is obtained by adding capacitors 115 and 116 to the combined pseudo circuit 11 shown in the first embodiment.
  • the capacitors 115 and 116 correspond to the “first and second additional capacitors” of the present invention.
  • the capacitor 115 is connected between a connection point between the first power transmission side terminal Pt1 and the capacitor 111 and a connection point between the second power reception side terminal Pr2 and the capacitor 112.
  • the capacitor 116 is connected between a connection point between the second power transmission side terminal Pt2 and the capacitor 111 and a connection point between the first power reception side terminal Pr1 and the capacitor 112.
  • the coupling pseudo circuit 11C reproduces the equivalent circuit constant of the generation unit of the actual coupling capacity by appropriately setting the capacitances C1-C6 of the capacitors 111-116.
  • the coupling capacitance can be reproduced with higher accuracy.
  • the coupling capacitance generated between the power transmission side active electrode and the power reception side passive electrode and the coupling capacitance generated between the power reception side active electrode and the power transmission side passive electrode can also be reproduced. Thereby, characteristic measurement can be performed with higher accuracy.
  • a resistor as shown in the second embodiment may be added to the configuration of the present embodiment, and with this configuration, more accurate characteristic measurement can be realized.
  • a position where a resistor is added it may be connected in series to any of the capacitors 111, 112, 113, 114, 115, and 116.
  • resistors may be connected in series to all the capacitors 111, 112, 113, 114, 115, and 116, and this configuration makes it possible to realize more accurate characteristic measurement.
  • the first parallel capacitor, the second parallel capacitor, and the like are arranged, but at least the capacitor 113 corresponding to the “series capacitor” of the present invention is provided.
  • the arrangement state (capacitive coupling state) of the power receiving module of the actual machine and the power transmission module of the actual machine can be reproduced in a pseudo manner.
  • a first parallel capacitor, a second parallel capacitor, a second series capacitor, a first additional capacitor, and a second additional capacitor are further provided in addition to the “series capacitor” for highly accurate characteristic measurement and inspection. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

測定装置(10)は、結合擬似回路(11)、受電回路(12)、特性測定部(13)を備える。結合擬似回路(11)は、第1送電側端子(Pt1)、第2送電側端子(Pt2)、第1受電側端子(Pr1)、および第2受電側端子(Pr2)を有する。第1送電側端子(Pt1)と第1受電側送電端子(Pr1)との間にはキャパシタ(113)が接続され、第1送電側端子(Pt1)と第2送電側端子(Pt2)との間にはキャパシタ(111)が接続され、第1受電側端子(Pr1)と第2受電側端子(Pr2)との間には、キャパシタ(112)が接続される。第1、第2送電側端子(Pt1,Pt2)には測定対象の送電モジュール(910)が接続される。第1、第2受電側端子(Pr1,Pr2)には受電回路(12)および特性測定部(13)が接続される。

