WO2014101899A2 - 一种低碳酯加氢制备乙醇的方法 - Google Patents

一种低碳酯加氢制备乙醇的方法 Download PDF

Info

Publication number
WO2014101899A2
WO2014101899A2 PCT/CN2014/000126 CN2014000126W WO2014101899A2 WO 2014101899 A2 WO2014101899 A2 WO 2014101899A2 CN 2014000126 W CN2014000126 W CN 2014000126W WO 2014101899 A2 WO2014101899 A2 WO 2014101899A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reactor
reaction
ester
carbon ester
Prior art date
Application number
PCT/CN2014/000126
Other languages
English (en)
French (fr)
Other versions
WO2014101899A3 (zh
Inventor
朱文良
刘勇
刘红超
倪友明
刘中民
孟霜鹤
李利娜
刘世平
周慧
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2014101899A2 publication Critical patent/WO2014101899A2/zh
Publication of WO2014101899A3 publication Critical patent/WO2014101899A3/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen

Definitions

  • the invention belongs to the field of catalytic chemistry, and relates to a novel fixed-catalyst process for catalyst multi-stage loading and low-carbon ester segment feeding and its application. Background technique
  • ethanol has good mutual solubility. It can be blended into gasoline as a blending component, partially replaces gasoline, and increases the Xinxin value and oxygen content of gasoline, effectively promotes the full combustion of gasoline, and reduces the automobile. The emission of CO and HC in the exhaust gas.
  • ethanol can provide a variety of structural features for automotive fuels in China.
  • China mainly uses fuel, especially corn, as raw material to develop fuel ethanol. It has become the third largest producer and consumer of fuel ethanol in Brazil and the United States. However, according to China's national conditions, there are many unfavorable factors for ethanol production from grain. In the future, the development of fuel ethanol in China is more than a non-food route.
  • the process route of coal-to-ethanol is mainly divided into two types: one is that the synthesis gas directly produces ethanol, but the noble metal ruthenium catalyst is required, the cost of the catalyst is high and the yield of ruthenium is limited; the second is that the synthesis gas is hydrogenated by acetic acid to produce ethanol.
  • the synthesis gas is first subjected to liquid phase carbonylation of methanol to produce acetic acid, which is then hydrogenated to synthesize ethanol.
  • This route is mature, but the equipment needs special alloys that are resistant to corrosion, and the cost is high.
  • the ester hydrogenation reaction is a strong exothermic process
  • the following fixed bed reactors are generally used for the strong exothermic reaction: adiabatic reactor; internal heat exchanger reactor; tubular reactor; gas phase cold Catalytic reactor; gas phase quench reactor.
  • the above reactor is stored in the process of industrialization In the catalyst bed temperature distribution is uneven and difficult to control, it is difficult to carry out large-scale industrial production. Summary of the invention
  • An object of the present invention is to provide a process for the preparation of ethanol by hydrogenation of a low carbon ester on a copper-based catalyst.
  • the temperature of the conventional fixed bed catalyst bed is difficult to control, and hot spots are prone to occur, thereby increasing side reactions, reducing the selectivity of the target product, and affecting the catalyst life.
  • the invention fills the catalyst in multiple stages, and the raw material low-carbon ester is fed in stages, thereby dispersing the reaction heat, effectively controlling the temperature distribution of the catalyst bed, and improving the conversion rate of the raw materials and the life of the catalyst.
  • the present invention provides a method for hydrogenating a low carbon ester to produce ethanol, comprising passing a raw material gas containing a low carbon ester and hydrogen through a reaction zone containing a copper-based catalyst at a reaction temperature of 200 to 320 ° C.
  • a plurality of said reaction zone comprising a reactor, or through a series and / or parallel manner; 'into line 1 under hydrogenation reaction, production of ethanol, the reaction pressure 0.5 ⁇ 20.0 Mpa, hourly space velocity 1000 ⁇ 40000 h a reactor; at least one of the copper-based catalysts in each reactor is packed in stages, and the low-carbon ester in the feed gas is fed into the reaction zone by a staged feed; the molar ratio of the low-carbon ester to the hydrogen in the feed gas is 1/2 ⁇ 1/100.
