WO2021098591A1 - 导电平面的设置方法和装置 - Google Patents

导电平面的设置方法和装置 Download PDF

Info

Publication number
WO2021098591A1
WO2021098591A1 PCT/CN2020/128548 CN2020128548W WO2021098591A1 WO 2021098591 A1 WO2021098591 A1 WO 2021098591A1 CN 2020128548 W CN2020128548 W CN 2020128548W WO 2021098591 A1 WO2021098591 A1 WO 2021098591A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive plane
eut
plane
positioning object
conductive
Prior art date
Application number
PCT/CN2020/128548
Other languages
English (en)
French (fr)
Inventor
吴伟
吴跃佳
Original Assignee
吴伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴伟 filed Critical 吴伟
Priority to US17/773,590 priority Critical patent/US20220413030A1/en
Priority to GB2206296.2A priority patent/GB2604291A/en
Publication of WO2021098591A1 publication Critical patent/WO2021098591A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing

Definitions

  • the invention relates to a method and device for setting a conductive plane, in particular to a method and device for setting a conductive plane for measuring electromagnetic interference of equipment or devices.
  • a grounded conductive plane be set near the equipment or device under test (hereinafter referred to as EUT) in order to provide an interference current channel for the EUT. Since the conductive plane and the EUT form a capacitor connected in series in the interference current channel, the change in the distance between the conductive plane and the EUT will result in a change in capacitance, which will result in a change in the interference current between the EUT and the conductive plane. In order to obtain the same results for repeated tests of the EUT, it is necessary to ensure that the distance is kept unchanged for each measurement.
  • the existing electromagnetic interference measurement technology of equipment or devices requires that the conductive plane must be well grounded, and the production or application sites of equipment or devices often do not have a good grounding environment, making it difficult to measure electromagnetic interference of equipment or devices in the equipment or devices. Production or application on site.
  • a method for positioning a conductive plane which is characterized in that it includes: fixing a positioning object above or below a plane of a conductive plane.
  • the shape and size of the conductive plane and the positioning object are not required; the positioning object is the same as facing the conductive plane.
  • the side opposite to the side touches the EUT, so that the length of the vertical line perpendicular to the conductive plane from the contact point to the conductive plane is equal to the distance from the side of the object on the vertical line facing the conductive plane to the conductive plane plus the object on the vertical line thickness of.
  • the positioning method is characterized in that contacting the EUT with the positioning object on the side opposite to the side facing the conductive plane includes contacting the EUT from different directions.
  • the positioning method is characterized in that, contacting the EUT with the positioning object on the side opposite to the side facing the conductive plane includes indirectly contacting the EUT through an object with a measurable thickness, so that the distance between the conductive plane and the EUT is equal to The distance from the side of the positioning object facing the conductive plane to the conductive plane plus the thickness of the positioning object plus the thickness of the object with measurable thickness. That is, the length of the vertical line perpendicular to the conductive plane from the contact point to the conductive plane is equal to the distance from the side of the object on the vertical line facing the conductive plane to the conductive plane plus the thickness of the object on the vertical line plus The thickness of the object can be measured on the thickness.
  • the positioning method is characterized in that by changing the distance from the side of the positioning object facing the conductive plane to the conductive plane on the vertical line, or by changing the thickness of the positioning object, it is changed when the positioning object is opposite to the side facing the conductive plane.
  • the distance from the conductive plane to the EUT when one side is in contact with the EUT.
  • the positioning method is characterized in that said fixing a positioning object above or below a plane of a conductive plane includes integrating the conductive plane and the positioning object into a whole.
  • a method for setting a conductive plane which is characterized in that the conductive plane is set to face the EUT, the conductive plane is not grounded, and the conductive plane is connected to the protective ground of the AC power supply (Protective Ground). Earthing, PE) line.
  • AC power supply Protective Ground
  • a method for setting a conductive plane is characterized in that the conductive plane is set to face the EUT, the conductive plane is not grounded, and the protective grounding PE wire is not connected.
  • a conductive plane device which is characterized by comprising: a conductive plane and a positioning object are fixed by the device, the positioning object is located above or below the plane of the conductive plane, the shape and size of the conductive plane and the positioning object are not required; the device is preset The distance from the conductive plane to the opposite conductive plane of the positioning object is perpendicular, so that when the positioning object contacts the EUT on the side opposite to the side facing the conductive plane, the length of the vertical line perpendicular to the conductive plane from the contact point to the conductive plane is equal to The distance from the side facing the conductive plane of the positioning object on the vertical line to the conductive plane plus the thickness of the positioning object on the vertical line.
  • the conductive plane device is characterized in that the conductive plane does not depend on grounding and PE connection.
  • the conductive plane device is characterized in that the conductive plane is not grounded, and the conductive plane is connected to the PE wire.
  • the conductive plane device is characterized in that the conductive plane is neither grounded nor connected to the PE wire.
  • the conductive plane device is characterized in that the positioning object contacts the EUT on the side opposite to the side facing the conductive plane, including contacting the EUT from different directions.
  • the conductive plane device is characterized in that the distance between the positioning object and the conductive plane of the device is adjustable.
  • the conductive plane device is characterized in that the device is integrated with other instruments or devices to form an instrument or device with a conductive plane.
  • the beneficial effects of the method and device disclosed in this application are as follows: 1. By presetting the distance between the conductive plane and the positioning object, the positioning of the positioning object in contact with the EUT can conveniently complete the positioning of the conductive plane relative to the EUT, avoiding every measurement The measurement error caused by the change of the distance between the conductive plane and the EUT.