Description

ワイヤレス電力伝送システム用測定回路および測定装置
 本発明は、送電装置と受電装置とを結線せずに、送電装置から受電装置へ電力を伝送するワイヤレス電力伝送システムの測定回路および測定装置に関する。
 従来、ワイヤレス電力伝送システムとして、磁界結合方式の電力伝送システムが多く実用化されている。磁界結合方式の電力伝送システムは、送電装置と受電装置とにそれぞれコイルを備える。磁界結合方式の電力伝送システムは、送電側コイルと受電側コイルとを磁界結合させることで、送電装置から受電装置へ電力を伝送している。
 しかしながら、このような磁界結合方式の電力伝送システムでは、送電側コイルと受電側コイルとの位置ズレによる伝送特性劣化、コイル形状の制約、コイルの発熱、金属異物による誘導加熱等の問題が生じる。
 これに対し、電界結合方式の電力伝送システムが、例えば特許文献1や特許文献2に示すように、各種考案されている。電界結合方式の電力伝送システムは、送電装置と受電装置のそれぞれに結合電極を備える。電界結合方式の電力伝送システムは、送電側結合電極と受電側結合電極とを電界結合し、すなわち、送電側結合電極と受電側結合電極とでコンデンサを形成し、当該コンデンサを介して高周波高電圧信号を伝送することで、送電装置から受電装置へ電力を伝送している。
 このような電界結合方式の電力伝送システムは、基本構成として図8の構成からなる。
 図8は、一般的な電界結合方式の電力伝送システムの基本構成を示す図である。一般的な電界結合方式の電力伝送システムは、送電装置90、受電装置80を備える。
 送電装置90は、送電モジュール910、送電側アクティブ電極920、および送電側パッシブ電極930を備える。送電モジュール910には、送電側アクティブ電極920と送電側パッシブ電極930とが接続されている。送電モジュール910には、図示しない電源が接続されている。
 受電装置80は、受電モジュール810、受電側アクティブ電極820、および受電側パッシブ電極830を備える。受電モジュール810には、図示しない負荷が接続されている。
 送電装置90から電力を送電する場合、受電装置80は、受電側アクティブ電極820と送電側アクティブ電極920とが対向し、受電側パッシブ電極830と送電側パッシブ電極930とが対向するように、送電装置10に対して配置される。
 このように受電装置80を送電装置90に配置することで、受電側アクティブ電極820と送電側アクティブ電極920とでアクティブ側の結合容量(キャパシタ)が構成され、受電側パッシブ電極830と送電側パッシブ電極930とでパッシブ側の結合容量(キャパシタ)が構成される。この結合容量を介して、高電圧の交流電流を供給することで、送電装置90から受電装置80への電力伝送を実現する。
 そして、受電装置80は、送電装置90に対して、図9に示すような構造で設置される。図9は、ワイヤレス電力伝送システムにおける受電装置を送電装置に設置する態様を示す斜視図である。図9に示すように、送電装置90は、台座部材91と背面部材92とを備える。台座部材91は、背面部材92の主面から正面方向へ突出する形状からなる。この台座部材91が突出することによるスペースに、平板で直方体形状の筐体81を有する受電装置80が載置される。より具体的には、例えば、送電装置90の背面部材92に送電側アクティブ電極と送電側パッシブ電極を設ける。受電装置80には、受電側アクティブ電極と受電側パッシブ電極を受電装置80に設ける。そして、このような受電側アクティブ電極と受電側パッシブ電極を備える受電装置80を、アクティブ電極同士が対向してパッシブ電極同士が対向するように送電装置90に載置するだけで、上述のように結合容量が形成され、電界結合方式の電力伝送が実現される。
特表2009-531009号公報 特開2009-89520号公報
 しかしながら、従来の電界結合方式のワイヤレス電力伝送システムでは、次に示すような課題が存在する。
 図10は、従来のワイヤレス電力伝送システムの測定システムのブロック図である。従来のワイヤレス電力伝送システムの受電モジュールの測定システムでは、送電装置90として組み立てる前の送電モジュール910の製品検査(特性測定)を行う場合であっても、図10に示すように、実機に則した構成要素と結線を必要としていた。
 具体的には、測定対象(検査対象)の送電モジュール910以外に、検査装置側として、送電側アクティブ電極920、送電側パッシブ電極930、受電モジュール810、受電側アクティブ電極820、および受電側パッシブ電極830を用意していた。さらに、受電モジュール810等に対して、測定機器70を接続していた。これは、受電モジュール810の検査(特性測定)を行う場合も同様であり、受電モジュール810の検査の際にも、実機に則した構成要素と結線を必要としていた。
 しかしながら、このような検査方法(特性測定方法)では、送電モジュール910や受電モジュール810を、測定の都度、実機同様に接続しなければならない。したがって、測定が煩雑になり、特性測定システムが大掛かりになってしまう。
 この発明の目的は、送電装置の送電モジュールや受電装置の受電モジュールの特性測定および検査を容易且つ正確に行うことができるワイヤレス電力伝送システムの測定回路および測定装置を提供することにある。
 この発明は、送電装置から受電装置へワイヤレスで電力伝送するワイヤレス電力伝送システムにおける特性測定を行うワイヤレス電力伝送システムの測定回路に関し、次の特徴を有する。測定回路は、送電回路側に接続する一対の第1送電側端子および第2送電側端子と、受電回路側に接続する一対の第1受電側端子および第2受電側端子とを備える。測定回路は、第1送電側端子と第1受電側端子との間に接続され、送電装置と受電装置との結合状態を擬似する直列キャパシタを備える。