  • Those skilled in the art can select the appropriate number and type of reactors and the manner of connection between the reactors according to the needs of actual industrial production.
  • the lower carbon ester is an ester having 3 to 5 carbon atoms, preferably one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, ethyl formate, and ethyl propionate. Or a variety.
  • the reactor is a fixed bed reactor.
  • the reactor is a fixed bed reactor comprising from 2 to 20 catalyst beds and a lower carbon ester stage feed inlet between adjacent catalyst beds.
  • the reactor is a fixed bed reactor comprising from 2 to 6 catalyst beds and a lower carbon ester stage feed inlet between adjacent catalyst beds.
  • the reactor may be a single reactor, or a plurality of reactors in series, a lower ester stage feed inlet between adjacent reactors and/or two adjacent catalyst beds. between.
  • the reaction zone contains from 2 to 20 reactors in series, and the lower ester stage feed inlet is between adjacent reactors and/or between two adjacent catalyst beds.
  • the reaction zone contains from 2 to 6 reactors in series, and the lower ester stage feed inlet is between adjacent reactors and/or between adjacent catalyst beds.
  • the reaction temperature is 220 to 280 °C.
  • reaction pressure is 2.0 to 10.0 MPa.
  • the volume airspeed is SOOO SOOOO h ⁇
  • the copper-based catalyst may further contain auxiliary agents A and/or B in addition to the active component copper, and the sum of the three mass percentages is 100%, wherein the sum of the three mass percentages is 100%. :
  • the active component Cu is present in the form of an oxide, and the weight percentage in the catalyst is 10.0 to 50.0 wt% based on the metal element;
  • the auxiliary A is in the form of a metal element oxide, and the metal element is one or more selected from the group consisting of Zn, Cr, Mn, Al, and Fe, and the content in the catalyst is 0.0 to 50.0 wt% based on the metal element. ;
  • the additive B is present in the form of a metal element oxide, and the metal element is one or more selected from the group consisting of Zr, B, Ce, Si, Ti, and the content in the catalyst is 0.0 to 50.0 based on the metal element.
  • the copper-based catalyst is reduced with hydrogen, or an inert gas diluted hydrogen gas, or a synthesis gas (a mixture of CO and 3 ⁇ 4) before the reaction, and then the reaction is carried out.
  • the outstanding advantage of the present invention is that the staged packed catalyst can effectively control the temperature distribution of the catalyst bed, avoid hot spots, thereby reducing side reactions, improving the selectivity of the target product, and prolonging the life of the catalyst.
  • FIG. 1 Schematic diagram of a fixed bed reactor packed with catalyst
  • FIG. 2 Schematic diagram of a conventional fixed bed reactor
  • Figure 4 Schematic diagram of a series process of multiple fixed bed reactors
  • both the conversion of the lower ester and the selectivity of the ethanol are calculated based on the moles of carbon of the lower ester:
  • Low-carbon ester conversion rate [(low moles of carbon in the feed gas) - (moles of low-carbon ester carbon in the product)] ⁇ (moles of low-carbon ester carbon in the feed gas) ⁇ ( ⁇ %)
  • Ethanol selectivity (moles of ethanol in the product) ⁇ [(moles of low carbon esters in the feed gas)
  • the preparation procedure of the Cu-Zn-Al-0 catalyst of the invention is as follows: a nitrate mixed solution of copper nitrate hexahydrate, zinc nitrate hexahydrate and aluminum nitrate nonahydrate is vigorously stirred at room temperature to prepare a precipitant N C0 3 solution. The mixture was slowly dropped thereto, and a coprecipitation reaction was carried out at a constant pH to 9.0 at a constant stirring speed. After stirring for an additional 150 min, the precipitate was aged overnight. The precipitate was washed with deionized water to neutrality and centrifuged. The obtained precipitate was dried in an oven at 120 ° C for 24 h.
  • the copper-based catalyst of 50wt% Cu, 35wt% Zn, 15%A1 is expressed as: 50C U 35Znl5AlO.
  • Table 1 The preparation process and representation method of other catalysts are similar, as shown in Table 1 below:
  • Example 3 Analytical method of product
  • the starting materials and the resulting product were analyzed on an Agilent 7890A gas chromatograph.
  • the chromatograph is equipped with dual detectors FID and TCD, and has a ten-way valve that allows the product to enter the packed column and capillary column separately.
