WO2014101281A1 - Dispositif et procédé permettant de détecter un décalage d'axe optique d'une lentille dans un appareil - Google Patents

Dispositif et procédé permettant de détecter un décalage d'axe optique d'une lentille dans un appareil Download PDF

Info

Publication number
WO2014101281A1
WO2014101281A1 PCT/CN2013/001559 CN2013001559W WO2014101281A1 WO 2014101281 A1 WO2014101281 A1 WO 2014101281A1 CN 2013001559 W CN2013001559 W CN 2013001559W WO 2014101281 A1 WO2014101281 A1 WO 2014101281A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
coordinate system
optical axis
tested
axis offset
Prior art date
Application number
PCT/CN2013/001559
Other languages
English (en)
Chinese (zh)
Inventor
曲明东
张坤
张�雄
唐云学
Original Assignee
青岛歌尔声学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛歌尔声学科技有限公司 filed Critical 青岛歌尔声学科技有限公司
Priority to KR1020157001156A priority Critical patent/KR101833599B1/ko
Publication of WO2014101281A1 publication Critical patent/WO2014101281A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Definitions

  • the present invention relates to the field of optical inspection, and more particularly to an apparatus and method for detecting an optical axis shift of a lens in a device.
  • the lens in the device may have an optical axis deviation due to a defect of the lens itself or due to an operation problem during assembly.
  • the prior art optical axis offset detection is static detection and must be implemented with detailed design parameters of the lens and expensive test equipment. After the lens is assembled onto the printed circuit board PCBA, the optical axis offset cannot be determined after the focusing process. However, due to assembly tolerances, optical sensor patch tolerances, lens positioning, etc., the lens in the device will produce an optical axis offset. If the optical axis offset exceeds the allowable tolerance range, the lens shooting brightness will be uneven, and the functional problems such as vignetting will occur around.
  • the present invention provides an apparatus and method for detecting an optical axis shift of a lens in a device to solve the problem that the optical axis shift of the lens in the apparatus cannot be detected during assembly.
  • the invention discloses a device for detecting an optical axis offset of a lens in a device, the device comprising:
  • a standard image acquisition module for focusing a standard lens assembled into the device at a shooting position, taking a picture sample, and obtaining a standard image of the picture sample
  • a reference coordinate system establishing module configured to take a center of the standard image as a coordinate origin, and establish a reference coordinate system
  • a test image acquisition module configured to: after focusing the lens to be tested assembled into the device at the shooting position, taking the picture sample to obtain a test image of the picture sample;
  • test cursor position determining module configured to take a center of the test image as a test cursor, and determine a position of the test cursor in the reference coordinate system
  • the optical axis offset detecting module is configured to determine an optical axis offset and/or an optical axis offset angle of the lens to be tested according to the position.
  • the device further comprises:
  • a qualified determination module configured to compare the determined optical axis offset of the lens to be tested with a preset offset threshold, and if the offset threshold is not exceeded, the device assembled with the lens to be tested is qualified; otherwise , the equipment assembled with the lens to be tested is unqualified; or,
  • reference coordinate system is in units of pixels
  • the optical axis offset detecting module is configured to obtain a distance between the test cursor and the origin in the reference coordinate system according to the coordinates of the position; multiplying the distance by the pixel size to obtain an optical axis offset of the lens to be tested .
  • the optical axis offset detecting module is configured to obtain an optical axis offset of the lens to be tested according to the coordinates of the position, and determine a lens to be tested according to the optical axis offset and the distance between the shooting position and the image sample.
  • the optical axis is offset by the angle.
  • the reference coordinate system establishing module is configured to establish an absolute coordinate system by taking the center of the picture sample as a coordinate origin, determine a coordinate of a center of the standard image in an absolute coordinate system, and use a center of the standard image as a coordinate origin to establish a reference coordinate. system;
  • the test cursor position determining module is configured to determine a coordinate of the test cursor in an absolute coordinate system, and convert the coordinate of the test cursor in the absolute coordinate system to the coordinate in the reference coordinate system according to the coordinate of the center of the standard image in the absolute coordinate system.
  • the invention also discloses a method for detecting an optical axis offset of a lens in a device, the method comprising:
  • An optical axis offset and/or an optical axis offset angle of the lens to be tested is determined according to the position.
  • the method further includes:
  • reference coordinate system is in units of pixels
  • the determining the optical axis offset of the lens to be tested according to the location specifically includes:
  • Multiplying the distance by the pixel size gives the optical axis offset of the lens to be tested.
  • the determining, by the position, the optical axis offset angle of the lens to be tested, according to the position, the optical axis offset of the lens to be tested is obtained according to the optical axis offset and the shooting position.
  • the distance between the image samples determines the optical axis offset angle of the lens to be tested.