 この構成では、第1、第2送電側端子に測定対象の送電モジュールを接続し、第1、第2受電側端子に受電回路(部分的回路モジュール)と特性測定部を接続するだけで、送電装置と受電装置との電界結合状態が擬似的に再現される。また、第1、第2受電側端子に測定対象の受電モジュールを接続し、第1、第2送電側端子に送電回路(部分的回路モジュール)と特性測定部を接続するだけで、送電装置と受電装置との電界結合状態が擬似的に再現される。これにより、実際の送電装置と受電装置の配置状態、すなわちワイヤレスによる配置状態(容量結合状態)を形成しなくても、特性測定を正確に行うことができる。
 また、この発明のワイヤレス電力伝送システムの測定回路は、次の構成を備えることが好ましい。測定回路は、第1送電側端子と第2送電側端子との間に接続された第1並列キャパシタと、第1受電側端子と第2受電側端子との間に接続された第2並列キャパシタとの少なくとも一方を備える。
 また、この発明のワイヤレス電力伝送システムの測定回路では、直列キャパシタに直列接続された抵抗器を備えることが好ましい。
 また、この発明のワイヤレス電力伝送システムの測定回路では、第2送電側端子と第2受電側端子との間に接続された第2直列キャパシタを備えることが好ましい。
 また、この発明のワイヤレス電力伝送システムの測定回路では、次の構成であってもよい。測定回路は、第1送電側端子と第2受電側端子との間に接続された第1付加キャパシタと、第2送電側端子と第1受電側端子との間に接続された第2付加キャパシタとの少なくとも一方を備える。
 これらの構成では、送電装置と受電装置との電界結合状態を、さらに高精度に再現できる。
 また、この発明のワイヤレス電力伝送システムの測定装置は、次の構成を備えることを特徴としている。測定装置は、上述のいずれかに記載の測定回路と、第1受電側端子および第2受電側端子に接続された検査用受電回路と、測定対象の送電モジュールの特性を測定する特性測定部と、第1送電側端子に対して送電モジュールを接続可能にする第1送電配線と、第2送電側端子に対して送電モジュールを接続可能にする第2送電配線と、を備える。
 この構成では、実際の送電装置と受電装置の配置状態、すなわちワイヤレスによる配置状態(容量結合状態)を形成しなくても、送電モジュールの特性を確実且つ正確に測定することができる。
 また、この発明のワイヤレス電力伝送システムの測定装置は、次の構成を備えることを特徴としている。測定装置は、上述のいずれかに記載の測定回路と、第1送電側端子および第2受電側端子に接続された検査用送電回路と、測定対象の受電モジュールの特性を測定する特性測定部と、第1受電側端子と特性測定部に対して受電モジュールを接続可能にする第1受電配線と、第2受電側端子と特性測定部に対して受電モジュールを接続可能にする第2受電配線と、を備える。
 この構成では、実際の送電装置と受電装置の配置状態、すなわちワイヤレスによる配置状態(容量結合状態)を形成しなくても、受電モジュールの特性を確実且つ正確に測定することができる。
 この発明によれば、ワイヤレス電力伝送システム用の送電モジュールや受電モジュールの特性測定および検査を容易且つ正確に行うことができる。
本発明の第1の実施形態に係るワイヤレス電力伝送システムの測定回路および測定装置のブロック図である。 本発明の第1の実施形態の測定装置における送電モジュール910から結合擬似回路11側(第1、第2送電側端子Pt1,Pt2側)を見たインピーダンス特性と、実機における送電モジュールから受電側を見たインピーダンス特性を示すグラフである。 本発明の第2の実施形態に係るワイヤレス電力伝送システムの測定回路および測定装置のブロック図である。 本発明の第2の実施形態の測定装置における送電モジュール910から結合擬似回路11A側(第1、第2送電側端子Pt1,Pt2側)を見たインピーダンス特性と、実機における送電モジュールから受電側を見たインピーダンス特性を示すグラフである。 本発明の第3の実施形態に係るワイヤレス電力伝送システムの測定回路および測定装置のブロック図である。 本発明の第4の実施形態に係るワイヤレス電力伝送システムの測定回路(結合擬似回路)の回路図である。 本発明の第5の実施形態に係るワイヤレス電力伝送システムの測定回路(結合擬似回路)の回路図である。 一般的な電界結合方式の電力伝送システムの基本構成を示す図である。 ワイヤレス電力伝送システムにおける受電装置を送電装置に設置する態様を示す斜視図である。 従来のワイヤレス電力伝送システムの測定システムのブロック図である。
 本発明の第1の実施形態に係るワイヤレス電力伝送システムの測定回路および測定装置について、図を参照して説明する。図1は、本発明の第1の実施形態に係るワイヤレス電力伝送システムの測定回路および測定装置のブロック図である。本実施形態では、送電装置の送電モジュールの特性測定を行う測定装置の態様を示す。
 測定装置10は、結合擬似回路11、受電回路12、特性測定部13を備える。結合擬似回路11は、本発明の「測定回路」に相当する。
 結合擬似回路11は、実機の受電モジュールと実機の送電モジュールの配置状態(容量結合状態)を擬似的に再現する回路である。結合擬似回路11は、第1送電側端子Pt1、第2送電側端子Pt2、第1受電側端子Pr1、および第2受電側端子Pr2を有する。なお、これら第1、第2送電側端子Pt1,Pt2、第1、第2受電側端子Pr1,Pr2は実際の電極パッドであってもよく、これらが接続する回路に対する接続配線における途中の特定位置であってもよい。
