WO2014098448A1 - 혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법 - Google Patents

혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법 Download PDF

Info

Publication number
WO2014098448A1
WO2014098448A1 PCT/KR2013/011740 KR2013011740W WO2014098448A1 WO 2014098448 A1 WO2014098448 A1 WO 2014098448A1 KR 2013011740 W KR2013011740 W KR 2013011740W WO 2014098448 A1 WO2014098448 A1 WO 2014098448A1
Authority
WO
WIPO (PCT)
Prior art keywords
butadiene
manganese ferrite
honeycomb catalyst
producing
catalyst
Prior art date
Application number
PCT/KR2013/011740
Other languages
English (en)
French (fr)
Inventor
권용탁
홍석준
김옥윤
김태진
추대현
Original Assignee
에스케이이노베이션 주식회사
에스케이종합화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사, 에스케이종합화학 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2014098448A1 publication Critical patent/WO2014098448A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron

Definitions

  • the present invention relates to a hybrid manganese ferrite honeycomb catalyst, a method for preparing the same, and a method for preparing 1,3-butadiene using the same, and specifically, an extruded honeycomb hybrid manganese ferrite prepared by a coprecipitation method using a binder.
  • the catalysts used for the oxidative dehydrogenation of normal-butenes known to date include ferrite catalysts, tin catalysts, and bismuth molybdate catalysts.
  • the ferrite-based catalysts have different activities as catalysts depending on the metals constituting the divalent cation site of the spinel structure, among which zinc ferrite, magnesium ferrite and manganese ferrite are good for oxidative dehydrogenation of normal-butene.
  • zinc ferrite has been reported to have higher selectivity of 1,3-butadiene than ferrite catalysts of other metals [F.-Y. Qiu, L.-T. Weng, E. Shang, P. Ruiz, B. Delmon, Appl. Catal., Vol. 51, p. 235 (1989)].
  • 1,3-butadiene can be obtained in higher yield through pre-treatment and post-treatment such as [F.-Y. Qiu, L.-T. Weng, E. Shang, P. Ruiz, B. Delmon, Appl. Catal., Vol. 51, p. 235 (1989) / L.J. Crose, L. Bajars, M. Gabliks, U.S. Patent No. 3,743,683 (1973) / E.J. Miklas, US Patent No.
  • the zinc ferrite catalyst described above has a poor reproducibility such as addition of metal oxides and acid treatment, and requires complicated post-treatment to prevent inactivation.
  • the 1,3-butadiene yield has a limitation inferior to that of zinc ferrite.
  • Republic of Korea Patent No. 888143 discloses a hybrid manganese ferrite catalyst production technique which is simple in the catalyst manufacturing process, excellent in the reproducibility of the catalyst production and showing high activity in the oxidative dehydrogenation reaction of normal-butene, It does not disclose about.
  • an object of the present invention is a catalyst capable of suppressing side reactions through exothermic control and producing 1,3-butadiene in high yield, and has excellent catalytic activity as well as simple manganese ferrite honeycomb type. It is to provide a method for producing a catalyst.
  • Another object of the present invention is to prepare 1,3-butadiene in high yield by performing an oxidative dehydrogenation reaction on a catalyst prepared by the above method using a low-cost C4 mixture directly as a reactant without a separate separation process. To provide.
  • One aspect of the present invention to achieve the object of the present invention is a method for producing a hybrid manganese ferrite honeycomb catalyst
  • Another aspect of the present invention for achieving another object of the present invention is the through-pores cross-section is polygonal or circular, the through pores are hybrids for producing 1,3-butadiene, characterized in that the pores are penetrated by the long axis of the honeycomb catalyst type It provides a manganese ferrite honeycomb catalyst.
  • Another aspect of the present invention for achieving another object of the present invention is a method for producing 1,3-butadiene, comprising the steps of: a) providing a mixture of C4 mixture, air and steam as a reactant; b) an oxidative dehydrogenation reaction step in which the reactant is passed through a catalyst bed to which the catalyst of the present invention is fixed; And c) obtaining 1,3-butadiene.
  • Another aspect of the present invention for achieving another object of the present invention is a method for producing 1,3-butadiene, comprising the steps of: a) providing a mixture of C4 mixture, air and steam as a reactant; b) an oxidative dehydrogenation reaction step in which the reactant is passed through a fixed catalyst bed of a catalyst prepared according to the method of the present invention; And c) obtaining 1,3-butadiene.
  • 1,3-butadiene having a high value in utilization in the petrochemical industry can be prepared from low-butene having a low value in use, thereby achieving a high value of C4 fraction.
  • it is more economical than the existing process because it can satisfy the increasing demand of 1,3-butadiene by securing a single production process that can produce 1,3-butadiene without the addition of crackers.
  • FIG. 1 is a schematic diagram of a hybrid manganese ferrite honeycomb catalyst having a through hole of a regular structure.
  • the coprecipitation method of the mixed manganese ferrite honeycomb catalyst in the oxidative dehydrogenation of normal-butene is preferably carried out at a temperature range of 10 to 40 ° C., more preferably at a temperature of 15 to 30 ° C. Synthesis of a mixed manganese ferrite through, to produce a honeycomb catalyst extruded using a binder, and to prepare 1,3-butadiene through the oxidative dehydrogenation of normal-butene using the prepared catalyst It is about a method.
