WO2014101311A1 - 测长装置直交度补偿方法及使用该方法的测长装置 - Google Patents

测长装置直交度补偿方法及使用该方法的测长装置 Download PDF

Info

Publication number
WO2014101311A1
WO2014101311A1 PCT/CN2013/070087 CN2013070087W WO2014101311A1 WO 2014101311 A1 WO2014101311 A1 WO 2014101311A1 CN 2013070087 W CN2013070087 W CN 2013070087W WO 2014101311 A1 WO2014101311 A1 WO 2014101311A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
platform
microscope
measurement
guide rails
Prior art date
Application number
PCT/CN2013/070087
Other languages
English (en)
French (fr)
Inventor
林勇佑
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/814,747 priority Critical patent/US9080865B2/en
Publication of WO2014101311A1 publication Critical patent/WO2014101311A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements

Definitions

  • the present invention relates to the field of measurement, and in particular, to a method for compensating the straightness of a length measuring device and a length measuring device using the same. Background technique
  • Liquid crystal display has many advantages such as thin body, power saving, and no radiation, and has been widely used.
  • Most of the liquid crystal display devices on the market are backlight type liquid crystal displays, which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal panel is to place liquid crystal molecules in two parallel glass substrates, control the liquid crystal molecules to change direction by energizing the circuit of the glass substrate, and refract the light of the backlight module to produce a picture.
  • the liquid crystal display panel generally includes a TFT (thin film transistor) substrate 100, a CF substrate 300 disposed opposite to the TFT substrate 100, and a liquid crystal 500 disposed between the TFT substrate 100 and the CF substrate 300.
  • the substrate 100 generally includes a substrate 102 and a thin film transistor array 104 formed on the substrate 102.
  • the thin film transistor array 104 is formed on the substrate 102 by a light process. When forming the thin film transistor array 104, in order to ensure the size of each pixel unit. Accuracy, the size of each pixel unit needs to be measured.
  • alignment marks are generally provided at the corner positions of the TFT substrate 100 and the CF substrate 300, respectively, in the TFT substrate.
  • the four corner positions of the 100 are provided with a cross-shaped first mark 120, and the second mark 320 is disposed at a corresponding four-corner position of the CF substrate 300.
  • Each of the second marks 320 includes four mark blocks 322, and the four marks are fast 322 respectively.
  • the second mark 320 completely corresponds to the first mark 120.
  • each second mark 320 is respectively located with the first mark Two corners of the first mark 120 corresponding to the two marks 320 are disposed.
  • the first and second marks 120 and 320 are required to be measured by the length measuring device to ensure the matching precision, and the TFT substrate 100 is bonded to the CF substrate 300. After that, it is also necessary to perform detection by the length measuring device to ensure the first and second marks 120, 320 are closely matched.
  • the length measuring device plays an extremely important role in the manufacturing process of the liquid crystal display panel, and is an indispensable device for the production of the liquid crystal display panel.
  • the existing length measuring device is generally a laser length measuring device, which includes: a measuring machine
  • the stage 500 is electrically connected to an operating system (not shown) of the measuring machine 500.
  • the measuring machine 500 includes a platform 504 on which the frame 502 is mounted on the frame 502, and is mounted on opposite sides of the platform 504. a guide rail 506, a beam 508 slidably mounted on the guide rail 506, a measuring microscope 510 slidably mounted on the beam 508, and a laser 512 mounted on the frame 502 and connected to the measuring microscope 510.
  • the operating system controls the measuring machine 500 reads the coordinates of two measuring points on the object to be tested (not shown) placed on the platform 504, and transmits the read two coordinate values to the operating system, and the operating system performs operations according to the two coordinate values, and further Determine the length between the measurement points, as follows:
  • the length measuring device used in the process of the liquid crystal display panel has a plurality of supporting pins 542 mounted on the platform 504, and a liquid crystal display panel (not shown) is carried on the supporting pins 542, and the length direction of the guiding rails 506 is the Y-axis direction.
  • the length direction of the beam 508 is the X direction, so the beam 508 must be perpendicular to the guide rail 506.
  • the orthogonality between the beam 508 and the guide rail 506 may be deviated (see FIG. 6). This results in errors in the measurement results, which in turn affect subsequent processes. Summary of the invention
  • the object of the present invention is to provide a method for compensating the straightness of the length measuring device, which sets the alignment mark at the four corners of the measuring platform of the measuring machine, and compares the reference coordinates of the alignment mark with the measured coordinates before the measurement to determine Measuring the straightness of the machine, effectively ensuring measurement accuracy.
  • Another object of the present invention is to provide a length measuring device that monitors the alignment of the beam and the guide rail by setting the alignment mark at the four corners of the measuring platform, thereby ensuring measurement accuracy.
  • the present invention provides a method for compensating the straightness of a length measuring device, which comprises the following steps:
  • Step 1 Providing a measuring machine and a plurality of alignment marks, the measuring machine comprises a frame, a rectangular measuring platform mounted on the frame, an measuring microscope disposed above the measuring platform, and mounted on the frame and connected and determined Laser of the microscope;
  • Step 2 Install the alignment mark on the measuring platform, and record the coordinates of the alignment mark corresponding to the measuring platform coordinate system as the reference coordinate value;
  • Step 3 reading the actual coordinate values of the alignment markers corresponding to the measurement platform coordinate system by using a measuring microscope, and comparing the actual coordinate values with the reference coordinate values;
  • Step 4 If there is a deviation between the actual coordinate value and the reference coordinate value, correct the actual sitting The value is such that the actual coordinate value is equal to the reference coordinate value.