 第1送電側端子Pt1と第1受電側送電端子Pr1との間には、キャパシタ113が接続されている。キャパシタ113は、本発明の「直列キャパシタ」に相当する。
 第1送電側端子Pt1と第2送電側端子Pt2との間には、キャパシタ111が接続されている。キャパシタ111は、本発明の「第1並列キャパシタ」に相当する。
 第1受電側端子Pr1と第2受電側端子Pr2との間には、キャパシタ112が接続されている。キャパシタ112は、本発明の「第2並列キャパシタ」に相当する。
 このような構成により、結合擬似回路11は、測定対象である送電モジュール151を含む送電装置と受電回路12を含む受電装置とによる実機の態様に則した結合容量の発生部に対する等価回路を実現する。具体的には、結合擬似回路11は、キャパシタ111,112,113のキャパシタンスC1,C2,C3を適宜設定することで、実機の結合容量の発生部の等価回路定数を再現する。
 受電回路12は、実機の受電モジュールと同様の回路を含む。例えば、実機の受電モジュールが受電装置の機器の筐体内に配置される場合は、受電モジュールの回路部分だけを抜き出したもの等が用いられる。なお、受電回路12は、実機の受電モジュールと実機の負荷に相当する回路とを含むものであってもよく、実機の負荷に相当する回路を別途用意して、受電回路12に接続してもよい。また、受電回路12は、実機の受電モジュールを擬似した回路であってもよい。
 受電回路12は、結合擬似回路11の第1受電側端子Pr1と第2受電側端子Pr2とに接続されている。この接続仕様は、実機の受電モジュールと受電側アクティブ電極および受電側パッシブ電極との接続仕様に基づいている。ただし、実際のように容量結合によるワイヤレスの配置状態ではなく直接接続されている。
 特性測定部13は、送電モジュール910の入力部、結合擬似回路11の第1送電側端子Pt1,第2送電側端子Pt2,第1受電側端子Pr1,第2受電側端子Pr2、受電回路12の出力部に接続されている。特性測定部13は、送電モジュール910,受電回路12に対する入力/出力電圧や入力/出力電流等の電気的特性を測定する。また、特性測定部13は、この電気的特性から効率等の電源としての各種特性を測定する。また、特性測定部13は、結合擬似回路11の送電AC(交流)の電圧(第1、第2送電側端子Pt1,Pt2間の電圧)および周波数と、受電AC(交流)の電圧(第1、第2受電側端子Pr1,Pr2間の電圧)および周波数を測定する。
 結合擬似回路11の第1送電側端子Pt1には、第1送電配線151の一方端が接続されている。第1送電側配線151の他方端は、測定対象の送電モジュール910に接続可能な形状からなる。結合擬似回路11の第2送電側端子Pt2には、第2送電配線152の一方端が接続されている。第2送電側配線152の他方端は、測定対象の送電モジュール910に接続可能な形状からなる。第1送電側配線151および第2送電側配線152は、実機の送電モジュールと送電側アクティブ電極および送電側パッシブ電極との接続仕様に基づいている。ただし、実際のように容量結合によるワイヤレスの配置状態ではなく直接接続されている。
 特性測定部13には、制御用配線153の一方端が接続されている。制御用配線153の他方端は、測定対象の送電モジュール910に接続可能な形状からなる。制御用配線153の他方端は、測定時には、送電モジュール910のコントロール回路に接続される。
 図2は、第1の実施形態の測定装置における送電モジュール910から結合擬似回路11側(第1、第2送電側端子Pt1,Pt2側)を見たインピーダンス特性と、ワイヤレス接続された実機における送電モジュールから受電側を見たインピーダンス特性を示すグラフである。図2において、横軸は周波数であり、縦軸はインピーダンスZである。
 図2に示すように、結合擬似回路11のキャパシタ111,112,113のキャパシタンスC1,C2,C3を適宜設定することで、ワイヤレス接続された実機のインピーダンス特性と略一致するインピーダンス特性を実現することができる。
 このように、本実施形態の構成を用いることで、実機と同様のワイヤレスによる接続構成を用いなくても、ワイヤレス電力伝送システムにおける送電装置の送電モジュールの特性測定を確実且つ正確(高精度)に行うことができる。そして、このような構成を用いることで、実機の態様を同じ測定装置を設けなくてもよく、測定装置を簡素な構成で且つ小型に構成することができる。さらに、測定工程の作業負荷を軽減することができる。
 なお、この測定は、次の工程で行われる。まず、測定装置10を用意する。次に、測定装置10の第1、第2送電側配線151,152を送電モジュール910の出力部に、制御用配線153を送電モジュール910のコンロール回路に、第1、第2送電側測定用配線154,155を送電モジュール910の入力部に接続する。また、送電モジュール910には図示しない電源を接続する。
 次に、特性測定部13により制御用配線153を介して送信モジュール910に制御信号を送信し、電源ON/OFFの制御を行う。この制御内容に応じて、送電モジュール910から電力が送電される。送電された電力は、結合擬似回路11を介して受電回路12で受電される。この際、結合擬似回路11が上述の構成であるので、受電回路12では実機の態様と略同じ受電態様で電力を受電することができる。