  • a hydrogen flame detector detects hydrocarbons, alcohols, ethers in the product, and a thermal conductivity detector detects hydrogen and hydrogen in the feedstock and product. Data was processed using Agilent's Chemstation software.
  • FID column HP-PLOT-Q 19091S-001, 50m x 0.2mm (inside diameter), 0.5 ⁇ m film thickness
  • Carrier gas helium, 2.5 ml/min
  • TCD column carbon molecular sieve column, Pompak-Q 2m x 2mm (inside diameter)
  • Carrier gas helium, 20ml/min
  • a single fixed bed reactor with 50Cu35Znl5AlO catalyst packed in stages is shown in Figure 1.
  • 500ml of the above catalyst was packed into a fixed bed reactor with an inner diameter of 036mm.
  • the reactor has a 06mm thermowell inside.
  • the catalyst is packed in four stages, each section is about 120mm, and each section of the catalyst bed is low. Carbon ester imports.
  • the lower part of each layer of the catalyst is equipped with a sampling port.
  • the product is subjected to full-component online analysis of the chromatogram.
  • the methyl acetate methylation reaction was carried out by using 99.5% methyl acetate and 99.99% hydrogen as reaction raw materials.
  • the reactor inlet temperature is 220 ° C
  • MAc/H 2 l/5
  • the methyl acetate raw material is divided into four parts, from the first to The fourth feed port enters the reactor.
  • the temperature rise of each catalyst bed, the conversion of methyl acetate and the selectivity of ethanol are shown in Table 2.
  • Table 2 Methyl acetate conversion rate of each catalyst bed, temperature rise of the bed and ethanol selectivity
  • a conventional fixed bed reactor is shown in Figure 2.
  • 500 ml of a shaped 50 ⁇ 35 ⁇ ⁇ 15 ⁇ 1 ⁇ catalyst was charged into a fixed bed reactor having an inner diameter of 036 mm, and a 06 mm thermowell was inside the reactor;
  • the catalyst is filled for a period of time, the bed is about 500 mm high, and methyl acetate and H2 are fed from the upper inlet.
  • the reactor outlet product was subjected to a full-component online analysis of the chromatogram.
  • a thermocouple was used for temperature measurement, and methyl acetate was hydrogenated with a purity of 99.5% of methyl acetate and 99.99% of hydrogen as a reaction raw material.
  • the reactor inlet temperature was 220 ° C
  • the reaction pressure gauge pressure
  • the volume velocity of the raw material was GHSV-ZOOO h
  • MAc/H2 1/5.
  • Methyl acetate and hydrogen were mixed and fed uniformly.
  • the temperature and outlet MAc conversion rates for the catalyst bed are shown in Table 3 below. The results of the stability of this experiment are shown in Figure 3.
  • the 50Cu35Znl5AlO catalyst was packed as in Example 4.
  • the methyl acetate feedstock was divided into four portions from the first to fourth feed ports into the reactor.
  • the temperature rise of each catalyst bed, the methyl acetate conversion rate and the ethanol selectivity are shown in Table 4.
  • Table 4 shows the methyl acetate conversion rate of each catalyst bed and the temperature rise of the bed.
  • the ester feedstock was divided into four portions and passed from the first to fourth feed ports into the reactor.
  • the temperature of each catalyst bed, the conversion of methyl acetate, the selectivity of ethanol are shown in Table 5 below. The conversion of methyl acetate in each catalyst bed and the temperature rise of the bed.
  • the 50Cu35Znl5AlO catalyst was packed as in Example 4.
  • the ester feedstock was divided into four portions and passed from the first to fourth feed ports into the reactor.
  • the methyl acetate conversion, temperature rise and ethanol selectivity of each catalyst bed are shown in Table 6 below:
  • the raw materials were divided into four portions and entered the reactor from the first to fourth feed ports.
  • the ester conversion and ethanol (EtOH) selectivity are shown in Table 7 below: Table 7 Low Carbon Ester Conversion and EtOH Selectivity
  • the MAc conversion and the selectivity of ethanol (EtOH) are shown in Table 8 below: Table 8 Methyl acetate conversion and selectivity
  • the conversion and ethanol selectivity are shown in Table 9.
  • the stability is shown in Figure 5: Table 9 Catalyst bed methyl acetate conversion rate, bed temperature rise and ethanol selectivity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种低碳酯加氢制备乙醇的方法,包括将含有低碳酯和氢气的原料气通过装有铜基催化剂的反应器,在反应温度200〜320℃、反应压力0.5〜20.0Mpa、体积空速1000〜40000h-1下进行加氢反应,制备乙醇;其中,所述铜基催化剂采用分段装填,原料中的低碳酯采用分段进料;原料气中低碳酯与氢气的摩尔比为1/2〜1/100。原料低碳酯分段进入多段装填的催化剂床层,可以有效控制或调节催化剂床层的温度分布,避免热点发生,从而减少副反应,提高目的产物的选择性,极大延长催化剂寿命。