  • the shape and size of the conductive plane and the positioning object are not required, so that the conductive plane and the positioning object can be made in a shape and size suitable for carrying, or the conductive plane and the positioning object can be embedded in other test instruments or devices, which is convenient for various productions. Perform interference test on the tested equipment or device on site or in the field.
  • the conductive plane is not grounded, which eliminates the requirement for grounding of the test environment, making it possible to test the electromagnetic interference of the tested equipment or device in the production or application field.
  • the conductive plane does not depend on the grounding or PE wire. There is no need to be grounded or connected to a PE wire, making it possible to test the electromagnetic interference performance of the equipment or device under test in a field environment.
  • Figures 1-3 are flowcharts of the methods disclosed in this application;
  • Figures 4-13 are schematic diagrams describing specific embodiments 1-8 of one or more implementation methods or devices, respectively.
  • FIG. 1 is a flowchart of a method for positioning a conductive plane disclosed in this application.
  • the specific implementation of the conductive plane positioning method disclosed in this application includes: fixing a positioning object above or below a plane of a conductive plane.
  • the shape and size of the conductive plane and the positioning object are not required; the positioning of the object is the same as facing the conductive plane.
  • the side opposite to the side touches the EUT, so that the length of the vertical line perpendicular to the conductive plane from the contact point to the conductive plane is equal to the distance from the side of the object on the vertical line facing the conductive plane to the conductive plane plus the object on the vertical line This completes the positioning of the conductive plane relative to the EUT.
  • Fig. 2 is a method for setting a conductive plane disclosed in this application, which is characterized in that the conductive plane is set to face the EUT, the conductive plane is not grounded, and the conductive plane is connected to the protective grounding PE wire.
  • the method shown in Figure 2 uses the protective grounding wire of the company's existing power supply network to replace the grounding wire to connect the conductive plane, which can conduct electromagnetic interference testing and Get the same test result as connecting the ground wire.
  • Fig. 3 is another method for setting a conductive plane disclosed in this application, which is characterized in that the conductive plane is set to face the EUT, and the conductive plane is neither grounded nor connected to the protective grounding PE wire.
  • the method shown in Figure 3 can perform electromagnetic interference testing and obtain an interference spectrum similar to the test under grounding conditions.
  • the method for setting the conductive plane disclosed in FIG. 2 or FIG. 3 can not only be applied to the electromagnetic interference test of the equipment or device under test carried out according to the standard test method and device as shown in FIG. 7 and FIG. 9, but also can be applied to 8 and FIG. 10 show the electromagnetic interference test of the equipment or device under test performed by the method and device disclosed in this application.
  • the conductive plane 1 is composed of a copper-clad printed circuit board, which is fixed inside a plastic box, and the top of the plastic box serves as the positioning object 2, thus forming a basic conductive plane device.
  • the distance from the EUT to the copper-clad printed circuit board is equal to the thickness of the top of the plastic box plus the space distance between the copper-clad printed circuit board and the top of the plastic box.
  • the EUT is placed in the same position of the device during each test, in this embodiment, it is placed on the top of the device as shown in Figure 4, even if the test is repeated after a period of time, or the test is repeated in a different location , Always get the same distance from EUT to conductive plane, which ensures the consistency of the test.
  • the rectangular parallelepiped is used to represent the plastic box and the EUT, which does not mean that they are rectangular parallelepiped. In practical applications, there are no restrictions and requirements on their shapes.
  • the conductive plane 1 is not grounded.
  • Example 2 as shown in Figure 5, the description of the conductive plane and positioning objects is the same as that of Example 1.
  • the plastic box fixed with the copper-clad printed circuit board is not placed at the bottom of the EUT, but from the horizontal direction of the EUT or Approach from top to bottom, as shown by the arrow, touch and place it on the side or top of the EUT. This is especially convenient when the EUT is a heavy or huge device.
  • the distance from the EUT to the copper-clad printed circuit board is equal to the thickness of the top of the plastic box plus the spatial distance between the copper-clad printed circuit board and the top of the plastic box. This embodiment also demonstrates a case where the device contacts the EUT through an object 3 with a measurable thickness.
  • the distance from the EUT to the copper-clad printed circuit board is equal to the thickness of the top of the plastic box plus the copper-clad printed circuit board to the top of the plastic box.
  • a rectangular parallelepiped is used to represent the plastic box, which can measure the thickness of the object and the EUT, but it does not mean that their shape is limited to the rectangular parallelepiped, and there are no restrictions and requirements on their shape in practical applications.
  • the conductive plane 1 is not grounded.
  • Example 3 as shown in Figure 6, includes (a) (b) (c) three different device configurations.
  • the positioning object 2 is an irregularly curved object. Since its position relative to the conductive plane 1 is fixed, the vertical distance of each part of the positioning object 2 to the conductive plane 1 is known. When the object 2 When a part of the surface touches the EUT, the vertical distance from the contact point to the conductive plane 1 can be immediately obtained.
  • the positioning object 2 is a flat plate, which is connected to the box containing the conductive plane 1 through 4 telescopic connecting rods.
  • the positioning principle of the conductive plane 1 relative to the EUT is the same as (a), the difference is that the connection is adjusted
  • the length of the rod can adjust the distance between the positioning object 2 and the conductive plane 1, so that the distance between the conductive plane 1 and the EUT can be adjusted.
  • the positioning object 2 and the conductive plane are both circular, and the surface of the positioning object 2 has several holes.
  • the positioning principle of the conductive plane 1 relative to the EUT is the same as (a). In this embodiment, the conductive plane 1 is not grounded.