 特性測定部13は、送電モジュール910、結合擬似回路11、受電回路12の電気特性を測定する。特性測定部13は、電気特性の測定結果に基づいて、送電モジュール910の検査を行う。そして、検査により良品と判断された送電モジュール910を送電装置90の筐体に組み付けることで、送電装置90が製造される。
 次に、本発明の第2の実施形態に係るワイヤレス電力伝送システムの測定回路および測定装置について、図を参照して説明する。図3は、本発明の第2の実施形態に係るワイヤレス電力伝送システムの測定回路および測定装置のブロック図である。
 本実施形態のワイヤレス電力伝送システムの測定装置10Aは、結合擬似回路11A(本発明の「測定回路」に相当する。)の構成が、第1の実施形態に係る測定装置10と異なる。したがって、第1の実施形態に係る測定装置10と異なる箇所のみを、具体的に説明する。
 結合擬似回路11Aは、第1の実施形態に係る結合擬似回路11に対して、抵抗器114を追加している。抵抗器114は、キャパシタ113に直列接続されている。この際、抵抗器114の一方端はキャパシタ111と第1送電側端子Pt1との接続点に接続し、抵抗器114の他方端はキャパシタ113とに接続する。なお、抵抗114は、キャパシタ113の第1受電側端子Pr1側に接続されていてもよい。
 図4は、第2の実施形態の測定装置における送電モジュール910の昇圧トランス(図示せず)の一次側から結合擬似回路11A側(第1、第2送電側端子Pt1,Pt2側)を見たインピーダンス特性と、ワイヤレス接続された実機における送電モジュールから受電側を見たインピーダンス特性を示すグラフである。図4において、横軸は周波数であり、縦軸はインピーダンスZである。
 図4に示すように、結合擬似回路11Aのキャパシタ111,112,113のキャパシタンスC1,C2,C3を適宜調整するとともに、抵抗器114の抵抗値R1を適宜設定することで、ワイヤレス接続された実機のインピーダンス特性に対して、さらに正確に一致するインピーダンス特性を実現することができる。これは、抵抗器114の抵抗値R1によって、実機の態様で生じる非接触の結合状態での損失を擬似できるからと考えられる。
 このように、本実施形態の構成を用いることで、ワイヤレス電力伝送システムにおける送電装置の送電モジュールの特性測定を、確実且つさらに正確(高精度)に行うことができる。
 次に、第3の実施形態に係るワイヤレス電力伝送システムの測定回路および測定装置について、図を参照して説明する。図5は、本発明の第3の実施形態に係るワイヤレス電力伝送システムの測定回路および測定装置のブロック図である。
 第1、第2の実施形態では、送電モジュールの特性測定を測定装置について示したが、本実施形態では、受電装置の受電モジュールの特性測定を行う測定装置の態様を示す。したがって、第1の実施形態と異なる箇所のみを具体的に説明する。
 測定装置10Bは、結合擬似回路11、特性測定部13、送電回路14を備える。
 送電回路14は、実機の送電モジュールと同様の回路を含む。例えば、実機の送電モジュールが送電装置の筐体内に配置される場合は、送電モジュールの回路部分だけを抜き出したもの等が用いられる。なお、送電回路14は、実機の送電モジュールと電源に相当する回路とを含むものであってもよく、電源を別途用意して、送電回路14に接続してもよい。また、送電回路14は、実機の送電モジュールを擬似した回路であってもよい。
 送電回路14は、結合擬似回路11の第1送電側端子Pt1と第2送電側端子Pt2とに接続されている。この接続仕様は、実機の送電モジュールと送電側アクティブ電極および送電側パッシブ電極との接続仕様に基づいている。ただし、実際のように容量結合によるワイヤレスの配置状態ではなく直接接続されている。
 特性測定部13は、送電回路14の入力部、結合疑似回路11の第1送電側端子Pt1,第2送電側端子Pt2,第1受電側端子Pr1,第2受電側端子Pr2に接続されている。また、特性測定部13は、第1、第2受電側測定用配線163,164を介して、測定対象の受電モジュール810の出力部に接続されるよう構成されている。また、制御用配線153を送電モジュール14に接続する。また、第1受電側端子Pr1および第2受電側端子Pr2は、第1、第2受電側配線161,162を介して、測定対象の受電モジュール810の入力部に接続するように構成されている。第1受電側配線161および第2受電側配線162は、実機の受電モジュールと受電側アクティブ電極および受電側パッシブ電極との接続仕様に基づいている。ただし、実際のように容量結合によるワイヤレスの配置状態ではなく直接接続されている。
 このように、本実施形態の構成を用いることで、実機と同様のワイヤレスによる接続構成を用いなくても、ワイヤレス電力伝送システムにおける受電装置の受電モジュールの特性測定を確実且つ正確(高精度)に行うことができる。
 なお、この測定は、次の工程で行われる。まず、測定装置10Bを用意する。次に、測定装置10Bの第1、第2受電側配線161,162を受電モジュール810の入力部に、第1、第2受電側測定用配線163,164を受電モジュール810の出力部に接続する。また、送電回路14には図示しない電源を接続する。
 次に、特性測定部13により送電回路14に制御用配線153を介して制御信号を送信し、電源ON/OFFの制御を行う。この制御内容に応じて、送電回路14から電力が送電される。送電された電力は、結合擬似回路11を介して受電モジュール810で受電される。この際、結合擬似回路11が上述の構成であるので、受電モジュール810では実機の態様と略同じ受電態様で電力を受電することができる。