  • the center of the standard image is the coordinate origin, and the establishing the reference coordinate system specifically includes:
  • the determining the location of the test cursor in the reference coordinate system specifically includes:
  • the beneficial effects of the present invention are: obtaining a standard image of the picture sample by taking a picture sample after focusing the standard lens assembled into the device at the shooting position; taking the center of the standard image as the coordinate origin, establishing a reference coordinate system; After the shooting position is assembled to the lens to be tested assembled in the device, the picture sample is taken to obtain a test image of the picture sample; the center of the test image is taken as a test cursor, and the position of the test cursor in the reference coordinate system is determined; according to the position The optical axis offset and/or the optical axis offset angle of the lens to be tested are determined.
  • the sample to be tested assembled into the device needs to take a picture sample, and the test image center is compared with the standard image center, so that the optical axis offset of the lens in the detecting device during the assembly process can be detected.
  • the detection can be realized by the common detecting device, and the detection is simpler and easier.
  • FIG. 1 is a structural diagram of an apparatus for detecting an optical axis shift of a lens in a device according to an embodiment of the present invention
  • FIG. 2 is a distribution diagram of quality parameter values of a sample lens according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a sample of a picture in an embodiment of the present invention.
  • FIG. 4 is a structural diagram of an apparatus for detecting an optical axis shift of a lens in a device according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a method for detecting an optical axis offset of a lens in a device according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an optical axis offset angle of a lens in a computing device according to an embodiment of the invention.
  • the apparatus includes a standard image acquisition module 110, a reference coordinate system creation module 120, a test image acquisition module 130, a test cursor position determination module 140, and an optical axis offset detection module 150.
  • the standard image acquisition module 110 is configured to: after focusing the standard lens assembled into the device at the shooting position, take a picture sample, obtain a standard image of the picture sample, and store it.
  • the standard lens is a lens whose determined optical axis shift is within a limited range.
  • the standard lens is preferably the same model or the same series as the lens to be tested.
  • the standard lens can be a sample provided by the manufacturer or a lens selected from a plurality of lenses. For example, measuring multiple sample lenses, obtaining quality parameter values for each sample lens, and selecting a standard lens from the sample lens according to the probability distribution of the quality parameter values of the sample lens.
  • 2 is a distribution diagram of quality parameter values of a sample lens according to an embodiment of the present invention. Select the area where the quality parameter value distribution is concentrated, as shown in the circle circled in Figure 2, determine the center of the circular area, and select the sample lens closest to the center as the standard lens.
  • the selection of the standard lens can be in various ways, as long as the optical axis of the standard lens is within a limited range, and there is no particular limitation thereto.
  • the picture sample may be any picture, for example, may be an MTF (Modulation Transfer Function) picture.
  • MTF Modulation Transfer Function
  • FIG. 3 a schematic diagram of a picture sample in an embodiment of the present invention.
  • the tooling in order to position the photographing position, is used as an aid, that is, the tooling is used as an auxiliary device of the detecting device in the present invention.
  • the tooling of the equipment placed in the detecting device is adjusted such that the tooling is substantially vertically aligned with the center of the MTF map.
  • the tooling position is the shooting position, and a PCBA (printed circuit board) assembled with a standard lens, that is, a device equipped with a standard lens, is placed on the tooling. Adjust the focal length of the standard lens, take a picture sample, and get a standard image of the picture sample.
  • PCBA printed circuit board
  • the standard lens After the focal length adjustment in the five shaded areas is completed, the standard lens is considered to be in focus, and at this time, "pass" is displayed in the detecting device, indicating that the focus adjustment is completed. After the standard lens is focused, the MTF image is taken to obtain a standard image.
  • the detection device used for the first time it is necessary to calibrate the detection device.
  • the root directory of the test device find the CameraTest.ini file and change the CalibrationDebug value to 1 to calibrate.
  • the PCBA assembled with the standard lens is placed in the shooting position, and the standard lens is used to calibrate the detecting device. After the calibration, the tooling position is fixed so that the shooting positions are the same for each shooting.
  • the reference coordinate system establishing module 120 is configured to take a center of the standard image as a coordinate origin and establish a reference coordinate system.
  • the reference coordinate system establishing module 120 establishes an absolute coordinate system by taking the center of the picture sample as a coordinate origin, determining the coordinates of the center of the standard image in the absolute coordinate system, and establishing the reference coordinate system by using the center of the standard image as the coordinate origin.
  • both the reference coordinate system and the absolute coordinate system are in pixels.
  • the center of the picture sample is the point at (320, 240), and the point is the origin of the absolute coordinate system.
  • the reference coordinate system is established by taking the center of the standard image as the coordinate origin. If the placement of the tooling is completely aligned with the center of the MTF map, the origin of the absolute coordinate system coincides with the origin of the reference coordinate system. Otherwise, there is a deviation between the two.
  • both the reference coordinate system and the absolute coordinate system are in units of pixels, which can be conveniently calculated. Of course, in other embodiments of the present invention, the reference coordinate system and the absolute coordinate system may not be in units of pixels.
