WO2014103435A1 - ワイヤレス電力伝送システム用測定回路および測定装置 - Google Patents
ワイヤレス電力伝送システム用測定回路および測定装置 Download PDFInfo
- Publication number
- WO2014103435A1 WO2014103435A1 PCT/JP2013/073892 JP2013073892W WO2014103435A1 WO 2014103435 A1 WO2014103435 A1 WO 2014103435A1 JP 2013073892 W JP2013073892 W JP 2013073892W WO 2014103435 A1 WO2014103435 A1 WO 2014103435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power transmission
- power
- side terminal
- circuit
- power receiving
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims description 244
- 238000010168 coupling process Methods 0.000 claims abstract description 86
- 230000008878 coupling Effects 0.000 claims abstract description 85
- 238000005859 coupling reaction Methods 0.000 claims abstract description 85
- 239000003990 capacitor Substances 0.000 claims abstract description 78
- 238000005259 measurement Methods 0.000 claims description 111
- 238000007689 inspection Methods 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 14
- 230000005684 electric field Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/05—Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/40—Testing power supplies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
Definitions
- the power transmission device 90 includes a power transmission module 910, a power transmission side active electrode 920, and a power transmission side passive electrode 930.
- a power transmission side active electrode 920 and a power transmission side passive electrode 930 are connected to the power transmission module 910.
- a power supply (not shown) is connected to the power transmission module 910.
- the power transmission module to be measured is connected to the first and second power transmission side terminals, and the power reception circuit (partial circuit module) and the characteristic measurement unit are simply connected to the first and second power reception side terminals.
- the electric field coupling state between the device and the power receiving device is simulated.
- the power receiving module to be measured is connected to the first and second power receiving terminals, and the power transmitting device is simply connected to the power transmitting circuit (partial circuit module) and the characteristic measuring unit to the first and second power transmitting terminals.
- the electric field coupling state with the power receiving apparatus is simulated. Thereby, the characteristic measurement can be accurately performed without forming the actual arrangement state of the power transmitting device and the power receiving device, that is, the wireless arrangement state (capacitive coupling state).
- the present invention it is possible to easily and accurately perform characteristic measurement and inspection of a power transmission module and a power reception module for a wireless power transmission system.
- FIG. 1 is a block diagram of a measurement circuit and a measurement device of a wireless power transmission system according to the first embodiment of the present invention.
- the aspect of the measuring apparatus which performs the characteristic measurement of the power transmission module of a power transmission apparatus is shown.
- a capacitor 112 is connected between the first power receiving side terminal Pr1 and the second power receiving side terminal Pr2.
- the capacitor 112 corresponds to the “second parallel capacitor” of the present invention.
- the power receiving circuit 12 includes a circuit similar to the power receiving module of the actual machine. For example, when the power receiving module of the actual device is arranged in the housing of the device of the power receiving apparatus, the one obtained by extracting only the circuit portion of the power receiving module is used.
- the power receiving circuit 12 may include a power receiving module of the actual machine and a circuit corresponding to the load of the actual machine. Alternatively, a circuit corresponding to the load of the actual machine may be separately prepared and connected to the power receiving circuit 12. Good.
- the power receiving circuit 12 may be a circuit that simulates a power receiving module of an actual machine.
- the characteristic measurement unit 13 includes an input unit of the power transmission module 910, a first power transmission side terminal Pt1, a second power transmission side terminal Pt2, a first power reception side terminal Pr1, a second power reception side terminal Pr2, and a power reception circuit 12 of the coupling pseudo circuit 11. Connected to the output section.
- the characteristic measurement unit 13 measures electrical characteristics such as input / output voltage and input / output current for the power transmission module 910 and the power reception circuit 12.
- the characteristic measurement unit 13 measures various characteristics as a power source such as efficiency from the electrical characteristics.
- the characteristic measurement unit 13 also transmits the voltage (the voltage between the first and second power transmission side terminals Pt1 and Pt2) and frequency of the power transmission AC (alternating current) and the frequency of the power receiving AC (alternating current) (first). The voltage between the second power receiving side terminals Pr1 and Pr2) and the frequency are measured.
- the characteristic measurement unit 13 is connected to one end of a control wiring 153.
- the other end of the control wiring 153 has a shape that can be connected to the power transmission module 910 to be measured.
- the other end of the control wiring 153 is connected to the control circuit of the power transmission module 910 during measurement.