  • the hybrid manganese ferrite honeycomb catalyst of the present invention for obtaining 1,3-butadiene in high yield is characterized in that an extruded body having through-holes having a regular structure of an active material hybrid manganese ferrite extrudate), which maintains a large surface area per unit volume, reduces pressure drop and backmixing, and increases heat transfer speed in the axial direction, making it easier to control exothermic reactions and to oxidative dehydrogenation of normal-butene. Higher activity.
  • One aspect of the present invention is a) preparing a precursor aqueous solution having a manganese precursor and an iron precursor and coprecipitation while mixing in a basic solution b) washing and filtering the coprecipitated solution to obtain a solid sample c) the step Step to obtain the dough by kneading after mixing the weight ratio of the dried solid sample, inorganic binder, organic binder, distilled water and acid to 1: 0.05 ⁇ 0.5: 0.01 ⁇ 0.1: 0.1 ⁇ 1.5: 0.005 ⁇ 0.15 C) extruding the dough of step c) into an extruded body having through pores of a regular structure; And e) relates to a method for producing a mixed manganese ferrite honeycomb catalyst for producing 1,3-butadiene comprising the step of heat-treating the extruded body.
  • the manganese precursor and the iron precursor for the hybrid manganese ferrite synthesis in step a it is preferable to use a chloride precursor or a nitrate precursor that is well dissolved in distilled water used as a solvent.
  • Ferrous precursors include ferrous chloride tetrahydrate, ferrous chloride hexahydrate, ferrous chloride dihydrate, ferric chloride hexahydrate, ferrous nitrate hexahydrate, ferrous nitrate hexahydrate, ferric nitrate 6 Hydrate, and ferric nitrate hexahydrate, wherein the manganese precursor is manganese chloride, manganese chloride tetrahydrate, manganese chloride, manganese tetrachloride, manganese nitrate hexahydrate, manganese nitrate tetrahydrate And it is selected from the group consisting of manganese nitrate monohydrate, but is not limited thereto.
  • the manganese precursor and the iron precursor are preferably dissolved in distilled water by adjusting the amount of the two precursors so that the iron / manganese atomic ratio ratio value is 2.0 ⁇ 2.5, and then mixed together, wherein the iron / manganese atomic ratio ratio is If it is out of the 2.0 to 2.5 range, manganese is difficult to enter the iron lattice, or the catalytic activity becomes very low.
  • a basic solution of 1.5 to 4 mol concentration for example, an aqueous sodium hydroxide solution of 3 mol concentration is separately prepared.
  • concentration of the basic solution is less than 1.5, it is difficult to form a hybrid manganese ferrite catalyst structure, and when the concentration is higher than 4 molar, it is difficult to remove metal ions bound to hydroxyl groups, for example, sodium ions when washing, and thus, activity is lowered. Will appear.
  • the molar concentration of the basic solution is more preferable in terms of the formation and post-treatment of the mixed manganese ferrite structure when adjusted to the range of 2 to 3 molar concentration.
  • the basic solution used for coprecipitation of the manganese precursor and the iron precursor can be used not only sodium hydroxide but also other basic solutions including ammonia water.
  • the pH of the basic solution represents 9 to 14.
  • an aqueous solution of the manganese precursor and the iron precursor dissolved at preferably 10 to 40 ° C. is injected into the basic solution prepared above, wherein the injection rate is kept constant and coprecipitation is performed.
  • the mixture is stirred for 2 to 12 hours, preferably 6 to 12 hours, so as to sufficiently accomplish this.
  • the coprecipitation is more preferably made in the range of 15 to 30 o C, most preferably in the range of 15 to 25 o C.
  • step b) the stirred coprecipitation solution is phase-separated for a sufficient time for the solid catalyst to precipitate, and after washing, a precipitated solid sample is obtained through a vacuum filter.
  • the obtained solid sample is dried at 70 to 200 ° C., preferably at 120 to 180 ° C. for 24 hours to prepare a mixed manganese ferrite.
  • step c) the dried solid sample, an inorganic binder, an organic binder, distilled water, and an acid are mixed and kneaded to obtain a dough.
  • the inorganic binder used to obtain a dough for extruding the hybrid manganese ferrite dried in step b) is preferably alumina or silica having a specific surface area of 10 ⁇ 250m 2 / g, but is not limited thereto.
  • the precursor of alumina or silica is preferably pseudoboehmite, alumina sol, silicate, silica sol or mixtures thereof, and more preferably pseudoboehmite is used.
  • the organic binder may be any organic binder commonly added to the inorganic dough to prepare the extrudate, but is preferably an ethyl cellulose, methyl cellulose, ethyl cellulose derivative, methyl cellulose derivative or a mixture thereof, more preferably.
  • methyl cellulose is used.
  • the organic binder serves to improve moldability during extrusion and to mitigate crack generation during drying.
  • an acid is added to epoxidize the inorganic binder, but the acid used is not limited, but preferably nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, and acetic acid. It can select and use from a group, More preferably, nitric acid can be used.