  • the alignment mark provided in the step 1 is four, and is respectively installed at four corner positions of the measuring platform.
  • the measuring machine provided in the step 1 further includes first and second guiding rails mounted on the measuring platform on opposite sides of the measuring platform, a beam mounted on the first and second guiding rails, and a power system.
  • the first and second guide rails are slidably disposed in a longitudinal direction
  • the measuring microscope is slidably mounted on the beam
  • the power system includes a plurality of linear motors for driving the sliding of the beam on the first and second guide rails and the measuring microscope Sliding on the beam.
  • the measuring platform is made of glass, and a plurality of holes are evenly distributed thereon, and a plurality of supporting pins extend from the holes outside the measuring platform for supporting the liquid crystal display panel to be measured.
  • the measuring machine further includes a stone fixed on the frame, the stone is made of marble, and the measuring platform is mounted on the stone.
  • the measuring machine further comprises an anti-vibration device and an air floating system disposed between the frame and the stone.
  • the invention also provides a method for compensating the straightness of the length measuring device, comprising the following steps: Step 1. Providing a measuring machine and a plurality of alignment marks, the measuring machine comprising a frame and a rectangular measuring platform mounted on the frame a measuring microscope disposed above the measuring platform and a laser mounted on the frame and connected to the measuring microscope;
  • Step 2 Install the alignment mark on the measuring platform, and record the coordinates of the alignment mark corresponding to the measuring platform coordinate system as the reference coordinate value;
  • Step 3 reading the actual coordinate values of the alignment markers corresponding to the measurement platform coordinate system by using a measuring microscope, and comparing the actual coordinate values with the reference coordinate values;
  • Step 4 If there is a deviation between the actual coordinate value and the reference coordinate value, the actual coordinate value is corrected, so that the actual coordinate value is equal to the reference coordinate value;
  • the alignment mark provided by the step 1 is four, and is respectively installed at four corner positions of the measurement platform;
  • the measuring machine provided in the step 1 further includes first and second guiding rails mounted on the measuring platform on opposite sides of the measuring platform, a beam mounted on the first and second guiding rails, and a power system.
  • a beam is slidably disposed along the length of the first and second rails
  • the measuring microscope is slidably mounted on the beam
  • the power system includes a plurality of linear motors for driving the sliding of the beam on the first and second rails, respectively Measuring the sliding of the microscope on the beam;
  • the measuring platform is made of glass, and a plurality of holes are evenly distributed thereon, and a plurality of supporting pins extend from the holes outside the measuring platform for supporting the liquid crystal display panel to be measured;
  • the measuring machine further comprises a stone sill mounted on the frame, the stone sill is made of marble, and the measuring platform is mounted on the stone slab; Wherein, the measuring machine further comprises an anti-vibration device and an air floating system disposed between the frame and the stone.
  • the invention also provides a length measuring device, comprising: a measuring machine and four positioning marks mounted on the measuring machine, the measuring machine comprises a frame, a rectangular measuring platform mounted on the frame, and is arranged for measuring An measuring microscope above the platform and a laser mounted on the frame and connected to the measuring microscope are respectively mounted at four corner positions of the measuring platform.
  • the measuring machine further includes first and second rails mounted on the measuring platform on opposite sides of the measuring platform, a beam mounted on the first and second rails, and a power system along the first
  • the second guide rail is slidably disposed in the longitudinal direction
  • the measuring microscope is slidably mounted on the beam.
  • the power system includes a plurality of linear motors for driving the sliding of the beam on the first and second guide rails and measuring the microscope on the beam. slide.
  • the measuring platform is made of glass, and a plurality of holes are evenly distributed thereon, and a plurality of supporting pins extend from the holes outside the measuring platform for supporting the liquid crystal display panel to be measured.
  • the measuring machine further comprises a stone fixing device installed on the frame, an anti-vibration device disposed between the frame and the stone fixing device, and an air floating system, the stone fixing device is made of marble, and the measuring platform is mounted on the measuring platform. The stone is fixed on it.
  • the method for compensating the straightness of the length measuring device of the present invention and the length measuring device using the same by setting the alignment mark on the measuring platform, reading the coordinate value of the alignment mark before the measurement, and The coordinate value is compared with the set coordinate value of the alignment mark, and is automatically corrected when the deviation occurs, so as to ensure the orthogonality between the X axis and the ⁇ axis, thereby ensuring the measurement accuracy.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel
  • FIG. 2 is an exploded perspective view of a TFT substrate and a CF substrate
  • FIG. 3 is a schematic view of the alignment of the first mark of the TFT substrate and the second mark of the CF substrate;
  • FIG. 4 is a schematic structural view of a conventional length measuring device
  • Figure 5 is a schematic diagram of the measurement coordinates of the length measuring device; 6 is a schematic plan view showing a deviation of the orthogonality of the length measuring device;
  • FIG. 7 is a flow chart of a method for compensating the straightness of the length measuring device of the present invention.
  • Figure 8 is a schematic structural view of the length measuring device of the present invention.
  • Figure 9 is a top plan view of the length measuring device of the present invention. detailed description
  • the present invention provides a method for compensating the straightness of the length measuring device, which comprises the following steps:
  • Step 1 providing a measuring machine 20 and a plurality of alignment marks 40, the measuring machine 20 includes a frame 22, a rectangular measuring platform 24 mounted on the frame 22, an measuring microscope 26 disposed above the measuring platform 24, and A laser 28 mounted on the frame 22 and connected to the measuring microscope 26 is attached.
  • the measuring machine 20 further includes first and second rails 242, 244 mounted on the measuring platform 24 on opposite sides of the measuring platform 24 and a beam 246 mounted on the first and second rails 242, 244.
  • the beam 246 is slidably disposed along the longitudinal direction of the first and second guide rails 242, 244, and the measuring microscope 26 is slidably mounted on the beam 246, so that the measuring microscope 26 can be along the first and second rails 242, 244, respectively.
  • the longitudinal direction and the beam 246 slide in the longitudinal direction to form the XI axis and the Y1 axis of the measurement coordinate system.
  • the measurement coordinate system coincides with the coordinate system of the measurement platform, wherein the first and second guide rails 242 and 244 are longitudinally oriented.
  • the length direction of the beam 246 is the XI axis direction of the measurement coordinate system.
  • the measuring platform 24 is made of glass, and a plurality of holes 240 are evenly distributed thereon.
  • a plurality of supporting pins 248 extend from the holes 240 outside the measuring platform 24 for supporting the liquid crystal to be measured. Display panel (not shown).
  • the measuring machine 20 further includes a stone sill 23 mounted on the frame 22, the measuring platform
  • the stone crucible 23 is made of marble, which has good flatness and is not easily deformed, and is advantageous for ensuring stability of measurement accuracy.
  • the measuring machine 20 further comprises an anti-vibration device (not shown) disposed between the frame 22 and the stone stator 23 to buffer external force and ensure measurement accuracy.
  • the measuring machine 20 further includes an air floating system (not shown) and a power system (not shown) for suspending the beam 246 and the measuring microscope 26 to reduce the beam 246 relative to the first The friction between the second rails 242, 244 and the friction between the measuring microscope 26 relative to the suspension beam 246;
  • the power system includes a plurality of linear motors for driving the beam 246 at the first and second rails 242, respectively , sliding on 244 and measuring microscope 26 on the beam Sliding on 246.
  • Step 2 The alignment mark 40 is mounted on the measurement platform 24, and the coordinates of the alignment marks corresponding to the measurement platform coordinate system are recorded as reference coordinate values.
  • the alignment mark 40 is four, and is respectively installed at four corner positions of the measurement platform 24, and preferably, the coordinate value of the pair of bit marks is set (XI: ⁇ , ⁇ : 0) .
  • Step 3 The actual coordinate values corresponding to the coordinate system of the measurement platform are read by the measuring mirror 26, and the actual coordinate values are compared with the reference coordinate values.
  • Step 4 If there is a deviation between the actual coordinate value and the reference coordinate value, the actual coordinate value is corrected so that the actual coordinate value is equal to the reference coordinate value.
  • the coordinate value (XI : ⁇ , ⁇ : 3 ) is such that the actual coordinate value (XI : ⁇ , ⁇ : 3 ) is equal to the reference coordinate value (XI : ⁇ , ⁇ : 0 ), thereby ensuring measurement accuracy.
  • the present invention further provides a length measuring device, comprising: a measuring machine 20 and four positioning marks 40 mounted on the measuring machine 20, the measuring machine 20 including a frame 22 A rectangular measuring platform 24 mounted on the frame 22, an measuring microscope 26 disposed above the measuring platform 24, and a laser 28 mounted on the frame 22 and connected to the measuring microscope 26.
  • the measuring machine 20 further includes first and second rails 242, 244 mounted on the measuring platform 24 on opposite sides of the measuring platform 24 and a beam 246 mounted on the first and second rails 242, 244.
  • the beam 246 is slidably disposed along the longitudinal direction of the first and second guide rails 242, 244, and the measuring microscope 26 is slidably mounted on the beam 246, so that the measuring microscope 26 can be along the first and second rails 242, 244, respectively.
  • the longitudinal direction and the beam 246 slide in the longitudinal direction to form the XI axis and the Y1 axis of the measurement coordinate system.
  • the measurement coordinate system coincides with the coordinate system of the measurement platform, wherein the first and second guide rails 242 and 244 are longitudinally oriented.
  • the length direction of the beam 246 is the XI axis direction of the measurement coordinate system.
  • the measuring platform 24 is made of glass, and a plurality of holes 240 are evenly distributed thereon.
  • a plurality of supporting pins 248 extend from the holes 240 outside the measuring platform 24 for supporting the liquid crystal to be measured. Display panel (not shown).
  • the measuring machine 20 further includes a stone stator 23 mounted on the frame 22, and the measuring platform 24 is mounted on the stone stator 23.
  • the stone stator 23 is made of marble. , its flatness is good, and it is not easy to be deformed, which is beneficial to ensure the stability of measurement accuracy.
  • the measuring machine 20 further comprises a frame 22 and a stone set 23
  • An anti-shock device (not shown) is used to buffer external force to ensure measurement accuracy.
  • the measuring machine 20 further includes an air floating system (not shown) and a power system (not shown) for suspending the beam 246 and the measuring microscope 26 to reduce the beam 246 relative to the first The friction between the second rails 242, 244 and the friction between the measuring microscope 26 relative to the suspension beam 246;
  • the power system includes a plurality of linear motors for driving the beam 246 at the first and second rails 242, respectively Sliding on 244 and measuring slide of microscope 26 on beam 246.
  • the method for compensating the straightness of the length measuring device of the present invention and the length measuring device using the same method by setting a registration mark on the measuring platform, reading the coordinate value of the alignment mark before measuring, and The coordinate value is compared with the set coordinate value of the alignment mark, and is automatically corrected when the deviation occurs, so as to ensure the orthogonality between the X-axis and the Y-axis, thereby ensuring the measurement accuracy.