 特性測定部13は、受電モジュール810、送電回路14、結合疑似回路11の電気特性を測定する。特性測定部13は、電気特性の測定結果に基づいて、受電モジュール810の検査を行う。そして、検査により良品と判断された受電モジュール810を受電装置80の筐体に組み付けることで、受電装置80が製造される。
 なお、本実施形態において、上述の第2の実施形態に示した結合擬似回路11Aを用いてもよい。
 次に、第4の実施形態に係るワイヤレス電力伝送システムの測定回路について、図を参照して説明する。図6は、本発明の第4の実施形態に係るワイヤレス電力伝送システムの測定回路(結合擬似回路)の回路図である。本実施形態の結合擬似回路11Cは、上述の各実施形態に示した結合擬似回路11,11Aに置き換えて利用するものであり、測定装置としての基本構成は、上述の各実施形態の構成と同じである。
 結合擬似回路11Cは、第1の実施形態に示した結合擬似回路11に対して、キャパシタ114を追加したものである。キャパシタ114は、本発明の「第2直列キャパシタ」に相当する。
 キャパシタ114は、第2送電側端子Pt2と第2受電側送電端子Pr2との間に直列接続されている。この際、キャパシタ114は、第2送電側端子Pt2とキャパシタ111との接続点と、第2受電側端子Pt2とキャパシタ112との接続点との間に接続されている。
 このような構成により、結合擬似回路11Cは、キャパシタ111,112,113,114のキャパシタンスC1,C2,C3,C4を適宜設定することで、実機の結合容量の発生部の等価回路定数を再現する。
 そして、このような構成とすることで、結合容量を、さらに高精度に再現できる。これにより、さらに高精度に特性測定を行うことができる。
 なお、本実施形態の構成に、第2の実施形態に示したような抵抗器を追加してもよく、この構成により、さらに高精度な特性測定を実現できる。
 次に、第5の実施形態に係るワイヤレス電力伝送システムの測定回路について、図を参照して説明する。図7は、本発明の第5の実施形態に係るワイヤレス電力伝送システムの測定回路(結合擬似回路)の回路図である。本実施形態の結合擬似回路11Dは、上述の実施形態に示した結合擬似回路11,11A,11Cに置き換えて利用するものであり、測定装置としての基本構成は、上述の各実施形態の構成と同じである。
 結合擬似回路11Dは、第1の実施形態に示した結合擬似回路11に対して、キャパシタ115,116を追加したものである。キャパシタ115,116は、本発明の「第1、第2付加キャパシタ」に相当する。
 キャパシタ115は、第1送電側端子Pt1とキャパシタ111との接続点と、第2受電側端子Pr2とキャパシタ112との接続点との間に接続されている。キャパシタ116は、第2送電側端子Pt2とキャパシタ111との接続点と、第1受電側端子Pr1とキャパシタ112との接続点との間に接続されている。
 このような構成により、結合擬似回路11Cは、キャパシタ111-116のキャパシタンスC1-C6を適宜設定することで、実機の結合容量の発生部の等価回路定数を再現する。
 そして、このような構成とすることで、結合容量を、さらに高精度に再現できる。すなわち、送電側アクティブ電極と受電側パッシブ電極との間に発生する結合容量、および、受電側アクティブ電極と送電側パッシブ電極との間に発生する結合容量も再現できる。これにより、さらに高精度に特性測定を行うことができる。
 なお、本実施形態の構成に、第2の実施形態に示したような抵抗器を追加してもよく、この構成により、さらに高精度な特性測定を実現できる。
 また、抵抗器を追加する位置として、キャパシタ111,112,113,114,115,116のいずれかに直列接続してもよい。
 さらに、すべてのキャパシタ111,112,113,114,115,116にそれぞれ直列に抵抗器を接続してもよく、この構成により、さらに高精度な特性測定を実現できる。
 なお、結合擬似回路11,11A,11B,11C,11Dでは、第1並列キャパシタ、第2並列キャパシタ等が配置されたが、本発明の「直列キャパシタ」に相当するキャパシタ113が少なくとも設けられていれば、実機の受電モジュールと実機の送電モジュールの配置状態(容量結合状態)を擬似的に再現することができる。ただし、高精度な特性測定および検査のため、「直列キャパシタ」に加え、第1並列キャパシタ、第2並列キャパシタ、第2直列キャパシタ、第1付加キャパシタ、第2付加キャパシタがさらに設けられることが好ましい。
10,10A,10B:測定装置、
11,11A,11B,11C,11D:結合擬似回路(測定回路)、
12:受電回路、
13:特性測定部、
14:送電回路、
111:キャパシタ(第1並列キャパシタ)、
112:キャパシタ(第2並列キャパシタ)、
113:キャパシタ(直列キャパシタ)、
114:キャパシタ(第2直列キャパシタ)、
115,116:キャパシタ(第1付加キャパシタ、第2付加キャパシタ)、
151:第1送電側配線、
152:第2送電側配線、
153:制御用配線、
154:第1送電側測定用配線、
155:第2送電側測定用配線、
161:第1受電側配線、
162:第2受電側配線、
163:第1受電側測定用配線、
164:第2受電側測定用配線、
80:受電装置、
81:筐体、
810:受電モジュール、
820:受電側アクティブ電極、
830:受電側パッシブ電極、
90:送電装置、
91:台座部材、
92:背面部材、
910:送電モジュール、
920:送電側アクティブ電極、
930:送電側パッシブ電極、