  • the test image acquisition module 130 is configured to: after focusing the lens to be tested assembled into the device at the shooting position, take the picture sample, obtain a test image of the picture sample, and store the image.
  • the PCBA assembled with the lens to be tested is placed on the tooling. Focusing on the measuring lens, after the focal length adjustment is completed in the five shaded areas in the MTF diagram shown in FIG. 3, "pass" is displayed in the detecting device, indicating that the focal length adjustment is completed. After the lens to be tested is focused, the MTF map is taken to obtain a test image.
  • the test cursor position determining module 140 is configured to take the center of the test image as a test cursor and determine the position of the test cursor in the reference coordinate system.
  • test cursor position determining module 140 determines the coordinates of the test cursor in the absolute coordinate system, and converts the test cursor in the absolute coordinate system to the coordinates in the reference coordinate system according to the coordinates of the center of the standard image in the absolute coordinate system.
  • the test cursor position determining module 140 obtains the coordinates of the test cursor in the reference coordinate system according to the coordinates of the center O of the standard image in the absolute coordinate system and the coordinates of the test cursor A in the absolute coordinate system. For example, if the center O of the standard image has a coordinate of (2, 2) in the absolute coordinate system and the coordinate of the test cursor A in the absolute coordinate system is (5, 6), the coordinate of the test cursor A in the reference coordinate system is (3, 4).
  • the optical axis offset detecting module 150 is configured to determine an optical axis offset or an optical axis offset angle of the lens to be tested according to the position.
  • the reference coordinate system is in pixels.
  • the optical axis offset detection module 150 obtains the distance between the test cursor and the origin in the reference coordinate system according to the coordinates of the test cursor in the reference coordinate system; multiplies the distance by the pixel size to obtain the optical axis offset of the lens to be tested. .
  • the amount of pixels is 640 ⁇ 480
  • the number of units of the X-axis and the Y-axis in the reference coordinates is 640 ⁇ 480.
  • the size of one pixel is 6 ⁇ m ⁇ 6 ⁇ m
  • is multiplied by 6 ⁇ m, that is,
  • the coordinate of the test cursor A in the reference coordinate system in FIG. 3 is (3, 4)
  • the optical axis offset detecting module 150 obtains the optical axis offset of the lens to be tested according to the coordinates of the test cursor in the reference coordinate system, and determines the light of the lens to be tested according to the optical axis offset and the distance between the shooting position and the image sample.
  • Axis offset angle For example, referring to Fig. 6, a schematic diagram of the optical axis offset angle of the lens in the computing device.
  • the distance between the shooting position and the image sample
  • ) Arctan (30/727000).
  • the apparatus further includes an eligibility determination module 160.
  • 4 is a structural diagram of an apparatus for detecting an optical axis shift of a lens in a device according to an embodiment of the present invention.
  • the qualified determination module 160 is configured to compare the determined optical axis offset of the lens to be tested with a preset offset threshold. If the offset threshold is not exceeded, the device assembled with the lens to be tested is qualified. Otherwise, the equipment assembled with the lens to be tested is unqualified.
  • the offset threshold may be set according to an eligibility criterion or may be set according to a probability distribution of the detected plurality of optical axis offsets.
  • the qualified determination module 160 is configured to compare the determined optical axis offset angle of the lens to be tested with a preset offset angle threshold. If the offset angle threshold is not exceeded, the device assembled with the lens to be tested is qualified. Otherwise, the equipment assembled with the lens to be tested is unqualified.
  • the offset angle threshold may be set according to an eligibility criterion or may be set according to a probability distribution of a plurality of detected optical axis deviation angles.
  • a flow chart of a method of detecting an optical axis offset of a lens in a device includes the following steps.
  • Step S510 after focusing the standard lens assembled in the device at the shooting position, taking a picture sample, obtaining a standard image of the picture sample and storing it.
  • the standard lens is a lens whose determined optical axis shift is within a limited range.
  • the standard lens can be a sample provided by the manufacturer or a lens selected from a plurality of lenses. For example, measuring multiple sample lenses, obtaining quality parameter values for each sample lens, and selecting a standard lens from the sample lens according to the probability distribution of the quality parameter values of the sample lens.
  • 2 is a distribution diagram of quality parameter values of a sample lens according to an embodiment of the present invention. Select the area where the quality parameter value distribution is concentrated, as shown in the circle circled in Figure 2, determine the center of the circular area, and select the sample lens closest to the center as the standard lens.
  • the selection of the standard lens can be in various ways, as long as the optical axis of the standard lens is within a limited range, and there is no particular limitation thereto.
  • the picture sample may be any picture, for example, may be an MTF (Modulation Transfer Function) picture.
  • MTF Modulation Transfer Function
  • FIG. 3 a schematic diagram of a picture sample in an embodiment of the present invention.
  • the tooling position is the shooting position, and a PCBA (printed circuit board) assembled with a standard lens, that is, a device equipped with a standard lens, is placed on the tooling.