- FIG. 2 shows impedance characteristics when the coupling pseudo circuit 11 side (first and second power transmission side terminals Pt1, Pt2 side) is viewed from the power transmission module 910 in the measurement apparatus of the first embodiment, and power transmission in a wirelessly connected actual machine. It is a graph which shows the impedance characteristic which looked at the receiving side from the module. In FIG. 2, the horizontal axis is frequency and the vertical axis is impedance Z.
- the measurement device 10A of the wireless power transmission system of this embodiment is different from the measurement device 10 according to the first embodiment in the configuration of the combined pseudo circuit 11A (corresponding to the “measurement circuit” of the present invention). Therefore, only a different part from the measuring apparatus 10 which concerns on 1st Embodiment is demonstrated concretely.
- FIG. 4 shows the coupling pseudo circuit 11A side (first and second power transmission side terminals Pt1, Pt2 side) from the primary side of the step-up transformer (not shown) of the power transmission module 910 in the measurement apparatus of the second embodiment. It is a graph which shows the impedance characteristic which looked at the power receiving side from the power transmission module in the real machine connected wirelessly.
- the horizontal axis is frequency and the vertical axis is impedance Z.
- the capacitances C1, C2, and C3 of the capacitors 111, 112, and 113 of the coupling pseudo circuit 11A are appropriately adjusted, and the resistance value R1 of the resistor 114 is appropriately set, so that the wirelessly connected real machine It is possible to realize an impedance characteristic that more accurately matches the impedance characteristic. This is presumably because the loss in the non-contact coupling state that occurs in the actual machine mode can be simulated by the resistance value R1 of the resistor 114.
- the characteristic measurement of the power transmission module of the power transmission device in the wireless power transmission system can be reliably and more accurately (highly accurate).
- the measurement of the characteristics of the power transmission module is shown for the measurement device, but in this embodiment, the aspect of the measurement device that measures the characteristics of the power reception module of the power reception device is shown. Therefore, only the parts different from the first embodiment will be specifically described.
- the measuring apparatus 10B includes a coupling pseudo circuit 11, a characteristic measuring unit 13, and a power transmission circuit 14.
- the power transmission circuit 14 includes a circuit similar to the actual power transmission module. For example, when the actual power transmission module is arranged in the casing of the power transmission device, a module obtained by extracting only the circuit portion of the power transmission module is used.
- the power transmission circuit 14 may include an actual power transmission module and a circuit corresponding to a power source, or a power source may be separately prepared and connected to the power transmission circuit 14.
- the power transmission circuit 14 may be a circuit that simulates a power transmission module of an actual machine.
- the power transmission circuit 14 is connected to the first power transmission side terminal Pt1 and the second power transmission side terminal Pt2 of the coupling pseudo circuit 11.
- This connection specification is based on the connection specification between the actual power transmission module and the power transmission side active electrode and the power transmission side passive electrode. However, it is directly connected instead of the wireless arrangement state by capacitive coupling as in actuality.
- the first power receiving side wiring 161 and the second power receiving side wiring 162 are based on the connection specifications between the power receiving module of the actual machine, the power receiving side active electrode, and the power receiving side passive electrode. However, it is directly connected instead of the wireless arrangement state by capacitive coupling as in actuality.
- the characteristic measuring unit 13 transmits a control signal to the power transmission circuit 14 via the control wiring 153 to control the power ON / OFF. Power is transmitted from the power transmission circuit 14 in accordance with the control content. The transmitted power is received by the power receiving module 810 through the coupling pseudo circuit 11. At this time, since the coupling pseudo circuit 11 has the above-described configuration, the power receiving module 810 can receive power in substantially the same power receiving manner as that of the actual device.
- the characteristic measurement unit 13 measures the electric characteristics of the power receiving module 810, the power transmission circuit 14, and the coupling pseudo circuit 11.
- the characteristic measuring unit 13 inspects the power receiving module 810 based on the measurement result of the electric characteristics.
- the power receiving device 80 is manufactured by assembling the power receiving module 810 that is determined to be a non-defective product by inspection into the housing of the power receiving device 80.
- FIG. 6 is a circuit diagram of a measurement circuit (coupling pseudo circuit) of a wireless power transmission system according to the fourth embodiment of the present invention.
- the coupling pseudo circuit 11C of this embodiment is used by replacing the coupling pseudo circuit 11 and 11A shown in the above-described embodiments, and the basic configuration as a measuring apparatus is the same as the configuration of each of the above-described embodiments. It is.
- the coupling pseudo circuit 11C is obtained by adding a capacitor 114 to the coupling pseudo circuit 11 shown in the first embodiment.
- the capacitor 114 corresponds to a “second series capacitor” of the present invention.