Description

一种低碳酯加氢制备乙醇的方法 技术领域
本发明属于催化化学领域, 涉及一种催化剂多段装填、 低碳酯分段进 料的固定床催化新工艺及其应用。 背景技术
随现代工业的迅速发展, 能源供需矛盾日趋突出。 我国作为能源消费 大国, 同时又是能源短缺大国, 迫切需要寻找可替代能源。 乙醇作为一种 清洁能源, 具有很好的互溶性, 可以作为调和组分掺加到汽油中, 部分替 代汽油, 并提高汽油的辛垸值及含氧量, 有效促进汽油的充分燃烧, 减少 汽车尾气中 CO、 HC的排放量。 乙醇作为车用燃料的部分替代品, 可使我 国的车用燃料呈现多元化的结构特征。 目前我国主要以粮食尤其是玉米为 原料发展燃料乙醇, 已成为仅次于巴西、 美国的第三大燃料乙醇生产和消 费国,但根据我国国情,以粮食为原料进行乙醇生产存在诸多的不利因素, 未来我国燃料乙醇发展更多的是非粮食路线。
从煤炭资源出发,经合成气生产乙醇是我国新型煤化工产业发展的一 个重要方向, 具有广阔的市场前景。 这对煤炭资源清洁利用, 缓解石油资 源紧缺的矛盾, 提高我国能源安全, 具有重要的战略意义和深远影响。
目前, 煤制乙醇的工艺路线主要分为 2种: 一是合成气直接制乙醇, 但需贵金属铑催化剂, 催化剂的成本较高并且铑的产量有限; 二是合成气 经醋酸加氢制乙醇, 合成气先经甲醇液相羰基化制乙酸, 进而加氢合成乙 醇。 此路线工艺成熟, 但设备需要抗腐蚀的特种合金, 成本较高。
以二甲醚为原料, 通过羰基化直接合成乙酸甲酯, 进而加氢制乙醇的 路线尚处于研究阶段, 但是一条很有应用前景的全新路线。
由于酯类加氢反应是一强放热过程, 在工业实施中, 对于强放热反应 一般采用以下的固定床反应器: 绝热反应器; 内换热反应器; 列管式反应 器; 气相冷激反应器; 气相急冷反应器。 以上反应器在工业化的过程中存 在催化剂床层温度分布不均并较难控制, 难于进行大规模的工业化生产。 发明内容
本发明的目的在于提供一种在铜基催化剂上进行低碳酯加氢制取乙 醇的方法。 目前, 常规的固定床催化剂床层温度难于控制, 易出现热点, 从而增加副反应, 降低目标产物的选择性, 影响催化剂寿命。
本发明将催化剂多段装填,原料低碳酯分段进料,从而分散了反应热, 有效控制催化剂床层的温度分布, 提高了原料转化率及催化剂寿命。
为实现上述目的, 本发明提供了一种低碳酯加氢制备乙醇的方法, 包 括将含有低碳酯和氢气的原料气通过装有铜基催化剂的反应区, 在反应温 度 200〜320°C、 反应压力 0.5〜20.0 Mpa、 体积空速 1000〜40000 h'1下迸 行加氢反应, 制备乙醇; 其中, 所述反应区含有一个反应器, 或通过串联 和 /或并联方式连接的多个反应器;每个反应器中至少包含一个所述铜基催 化剂采用分段装填, 原料气中的低碳酯采用分段进料方式进入反应区; 原 料气中低碳酯与氢气的摩尔比为 1/2〜1/100。 本领域技术人员可以根据实 际工业生产的需要, 选择适合的反应器数量、 种类以及各反应器之间的连 接方式。
作为一个优选的实施方式,所述低碳酯为碳原子数为 3~5的酯,优选 选自乙酸甲酯、 乙酸乙酯、 乙酸丙酯、 甲酸乙酯、 丙酸乙酯中的一种或多 种。
作为一个优选的实施方式, 所述反应器为固定床反应器。
作为一个优选的实施方式, 所述反应器为固定床反应器, 包含 2〜20 个催化剂床层, 低碳酯分段进料入口在相邻的催化剂床层之间。
作为一个优选的实施方式, 所述反应器为固定床反应器, 包含 2〜6个 催化剂床层, 低碳酯分段进料入口在相邻的催化剂床层之间。
作为一个优选的实施方式, 所述反应器可以为单个反应器, 或多个反 应器串联,低碳酯分段进料入口在相邻的反应器之间和 /或相邻两个催化剂 床层之间。
作为一个优选的实施方式, 所述反应区含有 2〜20个串联的反应器, 低碳酯分段进料入口在相邻的反应器之间和 /或相邻两个催化剂床层之间。 作为一个优选的实施方式, 所述反应区含有 2〜6个串联的反应器, 低碳酯分段进料入口在相邻的反应器之间和 /或相邻两个催化剂床层之 间。
作为一个优选的实施方式, 所述反应温度为 220〜280 °C。
作为一个优选的实施方式, 所述反应压力为 2.0〜10.0MPa。
作为一个优选的实施方式, 所述体积空速为 SOOO SOOOO h^
作为一个优选的实施方式,所述低碳酯和氢气的摩尔比为 =1/5〜1/50。 作为一个优选的实施方式, 所述铜基催化剂除活性组分铜外, 还可以 任选含有助剂 A和 /或 B,以金属元素计,三者质量百分含量之和为 100%, 其中:
活性组分 Cu, 以氧化物形式存在, 以金属元素计, 在催化剂中的重 量百分含量为 10.0〜50.0 wt%;
助剂 A, 以金属元素氧化物形式存在, 金属元素为选自 Zn、 Cr、 Mn、 Al、 Fe中的一种或多种, 以金属元素计, 在催化剂中的含量为 0.0〜50.0 wt%;
助剂 B, 以金属元素氧化物形式存在, 金属元素为选自 Zr、 B、 Ce, Si, Ti 中的一种或多种, 以金属元素计, 在催化剂中的含量为 0.0〜50.0
Wt% o
作为一个优选的实施方式, 所述铜基催化剂在反应前用氢气、 或惰性 气体稀释的氢气, 或合成气 (CO和¾的混合气) 还原, 然后迸行反应。