  • Embodiment 4 as shown in Fig. 7, the test site and the test equipment are set up in the production workshop of the product or equipment in accordance with the requirements of the test standard.
  • 2x2m metal plate 1 is placed upright on the test table, keeping a distance of 40CM from EUT3, 220V AC power 9 is connected to artificial power network 4
  • artificial power network output line 6 is connected to EUT to provide EUT working power
  • coaxial cable 8 of measuring receiver 5 Connect the artificial power network 4 to measure the electromagnetic interference generated by the EUT on the output line 6 of the artificial power network (that is, the power line of the EUT).
  • the protective grounding PE wire 7 from the power input power source 9 replaces the grounding wire, and the protective grounding PE wire connection point 2 on the metal plate 1 is connected to the metal plate 1.
  • Such a technical solution enables electromagnetic interference testing of products or equipment even in production or application sites that lack a good grounding environment.
  • Our test results show that the test result is the same as the test result of the metal plate 1 being grounded.
  • Example 5 as shown in Fig. 8, the test setup is basically the same as that of Example 4, except that the conductive plane device shown in Fig. 4 replaces the 2x2 meter metal plate 1 in Fig. 7, and the conductive plane 1 and PE wire 7 in Fig. 8 connection.
  • the area of the conductive plane 1 and the distance from the EUT in this embodiment are different from those in the fourth embodiment. Since the bottom of the EUT and the conductive plane 1 constitute the two poles of a capacitor, the area of the bottom of the EUT in the fourth and this embodiment is smaller than that of the conductive plane 1, so that the parallel area of the capacitor electrodes is equal to the area of the bottom of the EUT.
  • the test layout of this embodiment is basically the same as in Embodiment 4 and Embodiment 5.
  • the difference is that the conductive plane 1 is neither grounded nor connected to the protective grounding PE wire, as shown in FIG. 9 and FIG. 10.
  • the principle diagram of the electromagnetic interference measurement is shown in Figure 11. Since the electromagnetic interference source E of the EUT generates an electromagnetic interference current I, the current I flows through the input impedance Z of the artificial power supply network, flows through the metal plate as a conductive plane, and then flows through the stray capacitance C formed by the metal plate and the EUT.
  • E Measure the voltage between the two terminals of Z through an electromagnetic interference receiver (such as the measurement receiver in Figure 9 and 10) to obtain the electromagnetic interference spectrum of the EUT.
  • Embodiment 7 In this embodiment, a power filter is embedded in the space under the conductive plane 1 shown in FIG. 12 to form a portable electromagnetic interference test device.
  • Embodiment 8 In this embodiment, a conductive plane 1 is embedded on the top of the artificial power supply network 3 as shown in FIG. 13, and the top of the casing of the artificial power supply network 3 constitutes a positioning object 2.
  • the existing electromagnetic interference measurement standards for equipment or devices stipulate the distance from the conductive plane to the EUT and the size of the conductive plane.
  • the above-mentioned method and device disclosed in this application can be measured at different distances and sizes from the standard requirements, and the results can be directly used for the evaluation of the electromagnetic compatibility status of equipment or devices, and the test results under standard settings can also be calculated by the following steps : Calculate the capacitance of the conductive plane formed by the actual distance and size to the EUT, and compare it with the capacitance of the conductive plane formed by the distance and size specified by the standard to the EUT to convert the result of the test according to the standard; or Measure electromagnetic interference on the EUT according to standard settings, then apply the method or device disclosed in this application to the same EUT, compare the two spectrums to obtain the peak amplitude deviation of the spectrum to form a deviation curve, and use the method or device disclosed in this application accordingly.
  • the measurement results of other EUTs that are being measured are corrected for the peak amplitude of the spectrum according to the deviation curve. Since what we are concerned about in practical applications is the peak of the interference spectrum, there is no need to correct the amplitude of the peak and valley of the spectrum.
  • the device disclosed in this application can be integrated with other components or equipment required for electromagnetic interference testing, such as artificial power supply networks, power filters, electromagnetic interference receivers, etc., to form a new Of devices with conductive planes.
  • the conductive plane with electromagnetic interference test components or instruments. For example, install the power filter below the conductive plane (assuming that the positioning object is above the conductive plane), or between the conductive plane and the positioning object.
  • the device is embedded in the artificial power network or around or on the top of the electromagnetic interference receiver, etc., which does not affect the use of the conductive plane device, reduces the size of the device or reduces the cost, and is more portable and convenient to use.
  • This application discloses several positioning and setting methods of conductive planes for measuring electromagnetic interference of equipment or devices.
  • the conductive planes can be conveniently and accurately deployed at a predetermined distance on the bottom, all around or even the top of the EUT, ensuring the electromagnetic interference of the EUT.
  • the method disclosed in this application does not limit the shape and size of the conductive plane and the positioning object, which is beneficial to integrate the two into a portable device to test the electromagnetic interference of the equipment or devices on different fields.
  • the disclosed method dispenses with the prior art's requirement for a good grounding of the conductive plane, so that the electromagnetic interference test for equipment and devices can also be performed in places that do not have a good grounding environment (regardless of whether the device disclosed in this application is used).
  • the method and device for positioning and setting the conductive plane disclosed in this application can approach the EUT from a horizontal or vertical direction and deploy the conductive plane, and can adjust the conductive plane to the EUT by adjusting the height of the device (as shown in Figure 6(b)) Distance to meet various test requirements; the device disclosed in this application is portable, does not need to be grounded or even connected to a protective grounding PE wire, and can be used in normal production sites or even in the field. Compared with other laboratory test technical solutions, it reduces test costs and testing time.