  • a PCBA printed circuit board
  • Adjust the focal length of the standard lens take a picture sample, and get a standard image of the picture sample. For example, in the MTF diagram shown in Figure 3, After the focal length adjustment in the five shaded areas is completed, the standard lens is considered to be in focus, and "pass" is displayed, indicating that the focus adjustment is completed. After the standard lens is focused, the MTF image is taken to obtain a standard image.
  • calibration is required for the initial inspection.
  • the CameraTest.ini file find the CameraTest.ini file and change the CalibrationDebug value to 1 to calibrate.
  • the PCBA assembled with the standard lens is placed in the shooting position, and the standard lens is used to calibrate the detecting device. After the calibration, the tooling position is fixed so that the shooting positions are the same for each shooting.
  • Step S520 taking the center of the standard image as the coordinate origin, and establishing a reference coordinate system.
  • step S520 the center of the picture sample is taken as the coordinate origin, an absolute coordinate system is established, the center of the standard image is determined in the absolute coordinate system, and the center of the standard image is taken as the coordinate origin, and the reference coordinate system is established.
  • both the reference coordinate system and the absolute coordinate system are in pixels.
  • the center of the picture sample is the point at (320, 240), and the point is the origin of the absolute coordinate system.
  • the reference coordinate system is established by taking the center of the standard image as the coordinate origin. If the placement of the tooling is completely aligned with the center of the MTF map, the origin of the absolute coordinate system coincides with the origin of the reference coordinate system. Otherwise, there is a deviation between the two.
  • Step S530 after focusing the lens to be tested assembled in the device at the shooting position, taking the picture sample, obtaining a test image of the picture sample and storing.
  • the PCBA assembled with the lens to be tested is placed on the tooling. Focusing on the measuring lens, after the focal length adjustment is completed in the five shaded areas in the MTF diagram shown in FIG. 3, "pass" is displayed in the detecting device, indicating that the focal length adjustment is completed. After the lens to be tested is focused, the MTF map is taken to obtain a test image.
  • step S540 the center of the test image is taken as a test cursor, and the position of the test cursor in the reference coordinate system is determined.
  • the coordinates of the test cursor in the absolute coordinate system are determined, and the coordinates of the test cursor in the absolute coordinate system are converted into coordinates in the reference coordinate system according to the coordinates of the center of the standard image in the absolute coordinate system.
  • step S540 the coordinates of the test cursor in the reference coordinate system are obtained according to the coordinates of the center O of the standard image in the absolute coordinate system and the coordinates of the test cursor A in the absolute coordinate system. For example, if the center O of the standard image has a coordinate of (2, 2) in the absolute coordinate system and the coordinate of the test cursor A in the absolute coordinate system is (5, 6), the coordinate of the test cursor A in the reference coordinate system is (3, 4).
  • Step S550 determining an optical axis offset and an optical axis offset angle of the lens to be tested according to the position of the test cursor in the reference coordinate system.
  • the reference coordinate system is in pixels.
  • step S550 the distance between the test cursor and the origin in the reference coordinate system is obtained according to the coordinates of the test cursor in the reference coordinate system; and the distance is multiplied by the pixel size to obtain the optical axis offset of the lens to be tested.
  • the amount of pixels is 640 ⁇ 480
  • the number of units of the X-axis and the Y-axis in the reference coordinates is 640 ⁇ 480.
  • the size of one pixel is 6 ⁇ m ⁇ 6 ⁇ m
  • is multiplied by 6 ⁇ m, that is,
  • the coordinate of the test cursor A in the reference coordinate system in FIG. 3 is (3, 4)
  • step S550 the optical axis offset of the lens to be tested is obtained according to the coordinates of the test cursor in the reference coordinate system, and the optical axis deviation of the lens to be tested is determined according to the optical axis offset and the distance between the shooting position and the image sample. Move the angle.
  • Fig. 6 a schematic diagram of the optical axis offset angle of the lens in the computing device.
  • the coordinates of the test cursor A in the reference coordinate system are (-3, -4)
  • is 5, and the size of one pixel is 6 ⁇ m ⁇ 6 ⁇ m, the test is to be tested.
  • for example,
  • 727mm
  • the offset angle arctan(
  • ) Arctan (30/727000).
  • the method further comprises the following steps.
  • the offset threshold may be set according to an eligibility criterion or may be set according to a probability distribution of the detected plurality of optical axis offsets.