Abstract

一种测长装置直交度补偿方法及使用该方法的测长装置,所述方法包括以下步骤:步骤1、提供测量机台(20)及数个对位标记(40),所述测量机台(20)包括机架(22)、安装于机架(22)上的矩形测量平台(24)、设于测量平台(24)上方的测定显微镜(26)及安装于机架上且连接测定显微镜(26)的激光器(28);步骤2、将对位标记(40)安装于测量平台(24)上,并记录该些对位标记(40)对应测量平台坐标系的坐标,以作为参考坐标值;步骤3、通过测定显微镜(26)读取该些对位标记(40)对应测量平台坐标系的实际坐标值,并将该实际坐标值与参考坐标值进行对比;步骤4、如果实际坐标值与参考坐标值之间存在偏差,补正该实际坐标值,使得该实际坐标值等于参考坐标值。

Description

测长装置直交度补偿方法及使用该方法的测长装置 技术领域
本发明涉及测量领域, 尤其涉及一种测长装置直交度补偿方法及使用 该方法的测长装置。 背景技术
液晶显示装置 (LCD, Liquid Crystal Display )具有机身薄、 省电、 无 辐射等众多优点, 得到了广泛的应用。 现有市场上的液晶显示装置大部分 为背光型液晶显示器, 其包括液晶显示面板及背光模组 ( backlight module ) 。 液晶面板的工作原理是在两片平行的玻璃基板中放置液晶分 子, 通过给玻璃基板的电路通电来控制液晶分子改变方向, 将背光模组的 光线折射出来产生画面。
请参阅图 1 , 所述液晶显示面板一般包括: TFT (薄膜晶体管)基板 100、 与 TFT基板 100相对贴合设置的 CF基板 300及设于 TFT基板 100 与 CF基板 300之间的液晶 500, TFT基板 100一般包括基板 102及形成 于基板 102上的薄膜晶体管阵列 104, 该薄膜晶体管阵列 104通过光照制 程形成于基板 102上, 在形成薄膜晶体管阵列 104的时候, 为了保证对每 一个像素单元的尺寸精度, 需要对每一个像素单元的尺寸进行测量。
请参阅图 2及图 3 , 在 TFT基板 100与 CF基板 300进行贴合时, 为 了保证贴合精度, 一般现在 TFT基板 100与 CF基板 300的角落位置分别 设置对齐标记, 一般的, 在 TFT基板 100的四个角落位置设置十字形第一 标记 120, 在 CF基板 300的对应四角落位置设置第二标记 320, 每一第二 标记 320 均包括四个标记块 322 , 该四个标记快 322 分别对称设置, 当 TFT基板 100与 CF基板 300贴合后, 所述第二标记 320与第一标记 120 完全对应, 这时, 每一第二标记 320的四个标记快 322分别位于与该一第 二标记 320 对应的第一标记 120 的四个角落设置, 该第一与第二标记 120、 320在形成时需要通过测长装置进行测量, 以保证配合精度, TFT基 板 100与 CF基板 300贴合后, 也需要通过测长装置进行检测, 以保证第 一与第二标记 120、 320精密配合。
综上所述, 可见, 测长装置在液晶显示面板制作过程中具有极其重要 的作用, 为液晶显示面板生产不可或缺的设备。
请参阅图 4, 现有的测长装置一般为激光测长装置, 其包括: 测量机 台 500及电性连接于该测量机台 500的操作系统(未图示) , 所述测量机 台 500包括机架 502安装于机架 502上的平台 504、 安装于平台 504上相 对两侧的导轨 506、 可滑动安装于导轨 506上的横梁 508、 可滑动安装于 横梁 508上的测定显微镜 510及安装于机架 502上且连接测定显微镜 510 的激光器 512 , 测量时, 操作系统控制测量机台 500读取置于平台 504上 的待测物体(未图示)上的某两测量点的坐标, 并将读取的两坐标值传送 给操作系统, 操作系统根据该两坐标值进行运算, 进而确定量测量点之间 的长度, 具体如下:
请参阅图 5 , 其中, X-Y 为测定坐标系, Xt-Yt为平台坐标系, Xc-Yc 为测定显微镜坐标系, 那么, 测定点 A的坐标(X, Y ) = ( Xt+ Xc, Yt+
Yc ) 。
用于液晶显示面板制程中的测长装置, 其平台 504上安装有数个支撑 针 542 , 液晶显示面板(未图示)承载于该些支撑针 542上, 以导轨 506 的长度方向为 Y轴方向, 以横梁 508的长度方向为 X方向, 所以横梁 508 必须垂直导轨 506, 但在实际测量过程中, 横梁 508在相对导轨 506滑动 时, 横梁 508与导轨 506的直交度会出现偏差 (如图 6所示) , 进而导致 测量结果误差, 进而影响后续制程。 发明内容
本发明的目的在于提供一种测长装置直交度补偿方法, 其通过在测量 机台的测量平台四角设置对位标记, 在测量前先通过对位标记的参考坐标 与测量坐标进行对比, 以确定测量机台的直交度, 有效保证测量精度。
本发明的另一目的在于提供一种测长装置, 其通过在测量平台四角设 置对位标记, 监测横梁与导轨的直交度, 进而保证测量精度
为实现上述目的, 本发明提供一种测长装置直交度补偿方法, 包括以 下步骤:
步骤 1、 提供测量机台及数个对位标记, 所述测量机台包括机架、 安 装于机架上的矩形测量平台、 设于测量平台上方的测定显微镜及安装于机 架上且连接测定显微镜的激光器;
步骤 2、 将对位标记安装于测量平台上, 并记录该些对位标记对应测 量平台坐标系的坐标, 以作为参考坐标值;