- the capacitor 114 is connected in series between the second power transmission side terminal Pt2 and the second power reception side power transmission terminal Pr2. At this time, the capacitor 114 is connected between a connection point between the second power transmission side terminal Pt2 and the capacitor 111 and a connection point between the second power reception side terminal Pt2 and the capacitor 112.
- the coupling pseudo circuit 11C reproduces the equivalent circuit constant of the generation unit of the actual coupling capacity by appropriately setting the capacitances C1, C2, C3, and C4 of the capacitors 111, 112, 113, and 114. .
- the coupling capacitance can be reproduced with higher accuracy. Thereby, characteristic measurement can be performed with higher accuracy.
- a resistor as shown in the second embodiment may be added to the configuration of the present embodiment, and with this configuration, more accurate characteristic measurement can be realized.
- FIG. 7 is a circuit diagram of a measurement circuit (coupling pseudo circuit) of a wireless power transmission system according to the fifth embodiment of the present invention.
- the coupling pseudo circuit 11D of this embodiment is used by replacing the coupling pseudo circuit 11, 11A, 11C shown in the above-described embodiment, and the basic configuration as a measuring apparatus is the same as the configuration of each of the above-described embodiments. The same.
- the combined pseudo circuit 11D is obtained by adding capacitors 115 and 116 to the combined pseudo circuit 11 shown in the first embodiment.
- the capacitors 115 and 116 correspond to the “first and second additional capacitors” of the present invention.
- the capacitor 115 is connected between a connection point between the first power transmission side terminal Pt1 and the capacitor 111 and a connection point between the second power reception side terminal Pr2 and the capacitor 112.
- the capacitor 116 is connected between a connection point between the second power transmission side terminal Pt2 and the capacitor 111 and a connection point between the first power reception side terminal Pr1 and the capacitor 112.
- the coupling pseudo circuit 11C reproduces the equivalent circuit constant of the generation unit of the actual coupling capacity by appropriately setting the capacitances C1-C6 of the capacitors 111-116.
- the coupling capacitance can be reproduced with higher accuracy.
- the coupling capacitance generated between the power transmission side active electrode and the power reception side passive electrode and the coupling capacitance generated between the power reception side active electrode and the power transmission side passive electrode can also be reproduced. Thereby, characteristic measurement can be performed with higher accuracy.
- a resistor as shown in the second embodiment may be added to the configuration of the present embodiment, and with this configuration, more accurate characteristic measurement can be realized.
- a position where a resistor is added it may be connected in series to any of the capacitors 111, 112, 113, 114, 115, and 116.
- resistors may be connected in series to all the capacitors 111, 112, 113, 114, 115, and 116, and this configuration makes it possible to realize more accurate characteristic measurement.
- the first parallel capacitor, the second parallel capacitor, and the like are arranged, but at least the capacitor 113 corresponding to the “series capacitor” of the present invention is provided.