Abstract

一种设备电磁兼容测试的导电平面的设置方法和装置。将一个定位物体固定在一个导电平面的平面上方;以定位物体接触被测试设备(EUT),EUT 到导电平面的距离等于定位物体到导电平面的距离加上定位物体的厚度,避免了每次测试时导电平面到EUT 之间距离变化导致的测量误差。并且,导电平面无需接地,可应用于没有接地可用的生产场所或野外。

Description

导电平面的设置方法和装置 技术领域
本发明涉及一种导电平面的设置方法和装置,特别是涉及一种用于测量设备或装置电磁干扰的导电平面的设置方法和装置。
背景技术
现有的设备或装置的电磁干扰测量技术,要求在被测试设备或装置(以下简称EUT)附近设置一个接地的导电平面以便为EUT提供干扰电流通道。由于导电平面和EUT构成了串联在干扰电流通道中的一个电容,导电平面和EUT之间的距离变化将导致电容容量的变化从而导致EUT与导电平面之间的干扰电流变化。为了使得对EUT的重复测试能够获得相同的结果,务必确保每次测量时该距离保存不变。并且,现有的设备或装置的电磁干扰测量技术要求导电平面必须良好接地,而设备或装置的生产或应用现场往往没有良好的接地环境,使得设备或装置的电磁干扰测量难以在设备或装置的生产或应用现场进行。
技术问题
提出几种用于设备或装置的电磁干扰测量的导电平面的设置方法和装置。
技术解决方案
采用以下技术方案实现。
一种导电平面的定位方法,其特征在于,包括:将一个定位物体固定在一个导电平面的平面上方或下方,导电平面和定位物体的形状和大小不做要求;以定位物体与面向导电平面一侧相反的一侧接触EUT,使得接触点到导电平面的与导电平面垂直的垂直线的长度,等于该垂直线上定位物体面向导电平面一侧到导电平面的距离加上该垂直线上定位物体的厚度。
所述的定位方法,其特征在于,所说的以定位物体与面向导电平面的一侧相反的一侧接触EUT,包括从不同方向接触EUT。
所述的定位方法,其特征在于,所说的以定位物体与面向导电平面的一侧相反的一侧接触EUT,包括通过一个可测量厚度的物体间接接触EUT,使得导电平面到EUT的距离等于定位物体面向导电平面一侧到导电平面的距离加上定位物体的厚度再加上可测量厚度的物体的厚度。也就是说,使得接触点到导电平面的与导电平面垂直的垂直线的长度,等于该垂直线上定位物体面向导电平面一侧到导电平面的距离加上该垂直线上定位物体的厚度再加上可测量厚度的物体的厚度。
所述的定位方法,其特征在于,通过改变所说的垂直线上定位物体面向导电平面一侧到导电平面的距离,或者改变定位物体的厚度,来改变当定位物体与面向导电平面一侧相反的一侧接触EUT时导电平面到EUT的距离。
所述的定位方法,其特征在于,所说的将一个定位物体固定在一个导电平面的平面上方或下方,包括将导电平面和定位物体集成为一体。
一种导电平面的设置方法,其特征在于,将导电平面设置成面朝EUT,导电平面不接地,导电平面连接交流电源的保护接地(Protective Earthing, PE)线。
一种导电平面的设置方法,其特征在于,将导电平面设置成面朝EUT,导电平面不接地,也不连接保护接地PE线。
一种导电平面装置,其特征在于,包括: 装置固定了一个导电平面和一个定位物体,定位物体位于导电平面的平面上方或下方,导电平面和定位物体的形状和大小不做要求;装置预设了从导电平面到定位物体的相对导电平面垂直的距离,使得当定位物体与面向导电平面一侧相反的一侧接触EUT时,接触点到导电平面的与导电平面垂直的垂直线的长度,等于该垂直线上定位物体面向导电平面一侧到导电平面的距离加上该垂直线上定位物体的厚度。
所述的导电平面装置,其特征在于,所说的导电平面不依赖于接地和接PE。
所述的导电平面装置,其特征在于,所说的导电平面不接地,导电平面连接PE线。
所述的导电平面装置,其特征在于,所说的导电平面既不接地也不连接PE线。
所述的导电平面装置,其特征在于,所说的定位物体与面向导电平面一侧相反的一侧接触EUT,包括从不同方向接触EUT。
所述的导电平面装置,其特征在于,所说的装置,其定位物体到导电平面的距离可调。
所述的导电平面装置,其特征在于,所说的装置与其它仪器或者装置整合,构成带导电平面的仪器或装置。
有益效果
本申请披露的方法及装置的有益效果在于:1、通过预设导电平面和定位物体之间的距离,将定位物体接触EUT即可方便地完成导电平面相对于EUT的定位,避免了每次测量时导电平面到EUT之间距离变化导致的测量误差。
2、导电平面和定位物体的形状和大小不做要求,使得能够以适合携带的形状和大小制作导电平面和定位物体,或者将导电平面和定位物体嵌入其它测试仪器或者装置,方便在各种生产现场或者野外对被测试设备或装置的做干扰测试。
3、导电平面不接地,免除了对测试环境接地的要求,使得在生产或应用现场测试被测试设备或装置的电磁干扰成为可能。
 4、导电平面不依赖于接地或PE线。无需接地,也无需接PE线,使得在野外环境下测试被测试设备或装置的电磁干扰性能成为可能。