  • the offset angle threshold may be set according to an eligibility criterion or may be set according to a probability distribution of a plurality of detected optical axis deviation angles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

La présente invention concerne un dispositif permettant de détecter un décalage d'axe optique d'une lentille dans un appareil. Le dispositif comprend : un module d'acquisition d'image standard (110), utilisé pour mettre au point, au niveau d'une position de prise de vue, une lentille standard assemblée dans l'appareil, prendre un échantillon d'image et acquérir une image standard de l'échantillon d'image ; un module de configuration de système de coordonnées de référence (120), utilisé pour configurer un système de coordonnées de référence par l'utilisation du centre de l'image standard en tant qu'origine de coordonnées ; un module d'acquisition d'image test (130), utilisé pour mettre au point, au niveau de la position de prise de vue, une lentille à détecter assemblée dans l'appareil, prendre l'échantillon d'image et acquérir une image test de l'échantillon d'image ; un module de détermination de position de curseur de test (140), utilisé pour déterminer la position d'un curseur de test dans le système de coordonnées de référence par l'utilisation du centre de l'image test en tant que curseur de test ; et un module de détection de décalage d'axe optique (150), utilisé pour déterminer un décalage d'axe optique et/ou un angle de décalage d'axe optique de la lentille à détecter en fonction de la position. Le dispositif peut détecter le décalage de l'axe optique de la lentille dans l'appareil pendant l'assemblage. L'invention concerne également un procédé de détection d'un décalage d'axe optique d'une lentille dans un appareil.
PCT/CN2013/001559 2012-12-26 2013-12-12 Dispositif et procédé permettant de détecter un décalage d'axe optique d'une lentille dans un appareil WO2014101281A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157001156A KR101833599B1 (ko) 2012-12-26 2013-12-12 장치에서의 렌즈의 광축 오프셋을 검출하기 위한 디바이스 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210576538.8A CN103018015B (zh) 2012-12-26 2012-12-26 检测设备中镜头的光轴偏移的装置和方法
CN201210576538.8 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014101281A1 true WO2014101281A1 (fr) 2014-07-03

Family

ID=47966874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001559 WO2014101281A1 (fr) 2012-12-26 2013-12-12 Dispositif et procédé permettant de détecter un décalage d'axe optique d'une lentille dans un appareil

Country Status (3)

Country Link
KR (1) KR101833599B1 (fr)
CN (1) CN103018015B (fr)
WO (1) WO2014101281A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297680A (zh) * 2018-08-14 2019-02-01 深圳奥比中光科技有限公司 光轴偏移误差值的检测方法及装置
CN109462752A (zh) * 2018-11-19 2019-03-12 信利光电股份有限公司 一种摄像模组光心位置测量方法及装置
CN112752094A (zh) * 2020-12-28 2021-05-04 歌尔科技有限公司 一种双摄像头光轴检测设备
CN113048915A (zh) * 2019-12-26 2021-06-29 沈阳新松机器人自动化股份有限公司 一种相机光轴指向视觉测量方法
CN113514031A (zh) * 2021-04-15 2021-10-19 石家庄铁道大学 基于机器视觉的建筑物倾斜检测装置及方法
CN113763490A (zh) * 2021-08-13 2021-12-07 深圳市裕展精密科技有限公司 检测方法和检测装置
CN113945363A (zh) * 2021-10-20 2022-01-18 重庆市天实精工科技有限公司 检测摄像头模组传感器位移性能的方法
CN114785937A (zh) * 2022-05-30 2022-07-22 浙江大华技术股份有限公司 光轴位置偏移量的确定方法及装置
CN116592795A (zh) * 2023-07-14 2023-08-15 浙江至格科技有限公司 一种ar镜片平行度测量方法及系统