- the arrangement state (capacitive coupling state) of the power receiving module of the actual machine and the power transmission module of the actual machine can be reproduced in a pseudo manner.
- a first parallel capacitor, a second parallel capacitor, a second series capacitor, a first additional capacitor, and a second additional capacitor are further provided in addition to the “series capacitor” for highly accurate characteristic measurement and inspection. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
Description
11,11A,11B,11C,11D:結合擬似回路(測定回路)、
12:受電回路、
13:特性測定部、
14:送電回路、
111:キャパシタ(第1並列キャパシタ)、
112:キャパシタ(第2並列キャパシタ)、
113:キャパシタ(直列キャパシタ)、
114:キャパシタ(第2直列キャパシタ)、
115,116:キャパシタ(第1付加キャパシタ、第2付加キャパシタ)、
151:第1送電側配線、
152:第2送電側配線、
153:制御用配線、
154:第1送電側測定用配線、
155:第2送電側測定用配線、
161:第1受電側配線、
162:第2受電側配線、
163:第1受電側測定用配線、
164:第2受電側測定用配線、
80:受電装置、
81:筐体、
810:受電モジュール、
820:受電側アクティブ電極、
830:受電側パッシブ電極、
90:送電装置、
91:台座部材、
92:背面部材、
910:送電モジュール、
920:送電側アクティブ電極、
930:送電側パッシブ電極、
Claims (7)
- 送電装置から受電装置へワイヤレスで電力伝送するワイヤレス電力伝送システムにおける特性測定を行うワイヤレス電力伝送システムの測定回路であって、
送電回路側に接続する一対の第1送電側端子および第2送電側端子と、
受電回路側に接続する一対の第1受電側端子および第2受電側端子と、
前記第1送電側端子と前記第1受電側端子との間に接続され、前記送電装置と前記受電装置との結合状態を擬似する直列キャパシタを備える、
ワイヤレス電力伝送システムの測定回路。 - 前記第1送電側端子と前記第2送電側端子との間に接続された第1並列キャパシタと、
前記第1受電側端子と前記第2受電側端子との間に接続された第2並列キャパシタとの少なくとも一方を備える、
請求項1に記載のワイヤレス電力伝送システムの測定回路。 - 前記直列キャパシタに直列接続された抵抗器を備える、
請求項1または請求項2に記載のワイヤレス電力伝送システムの測定回路。 - 前記第2送電側端子と前記第2受電側端子との間に接続された第2直列キャパシタを備える、
請求項1乃至請求項3のいずれかに記載のワイヤレス電力伝送システムの測定回路。 - 前記第1送電側端子と前記第2受電側端子との間に接続された第1付加キャパシタと、
前記第2送電側端子と前記第1受電側端子との間に接続された第2付加キャパシタとの少なくとも一方を備える、
請求項1乃至請求項4のいずれかに記載のワイヤレス電力伝送システムの測定回路。 - 請求項1乃至請求項5のいずれかに記載の測定回路と、
前記第1受電側端子および前記第2受電側端子に接続された検査用受電回路と、
測定対象の送電モジュールの特性を測定する特性測定部と、
前記第1送電側端子に対して前記送電モジュールを接続可能にする第1送電配線と、
前記第2送電側端子に対して前記送電モジュールを接続可能にする第2送電配線と、
を備えたワイヤレス電力伝送システムの測定装置。 - 請求項1乃至請求項5のいずれかに記載の測定回路と、
前記第1送電側端子および前記第2受電側端子に接続された検査用送電回路と、
測定対象の受電モジュールの特性を測定する特性測定部と、
前記第1受電側端子と前記特性測定部に対して前記受電モジュールを接続可能にする第1受電配線と、
前記第2受電側端子と前記特性測定部に対して前記受電モジュールを接続可能にする第1受電配線と、
を備えたワイヤレス電力伝送システムの測定装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201390000844.5U CN204578219U (zh) | 2012-12-27 | 2013-09-05 | 无线电力传输系统用测定电路以及测定装置 |
JP2014554185A JP5794400B2 (ja) | 2012-12-27 | 2013-09-05 | ワイヤレス電力伝送システム用測定回路および測定装置 |
US14/699,066 US9806538B2 (en) | 2012-12-27 | 2015-04-29 | Measurement circuit and measurement apparatus for wireless power transmission system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012283939 | 2012-12-27 | ||
JP2012-283939 | 2012-12-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/699,066 Continuation US9806538B2 (en) | 2012-12-27 | 2015-04-29 | Measurement circuit and measurement apparatus for wireless power transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014103435A1 true WO2014103435A1 (ja) | 2014-07-03 |
Family
ID=51020539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073892 WO2014103435A1 (ja) | 2012-12-27 | 2013-09-05 | ワイヤレス電力伝送システム用測定回路および測定装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9806538B2 (ja) |
JP (1) | JP5794400B2 (ja) |
CN (1) | CN204578219U (ja) |
WO (1) | WO2014103435A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105223436B (zh) * | 2015-09-22 | 2017-12-05 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种同塔双回交流输电线路参数测量和计算方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08205334A (ja) * | 1995-01-27 | 1996-08-09 | Nissin Electric Co Ltd | 試験装置 |
JP2009072011A (ja) * | 2007-09-14 | 2009-04-02 | Shinko Electric Co Ltd | 電力供給システム |