 5. 能够与其它电磁干扰测试仪器或者部件整合,缩小电磁干扰测试系统的整体体积或者降低整体成本,更加便携和方便使用。
附图说明
图1- 3为本申请披露方法的流程图;图4-13分别为描述一个或者多个实施方法或装置的具体实施例1-8的原理图。
本发明的最佳实施方式
以下结合附图和实施例对本申请作进一步详细说明。
图1为本申请披露的一种导电平面定位方法的流程图。本申请披露的导电平面定位方法,其具体实施包括: 将一个定位物体固定在一个导电平面的平面上方或下方,导电平面和定位物体的形状和大小不做要求;以定位物体与面向导电平面一侧相反的一侧接触EUT,使得接触点到导电平面的与导电平面垂直的垂直线的长度,等于该垂直线上定位物体面向导电平面一侧到导电平面的距离加上该垂直线上定位物体的厚度,从而完成了导电平面相对EUT的定位。
图2为本申请披露的一种导电平面的设置方法,其特征在于,将导电平面设置成面朝EUT,导电平面不接地,导电平面连接保护接地PE线。
在许多产品或设备的生产企业,往往不具备合乎电磁兼容测试标准要求的良好接地环境,图2方法用企业现有的供电网络的保护接地线替代接地线连接导电平面,能够进行电磁干扰测试并且得到与连接地线相同的测试结果。
图3为本申请披露的另一种导电平面的设置方法,其特征在于,将导电平面设置成面朝EUT,导电平面即不接地,也不连接保护接地PE线。
在一些既不具备地线,也不具备保护接地PE线的环境,例如野外环境,图3给出的方法能够进行电磁干扰测试并且获得与接地条件下进行测试类似的干扰频谱。
图2或者图3披露的导电平面的设置方法,不仅能够应用于如图7和图9所示的按照标准测试方法和装置进行的被测试设备或装置的电磁干扰测试,而且能够应用于如图8和图10所示用本申请披露的方法和装置进行的被测试设备或装置的电磁干扰测试。
本发明的实施方式
以下结合图4-图13描述的实施例进一步说明本申请披露的方法和装置的工作原理。
实施例1,如图4所示,导电平面1由一块覆铜印刷电路板构成,固定在一个塑料盒子内部,塑料盒子的顶部充当了定位物体2,如此,构成了一个基本的导电平面装置。EUT到覆铜印刷电路板的距离等于塑料盒子顶部厚度加上覆铜印刷电路板到塑料盒子顶部之间的空间距离。只要每次测试时EUT摆放在装置相同的位置,在本实施例中,如图4所示放在装置的顶部,即便是相隔一段时间后重做测试,或者是在不同的地点重做测试,总会得到相同的EUT到导电平面距离,保证了测试的一致性。应该指出,本实施例中以长方体表示塑料盒子和EUT,并不意味着他们就是长方体,实际应用中,对其形状并没有限制和要求。本实施例中导电平面1没有接地。
实施例2,如图5所示,对导电平面和定位物体的说明同实施例1,不同的是固定有覆铜印刷电路板的塑料盒子不是放在EUT底部,而是从EUT的水平方向或者从上向下靠近,如箭头所示,接触并摆放在EUT的侧面或顶部,这在EUT为沉重或者巨大设备时尤其方便。同样,EUT到覆铜印刷电路板的距离等于塑料盒子顶部厚度加上覆铜印刷电路板到塑料盒子顶部之间的空间距离。本实施例还演示了装置通过可测量厚度的物体3接触EUT的案例,在这种情况下,EUT到覆铜印刷电路板的距离等于塑料盒子顶部厚度加上覆铜印刷电路板到塑料盒子顶部之间的空间距离,再加上可测量厚度的物体3的厚度。应该指出,本实施例中以长方体表示塑料盒子,可测量厚度物体和EUT,并不表示他们的形状局限于长方体,实际应用中对其形状并没有限制和要求。本实施例中导电平面1没有接地。
实施例3,如图6所示,包括了(a)(b)(c)三个不同的装置构造。(a)图中,定位物体2为不规则曲面物体,由于其相对导电平面1的位置是固定的,因此定位物体2表面各个部分对导电平面1的垂直距离都是已知的,当物体2表面某个部分接触EUT时,能够立即得到接触点到导电平面1的垂直距离。(b)图中,定位物体2为一平板,通过4根能够伸缩的连接杆连接到包含有导电平面1的盒子,导电平面1相对EUT的定位原理同(a),不同的是,调节连接杆长度能够调整定位物体2到导电平面1之间的距离,从而能够调整导电平面1到EUT的距离。(c)图中,定位物体2和导电平面都为圆形,其中定位物体2表面还开了若干孔,其导电平面1相对EUT的定位原理与(a)相同。本实施例中导电平面1都没有接地。
实施例4,如图7所示,按照测试标准要求在产品或设备的生产车间对测试场所和测试设备进行设置。2x2米金属板1靠测试桌竖立摆放,与EUT3保持40CM距离,220V交流电源9连接人工电源网络4,人工电源网络输出线6连接EUT提供EUT工作电源,测量接收机5的同轴电缆8连接人工电源网络4以测量人工电源网络输出线6(也就是EUT的电源线)上EUT产生的电磁干扰。与常规标准测试不同的是,来自电源输入电源9的保护接地PE线7取代接地线,在金属板1上的保护接地PE线连接点2与金属板1连接。这样的技术方案使得在缺乏良好接地环境的生产或应用现场也能够进行产品或设备的电磁干扰测试。我们的测试结果表明,其测试结果与将金属板1接地的测试结果相同。