  • the mixed manganese ferrite, the inorganic binder, the organic binder, distilled water and nitric acid may be mixed in a weight ratio of 1: 0.05 to 0.5: 0.01 to 0.1: 0.1 to 1.5: 0.005 to 0.15.
  • 1: 0.1 to 0.4: 0.03 to 0.08: 0.5 to 1.0: 0.01 to 0.1 is mixed, and then kneaded to obtain a dough.
  • step d) the dough of step c) is extruded into an extruded body having through holes of a regular structure.
  • the inside of the extruder is maintained in a vacuum state, and is preferably molded at a molding speed of 300 to 500 mm / min, but is not limited thereto.
  • Both cylindrical extruders or piston extruders can be used for the extrusion, but it is preferable to use cylindrical extruders for the continuous process.
  • the molding speed is a condition in which the honeycomb extruded body is not damaged by excessive stress applied during extrusion while increasing the manufacturing efficiency at the molding speed optimized for the kneading state.
  • Viscosity and strength of the dough is optimized by the optimized mixing conditions and mixing ratio of the present invention, the cross-section of the through pores of the regular structure of step d) is polygonal or circular, the pores penetrating the long axis of the extruded body Arranged high specific surface area honeycomb extruded bodies can be obtained. Through the extrusion, an excellent extruded body having a thickness (wall thickness) between the pores and the pores having the regular structure can be obtained.
  • the extruded body is heat treated.
  • the extruded mixed manganese ferrite honeycomb catalyst obtained in step d) is placed in an electric furnace and heat-treated at 100 to 800 ° C. to prepare a honeycomb catalyst for producing 1,3-butadiene.
  • a two-stage heat treatment in which high temperature heat treatment at 500 to 700 ° C. is performed after low temperature heat treatment at 100 to 150 ° C. is more preferable.
  • One aspect of the present invention provides a mixed manganese ferrite honeycomb catalyst for the production of 1,3-butadiene, characterized in that the through-pores cross-section is polygonal or circular, the through-pores are pores penetrated by the long axis of the honeycomb catalyst.
  • a hybrid manganese ferrite honeycomb catalyst for producing 1,3-butadiene having a thickness (wall thickness) of the pore and pore space of the honeycomb catalyst in a range of 0.1 to 2 mm.
  • Peaks appearing in X-ray diffraction analysis of the mixed manganese ferrite catalyst for preparing 1,3-butadiene prepared according to one aspect of the present invention are 18.78 to 18.82, 24.18 to 24.22, 33.2 to 33.24, 35.64 to 35.68, 40.9 to 40.94, and 45.22 to 45.26, 49.56 ⁇ 49.6, 54.22 ⁇ 54.26, 55.24 ⁇ 55.28, 57.92 ⁇ 57.96, 62.56 ⁇ 62.6, 64.04 ⁇ 64.08, 66.02 ⁇ 66.06, 72.16 ⁇ 72.2, and 75.78 ⁇ 75.82 with 2 theta ranges, the most prominent peak being 33.2 It is characterized by appearing in the 2 theta range of 33.24.
  • One aspect of the invention is a) providing a mixture of C4 mixture, air and steam as a reactant b) the reactant is passed through a catalyst bed fixed with a mixed manganese ferrite honeycomb catalyst for producing 1,3-butadiene of the present invention An oxidative dehydrogenation reaction step; And c) to a method for producing 1,3-butadiene using a hybrid manganese ferrite honeycomb catalyst, characterized in that it comprises the step of obtaining 1,3-butadiene.
  • One aspect of the invention is a) providing a gas mixture of C4 mixture, air and steam as a reactant b) oxidative dehydration, the reactant is passed through a catalyst bed fixed to the catalyst prepared according to the production method of the present invention Digestion reaction step; And c) to a method for producing 1,3-butadiene using a hybrid manganese ferrite honeycomb catalyst, characterized in that it comprises the step of obtaining 1,3-butadiene.
  • step a) a mixture of C4 mixture, air and steam is provided, wherein the C4 mixture is selected from the group consisting of 1-butene, 2-butene, and C4 raffinate-1, 2, 2.5, 3.
  • the present invention provides a process for preparing 1,3-butadiene using a C4 mixture that has not undergone a separate normal-butane separation process as a source of normal-butene.
  • the C4 mixture used in step a) is 0.1 to 50% by weight of normal-butane, 40 to 99% by weight of normal-butene and 0.1 to excluding the normal-butane and normal-butene 10 wt% C4 mixture.
  • C4 mixtures excluding the normal-butane and normal-butenes include, for example, isobutane, cyclobutane, methyl cyclopropane, isobutene and the like.
  • the reaction product of the oxidative dehydrogenation reaction of normal-butene and oxygen is supplied in the form of a mixed gas.
  • the normal-butene is a mixture of C4, which is a source of normal-butene, by a piston pump, and the amount of air that is another reactant is Adjust precisely using mass flow controller.
  • steam is supplied to the reactor by evaporating liquid water using a mass flow controller. The temperature of the water inlet portion is maintained at 300-450 ° C., preferably 350-450 ° C., so that the water injected is immediately vaporized and mixed with other reactants (normal-butene and air) to pass through the catalyst bed.