本发明突出的优点是, 分段装填的催化剂可以有效控制催化剂床层的 温度分布, 避免热点发生, 从而减少副反应, 提高目的产物的选择性, 延 长催化剂寿命。 附图说明
图 1 催化剂分段装填的固定床反应器示意图
图 2 常规固定床反应器示意图
图 3 常规固定床反应器的稳定性结果
图 4 多个固定床反应器串联流程示意图
图 5 多个固定床反应器串联的稳定性结果 具体实施方式
实施例中, 低碳酯的转化率和乙醇的选择性都基于低碳酯的碳摩尔数 进行计算:
低碳酯转化率 = [(原料气中低碳酯碳摩尔数)一 (产物中低碳酯碳摩尔 数)] ÷ (原料气中低碳酯碳摩尔数) χ(ιοο%)
乙醇选择性 = (产物中乙醇碳摩尔数) ÷ [(原料气中低碳酯摩尔数)一
(产物中低碳酯摩尔数) X 2] X(100%)
以下通过实施例对本发明做出详细阐述, 但本发明并不局限于如下实 施例。 实施例 1 催化剂的制备及成型
本发明所述 Cu-Zn-Al-0催化剂制备步骤如下: 将六水硝酸铜、 六水 硝酸锌、 九水硝酸铝的硝酸盐混合溶液, 在室温下剧烈搅拌, 将沉淀剂 N C03溶液缓慢滴到其中, 在恒定 pH值到 9.0、 恒定搅拌速度下进行共 沉淀反应。 继续搅拌 150min之后, 将沉淀老化过夜。 将沉淀用去离子水 洗涤至中性, 离心分离。 所得沉淀在 120°C烘箱中干燥 24h, 干燥后样品 置于马弗炉中, 以 2°C/min的升温速率升温到 350°C, 焙烧 2h, 得到焙烧 后的样品, 造粒, 破碎, 筛选 10~20目备用。 50wt%Cu, 35wt%Zn, 15%A1 的铜基催化剂表示为: 50CU35Znl5AlO, 其他催化剂的制备过程及表示方 法类同, 具体如下表 1 :
表 1 样品编号与制备条件的对应关系
编号 催化剂 干燥温度 rc) 干燥时间 (h) 焙烧温度('c) 烧时间(h)
1 10Cu50Zn40ZrO 120 24 350 3
2 50CuOZn50ZrO 120 24 350 3
3 30Cu20Zn50BO 120 24 350 3
4 25Cu25Zn50CeO 120 24 350 3
5 30Cu20Zn50SiO 120 24 350 3
6 20Cu30Zn50TiO 120 24 350 3
7 30Cu20Cr50BO 120 24 350 3 8 30Cu20Si50MnO 120 24 350 3
9 30Cu20Ce50AlO 120 24 350 3
10 30Cu20Ti50FeO 120 24 350 3
11 30Cu50Cr20BO 120 24 350 3
12 40Cu50Si30MnO 120 24 350 3
13 30Cu50Ce20AlO 120 24 350 3
14 35Cu50Til0FeO 120 24 350 3 实施例 2. 催化剂预处理及反应
开始考察时, 首先将实施例 1所制备的催化剂在 350°C, 纯氢气, 或 加稀释气, 或合成气的条件下还原 5小时, 然后把床层的温度降到指定的 反应温度, 通入原料气进行反应。 反应器的由电加热炉加热, 反应温度由 插入催化剂床层的热偶确定。原料气和产品气组成通过 Angilent7890气相 色谱检测。 实施例 3. 产物的分析方法
原料和所得产品用 Agilent 7890A气相色谱进行分析。 色谱配有双检 测器 FID和 TCD, 并有一个十通阀, 可以使得产品同时分别进入填充柱 和毛细柱。 氢火焰检测器检测产物中的碳氢化合物, 醇类, 醚类, 热导检 测器检测原料和产物中的氢气, 氢气。 数据用 Agilent的 Chemstation软件 处理。
Agilent的具体色谱条件如下:
色谱: Agilent 7890A
FID色谱柱: HP-PLOT-Q 19091S-001 , 50m x 0.2mm (内径 ), 0.5 μ m 膜厚
载气: 氦气, 2.5 ml/min
柱箱温度: 35°C保持 5min
35-150°C, 5°C/min
150 °C保持 lO min
进样口: 分流 (50:1 ) 温度: 170 °C 检测器: FID 250 °C
TCD色谱柱: 碳分子筛柱, Pompak-Q 2m x 2mm (内径)
载气: 氦气, 20ml/min
柱箱温度: 35 °C保持 5min
35-150 °C, 5°C/min
150 °C保持 lO min
进样口: 温度: 170 V
检测器: TCD 200 °C 实施例 4
50Cu35Znl5AlO 催化剂分段装填的单一固定床反应器如图 1。 将 500ml的上述催化剂填装到内径为 036mm的固定床反应器中, 反应器内 部有 06mm的热偶套管; 催化剂分四段填装, 每段 120mm左右, 每段催 化剂床层上部带有低碳酯进口。 同时每层催化剂的下部都装有取样口。 产 物进行色谱的全组分在线分析。 每层催化剂中部都有热偶测反应温度。 以 99.5%的乙酸甲酯, 99.99%氢气为反应原料, 进行乙酸甲酯加氢反应。
反应器入口温度 220°C, 反应压力 (表压) lO.OMPa, 原料的体积空 速 GHSV=2000 h , MAc/H2=l/5, 乙酸甲酯原料均分成四部分, 从第一至 第四进料口进入到反应器中。 各段催化剂床层的温升, 乙酸甲酯的转化率 和乙醇选择性如表 2所示。 表 2 各催化剂床层的乙酸甲酯转化率, 床层的温升及乙醇选择性