实施例5,如图8所示,测试设置基本上同实施例4,不同的是以图4所示导电平面装置取代图7中2x2米金属板1,图8中导电平面1与PE线7连接。显然,本实施例中的导电平面1的面积和与EUT的距离与实施例4并不相同。由于EUT底部和导电平面1构成了一个电容的两极,实施例4和本实施例中EUT底部面积都小于导电平面1,使得电容电极的平行面积等于EUT底部面积,实施例4和本实施例中导电平面1面积的差异并不影响电容容量,只有距离差异会导致电容容量的不同。因此,通过计算实施例4和本实施例中导电平面1到EUT的距离的比例并且对本实施例测量频谱的幅度做了相应修正,获得了与实施例4吻合的结果。
实施例6,本实施例的测试布局与实施例4和实施例5基本相同,不同的是导电平面1既不接地,也不接保护接地PE线,如图9所示和图10所示。其电磁干扰的测量原理图如图11所示。由于EUT的电磁干扰源E产生一个电磁干扰电流I,该电流I流过人工电源网络的输入阻抗Z,流过作为导电平面的金属板,然后流过金属板和EUT构成的杂散电容C返回E;通过电磁干扰接收机(如图9和10中的测量接收机)测量Z的两个端子之间的电压,即可获得EUT的电磁干扰频谱。 显然,如图11所示,导电平面是否接地或者连接保护接地PE线,不影响对干扰电流I的测试。并且,本实施例和其它多个实施例的实施过程中发现,与导电平面接地线或PE线相比,导电平面即不接地线,也不接PE线,测试得到的电压波形有时会有相位差异,然而,对设备和产品的电磁干扰的考核基于不包含相位信息的干扰频谱,因此相位差异对电磁干扰测量的影响可以忽略。也就是说,导电平面在用于电磁干扰测量时,不依赖于接地和接PE。但是导电平面接地或接PE能够提供人体触电的安全防护。
在某些应用场景,例如,在野外,不仅没有良好接地,而且没有保护接地PE线可用,本实施例演示的本申请披露的技术方案能够实现对设备或者装置的现场测试,具有其它技术没有的优势。
实施例7,在本实施例中,图12所示的导电平面1下部空间中嵌入了电源滤波器,构成了便携的电磁干扰测试装置。
实施例8,在本实施例中,如图13所示的人工电源网络3的顶部嵌入了导电平面1,人工电源网络3的外壳顶部构成了定位物体2。
现有的设备或装置的电磁干扰测量标准对导电平面到EUT的距离和导电平面的尺寸做出了规定。采用本申请披露的上述方法和装置能够采用与标准规定不同的距离和尺寸进行测量,其结果能够直接用于设备或装置的电磁兼容状况评估,也可以通过以下步骤计算出标准设置下的测试结果:计算实际采用的距离和尺寸形成的导电平面到EUT的电容容量大小,与标准规定的距离和尺寸形成的导电平面到EUT的电容容量大小进行比较从而折算出按照标准规定进行测试的结果;或者按标准设置对EUT测量电磁干扰,然后对同样的EUT应用本申请披露的方法或装置进行测量,对比两者频谱获得频谱峰值幅度偏差形成偏差曲线,并且据此对采用本申请披露的方法或装置进行测量的其它EUT的测量结果根据偏差曲线修正频谱峰值幅度。由于实际应用中我们所关心的是干扰频谱的峰值,对频谱的峰谷幅度可以不做修正。
本申请披露的装置,作为电磁干扰测试的一个基本测试设备单元,能够与电磁干扰测试需要的其它部件或设备,例如,人工电源网络,电源滤波器,电磁干扰接收仪等整合为一体,构成新的带有导电平面的设备。
有多种将导电平面与电磁干扰测试部件或者仪器组合的方案,例如,将电源滤波器安装到导电平面下方(假定定位物体位于导电平面上方),或者导电平面与定位物体之间,将导电平面装置嵌入到人工电源网络或者电磁干扰接收仪四周或者顶部等等,即不影响导电平面装置的使用,又缩小了仪器的体积或者降低了成本,更加便携,方便使用。
工业实用性
本申请披露了几种用于测量设备或装置的电磁干扰的导电平面的定位和设置方法,能够方便和准确地将导电平面以预定的距离部署在EUT的底部,四周甚至顶部,确保了EUT电磁干扰测试的一致性,本申请披露的方法对导电平面和定位物体的形状和大小不做限定,有利于将两者整合成便于携带的装置在不同的现场测试设备或装置的电磁干扰,本申请披露的方法免除了现有技术对导电平面良好接地的要求,使得对设备和装置的电磁干扰测试在不具备良好接地环境的场所也能进行(无论是否采用本申请披露的装置)。本申请披露的导电平面的定位和设置方法和装置,能够从水平或者上下方向接近EUT并部署导电平面,并能通过调整装置的高度(如图6(b)所示)调整导电平面到EUT的距离以满足各种测试需求;本申请披露的装置便携,无需接地甚至无需接保护接地PE线,能够在通常的生产场所甚至野外应用,与其它实验室测试技术方案相比,减低了测试费用和测试时间。
以上所述仅为本发明的部分实施例,并非全部。基于本申请披露的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (12)