CN116718358A (zh) * 2023-08-11 2023-09-08 吉林省巨程智造光电技术有限公司 一种光轴偏移标定系统及方法
CN117372515A (zh) * 2023-09-15 2024-01-09 钛玛科(北京)工业科技有限公司 一种自适应纠偏控制系统
CN117880490A (zh) * 2024-02-27 2024-04-12 立臻精密智造(昆山)有限公司 一种摄像头漏光检测装置及检测方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018015B (zh) * 2012-12-26 2016-01-20 青岛歌尔声学科技有限公司 检测设备中镜头的光轴偏移的装置和方法
CN104683793B (zh) * 2013-11-29 2017-04-12 达丰(上海)电脑有限公司 用于相机的检测方法
CN103954434B (zh) * 2014-04-16 2016-05-11 青岛歌尔声学科技有限公司 一种光轴校准治具、系统及方法
CN105372028A (zh) * 2014-08-29 2016-03-02 合盈光电科技股份有限公司 整合性振动检测装置
CN104506857B (zh) * 2015-01-15 2016-08-17 阔地教育科技有限公司 一种摄像头位置偏离检测方法及设备
CN104501745B (zh) * 2015-01-19 2017-12-12 中国人民解放军国防科学技术大学 一种光电成像系统光轴偏差的快速检测方法及装置
CN105987806B (zh) * 2015-02-02 2019-12-20 宁波舜宇光电信息有限公司 一种转折镜头的测试装置及测试方法
CN104809718B (zh) * 2015-03-17 2018-09-25 合肥晟泰克汽车电子股份有限公司 一种车载摄像头自动匹配标定方法
CN105120258A (zh) * 2015-07-20 2015-12-02 深圳市航盛电子股份有限公司 一种摄像头畸变率测试方法及系统
CN105021375A (zh) * 2015-07-29 2015-11-04 山东神戎电子股份有限公司 一种光轴偏移误差补偿方法及测定装置
CN106484142A (zh) * 2015-08-26 2017-03-08 天津三星电子有限公司 一种实现显示屏幕的遥控方法
CN105203302A (zh) * 2015-09-15 2015-12-30 歌尔声学股份有限公司 用于检测解像力的方法及解像力检测装置
CN105376564B (zh) * 2015-11-24 2018-01-02 深圳创维-Rgb电子有限公司 摄像头校准设备及其控制方法与装置
CN105721861B (zh) * 2016-01-21 2018-01-09 北京中科慧眼科技有限公司 数字相机的检测方法和检测装置
CN106997103A (zh) * 2016-01-25 2017-08-01 深圳市睿晟自动化技术有限公司 一种快速对准微型光学镜头光轴的装置及方法
CN108603752B (zh) * 2016-06-30 2020-02-21 华为技术有限公司 终端的相机模组的偏角检测方法、抖动补偿方法及装置
CN107917691A (zh) * 2016-08-03 2018-04-17 中国人民解放军海军大连舰艇学院 光电摄像机光轴与机械轴一致性旋转检测方法及设备
JP6684684B2 (ja) * 2016-09-21 2020-04-22 株式会社Screenホールディングス 試料容器の位置ずれ検出方法およびそれを用いた撮像方法、ならびに試料容器の位置ずれ検出装置
CN106482672A (zh) * 2016-10-31 2017-03-08 歌尔科技有限公司 一种判定镜头平面与测试图卡平面平行度的方法和系统
CN106768887B (zh) * 2016-12-19 2019-02-26 歌尔科技有限公司 超广角镜头的光轴检测校准方法
CN106644410B (zh) * 2016-12-21 2019-04-09 信利光电股份有限公司 一种摄像模组光心位置测量方法及系统
CN107063640B (zh) * 2016-12-23 2019-09-13 歌尔科技有限公司 一种背靠式双镜头光轴一致性测试治具及其测试方法
CN106791817B (zh) * 2016-12-27 2019-03-15 歌尔股份有限公司 待组装镜头与影像传感器的组装方法
CN106705860B (zh) * 2016-12-29 2019-07-19 苏州逸美德科技有限公司 一种激光测距方法
CN109003306B (zh) * 2017-06-07 2023-08-08 安波福电子(苏州)有限公司 一种车载摄像头的光轴偏转测量装置及方法
CN107333130B (zh) * 2017-08-24 2019-04-23 歌尔股份有限公司 组装多摄像头模组测试方法及系统
CN107702695B (zh) * 2017-09-26 2020-05-12 歌尔股份有限公司 摄像模组镜头与图像传感器相对位置的测试方法
CN108007424B (zh) * 2017-12-14 2020-03-24 上海晶电新能源有限公司 一种多视角二次反射镜姿态检测系统及其检测方法
CN109000885A (zh) * 2018-05-22 2018-12-14 歌尔股份有限公司 镜头和显示屏组装的检测方法及装置
CN111256953B (zh) * 2018-12-03 2022-03-29 宁波舜宇光电信息有限公司 一阵列模组光轴检测系统及其方法
CN110365969B (zh) * 2019-07-03 2020-12-08 惠州市德赛西威汽车电子股份有限公司 一种摄像头调校方法
CN110602486B (zh) * 2019-08-30 2021-04-02 歌尔光学科技有限公司 检测方法、装置、深度相机及计算机可读存储介质
CN110907139A (zh) * 2019-11-19 2020-03-24 惠州市旭宝光电科技有限公司 一种摄像头检测方法
CN111147844A (zh) * 2019-12-31 2020-05-12 麦格纳电子(张家港)有限公司 一种组装摄像头的光轴检验校准方法
CN111323210B (zh) * 2020-03-17 2021-07-09 北京控制工程研究所 一种光学镜头光轴热稳定性的测试装置及方法
CN111623960B (zh) * 2020-06-05 2023-01-03 东莞埃科思科技有限公司 结构光模组光轴测量方法及装置
CN112203002B (zh) * 2020-10-13 2022-07-08 Oppo广东移动通信有限公司 成像装置的调心方法及装置、存储介质及电子设备
CN112927183A (zh) * 2021-01-13 2021-06-08 上海商米科技集团股份有限公司 一种特定图像识别设备的镜头模块检测方法及系统
CN113432554B (zh) * 2021-06-08 2022-12-09 南昌逸勤科技有限公司 一种镜头感光芯片偏移检测方法及装置
CN113596441B (zh) * 2021-08-17 2024-06-14 深圳市上融科技有限公司 光轴调整装置、方法、系统及可读存储介质
CN113645464A (zh) * 2021-08-27 2021-11-12 优奈柯恩(北京)科技有限公司 用于检测摄像头的测试系统和用于检测摄像头的方法
CN113891068B (zh) * 2021-09-27 2022-09-16 安徽江淮汽车集团股份有限公司 基于摄像头均匀性测试辅助装置的光轴精度检测方法