Claims (7)

  1.  送電装置から受電装置へワイヤレスで電力伝送するワイヤレス電力伝送システムにおける特性測定を行うワイヤレス電力伝送システムの測定回路であって、
     送電回路側に接続する一対の第1送電側端子および第2送電側端子と、
     受電回路側に接続する一対の第1受電側端子および第2受電側端子と、
     前記第1送電側端子と前記第1受電側端子との間に接続され、前記送電装置と前記受電装置との結合状態を擬似する直列キャパシタを備える、
     ワイヤレス電力伝送システムの測定回路。
  2.  前記第1送電側端子と前記第2送電側端子との間に接続された第1並列キャパシタと、
     前記第1受電側端子と前記第2受電側端子との間に接続された第2並列キャパシタとの少なくとも一方を備える、
     請求項1に記載のワイヤレス電力伝送システムの測定回路。
  3.  前記直列キャパシタに直列接続された抵抗器を備える、
     請求項1または請求項2に記載のワイヤレス電力伝送システムの測定回路。
  4.  前記第2送電側端子と前記第2受電側端子との間に接続された第2直列キャパシタを備える、
     請求項1乃至請求項3のいずれかに記載のワイヤレス電力伝送システムの測定回路。
  5.  前記第1送電側端子と前記第2受電側端子との間に接続された第1付加キャパシタと、
     前記第2送電側端子と前記第1受電側端子との間に接続された第2付加キャパシタとの少なくとも一方を備える、
     請求項1乃至請求項4のいずれかに記載のワイヤレス電力伝送システムの測定回路。
  6.  請求項1乃至請求項5のいずれかに記載の測定回路と、
     前記第1受電側端子および前記第2受電側端子に接続された検査用受電回路と、
     測定対象の送電モジュールの特性を測定する特性測定部と、
     前記第1送電側端子に対して前記送電モジュールを接続可能にする第1送電配線と、
     前記第2送電側端子に対して前記送電モジュールを接続可能にする第2送電配線と、
     を備えたワイヤレス電力伝送システムの測定装置。
  7.  請求項1乃至請求項5のいずれかに記載の測定回路と、
     前記第1送電側端子および前記第2受電側端子に接続された検査用送電回路と、
     測定対象の受電モジュールの特性を測定する特性測定部と、
     前記第1受電側端子と前記特性測定部に対して前記受電モジュールを接続可能にする第1受電配線と、
     前記第2受電側端子と前記特性測定部に対して前記受電モジュールを接続可能にする第1受電配線と、
     を備えたワイヤレス電力伝送システムの測定装置。
PCT/JP2013/073892 2012-12-27 2013-09-05 ワイヤレス電力伝送システム用測定回路および測定装置 WO2014103435A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201390000844.5U CN204578219U (zh) 2012-12-27 2013-09-05 无线电力传输系统用测定电路以及测定装置
JP2014554185A JP5794400B2 (ja) 2012-12-27 2013-09-05 ワイヤレス電力伝送システム用測定回路および測定装置
US14/699,066 US9806538B2 (en) 2012-12-27 2015-04-29 Measurement circuit and measurement apparatus for wireless power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012283939 2012-12-27
JP2012-283939 2012-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/699,066 Continuation US9806538B2 (en) 2012-12-27 2015-04-29 Measurement circuit and measurement apparatus for wireless power transmission system