步骤 3、 通过测定显微镜读取该些对位标记对应测量平台坐标系的实 际坐标值, 并将该实际坐标值与参考坐标值进行对比;
步骤 4、 如果实际坐标值与参考坐标值之间存在偏差, 补正该实际坐 标值, 使得该实际坐标值等于参考坐标值。
所述步骤 1 提供的对位标记为四个, 分别安装于测量平台的四个角落 位置。
所述步骤 1 提供的测量机台还包括安装于测量平台上且位于测量平台 相对两侧的第一与第二导轨、 安装于该第一与第二导轨上的横梁及动力系 统, 该横梁沿该第一与第二导轨长度方向滑动设置, 所述测定显微镜滑动 安装于该横梁上, 该动力系统包括数个直线电机, 分别用于驱动横梁在第 一与第二导轨上的滑动及测定显微镜在横梁上的滑动。
所述测量平台由玻璃制成, 其上均布数个孔部, 数个支撑针由该些孔 部延伸于测量平台外, 用于支撑待测量液晶显示面板。
所述测量机台还包括安装于机架上的石定磐, 该石定磐由大理石制 成, 所述测量平台装于该石定磐上。
所述测量机台还包括设于机架与石定磐之间的防震装置及气浮系统。 本发明还提供一种测长装置直交度补偿方法, 包括以下步骤: 步骤 1、 提供测量机台及数个对位标记, 所述测量机台包括机架、 安 装于机架上的矩形测量平台、 设于测量平台上方的测定显微镜及安装于机 架上且连接测定显微镜的激光器;
步骤 2、 将对位标记安装于测量平台上, 并记录该些对位标记对应测 量平台坐标系的坐标, 以作为参考坐标值;
步骤 3、 通过测定显微镜读取该些对位标记对应测量平台坐标系的实 际坐标值, 并将该实际坐标值与参考坐标值进行对比;
步骤 4、 如果实际坐标值与参考坐标值之间存在偏差, 补正该实际坐 标值, 使得该实际坐标值等于参考坐标值;
其中, 所述步骤 1 提供的对位标记为四个, 分别安装于测量平台的四 个角落位置;
其中, 所述步骤 1 提供的测量机台还包括安装于测量平台上且位于测 量平台相对两侧的第一与第二导轨、 安装于该第一与第二导轨上的横梁及 动力系统, 该横梁沿该第一与第二导轨长度方向滑动设置, 所述测定显微 镜滑动安装于该横梁上, 该动力系统包括数个直线电机, 分别用于驱动横 梁在第一与第二导轨上的滑动及测定显微镜在横梁上的滑动;
其中, 所述测量平台由玻璃制成, 其上均布数个孔部, 数个支撑针由 该些孔部延伸于测量平台外, 用于支撑待测量液晶显示面板;
其中, 所述测量机台还包括安装于机架上的石定磐, 该石定磐由大理 石制成, 所述测量平台装于该石定磐上; 其中, 所述测量机台还包括设于机架与石定磐之间的防震装置及气浮 系统。
本发明还提供一种测长装置, 包括: 测量机台及安装于测量机台上的 四个定位标记, 所述测量机台包括机架、 安装于机架上的矩形测量平台、 设于测量平台上方的测定显微镜及安装于机架上且连接测定显微镜的激光 器, 所述定位标记分别安装于测量平台的四个角落位置。
所述测量机台还包括安装于测量平台上且位于测量平台相对两侧的第 一与第二导轨、 安装于该第一与第二导轨上的横梁及动力系统, 该横梁沿 该第一与第二导轨长度方向滑动设置, 所述测定显微镜滑动安装于该横梁 上, 该动力系统包括数个直线电机, 分别用于驱动横梁在第一与第二导轨 上的滑动及测定显微镜在横梁上的滑动。
所述测量平台由玻璃制成, 其上均布数个孔部, 数个支撑针由该些孔 部延伸于测量平台外, 用于支撑待测量液晶显示面板。
所述测量机台还包括安装于机架上的石定磐、 设于机架与石定磐之间 的防震装置及气浮系统, 该石定磐由大理石制成, 所述测量平台装于该石 定磐上。
本发明的有益效果: 本发明测长装置直交度补偿方法及使用该方法的 测长装置, 其通过在测量平台上设置对位标记, 在测量前先读取对位标记 的坐标值, 并将该坐标值与该对位标记的设定坐标值进行对比, 出现偏差 时自动补正, 以保证 X轴与 Υ轴的直交度, 进而保证测量的精度。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1为液晶显示面板的结构示意图;
图 2为 TFT基板与 CF基板的分解示意图;
图 3 为 TFT基板的第一标记与 CF基板的第二标记的对位配合示意 图;
图 4为现有的测长装置的结构示意图;
图 5为测长装置测量坐标原理图; 图 6为测长装置的直交度出现偏差时的俯视示意图;
图 7为本发明测长装置直交度补偿方法的流程图;
图 8为本发明测长装置的结构示意图;
图 9为本发明测长装置的俯视示意图。 具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图 7 至图 9, 本发明提供一种测长装置直交度补偿方法, 包括 以下步骤:
步骤 1、 提供测量机台 20及数个对位标记 40, 所述测量机台 20包括 机架 22、 安装于机架 22上的矩形测量平台 24、 设于测量平台 24上方的 测定显微镜 26及安装于机架 22上且连接测定显微镜 26的激光器 28。
所述测量机台 20还包括安装于测量平台 24上且位于测量平台 24相 对两侧的第一与第二导轨 242、 244及安装于该第一与第二导轨 242、 244 上的横梁 246, 该横梁 246沿该第一与第二导轨 242、 244长度方向滑动设 置, 所述测定显微镜 26滑动安装于该横梁 246上, 进而使得该测定显微 镜 26可分别沿第一与第二导轨 242、 244长度方向及横梁 246长度方向滑 动, 进而形成测定坐标系的 XI 轴与 Y1 轴, 优选的, 该成测定坐标系与 测量平台的坐标系重合, 其中, 第一与第二导轨 242、 244 长度方向为测 定坐标系的 Y1轴方向, 横梁 246长度方向为测定坐标系的 XI轴方向。