CN114295331B (zh) * 2021-12-29 2024-06-18 昆山丘钛微电子科技股份有限公司 一种多摄模组光轴测试方法、装置、设备和介质
CN114900688A (zh) * 2022-06-13 2022-08-12 歌尔股份有限公司 相机组件的检测方法、检测设备以及计算机可读存储介质
CN114923668B (zh) * 2022-07-19 2022-12-13 嘉兴中润光学科技股份有限公司 一种镜头测试模组和镜头测试方法
CN116614620B (zh) * 2023-07-16 2023-11-10 深圳捷牛科技有限公司 一种高像素光学镜头组装设备及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128215A (ja) * 1986-11-18 1988-05-31 Toshiba Corp カメラ光軸の傾き検出方法
US20070127010A1 (en) * 2005-12-01 2007-06-07 Nidek Co., Ltd. Lens meter
CN101207833A (zh) * 2006-12-19 2008-06-25 Tcl数码科技(深圳)有限责任公司 数码相机镜头光心偏移的检测方法
CN101464142A (zh) * 2009-01-13 2009-06-24 洛阳汉腾光电有限公司 一种摄像机光轴精度检测装置及检测方法
CN102829737A (zh) * 2011-06-14 2012-12-19 致伸科技股份有限公司 判断影像撷取装置的镜头及感测元件是否互相平行的方法
CN103018015A (zh) * 2012-12-26 2013-04-03 青岛歌尔声学科技有限公司 检测设备中镜头的光轴偏移的装置和方法
US20130155257A1 (en) * 2011-12-16 2013-06-20 Hon Hai Precision Industry Co., Ltd. Test device for testing camera module and method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781931B2 (ja) * 1989-09-20 1995-09-06 オリンパス光学工業株式会社 レンズ系の偏心測定装置と方法
JP3073998B2 (ja) * 1990-03-15 2000-08-07 オリンパス光学工業株式会社 レンズ系の偏心量測定装置
JP4474150B2 (ja) * 2003-11-28 2010-06-02 キヤノン株式会社 偏心測定方法
JP2007315982A (ja) * 2006-05-29 2007-12-06 Hioki Ee Corp 測定装置および検査装置
KR100769724B1 (ko) 2006-09-25 2007-10-24 삼성전기주식회사 카메라 모듈의 광축 검사 방법 및 비네팅 검출 방법
CN100561166C (zh) * 2007-02-27 2009-11-18 鸿富锦精密工业(深圳)有限公司 镜头模组同心度检测系统及其检测方法
CN101532826A (zh) * 2008-03-12 2009-09-16 财团法人金属工业研究发展中心 工件轮廓的非接触式光学量测方法
TW201224422A (en) * 2010-12-10 2012-06-16 Hon Hai Prec Ind Co Ltd Device of measuring eccentricity of optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128215A (ja) * 1986-11-18 1988-05-31 Toshiba Corp カメラ光軸の傾き検出方法
US20070127010A1 (en) * 2005-12-01 2007-06-07 Nidek Co., Ltd. Lens meter
CN101207833A (zh) * 2006-12-19 2008-06-25 Tcl数码科技(深圳)有限责任公司 数码相机镜头光心偏移的检测方法
CN101464142A (zh) * 2009-01-13 2009-06-24 洛阳汉腾光电有限公司 一种摄像机光轴精度检测装置及检测方法
CN102829737A (zh) * 2011-06-14 2012-12-19 致伸科技股份有限公司 判断影像撷取装置的镜头及感测元件是否互相平行的方法
US20130155257A1 (en) * 2011-12-16 2013-06-20 Hon Hai Precision Industry Co., Ltd. Test device for testing camera module and method thereof
CN103018015A (zh) * 2012-12-26 2013-04-03 青岛歌尔声学科技有限公司 检测设备中镜头的光轴偏移的装置和方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297680B (zh) * 2018-08-14 2021-07-06 奥比中光科技集团股份有限公司 光轴偏移误差值的检测方法及装置
CN109297680A (zh) * 2018-08-14 2019-02-01 深圳奥比中光科技有限公司 光轴偏移误差值的检测方法及装置
CN109462752A (zh) * 2018-11-19 2019-03-12 信利光电股份有限公司 一种摄像模组光心位置测量方法及装置
CN113048915A (zh) * 2019-12-26 2021-06-29 沈阳新松机器人自动化股份有限公司 一种相机光轴指向视觉测量方法
CN113048915B (zh) * 2019-12-26 2022-07-22 沈阳新松机器人自动化股份有限公司 一种相机光轴指向视觉测量方法
CN112752094B (zh) * 2020-12-28 2023-12-01 歌尔科技有限公司 一种双摄像头光轴检测设备
CN112752094A (zh) * 2020-12-28 2021-05-04 歌尔科技有限公司 一种双摄像头光轴检测设备
CN113514031A (zh) * 2021-04-15 2021-10-19 石家庄铁道大学 基于机器视觉的建筑物倾斜检测装置及方法
CN113763490A (zh) * 2021-08-13 2021-12-07 深圳市裕展精密科技有限公司 检测方法和检测装置
CN113945363A (zh) * 2021-10-20 2022-01-18 重庆市天实精工科技有限公司 检测摄像头模组传感器位移性能的方法
CN113945363B (zh) * 2021-10-20 2022-11-15 重庆市天实精工科技有限公司 检测摄像头模组传感器位移性能的方法
CN114785937A (zh) * 2022-05-30 2022-07-22 浙江大华技术股份有限公司 光轴位置偏移量的确定方法及装置
CN116592795B (zh) * 2023-07-14 2023-09-26 浙江至格科技有限公司 一种ar镜片平行度测量方法及系统
CN116592795A (zh) * 2023-07-14 2023-08-15 浙江至格科技有限公司 一种ar镜片平行度测量方法及系统
CN116718358A (zh) * 2023-08-11 2023-09-08 吉林省巨程智造光电技术有限公司 一种光轴偏移标定系统及方法