Figure imgf000008_0001
对比例 1
常规固定床反应器如图 2。将 500ml的成型 50Οι35Ζη15Α1Ο催化剂填 装到内径为 036mm的固定床反应器中,反应器内部有 06mm的热偶套管; 催化剂一段填装, 床层高约 500mm左右, 乙酸甲酯, H2从上部的进口进 料。 反应器出口产物进行色谱的全组分在线分析。 催化剂中部都有热偶进 行温度测定, 以纯度为 99.5%的乙酸甲酯, 99.99%氢气为反应原料, 进行 乙酸甲酯加氢的反应。
反应器入口温度 220°C, 反应压力 (表压) 10.0 MPa, 原料的体积空 速 GHSV-ZOOO h , MAc/H2=l/5。 乙酸甲酯和氢气混合均匀进料。催化剂 床层的不同位置温度和出口 MAc转化率如下表 3所示。 本实验稳定性的 结果如图 3所示。
表 3 催化剂床层不同位置的温升及出口乙酸甲酯转化率
Figure imgf000009_0001
实施例 5
50Cu35Znl5AlO催化剂填装如实施例 4, 反应条件如下: 反应器入口 温度 280°C,反应压力(表压)2.0 MPa,原料的体积空速 GHSV=20000 h'1, MAc/H2=l/100,乙酸甲酯原料均分成四份从第一至第四进料口进入到反应 器中。 各段催化剂床层的温升, 乙酸甲酯转化率和乙醇选择性如表 4所示 表 4 各催化剂床层乙酸甲酯转化率及床层的温升
Figure imgf000009_0002
实施例 6
50Cu35Znl5AlO催化剂填装如实施例 4, 反应条件如下: 反应器入口 温度 200 ,反应压力(表压) 20 MPa,原料的体积空速 GHSV-40000 h'1, MAc/H2=l/100 , 乙酸甲酯原料均分成四部分从第一至第四进料口进入到 反应器中。 各催化剂床层的温度, 乙酸甲酯转化率, 乙醇的选择性如下表 表 5 各催化剂床层乙酸甲酯转化率及床层的温升
床层 1 2 3 4 MAc总转化率 EtOH选择性% MAc转化率(%) 94.1 93.5 94.4 94.2
94.3 98.5 床层温升(°c) 1.4 1.2 1.1 1.1 实施例 Ί
50Cu35Znl5AlO催化剂填装如实施例 4, 反应条件如下: 反应器入口 温度 320°C, 反应压力(表压) 0.5 MPa, 原料的体积空速 GHSV=1000 h , MAc/H2=l/5, 乙酸甲酯原料均分成四部分从第一至第四进料口进入到反 应器中。 各催化剂床层的乙酸甲酯转化率, 温升和乙醇选择性如下表 6:
表 6 各催化剂床层乙酸甲酯转化率及床层的温升
Figure imgf000010_0001
实施例 8
50Cu35Znl5AlO催化剂填装如实施例 4, 反应条件如下: 反应器入口 温度 230Ό , 反应压力 (表压) 5MPa, 原料的体积空速 GHSV-ASOOh , MAc/H2=l/10, 低碳酯原料包括: 乙酸乙酯、 乙酸丙酯、 甲酸乙酯、 丙酸 乙酯。 原料均分成四份, 从第一至第四进料口进入到反应器中。 酯类转化 率和乙醇 (EtOH)选择性如下表 7: 表 7低碳酯类转化率及 EtOH选择性
Figure imgf000010_0002
实施例 9
50Cu35Znl5AlO催化剂填装如实施例 4, 反应条件如下: 反应器入口 温度 230°C, 反应压力 (表压) 5.0MPa, 原料的体积空速 GHSV=4500h'】, MAc/H2=l/10, 原料为乙酸甲酯, 分成 4份进入到反应器中。 MAc转化率 和乙醇 (EtOH) 的选择性如下表 8: 表 8 乙酸甲酯转化率及选择性
Figure imgf000011_0001
实施例 10
多个串联反应器进行乙酸甲酯加氢反应的流程示意图 4。 将 500ml的 上述 50Cu35Znl5AlO催化剂填装到内径为 036mm的 4个固定床反应器 中,反应器内部有 06mm的热偶套管;各反应器内催化剂床层高约 120mm 左右, 两个反应器之间都带有乙酸甲酯的进口。 同时每个反应器的出口都 装有取样口, 进行色谱的全组分在线分析。 每个反应器的催化剂床层中部 都有热偶测温度, 以纯度为 99.5%的乙酸甲酯, 99.99%氢气为反应原料, 进行乙酸甲酯加氢的反应。
反应器入口温度 230°C, 反应压力 (表压) 5.0MPa, 原料的体积空速 GHSV=4500h"1, H2/MAc =l/10, 乙酸甲酯原料均分成四部分从第一至第 四个反应器进料口进入到反应器中。 催化剂床层的温升, 乙酸甲酯的转化 率及乙醇选择性如表 9所示, 稳定性如图 5 所示: 表 9各反应器催化剂床层乙酸甲酯转化率, 床层温升及乙醇的选择性
Figure imgf000012_0001
相同条件下,不同数量反应器串联进行乙酸甲酯加氢反应结果如表 10 所示: 表 10. 多反应器串联条件下 MAc反应转化率及 EtOH选择性 反应器数量 2 6 20
MAc转化率 /% 93.3 96.4 98.3
EtOH选择性 /% 98.2 98.9 99.3