在本实施例中, 所述测量平台 24 由玻璃制成, 其上均布数个孔部 240, 数个支撑针 248由该些孔部 240延伸于测量平台 24外, 用于支撑待 测量液晶显示面板(未图示) 。
所述测量机台 20还包括安装于机架 22上的石定磐 23 , 所述测量平台
24装于该石定磐 23上, 在本实施例中, 所述石定磐 23由大理石制成, 其 平整度好, 且不易变形, 利于保证测量精度的稳定性。
值得一提的是, 所述测量机台 20还包括设于机架 22与石定磐 23之 间的防震装置(未图示) , 以緩冲外力, 保证测量精度。
所述测量机台 20 还包括气浮系统 (未图示) 及动力系统 (未图 示) , 所述气浮系统用以悬浮横梁 246及测定显微镜 26, 以减小横梁 246 相对于第一与第二导轨 242、 244之间的摩擦力及测定显微镜 26相对于悬 浮横梁 246之间的摩擦力; 所述动力系统包括数个直线电机, 分别用于驱 动横梁 246在第一与第二导轨 242、 244上的滑动及测定显微镜 26在横梁 246上的滑动。
所述气浮系统与动力系统的具体构架可通过现有技术实现, 在此不作 赘述。
步骤 2、 将对位标记 40安装于测量平台 24上, 并记录该些对位标记 对应测量平台坐标系的坐标, 以作为参考坐标值。
在本实施例中, 所述对位标记 40为四个, 分别安装于测量平台 24的 四个角落位置, 优选的, 设定一对位标记的坐标值为 (XI : Ο,ΥΙ : 0 ) 。
步骤 3、 通过测定显 镜 26读取该些对位标记 40对应测量平台坐标 系的实际坐标值, 并将该实际坐标值与参考坐标值进行对比。
步骤 4、 如果实际坐标值与参考坐标值之间存在偏差, 补正该实际坐 标值, 使得该实际坐标值等于参考坐标值。
以对位标记(XI : Ο,ΥΙ : 0 )为例, 实际坐标值 ( XI : Ο,ΥΙ : 3 ) , 与 参考坐标值 (XI : Ο,ΥΙ : 0 )之间存在偏差, 补正该实际坐标值 (XI : Ο,ΥΙ : 3 ) , 使得该实际坐标值 (XI : Ο,ΥΙ : 3 ) 等于参考坐标值 (XI : Ο,ΥΙ : 0 ) , 进而保证测量精度。
请参阅图 8及图 9, 本发明还提供一种测长装置, 其包括: 测量机台 20及安装于测量机台 20上的四个定位标记 40, 所述测量机台 20 包括机 架 22、 安装于机架 22上的矩形测量平台 24、 设于测量平台 24上方的测 定显微镜 26及安装于机架 22上且连接测定显微镜 26的激光器 28。
所述测量机台 20还包括安装于测量平台 24上且位于测量平台 24相 对两侧的第一与第二导轨 242、 244及安装于该第一与第二导轨 242、 244 上的横梁 246, 该横梁 246沿该第一与第二导轨 242、 244长度方向滑动设 置, 所述测定显微镜 26滑动安装于该横梁 246上, 进而使得该测定显微 镜 26可分别沿第一与第二导轨 242、 244长度方向及横梁 246长度方向滑 动, 进而形成测定坐标系的 XI 轴与 Y1 轴, 优选的, 该成测定坐标系与 测量平台的坐标系重合, 其中, 第一与第二导轨 242、 244 长度方向为测 定坐标系的 Y1轴方向, 横梁 246长度方向为测定坐标系的 XI轴方向。
在本实施例中, 所述测量平台 24 由玻璃制成, 其上均布数个孔部 240, 数个支撑针 248由该些孔部 240延伸于测量平台 24外, 用于支撑待 测量液晶显示面板(未图示) 。
所述测量机台 20还包括安装于机架 22上的石定磐 23 , 所述测量平台 24安装于该石定磐 23上, 在本实施例中, 所述石定磐 23由大理石制成, 其平整度好, 且不易变形, 利于保证测量精度的稳定性。
值得一提的是, 所述测量机台 20还包括设于机架 22与石定磐 23之 间的防震装置(未图示) , 以緩冲外力, 保证测量精度。
所述测量机台 20 还包括气浮系统 (未图示) 及动力系统 (未图 示) , 所述气浮系统用以悬浮横梁 246及测定显微镜 26, 以减小横梁 246 相对于第一与第二导轨 242、 244之间的摩擦力及测定显微镜 26相对于悬 浮横梁 246之间的摩擦力; 所述动力系统包括数个直线电机, 分别用于驱 动横梁 246在第一与第二导轨 242、 244上的滑动及测定显微镜 26在横梁 246上的滑动。
所述气浮系统与动力系统的具体构可通过现有技术实现, 在此不作赘 述。
综上所述, 本发明测长装置直交度补偿方法及使用该方法的测长装 置, 其通过在测量平台上设置对位标记, 在测量前先读取对位标记的坐标 值, 并将该坐标值与该对位标记的设定坐标值进行对比, 出现偏差时自动 补正, 以保证 X轴与 Y轴的直交度, 进而保证测量的精度。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
1、 一种测长装置直交度补偿方法, 包括以下步骤:
步骤 1、 提供测量机台及数个对位标记, 所述测量机台包括机架、 安 装于机架上的矩形测量平台、 设于测量平台上方的测定显微镜及安装于机 架上且连接测定显微镜的激光器;