  • the honeycomb catalyst is fixed in a straight stainless reactor for catalytic reaction, and the reactor is installed in an electric furnace to maintain a constant reaction temperature of the catalyst bed.
  • the reaction may proceed while continuously passing through the catalyst layer therein.
  • the reaction temperature for proceeding the oxidative dehydrogenation reaction was maintained at 300 to 600 o C, preferably 350 to 500 o C, more preferably 400 o C, and the injection amount of the reactants was space velocity based on normal-butene.
  • WHSV Weight Hourly Space Velocity
  • the reactants set the molar ratio of normal-butene to air and steam to 1: 0.5 to 10: 1 to 30, preferably 1: 2 to 4: 10 to 30. If the component ratio of the mixed gas does not exceed or fall within the above range, butadiene yield of the desired degree may not be obtained, or because the problem may occur due to rapid exotherm during reactor operation, it is not preferable.
  • Manganese chloride tetrahydrate (MnCl 2 ⁇ 4H 2 O) was used as a precursor for manganese, and iron chloride hexahydrate (FeCl 3 ⁇ 6H 2 O) was used as a precursor for the preparation of mixed manganese ferrite.
  • FeCl 3 ⁇ 6H 2 O iron chloride hexahydrate
  • 198 grams of manganese chloride tetrahydrate and 541 grams of iron chloride hexahydrate were dissolved in distilled water (1000 ml), mixed, and stirred. After sufficient stirring, it was confirmed that the precursor was completely dissolved, and the precursor aqueous solution was kept at a constant rate in 3 mol of aqueous sodium hydroxide solution (6000 ml) at 20 ° C. to be added dropwise.
  • the mixed solution was stirred at room temperature for 12 hours using a stirrer to achieve sufficient agitation, and then left at room temperature for 12 hours for phase separation.
  • the precipitated solution was washed with a sufficient amount of distilled water, filtered through a vacuum filter, and the obtained solid sample was dried at 120 ° C. for 24 hours.
  • Hybrid manganese ferrite was prepared by heat-treating the resulting solid sample for 3 hours while maintaining the temperature of 650 o C in an electric furnace in an air atmosphere.
  • the phase of the prepared catalyst was confirmed by X-ray diffraction analysis under the following conditions, the results are shown in Table 1. As shown in Table 1, the catalyst prepared at room temperature was confirmed to be a mixed manganese ferrite containing iron oxide ( ⁇ -Fe 2 O 3 ) and manganese oxide (MnFeO 3 ).
  • Example 1 80 g of dried mixed manganese ferrite, 20 g of pseudoboehmite (SASOL), 4.8 g of methyl cellulose, 65.5 g of distilled water, and 6.7 g of nitric acid (60%) were mixed at room temperature, followed by kneading. To prepare a dough. The prepared dough was put into a cylindrical extruder, and the inside of the extruder was kept in a vacuum state, and the cylinder rotation speed was 50 rpm, thereby producing an extruded body at a molding speed of 400 mm / min.
  • SASOL pseudoboehmite
  • the extruded product manufactured by using a furnace is heat-treated at 120 o C for 2 hours, and then heat-treated at 650 o C for 3 hours to have a shape as shown in FIG. 1, and the pitch (interval between pore centers) is 3.6 mm.
  • a honeycomb catalyst for producing 1,3-butadiene was prepared.
  • the physical shape of the prepared honeycomb catalyst for producing 1,3-butadiene is summarized in Table 2 based on the symbols shown in FIG. 1.
  • a honeycomb catalyst for producing 1,3-butadiene having a 1.96 mm pitch was prepared under the same conditions as the extrusion and heat treatment of Example 2.
  • the physical shape of the prepared honeycomb catalyst for producing 1,3-butadiene is summarized in Table 3 below based on the reference numerals shown in FIG. 1.
  • the mixed manganese ferrite completed in Example 1 was prepared in pellet form through a pelletizing process, and ground to a size of 0.9 to 1.2 mm.
  • Example 2 Except for pseudoboehmite and nitric acid, a dough was prepared in the same manner as in Example 2 and extruded under the same conditions. As a result of Comparative Example 2, only an amorphous extruded body whose shape was lost due to a decrease in the strength of the catalyst was obtained, but was not extruded into a honeycomb shape.
  • the reactants used for the oxidative dehydrogenation of normal-butene are shown in Table 4 below, the composition of which is a C4 mixture.
  • the reactant C4 mixture was injected in the form of a mixed gas with air and steam, and a linear fixed bed reactor made of stainless steel was used as the reactor.
  • the composition ratio of the reactants was set based on the normal-butene in the C4 mixture so that the molar ratio of normal-butene: air: steam was 1: 2.75: 10. Steam was introduced into the reactor after liquid water was evaporated at 350 o C and mixed with other reactants, C4 mixture and air, and the amount of C4 mixture was controlled using a piston pump, and the amount of air and steam was controlled through a mass flow regulator. Adjusted.
  • the reaction rate of the reactants was reacted by setting the catalyst amount such that the space velocity (WHSV) was 0.75 hr ⁇ 1 based on the normal-butene in the C4 mixture, and the reaction temperature was such that the catalyst bed inlet temperature of the fixed bed reactor was 400 ° C. Maintained.