JP2010154670A (ja) * | 2008-12-25 | 2010-07-08 | Seiko Epson Corp | 送電装置および送電装置の試験方法 |
JP2012208036A (ja) * | 2011-03-30 | 2012-10-25 | Daihen Corp | 模擬負荷装置 |
WO2012144548A1 (ja) * | 2011-04-20 | 2012-10-26 | 株式会社村田製作所 | 電力伝送システム、及び受電ジャケット |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4383806B2 (ja) | 2003-08-29 | 2009-12-16 | 株式会社日立国際電気 | 光デジタル伝送装置 |
JP2005079786A (ja) * | 2003-08-29 | 2005-03-24 | Sony Corp | 電力伝送システム,電力供給装置,電力受電装置,信号伝送システム,信号送信装置,および,信号受信装置。 |
CN101416411B (zh) | 2006-03-21 | 2013-05-15 | 株式会社村田制作所 | 通过穿越电介质的局部感应传输能量的装置 |
JP2009089520A (ja) | 2007-09-28 | 2009-04-23 | Takenaka Komuten Co Ltd | 電力供給システム |
KR101468020B1 (ko) * | 2010-12-24 | 2014-12-02 | 가부시키가이샤 무라타 세이사쿠쇼 | 와이어리스 전력 전송 시스템 |
JP2012208038A (ja) | 2011-03-30 | 2012-10-25 | Fujikura Rubber Ltd | 感圧抵抗部材および感圧センサ |
KR101188357B1 (ko) | 2011-04-21 | 2012-10-08 | 정제교 | 기설정 배율각을 가진 다중투사광의 2차원 영상획득을 통한 3차원 인식 방법 |
JP5748628B2 (ja) * | 2011-09-28 | 2015-07-15 | 株式会社アドバンテスト | ワイヤレス受電装置およびワイヤレス給電装置 |
-
2013
- 2013-09-05 JP JP2014554185A patent/JP5794400B2/ja active Active
- 2013-09-05 CN CN201390000844.5U patent/CN204578219U/zh not_active Expired - Lifetime
- 2013-09-05 WO PCT/JP2013/073892 patent/WO2014103435A1/ja active Application Filing
-
2015
- 2015-04-29 US US14/699,066 patent/US9806538B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08205334A (ja) * | 1995-01-27 | 1996-08-09 | Nissin Electric Co Ltd | 試験装置 |
JP2009072011A (ja) * | 2007-09-14 | 2009-04-02 | Shinko Electric Co Ltd | 電力供給システム |
JP2010154670A (ja) * | 2008-12-25 | 2010-07-08 | Seiko Epson Corp | 送電装置および送電装置の試験方法 |
JP2012208036A (ja) * | 2011-03-30 | 2012-10-25 | Daihen Corp | 模擬負荷装置 |
WO2012144548A1 (ja) * | 2011-04-20 | 2012-10-26 | 株式会社村田製作所 | 電力伝送システム、及び受電ジャケット |
Also Published As
Publication number | Publication date |
---|---|
CN204578219U (zh) | 2015-08-19 |
US20150249347A1 (en) | 2015-09-03 |
JPWO2014103435A1 (ja) | 2017-01-12 |
US9806538B2 (en) | 2017-10-31 |
JP5794400B2 (ja) | 2015-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2011274387B2 (en) | System for monitoring electrical power usage of a structure and method of same | |
CN103201635A (zh) | 高压绝缘监测装置的部分放电传感器 | |
CN206322018U (zh) | 一种用于电机控制器的自动测试装置 | |
Doersam et al. | High frequency impedance of Li-ion batteries | |
JP7053969B1 (ja) | Icのノイズ耐量検出装置、icのノイズ耐量検出方法、およびicの内部インピーダンス測定方法 | |
JP5794400B2 (ja) | ワイヤレス電力伝送システム用測定回路および測定装置 | |
JP2013195303A (ja) | 抵抗測定装置 | |
CN102680931B (zh) | 接地装置特性参数测试系统检定装置 | |
WO2021090478A1 (ja) | 非接触電圧観測装置 | |
CN105021865A (zh) | 一种可补偿的电压测量方法 | |
JP2013253804A (ja) | 校正装置 | |
JP6178582B2 (ja) | 接地抵抗の測定方法および測定装置 | |
CN103460057A (zh) | 利用可振动运动地构造的电极无接触地确定电势的方法以及设备 | |
Giordano et al. | Setup for the calibration of current measuring systems under DC signals affected by ripple | |
CN211785828U (zh) | 导电平面的设置装置 | |
JP2008249731A (ja) | 静電気放電測定装置 | |
TWI470241B (zh) | 電性測試裝置 | |
TW201321762A (zh) | 測試治具 | |
WO2021098591A1 (zh) | 导电平面的设置方法和装置 | |
JP6501587B2 (ja) | 電磁界模擬装置 | |
JP2014202686A (ja) | 非停電絶縁診断装置及び非停電絶縁診断方法 | |
CN202583442U (zh) | 接地装置特性参数测试系统检定装置 | |
CN206161781U (zh) | 一种发电机转子接地故障模拟装置 | |
KR101965984B1 (ko) | 멀티 테스터기 | |
CN104076301A (zh) | 一种交直流混叠磁场的分离式监测电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201390000844.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13866817 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014554185 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13866817 Country of ref document: EP Kind code of ref document: A1 |