步骤 2、 将对位标记安装于测量平台上, 并记录该些对位标记对应测 量平台坐标系的坐标, 以作为参考坐标值;
步骤 3、 通过测定显微镜读取该些对位标记对应测量平台坐标系的实 际坐标值, 并将该实际坐标值与参考坐标值进行对比;
步骤 4、 如果实际坐标值与参考坐标值之间存在偏差, 补正该实际坐 标值, 使得该实际坐标值等于参考坐标值。
2、 如权利要求 1所述的测长装置直交度补偿方法, 其中, 所述步骤 1 提供的对位标记为四个, 分别安装于测量平台的四个角落位置。
3、 如权利要求 1所述的测长装置直交度补偿方法, 其中, 所述步骤 1 提供的测量机台还包括安装于测量平台上且位于测量平台相对两侧的第一 与第二导轨、 安装于该第一与第二导轨上的横梁及动力系统, 该横梁沿该 第一与第二导轨长度方向滑动设置, 所述测定显微镜滑动安装于该横梁 上, 该动力系统包括数个直线电机, 分别用于驱动横梁在第一与第二导轨 上的滑动及测定显微镜在横梁上的滑动。
4、 如权利要求 1 所述的测长装置直交度补偿方法, 其中, 所述测量 平台由玻璃制成, 其上均布数个孔部, 数个支撑针由该些孔部延伸于测量 平台外, 用于支撑待测量液晶显示面板。
5、 如权利要求 1 所述的测长装置直交度补偿方法, 其中, 所述测量 机台还包括安装于机架上的石定磐, 该石定磐由大理石制成, 所述测量平 台装于该石定磐上。
6、 如权利要求 1 所述的测长装置直交度补偿方法, 其中, 所述测量 机台还包括设于机架与石定磐之间的防震装置及气浮系统。
7、 一种测长装置直交度补偿方法, 包括以下步骤:
步骤 1、 提供测量机台及数个对位标记, 所述测量机台包括机架、 安 装于机架上的矩形测量平台、 设于测量平台上方的测定显微镜及安装于机 架上且连接测定显微镜的激光器;
步骤 2、 将对位标记安装于测量平台上, 并记录该些对位标记对应测 量平台坐标系的坐标, 以作为参考坐标值;
步骤 3、 通过测定显微镜读取该些对位标记对应测量平台坐标系的实 际坐标值, 并将该实际坐标值与参考坐标值进行对比;
步骤 4、 如果实际坐标值与参考坐标值之间存在偏差, 补正该实际坐 标值, 使得该实际坐标值等于参考坐标值;
其中, 所述步骤 1 提供的对位标记为四个, 分别安装于测量平台的四 个角落位置;
其中, 所述步骤 1 提供的测量机台还包括安装于测量平台上且位于测 量平台相对两侧的第一与第二导轨、 安装于该第一与第二导轨上的横梁及 动力系统, 该横梁沿该第一与第二导轨长度方向滑动设置, 所述测定显微 镜滑动安装于该横梁上, 该动力系统包括数个直线电机, 分别用于驱动横 梁在第一与第二导轨上的滑动及测定显微镜在横梁上的滑动;
其中, 所述测量平台由玻璃制成, 其上均布数个孔部, 数个支撑针由 该些孔部延伸于测量平台外, 用于支撑待测量液晶显示面板;
其中, 所述测量机台还包括安装于机架上的石定磐, 该石定磐由大理 石制成, 所述测量平台装于该石定磐上;
其中, 所述测量机台还包括设于机架与石定磐之间的防震装置及气浮 系统。
8、 一种测长装置, 包括: 测量机台及安装于测量机台上的四个定位 标记, 所述测量机台包括机架、 安装于机架上的矩形测量平台、 设于测量 平台上方的测定显微镜及安装于机架上且连接测定显微镜的激光器, 所述 定位标记分别安装于测量平台的四个角落位置。
9、 如权利要求 8 所述的测长装置, 其中, 所述测量机台还包括安装 于测量平台上且位于测量平台相对两侧的第一与第二导轨、 安装于该第一 与第二导轨上的横梁及动力系统, 该横梁沿该第一与第二导轨长度方向滑 动设置, 所述测定显微镜滑动安装于该横梁上, 所述动力系统包括数个直 线电机, 分别用于驱动横梁在第一与第二导轨上的滑动及测定显微镜在横 梁上的滑动。
10、 如权利要求 8 所述的测长装置, 其中, 所述测量平台由玻璃制 成, 其上均布数个孔部, 数个支撑针由该些孔部延伸于测量平台外, 用于 支撑待测量液晶显示面板。
11、 如权利要求 8 所述的测长装置, 其中, 所述测量机台还包括安装 于机架上的石定磐、 设于机架与石定磐之间的防震装置及气浮系统, 该石 定磐由大理石制成, 所述测量平台装于该石定磐上。
PCT/CN2013/070087 2012-12-27 2013-01-06 测长装置直交度补偿方法及使用该方法的测长装置 WO2014101311A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/814,747 US9080865B2 (en) 2012-12-27 2013-01-06 Orthogonality compensation method for length measurement device and length measurement device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210580354.9A CN103075970B (zh) 2012-12-27 2012-12-27 测长装置直交度补偿方法及使用该方法的测长装置
CN201210580354.9 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014101311A1 true WO2014101311A1 (zh) 2014-07-03