Publications (1)

Publication Number Publication Date
WO2014103435A1 true WO2014103435A1 (ja) 2014-07-03

Family

ID=51020539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073892 WO2014103435A1 (ja) 2012-12-27 2013-09-05 ワイヤレス電力伝送システム用測定回路および測定装置

Country Status (4)

Country Link
US (1) US9806538B2 (ja)
JP (1) JP5794400B2 (ja)
CN (1) CN204578219U (ja)
WO (1) WO2014103435A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223436B (zh) * 2015-09-22 2017-12-05 中国南方电网有限责任公司超高压输电公司检修试验中心 一种同塔双回交流输电线路参数测量和计算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205334A (ja) * 1995-01-27 1996-08-09 Nissin Electric Co Ltd 試験装置
JP2009072011A (ja) * 2007-09-14 2009-04-02 Shinko Electric Co Ltd 電力供給システム
JP2010154670A (ja) * 2008-12-25 2010-07-08 Seiko Epson Corp 送電装置および送電装置の試験方法
JP2012208036A (ja) * 2011-03-30 2012-10-25 Daihen Corp 模擬負荷装置
WO2012144548A1 (ja) * 2011-04-20 2012-10-26 株式会社村田製作所 電力伝送システム、及び受電ジャケット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4383806B2 (ja) 2003-08-29 2009-12-16 株式会社日立国際電気 光デジタル伝送装置
JP2005079786A (ja) * 2003-08-29 2005-03-24 Sony Corp 電力伝送システム,電力供給装置,電力受電装置,信号伝送システム,信号送信装置,および,信号受信装置。
CN101416411B (zh) 2006-03-21 2013-05-15 株式会社村田制作所 通过穿越电介质的局部感应传输能量的装置
JP2009089520A (ja) 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd 電力供給システム
KR101468020B1 (ko) * 2010-12-24 2014-12-02 가부시키가이샤 무라타 세이사쿠쇼 와이어리스 전력 전송 시스템
JP2012208038A (ja) 2011-03-30 2012-10-25 Fujikura Rubber Ltd 感圧抵抗部材および感圧センサ
KR101188357B1 (ko) 2011-04-21 2012-10-08 정제교 기설정 배율각을 가진 다중투사광의 2차원 영상획득을 통한 3차원 인식 방법
JP5748628B2 (ja) * 2011-09-28 2015-07-15 株式会社アドバンテスト ワイヤレス受電装置およびワイヤレス給電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205334A (ja) * 1995-01-27 1996-08-09 Nissin Electric Co Ltd 試験装置
JP2009072011A (ja) * 2007-09-14 2009-04-02 Shinko Electric Co Ltd 電力供給システム
JP2010154670A (ja) * 2008-12-25 2010-07-08 Seiko Epson Corp 送電装置および送電装置の試験方法
JP2012208036A (ja) * 2011-03-30 2012-10-25 Daihen Corp 模擬負荷装置
WO2012144548A1 (ja) * 2011-04-20 2012-10-26 株式会社村田製作所 電力伝送システム、及び受電ジャケット

Also Published As

Publication number Publication date
CN204578219U (zh) 2015-08-19
US20150249347A1 (en) 2015-09-03
JPWO2014103435A1 (ja) 2017-01-12
US9806538B2 (en) 2017-10-31
JP5794400B2 (ja) 2015-10-14

Similar Documents

Publication Publication Date Title
AU2011274387B2 (en) System for monitoring electrical power usage of a structure and method of same
CN103201635A (zh) 高压绝缘监测装置的部分放电传感器
CN206322018U (zh) 一种用于电机控制器的自动测试装置
Doersam et al. High frequency impedance of Li-ion batteries
JP7053969B1 (ja) Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法
JP5794400B2 (ja) ワイヤレス電力伝送システム用測定回路および測定装置
JP2013195303A (ja) 抵抗測定装置
CN102680931B (zh) 接地装置特性参数测试系统检定装置
WO2021090478A1 (ja) 非接触電圧観測装置
CN105021865A (zh) 一种可补偿的电压测量方法
JP2013253804A (ja) 校正装置
JP6178582B2 (ja) 接地抵抗の測定方法および測定装置
CN103460057A (zh) 利用可振动运动地构造的电极无接触地确定电势的方法以及设备
Giordano et al. Setup for the calibration of current measuring systems under DC signals affected by ripple
CN211785828U (zh) 导电平面的设置装置
JP2008249731A (ja) 静電気放電測定装置
TWI470241B (zh) 電性測試裝置
TW201321762A (zh) 測試治具
WO2021098591A1 (zh) 导电平面的设置方法和装置
JP6501587B2 (ja) 電磁界模擬装置
JP2014202686A (ja) 非停電絶縁診断装置及び非停電絶縁診断方法
CN202583442U (zh) 接地装置特性参数测试系统检定装置
CN206161781U (zh) 一种发电机转子接地故障模拟装置
KR101965984B1 (ko) 멀티 테스터기
CN104076301A (zh) 一种交直流混叠磁场的分离式监测电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000844.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866817

Country of ref document: EP

Kind code of ref document: A1