Claims

权 利 要 求 书
1. 一种低碳酯加氢制备乙醇的方法, 其特征在于, 将含有低碳酯和氢 气的原料气通过装有铜基催化剂的反应区,在反应温度 200〜320°C、反应 压力 0.5〜20.0 Mpa、 体积空速 1000〜40000 下进行加氢反应, 制备乙 醇;
其中, 所述反应区含有一个反应器, 或通过串联和 /或并联方式连接的 多个反应器; 每个反应器中至少包含一个铜基催化剂床层; 原料气中的低 碳酯采用分段进料方式进入反应区; 原料气中低碳酯与氢气的摩尔比为 1/2〜1/100。
2. 按照权利要求 1所述的方法, 其特征在于, 所述低碳酯为碳原子数 3〜5的酯, 优选为选自乙酸甲酯、 乙酸乙酯、 乙酸丙酯、 甲酸乙酯、 丙酸 乙酯中的任意一种或多种。
3. 按照权利要求 1所述的方法,其特征在于,所述反应器为固定床反 应器, 包含 2~20个催化剂床层, 低碳酯分段进料入口在相邻的催化剂床 层之间。
4. 按照权利要求 1所述的方法,其特征在于,所述反应器为固定床反 应器, 包含 2~6个催化剂床层, 低碳酯分段进料入口在相邻的催化剂床层 之间。
5. 按照权利要求 1-4所述的任一方法, 其特征在于, 所述反应区含有 一个反应器, 或多个串联的反应器, 低碳酯分段进料入口在相邻的反应器 之间和 /或相邻两个催化剂床层之间。
6. 按照权利要求 1-4所述的任一方法, 其特征在于, 所述反应区含有 2〜20个串联的反应器, 低碳酯分段进料入口在相邻的反应器之间和 /或 相邻两个催化剂床层之间。
7. 按照权利要求 1-4所述的任一方法, 其特征在于, 所述反应区含有 2〜6个串联的反应器, 低碳酯分段进料入口在相邻的反应器之间和 /或相 邻两个催化剂床层之间。
8. 按照权利要求 1所述的方法, 其特征在于, 所述反应温度为 220〜 280 °C ; 反应压力为 2.0〜10.0MPa; 体积空速为 2000〜20000 h'1; 低碳酯 和氢气的摩尔比为 1/5〜1/50。
9. 按照权利要求 1所述的方法,其特征在于,所述铜基催化剂除活性 组分铜外, 还任选含有助剂 A和 /或 B, 以金属元素计, 三者质量百分含 量之和为 100%, 其中:
活性组分 Cu, 以氧化物形式存在, 以金属元素计, 在催化剂中的重 量百分含量为 10.0〜50.0 wt%;
助剂 A, 以金属元素氧化物形式存在, 金属元素为选自 Zn、 Cr、 Mn、 Al、 Fe中的一种或多种, 以金属元素计, 在催化剂中的含量为 0.0〜50.0 wt%;
助剂 B, 以金属元素氧化物形式存在, 金属元素为选自 Zr、 B、 Ce, Si, Ti 中的一种或多种, 以金属元素计, 在催化剂中的含量为 0.0〜50.0
10. 按照权利要求 1所述的方法, 其特征在于, 所述铜基催化剂在反 应前用氢气、 或惰性气体稀释的氢气、 或合成气还原, 然后进行反应, 其 中所述合成气是 CO和 H2的混合气。
PCT/CN2014/000126 2012-12-25 2014-01-28 一种低碳酯加氢制备乙醇的方法 WO2014101899A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210570562.0A CN103896733B (zh) 2012-12-25 2012-12-25 一种低碳酯加氢制备乙醇的方法
CN201210570562.0 2012-12-25