Family

ID=48152584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070087 WO2014101311A1 (zh) 2012-12-27 2013-01-06 测长装置直交度补偿方法及使用该方法的测长装置

Country Status (2)

Country Link
CN (1) CN103075970B (zh)
WO (1) WO2014101311A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292709B (zh) * 2013-05-24 2015-09-09 深圳市华星光电技术有限公司 测长机日常检测与自动补正方法
CN103604366B (zh) * 2013-11-06 2016-03-02 深圳市华星光电技术有限公司 用于检测误差并引导误差校正的系统及方法
CN103743318B (zh) * 2013-12-30 2017-08-25 深圳市华星光电技术有限公司 探针膜厚测量机坐标补正方法及装置
CN109166474B (zh) * 2018-10-10 2021-08-31 京东方科技集团股份有限公司 一种显示模组以及贴合精度检测方法
CN112230522B (zh) * 2018-12-25 2022-06-07 福建华佳彩有限公司 基于测长仪的提升tft-lcd面板对组精度的方法
CN112518395B (zh) * 2020-11-11 2021-09-21 中国铁建重工集团股份有限公司 一种f型钢找正定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260472A (ja) * 1994-03-22 1995-10-13 Nikon Corp ステージ装置の直交度測定方法
CN2619259Y (zh) * 2003-06-04 2004-06-02 东捷半导体科技股份有限公司 液晶基板检测的激光标示机构
CN1808055A (zh) * 2005-01-18 2006-07-26 奥林巴斯株式会社 坐标检测装置及被检测体检查装置
CN1871562A (zh) * 2003-10-23 2006-11-29 住友重机械工业株式会社 载物台装置
WO2009037875A1 (ja) * 2007-09-19 2009-03-26 Hitachi Kokusai Electric Inc. 線幅測定装置の検査方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI221190B (en) * 2001-06-29 2004-09-21 Olympus Optical Co Coordinate detector
JP5663192B2 (ja) * 2010-04-30 2015-02-04 オリンパス株式会社 処理装置、座標補正方法および座標補正プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260472A (ja) * 1994-03-22 1995-10-13 Nikon Corp ステージ装置の直交度測定方法
CN2619259Y (zh) * 2003-06-04 2004-06-02 东捷半导体科技股份有限公司 液晶基板检测的激光标示机构
CN1871562A (zh) * 2003-10-23 2006-11-29 住友重机械工业株式会社 载物台装置
CN1808055A (zh) * 2005-01-18 2006-07-26 奥林巴斯株式会社 坐标检测装置及被检测体检查装置
WO2009037875A1 (ja) * 2007-09-19 2009-03-26 Hitachi Kokusai Electric Inc. 線幅測定装置の検査方法

Also Published As

Publication number Publication date
CN103075970A (zh) 2013-05-01
CN103075970B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2014101311A1 (zh) 测长装置直交度补偿方法及使用该方法的测长装置
TW528881B (en) Position measuring apparatus
KR101011482B1 (ko) 디스플레이 패널의 인라인 컷팅 시스템 및 이를 이용한디스플레이 패널 제조방법
JP2007046946A (ja) 基板の両面形状測定装置及び基板の両面形状測定方法
TWI714048B (zh) 基材載體、圖案化數個基材的方法、及處理系統
JP4664366B2 (ja) 電子部品の実装装置及び実装方法
JP2006105878A (ja) 基板の平坦度測定装置および形状寸法測定装置
WO2020155808A1 (zh) 侧入式背光模组及液晶显示装置、背光板光学检验方法
JP2007108037A (ja) 位置測定方法、距離測定方法及び位置測定装置
US20170229417A1 (en) Mounting substrate manufacturing apparatus and method of manufacturing mounting substrate
CN102914951B (zh) 用于光刻设备的预对准装置
CN102564303B (zh) 一种测量装置及方法
US9080865B2 (en) Orthogonality compensation method for length measurement device and length measurement device using same
CN106483691B (zh) 基板对位机构
JP2007331087A (ja) ステージ装置
US11168980B1 (en) Positioning method and positioning device of display module
JP2007057502A (ja) 基板の両面形状測定システム
JP2005024567A (ja) 位置測定装置
KR20080015240A (ko) 평판 디스플레이 패널의 다형 대응 클램프 장치 및 그제어방법
US20180066805A1 (en) Direct-type backlight optical simulation device and system
JP2002228411A (ja) 二次元測定装置
KR100792523B1 (ko) 프리얼라인장치
JP2007171026A (ja) 垂直2次元面の走査機構および走査方法
KR101372974B1 (ko) 기판의 합착 방법 및 장치
KR20130091673A (ko) 스크라이브 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13814747

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869418

Country of ref document: EP

Kind code of ref document: A1