  1. 一种导电平面的设置方法,其特征在于,包括:
    将一个定位物体固定在一个导电平面的平面上方或下方,导电平面和定位物体的形状和大小不做要求;
    以定位物体与面向导电平面一侧相反的一侧接触被测试设备或装置(Equipment Under Test, EUT),使得接触点到导电平面的与导电平面垂直的垂直线的长度,等于该垂直线上定位物体面向导电平面一侧到导电平面的距离加上该垂直线上定位物体的厚度。
  2. 如1所述的设置方法,其特征在于,所说的以定位物体与面向导电平面的一侧相反的一侧接触EUT,包括从不同方向接触EUT。
  3. 如1所述的设置方法,其特征在于,所说的以定位物体与面向导电平面的一侧相反的一侧接触EUT,包括通过一个可测量厚度的物体间接接触EUT,使得接触点到导电平面的与导电平面垂直的垂直线的长度,等于该垂直线上定位物体面向导电平面一侧到导电平面的距离加上该垂直线上定位物体的厚度再加上可测量厚度的物体的厚度。
  4. 如1所述的设置方法,其特征在于,所说的将一个定位物体固定在一个导电平面上方或下方,包括将导电平面和定位物体集成为一体。
  5. 一种导电平面的设置方法,其特征在于,将导电平面设置成面朝EUT,导电平面不接地,导电平面连接交流电源的保护接地(Protective Earthing, PE)线。
  6. 一种导电平面的设置方法,其特征在于,将导电平面设置成面朝EUT,导电平面不接地,也不连接保护接地PE线。
  7. 一种导电平面的设置装置,其特征在于,包括:
    装置固定了一个导电平面和一个定位物体,定位物体位于导电平面的平面上方或下方,导电平面和定位物体的形状和大小不做要求;
    装置预设了从导电平面到定位物体的相对导电平面垂直的距离,使得当定位物体与面向导电平面一侧相反的一侧接触EUT时,接触点到导电平面的与导电平面垂直的垂直线的长度,等于该垂直线上定位物体面向导电平面一侧到导电平面的距离加上该垂直线上定位物体的厚度。
  8. 如7所述的导电平面的设置装置,其特征在于,所说的导电平面不依赖于接地和接PE。
  9. 如7所述的导电平面的设置装置,其特征在于,所说的导电平面不接地,导电平面连接PE线。
  10. 如7所述的导电平面的设置装置,其特征在于,所说的导电平面既不接地也不连接PE线。
  11. 如7所述的导电平面的设置装置,其特征在于,所说的装置,其定位物体到导电平面的距离可调。
  12. 如7所述的导电平面的设置装置,其特征在于,所说的装置与其它仪器或装置整合,构成带导电平面的仪器或装置。
PCT/CN2020/128548 2019-11-23 2020-11-13 导电平面的设置方法和装置 WO2021098591A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/773,590 US20220413030A1 (en) 2019-11-23 2020-11-13 Method and apparatus configuring conductive plane
GB2206296.2A GB2604291A (en) 2019-11-23 2020-11-13 Method and apparatus configuring conductive plane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911160853 2019-11-23
CN201911160853.0 2019-11-23