CN117372515A (zh) * 2023-09-15 2024-01-09 钛玛科(北京)工业科技有限公司 一种自适应纠偏控制系统
CN117372515B (zh) * 2023-09-15 2024-06-11 钛玛科(北京)工业科技有限公司 一种自适应纠偏控制系统
CN117880490A (zh) * 2024-02-27 2024-04-12 立臻精密智造(昆山)有限公司 一种摄像头漏光检测装置及检测方法

Also Published As

Publication number Publication date
CN103018015A (zh) 2013-04-03
KR101833599B1 (ko) 2018-02-28
KR20150032557A (ko) 2015-03-26
CN103018015B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2014101281A1 (fr) Dispositif et procédé permettant de détecter un décalage d'axe optique d'une lentille dans un appareil
WO2013085148A1 (fr) Appareil et procédé d'élimination de bruit dans une image stéréo
WO2015093808A1 (fr) Appareil permettant d'aligner et de monter un axe optique de lentille d'un module de caméra et procédé permettant d'aligner et de monter l'axe optique de lentille l'utilisant
WO2013081268A1 (fr) Procédé d'auto-étalonnage et caméra à stabilisateur d'image optique (ois) utilisant celui-ci
WO2017200300A2 (fr) Procédé d'affichage cumulatif de données de visualisation de source de bruit et système de caméra sonore
WO2018053908A1 (fr) Procédé photographique à double caméra, système et terminal
WO2018040444A1 (fr) Procédé de commande de capture d'images à double caméra, dispositif de commande de capture d'images, et terminal
WO2020166939A1 (fr) Dispositif et procédé de mesure de température au moyen d'une caméra thermique et support d'enregistrement lisible par ordinateur
WO2015160052A1 (fr) Procédé de correction d'image d'un objectif à grand angle et dispositif associé
WO2018128518A1 (fr) Module d'appareil de prise de vues et instrument optique le comprenant
WO2020045915A1 (fr) Système et procédé de correction de la valeur du courant de résistance shunt
CN102262348A (zh) 光学检测装置
WO2017008320A1 (fr) Procédé de détection de qualité de couche mince en polysilicium et système l'utilisant
WO2021251563A1 (fr) Dispositif externe de correction de température pour précision améliorée de la température d'une caméra thermique, et système de mesure de la température utilisant ce dispositif
WO2011068268A1 (fr) Procédé de contrôle de del
WO2021033895A1 (fr) Panneau d'étalonnage, dispositif d'étalonnage destiné à une inspection de panneau et procédé d'étalonnage de dispositif d'inspection de panneau
WO2017023151A1 (fr) Appareil de traitement d'image
WO2019009465A1 (fr) Dispositif d'inspection visuelle de ressort et procédé d'inspection visuelle de ressort
TWI232349B (en) Method for adjusting relative position of lens module by using uniform light source
WO2019017619A1 (fr) Système et procédé de fabrication d'électrode de batterie secondaire
WO2019047077A1 (fr) Procédé de traitement d'équilibrage des blancs de terminal, et terminal et support de stockage lisible par ordinateur
CN108489989A (zh) 基于多相机拼接成像检测的光伏组件双面外观检测仪
WO2014035050A1 (fr) Procédé de réglage de la luminance d'images, dispositif à cet effet et appareil photo stéréoscopique
WO2014192999A1 (fr) Système d'inspection d'un défaut pour inspecter un objet ayant des structures irrégulières
WO2020040468A1 (fr) Appareil et procédé de détection d'un défaut de mélange de couleurs d'une diode électroluminescente organique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157001156

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867853

Country of ref document: EP

Kind code of ref document: A1