Publications (2)

Publication Number Publication Date
WO2014101899A2 true WO2014101899A2 (zh) 2014-07-03
WO2014101899A3 WO2014101899A3 (zh) 2014-08-28

Family

ID=50988363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000126 WO2014101899A2 (zh) 2012-12-25 2014-01-28 一种低碳酯加氢制备乙醇的方法

Country Status (2)

Country Link
CN (1) CN103896733B (zh)
WO (1) WO2014101899A2 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1670006A (zh) * 2004-03-15 2005-09-21 中国科学院大连化学物理研究所 一种低碳烯烃直接水合生产低级醇的方法
CN101475441A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 草酸酯生产乙二醇的方法
CN101934228A (zh) * 2010-09-30 2011-01-05 江苏丹化煤制化学品工程技术有限公司 一种醋酸酯加氢制乙醇的催化剂及其制备方法和应用
CN102146019A (zh) * 2011-02-22 2011-08-10 湖南长岭石化科技开发有限公司 一种由烯烃制备醇的方法
CN102327774A (zh) * 2011-07-06 2012-01-25 山东华鲁恒升化工股份有限公司 醋酸酯加氢制备乙醇的催化剂及其制备和应用
CN103373899A (zh) * 2012-04-27 2013-10-30 上海浦景化工技术有限公司 一种醋酸或醋酸酯催化加氢反应制乙醇的装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093162B (zh) * 2010-12-13 2012-04-18 西南化工研究设计院 一种用醋酸酯加氢制备乙醇的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1670006A (zh) * 2004-03-15 2005-09-21 中国科学院大连化学物理研究所 一种低碳烯烃直接水合生产低级醇的方法
CN101475441A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 草酸酯生产乙二醇的方法
CN101934228A (zh) * 2010-09-30 2011-01-05 江苏丹化煤制化学品工程技术有限公司 一种醋酸酯加氢制乙醇的催化剂及其制备方法和应用
CN102146019A (zh) * 2011-02-22 2011-08-10 湖南长岭石化科技开发有限公司 一种由烯烃制备醇的方法
CN102327774A (zh) * 2011-07-06 2012-01-25 山东华鲁恒升化工股份有限公司 醋酸酯加氢制备乙醇的催化剂及其制备和应用
CN103373899A (zh) * 2012-04-27 2013-10-30 上海浦景化工技术有限公司 一种醋酸或醋酸酯催化加氢反应制乙醇的装置及方法

Also Published As

Publication number Publication date
CN103896733B (zh) 2016-04-20
WO2014101899A3 (zh) 2014-08-28
CN103896733A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
CN103896768B (zh) 一种制备乙酸甲酯的方法
Liu et al. Recent advances in the routes and catalysts for ethanol synthesis from syngas
KR101650966B1 (ko) 백금/주석 촉매를 이용하여 아세트산으로부터 에탄올을 직접적 및 선택적으로 제조하는 방법
CN102442883B (zh) 使用钴催化剂由乙酸制备乙醇
Yang et al. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts
CN103896769B (zh) 一种二甲醚羰基化制备乙酸甲酯的方法
Jiang et al. Catalytic performance of Pd–Ni bimetallic catalyst for glycerol hydrogenolysis
KR101855876B1 (ko) 에탄올을 생산하고 메탄올을 공동생산하는 방법
WO2017012246A1 (zh) 一种乙酸甲酯的生产方法
García et al. Influence of operating variables on the aqueous-phase reforming of glycerol over a Ni/Al coprecipitated catalyst
CN104710282B (zh) 用于生产乙醇并联产甲醇的方法
CN106890668A (zh) 一种生产乙酸甲酯的催化剂、其制备方法及应用
CN103896767B (zh) 一种制备乙酸甲酯的方法
CN109928864A (zh) 一种多功能复合催化剂及其在合成气直接制乙醇的应用
WO2014101900A2 (zh) 一种低碳脂加氢制备乙醇的方法
WO2017012244A1 (zh) 一种低级脂肪羧酸烷基酯的生产方法
CN107118100B (zh) 一种一氧化碳深度偶联催化反应合成草酸酯的方法
WO2014101899A2 (zh) 一种低碳酯加氢制备乙醇的方法
CN109304218B (zh) 合成气生产低碳烯烃的催化剂
CN104710280B (zh) 用于生产甲醇并联产c2‑c4醇的方法
CN105523887B (zh) 酯高选择性制备醇的方法
CN104479775B (zh) 一种煤基合成气合成天然气联产低碳醇的方法和系统
CN105585421B (zh) 酯高选择性制备醇的方法
CN111068766B (zh) 费托合成制低碳烯烃的催化剂及其应用
CN103772198A (zh) 催化剂组合装填的草酸酯生产方法

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 14733058

Country of ref document: EP

Kind code of ref document: A2