  • the product contains, in addition to the target 1,3-butadiene, carbon dioxide, a by-product of cracking, a by-product of isomerization, and a normal-butane contained in the reactant.
  • the analysis was performed using gas chromatography.
  • Hybrid manganese ferrite honeycomb catalysts showed significantly higher activity and exothermic control than granular catalysts.
  • mixed manganese ferrite honeycomb catalysts with a 1.96mm pitch, 74 wt% of normal-butene conversion and 1,3-butadiene were selected.
  • Figure 94wt%, yield 70wt% of 1,3-butadiene was obtained.
  • the hybrid manganese ferrite honeycomb catalyst as shown in Table 5, is easy to mass transfer and heat transfer in the axial direction, although the surface area per unit volume is smaller than the granular catalyst.
  • a is length
  • b is width
  • c is opening
  • d is wall thickness
  • pitch is c + d.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 혼성 망간 페라이트 허니컴형 촉매의 제조방법 및 이를 촉매로 이용한 1,3-부타디엔의 제조방법에 관한 것으로, 구체적으로는 공침법으로 제조된 혼성 망간 페라이트를 바인더를 이용하여 허니컴형으로 압출 성형한 촉매의 제조방법 및 제조된 촉매 상에서 노르말-부텐을 반응물로 직접 사용하여 산화적 탈수소화 반응을 통해 1,3-부타디엔을 제조하는 방법에 관한 것이다. 본 발명에서 사용된 혼성 망간 페라이트 허니컴형 촉매는 제조 방법이 간단하고, 산화적 탈수소화 반응 시 발열 제어가 용이하여 노르말-부텐으로부터 높은 수율로 1,3-부타디엔을 제조할 수 있다.

Description

혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
[관련출원의 상호참조]
본 출원은 2012년 12월 18일 출원된 한국특허 출원번호 제10-2012-0148452호를 우선권 주장하고 있으며, 상기 특허 문헌의 내용은 참조를 위해 본 발명에 모두 포함된다.
본 발명은 혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법에 관한 것으로, 구체적으로는, 공침법으로 제조된 혼성 망간 페라이트를 바인더를 이용하여 허니컴형으로 압출 성형한 촉매, 그의 제조방법 및 상기 제조된 촉매 상에서 노르말-부텐을 반응물로 사용하여 산화적 탈수소화 반응을 통해 1,3-부타디엔을 제조하는 방법에 관한 것이다.
석유화학 시장에서 그 수요가 점차 증가하고 있는 1,3-부타디엔을 제조하기 위한 노르말-부텐(1-부텐, 트랜스-2-부텐, 시스-2-부텐)의 산화적 탈수소화 반응은 노르말-부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응으로, 생성물로 안정한 물이 생성되므로 열역학적으로 유리할 뿐만 아니라 반응 온도를 낮출 수 있다.
그러나 상기 산화적 탈수소화 반응에서는 반응물로서 산소를 사용하기 때문에 완전 산화반응 등 많은 부반응이 예상되므로 이러한 부반응을 최대한 억제하고 1,3-부타디엔의 선택도가 높은 촉매를 개발하는 것이 가장 중요한 핵심 기술이다.
노르말-부텐의 산화적 탈수소화 반응에 또 다른 문제점 중 하나는 반응물 중 일정량 이상의 노르말-부탄이 함유되어 있으면 1,3-부타디엔의 수율이 낮아진다는 것이다 [L.M. Welch, L.J. Croce, H.F. Christmann, Hydrocarbon Processing, 131쪽(1978년)]. 따라서, 상기의 종래 기술들에서는 반응물로 순수한 노르말-부텐(1-부텐 또는 2-부텐)만을 사용하여, 산화적 탈수소화 반응을 수행함으로써 이러한 문제점을 방치하고 있으며, 실제 페라이트 촉매를 이용한 상업공정에서도 노르말 부탄이 제거된 반응물을 사용하고 있다. 이와 같이 산화적 탈수소화 반응을 통해 노르말-부텐으로부터 1,3-부타디엔을 제조하기 위한 촉매 및 공정에 관한 문헌 또는 특허들과 이를 기반으로 하는 공정에서는 반응물로서 순수한 노르말-부텐을 사용함으로써 순수한 노르말-부텐을 C4 혼합물 중에서 추출하는 분리공정이 추가로 필요하고, 이로 인해 경제성이 크게 떨어지는 것을 피할 수 없었다.
지금까지 알려진 노르말-부텐의 산화적 탈수소화 반응에 사용되는 촉매로는 페라이트(Ferrite) 계열 촉매, 주석 계열 촉매, 비스무스 몰리브데이트(Bismuth Molybdate) 계열 촉매 등이 있다.