Publications (1)

Publication Number Publication Date
WO2021098591A1 true WO2021098591A1 (zh) 2021-05-27

Family

ID=69730011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128548 WO2021098591A1 (zh) 2019-11-23 2020-11-13 导电平面的设置方法和装置

Country Status (4)

Country Link
US (1) US20220413030A1 (zh)
CN (2) CN110879322A (zh)
GB (1) GB2604291A (zh)
WO (1) WO2021098591A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110879322A (zh) * 2019-11-23 2020-03-13 吴伟 导电平面的设置方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278933A (en) * 1979-06-18 1981-07-14 American Electronic Laboratories, Inc. Means and method for determining susceptibility to radiated energy
CN1760683A (zh) * 2004-10-11 2006-04-19 简妙羽 行动式电磁干扰测试实验室
CN110879322A (zh) * 2019-11-23 2020-03-13 吴伟 导电平面的设置方法和装置
CN211785828U (zh) * 2019-11-23 2020-10-27 吴伟 导电平面的设置装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347867A (en) * 1993-02-03 1994-09-20 Minnetonka Warehouse Supply, Inc Accelerometer incorporating a driven shield
US5585808A (en) * 1994-12-13 1996-12-17 Comtest Limited Test apparatus for testing the susceptibility of electronic equipment to electromagnetic radiation and for measuring electromagnetic radiation emitted by electronic equipment
CN1212521C (zh) * 2002-10-30 2005-07-27 中国科学院电子学研究所 用giem室做辐射emi测试的线性法
JP4360226B2 (ja) * 2004-02-17 2009-11-11 ソニー株式会社 電磁界測定システム及び電磁界測定プログラム
US7106050B1 (en) * 2005-06-08 2006-09-12 Broadcom Corporation Apparatus for shielding a device under test from electromagnetic waves
CN101820303A (zh) * 2010-01-25 2010-09-01 苏州泰思特电子科技有限公司 一种应用于电力线通信网络的辐射噪声测试方法
US20110306252A1 (en) * 2010-06-15 2011-12-15 Research In Motion Limited Spring finger grounding component and method of manufacture
CN202548230U (zh) * 2012-03-26 2012-11-21 鸿富锦精密工业(深圳)有限公司 音频监测装置
CN205157664U (zh) * 2015-11-02 2016-04-13 王明富 一种多功能电磁兼容测试实验室
CN105823935B (zh) * 2016-05-13 2018-11-23 南京信息工程大学 一种半电波暗室场均匀性测试装置及其方法
JP2019027997A (ja) * 2017-08-02 2019-02-21 アンリツ株式会社 無線端末測定装置、無線端末測定装置に接続される円偏波アンテナ装置、及び無線端末測定方法
CN109828162B (zh) * 2019-03-18 2021-11-26 百度在线网络技术(北京)有限公司 电磁干扰预测方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278933A (en) * 1979-06-18 1981-07-14 American Electronic Laboratories, Inc. Means and method for determining susceptibility to radiated energy
CN1760683A (zh) * 2004-10-11 2006-04-19 简妙羽 行动式电磁干扰测试实验室
CN110879322A (zh) * 2019-11-23 2020-03-13 吴伟 导电平面的设置方法和装置
CN211785828U (zh) * 2019-11-23 2020-10-27 吴伟 导电平面的设置装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHU, BANGSHAN, PRACTICAL ANTI-JAMMING TECHNOLOGY FOR ELECTRONIC CIRCUITS, 31 October 1994 (1994-10-31) *
ZHUANG, YIQI, RELIABILITY ENGINEERING FOR ELECTRONIC DESIGN, 30 September 2014 (2014-09-30) *

Also Published As

Publication number Publication date
CN110879322A (zh) 2020-03-13
GB2604291A (en) 2022-08-31
GB202206296D0 (en) 2022-06-15
CN115372741A (zh) 2022-11-22
US20220413030A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
CN102866377A (zh) 变压器局放和定位在线监测组件的检测校验系统及方法
CN105738777B (zh) 高压电缆高频局部放电带电检测中环境干扰的模拟装置
CN102435973A (zh) 容性设备绝缘在线监测系统校验装置及方法
CN207663042U (zh) 1000kV交流特高压电流互感器误差校验移动平台
CN203811751U (zh) 一种基于对比拟合分析的电力设备局部放电实验系统
WO2021098591A1 (zh) 导电平面的设置方法和装置
EP2669690A1 (en) Wireless system for measuring voltage distribution of arrester
JP5722681B2 (ja) 模擬負荷装置
CN211785828U (zh) 导电平面的设置装置
CN108181512A (zh) 一种基于变压器自激振荡的绕组入口电容测试方法
CN106018491A (zh) 场敏感型电磁脉冲防护材料性能测试方法
CN109406877A (zh) 电容式电压互感器谐波传递系数的测量方法及装置
KR20230170949A (ko) Ic의 노이즈 내량 검출 장치 및 ic의 노이즈 내량 검출 방법
CN203133263U (zh) 一种变压器局放和定位监测智能组件的检测校验装置
CN105866667A (zh) 一种双端接地断路器的回路电阻测试方法
CN103869113B (zh) 高压串联谐振装置和利用该装置的耐压试验方法
CN104655788A (zh) 电力电容器噪声分析方法和装置
CN103460057A (zh) 利用可振动运动地构造的电极无接触地确定电势的方法以及设备
CN205620343U (zh) 场敏感型电磁脉冲防护材料性能测试系统
CN207472922U (zh) 一种静电放电模拟器的夹持及触发装置
CN107525976B (zh) 一种电力电容器噪声激励电路及方法
CN104361802A (zh) 一种容性设备电气运行模拟装置
JP5794400B2 (ja) ワイヤレス電力伝送システム用測定回路および測定装置
CN206684290U (zh) 一种电能表快速上电装置
KR102014511B1 (ko) 커패시터의 손실 계수 측정 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202206296

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201113

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890911

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20890911

Country of ref document: EP

Kind code of ref document: A1