이 중에서 상기 페라이트 계열 촉매는 스피넬 구조의 2가 양이온 자리를 구성하는 금속의 종류에 따라 촉매로서의 활성이 다른데, 그 중에서도 아연 페라이트, 마그네슘 페라이트, 망간 페라이트가 노르말-부텐의 산화적 탈수소화 반응에 좋은 활성을 보이는 것으로 알려져 있으며, 특히 아연 페라이트는 다른 금속의 페라이트 촉매보다 1,3-부타디엔의 선택도가 높은 것으로 보고되고 있다 [F.-Y. Qiu, L.-T. Weng, E. Shang, P. Ruiz, B. Delmon, Appl. Catal., 51권, 235쪽(1989년)].
몇몇 특허 및 문헌에 노르말-부텐의 산화적 탈수소화 반응에 있어서 아연 페라이트 계열 촉매의 활용에 대해 보고된 바 있으며, 산화적 탈수소화 반응에 대한 아연 페라이트 촉매의 활용 및 수명을 높이기 위해, 촉매에 첨가제를 처리하는 등 전처리 및 후처리를 통하여 보다 높은 수율로 1,3-부타디엔을 장기적으로 얻을 수 있다 [F.-Y. Qiu, L.-T. Weng, E. Shang, P. Ruiz, B. Delmon, Appl. Catal., 51권, 235쪽(1989년) / L.J. Crose, L. Bajars, M. Gabliks, 미국특허 제 3,743,683호(1973년) / E.J. Miklas, 미국특허 제 3,849,545호(1974년) / J.R. Baker, 미국특허 제 3,951,869호(1976년)]. 또한, 상기의 아연 페라이트 촉매 이외에 노르말-부텐의 산화적 탈수소화 반응에 대한 망간 페라이트 계열 촉매의 활용에 대해서도 몇몇 특허에 보고된 바 있다.
노르말-부텐의 산화적 탈수소화 반응을 수행하는 데 있어서, 상기의 아연 페라이트 촉매의 경우, 비활성화 방지를 위해 금속산화물 첨가 및 산처리 등의 재현성이 떨어지고 복잡한 후처리 과정이 필요하고, 망간 페라이트 촉매의 경우, 순수한 스피넬 상으로 존재하기 위해서는, 공침 시 고온 유지가 필요하며 1,3-부타디엔 수율이 아연 페라이트에 비해 다소 떨어진다는 한계를 가지고 있다.
또한, 대한민국 등록특허 제 888143호에서는 촉매 제조과정이 간단하고, 촉매 제조 재현성이 우수하면서도 노르말-부텐의 산화적 탈수소화 반응에 높은 활성을 보이는 혼성 망간 페라이트 촉매 제조 기법을 개시하고 있지만, 구체적인 촉매 성형체에 대해서는 개시하고 있지 않다.
따라서 본 발명의 목적은 발열 제어를 통해 부반응을 억제할 수 있고, 1,3-부타디엔을 높은 수율로 제조할 수 있는 촉매로서, 촉매활성이 우수할 뿐만 아니라, 제조과정이 간단한 혼성 망간 페라이트 허니컴형 촉매 제조 방법을 제공하는 데 있다.
본 발명의 다른 목적은 별도의 분리 공정 없이 저가의 C4 혼합물을 반응물로 직접 사용하여 상기 제조방법에 의해 제조된 촉매 상에서 산화적 탈수소화 반응을 수행함으로써 1,3-부타디엔을 높은 수율로 제조하는 방법을 제공하는 데 있다.
본 발명의 목적을 달성하기 위해 본 발명의 일 측면은 혼성 망간 페라이트 허니컴형 촉매의 제조방법으로서,
a) 망간 전구체 및 철 전구체를 갖는 전구체 수용액을 준비하여 염기성 용액에 혼합시키면서 공침하는 단계 b) 상기 공침된 용액을 세척 및 여과하여 고체 시료를 얻고 건조시키는 단계 c) 상기 건조된 고체 시료, 무기바인더, 유기바인더, 증류수 및 산의 무게비를 1: 0.05~0.5: 0.01~0.1: 0.1~1.5: 0.005~0.15로 조절하여 혼합한 후 토련(Kneading)하여 반죽을 얻는 단계 d) 상기 c) 단계의 반죽을 규칙적인 구조의 관통 기공을 갖는 압출체로 압출하는 단계; 및 e) 상기 압출체를 열처리하는 단계를 제공한다.
본 발명의 다른 목적을 달성하기 위한 본 발명의 또 다른 일 측면은 관통 기공 단면이 다각형 또는 원형이며, 상기 관통 기공은 허니컴형 촉매의 장축으로 관통되는 기공을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매를 제공한다.
본 발명의 다른 목적을 달성하기 위한 본 발명의 또 다른 일 측면은 1,3-부타디엔의 제조방법으로써, a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계; b) 상기 반응물이 본 발명의 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응단계; 및 c) 1,3-부타디엔을 수득하는 단계를 제공한다.
본 발명의 다른 목적을 달성하기 위한 본 발명의 또 다른 일 측면은 1,3-부타디엔의 제조방법으로써, a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계; b) 상기 반응물이 본 발명의 제조 방법에 따라 제조된 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응단계; 및 c) 1,3-부타디엔을 수득하는 단계를 제공한다.
본 발명에 따라 공침법으로 제조된 혼성 망간 페라이트를 바인더를 이용하여 압출 성형된 허니컴형 촉매를 사용하면, 발열 제어를 통한 부반응 억제가 용이하여 산화적 탈수소화 반응을 통해 노르말-부텐으로 부터 높은 수율로 1,3-부타디엔을 제조할 수 있었다.
또한, 촉매 구성성분과 합성경로가 매우 간단하고 재현성이 탁월한 혼성(혼합상)의 망간 페라이트 허니컴형 촉매를 얻을 수 있으며, 본 발명에 따라 제조된 촉매를 이용하면, 발열 제어가 용이하여 발열제어를 위한 다관형 또는 라디얼 반응기 등의 반응기 설계의 번거로움 없이 상용공정 적용이 가능하다.
본 발명을 통해 석유화학산업에서 그 활용가치가 높은 1,3-부타디엔을 활용가치가 낮은 노르말-부텐으로부터 제조할 수 있어, C4 유분의 고부가가치를 이룰 수 있다. 또한 크래커를 신설하지 않고도 1,3-부타디엔을 제조할 수 있는 단독 생산 공정을 확보하여, 늘어나는 1,3-부타디엔의 수요를 충족시킬 수 있으므로 기존 공정에 비하여 경제적이다.
도 1은 규칙적인 구조의 관통 기공을 갖는 혼성 망간 페라이트 허니컴형 촉매의 모식도이다.
이하, 본 발명을 좀 더 구체적으로 설명한다.
본 발명은 노르말-부텐의 산화적 탈수소화 반응에 있어서 혼성 망간 페라이트 허니컴형 촉매를, 바람직하게 10~40oC 온도범위에서, 더욱 바람직하게는 15~30oC의 온도 범위에서 수행되는 공침법을 통해 혼성 망간 페라이트를 합성한 후, 이를 바인더를 이용하여 압출 성형된 허니컴형 촉매를 제조하고, 제조된 촉매를 이용하여 노르말-부텐의 산화적 탈수소화 반응을 통해 1,3-부타디엔을 제조하는 방법에 관한 것이다.
노르말-부텐의 산화적 탈수소화 반응에 있어서 높은 수율로 1,3-부타디엔을 얻기 위한 본 발명의 혼성 망간 페라이트 허니컴형 촉매는 활성 물질인 혼성 망간 페라이트를 규칙적인 구조의 관통 기공을 갖는 압출체(extrudate)로 성형함으로써, 단위부피당 넓은 표면적을 유지하면서도 차압(Pressure Drop) 및 역혼합(Backmixing)을 줄이고 축방향으로의 열전달 속도를 높여 발열 제어가 용이하며, 노르말-부텐의 산화적 탈수소화 반응에 보다 높은 활성을 보인다.
본 발명의 일 측면은 a) 망간 전구체 및 철 전구체를 갖는 전구체 수용액을 준비하여 염기성 용액에 혼합시키면서 공침하는 단계 b) 상기 공침된 용액을 세척 및 여과하여 고체 시료를 얻고 건조시키는 단계 c) 상기 건조된 고체 시료, 무기바인더, 유기바인더, 증류수 및 산의 무게비를 1: 0.05~0.5: 0.01~0.1: 0.1~1.5: 0.005~0.15로 조절하여 혼합한 후 토련(Kneading)하여 반죽을 얻는 단계 d) 상기 c) 단계의 반죽을 규칙적인 구조의 관통 기공을 갖는 압출체로 압출하는 단계; 및 e) 상기 압출체를 열처리하는 단계를 포함하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법에 관한 것이다.
상기 a) 단계에서 혼성 망간 페라이트 합성을 위한 망간 전구체 및 철 전구체로는 용매로 사용되는 증류수에 잘 용해되는 클로라이드(Chloride) 전구체 또는 나이트레이트(Nitrate) 전구체를 사용하는 것이 바람직하며, 구체적으로는 상기 철 전구체는 염화 제1철 4수화물, 염화 제1철 6수화물, 염화 제1철 2수화물, 염화 제2철 6수화물, 질산 제1철 6수화물, 질산 제1철 9수화물, 질산 제2철 6수화물, 및 질산 제2철 9수화물로 이루어진 군으로부터 선택되며, 상기 망간 전구체는 염화 제1망간, 염화 제1망간 4수화물, 염화 제2망간, 4염화망간, 질산망간 6수화물, 질산망간 4수화물 및 질산망간 1수화물로 이루어진 군으로부터 선택되어 사용되나, 이에 한정되지는 않는다.
상기 망간 전구체 및 철 전구체는 바람직하게는 철/망간 원자 수 비 값이 2.0~2.5가 되도록 두 전구체 양을 조절하여 각각 증류수에 용해시킨 후 함께 혼합하는데, 이 때 상기 철/망간 원자 수 비 값이 2.0~2.5 범위를 벗어나는 경우에는 망간이 철 격자 내에 들어가기가 어렵거나, 촉매 활성이 매우 낮아지게 된다.
한편 망간 전구체와 철 전구체를 상온에서 공침시키기 위하여 바람직하게는 1.5~4 몰 농도의 염기성 용액, 예를 들어, 3 몰 농도의 수산화나트륨 수용액을 별도로 제조한다. 상기 염기성 용액의 농도가 1.5 미만이면 혼성 망간 페라이트 촉매 구조가 형성되기 어려우며, 4몰 농도보다 높으면 세척시 수산기와 결합한 금속이온, 예를 들어 수산화나트륨의 경우 Na 이온의 제거가 어렵고, 이로 인해 활성 저하가 나타나게 된다. 또한 상기 염기성 용액의 몰농도는 2~3 몰농도 범위로 조절하는 경우 혼성 망간 페라이트 구조의 형성 및 후처리 측면에서 보다 바람직하다. 망간 전구체와 철 전구체의 공침에 사용되는 염기성 용액은 수산화나트륨뿐만 아니라 암모니아수를 포함한 다른 종류의 염기성 용액도 사용 가능하다. 한편, 상기 염기성 용액의 pH는 9 내지 14를 나타낸다.
망간 전구체 및 철 전구체로부터 혼성 망간 페라이트를 얻기 위해, 바람직하게 10 내지 40oC에서 망간 전구체와 철 전구체가 용해된 수용액을 상기 제조된 염기성 용액에 주입하는데, 이때 주입 속도를 일정하게 유지시키고, 공침이 충분히 이루어지도록 2~12시간, 바람직하게는 6~12시간 교반 시킨다.
여기서 10oC 미만에서 공침이 이루어지게 되면, 공침이 충분하게 되지 않아 극히 불안정한 결합이 형성되어 촉매 사용 시 제어하기 어려운 부반응이 유발되고, 40oC를 초과하게 되면 촉매활성이 저하되어 바람직하지 않다. 상기 공침은 더욱 바람직하게 15~30oC 범위에서 이루어지며, 가장 바람직하게는 15~25oC 범위에서 이루어진다.
상기 b) 단계에서는 교반시킨 공침 용액은 고체 촉매가 침전되도록 충분한 시간 동안 상 분리시키고, 세척 후 감압여과기 등을 통해 침전된 고체 시료를 얻는다.
얻어진 고체 시료는 70~200oC, 바람직하게는 120~180oC에서 24시간 건조시켜 혼성 망간 페라이트를 제조한다.
상기 c) 단계에서는 상기 건조된 고체 시료, 무기바인더, 유기 바인더, 증류수 및 산을 혼합한 후 토련(kneading)하여 반죽을 얻는다.
이 때, b) 단계에서 건조된 혼성 망간 페라이트를 압출 성형하기 위한 반죽을 얻기 위해 사용되는 무기바인더는 10~250m2/g의 비표면적을 가지는 알루미나나 실리카가 바람직하나 이에 한정되는 것은 아니다. 상기 알루미나 또는 실리카의 전구체로는 슈도보에마이트, 알루미나 졸, 실리케이트, 실리카 졸 또는 이들의 혼합물인 것이 바람직하며, 더욱 바람직하게는 슈도보에마이트를 사용한다.
유기바인더는 압출체를 제조하기 위해 무기물 반죽에 통상적으로 첨가되는 유기바인더가 모두 사용가능하나, 에틸셀룰로오스계, 메틸셀룰로오스계, 에틸셀룰로오스 유도체, 메틸셀룰로오스 유도체 또는 이들의 혼합물인 것이 바람직하며, 더욱 바람직하게는 메틸셀룰로오스계를 사용한다. 상기 유기바인더는 압출 시 성형성을 좋게 하고 건조 시 크랙(Crack) 생성을 완화하는 역할을 한다.
상기 완성된 혼성 망간 페라이트를 압출 성형하기 위한 반죽을 얻기 위해서는 무기 바인더를 교화(Peptizing)하기 위해 산이 첨가되는데 이때 사용되는 산은 제한이 없으나, 바람직하게는 질산, 염산, 황산, 인산, 및 아세트산으로 이루어진 군으로부터 선택하여 사용할 수 있고, 더욱 바람직하게는 질산을 사용할 수 있다.
상기 c) 단계에서, 혼성 망간 페라이트, 무기바인더, 유기바인더, 증류수 및 질산은 무게비로 1: 0.05~0.5: 0.01~0.1: 0.1~1.5: 0.005~0.15으로 혼합할 수 있다. 바람직하게는 1: 0.1~0.4: 0.03~0.08: 0.5~1.0: 0.01~0.1으로 혼합한 후, 토련하여 반죽을 얻는다.
상기 d) 단계에서, c) 단계의 반죽을 규칙적인 구조의 관통기공을 갖는 압출체로 압출 성형한다.
상기 압출 시 압출기 내부가 진공상태로 유지되며, 300 내지 500mm/min의 성형 속도로 성형되는 것이 바람직하나, 이에 제한되는 것은 아니다. 상기 압출을 위해 실린더형 압출기 또는 피스톤형 압출기 모두 사용가능하나, 연속공정을 위해 실린더형 압출기를 사용하는 것이 바람직하다. 상기 성형속도는 상기의 반죽 상태에 최적화된 성형 속도로 제조 효율을 증가시키면서 압출시 인가되는 과도한 응력에 의해 허니컴형 압출체가 손상되지 않는 조건이다.
본 발명의 최적화된 혼합 조건 및 혼합 비율에 의해 반죽의 점도 및 강도가 최적화되어, 상기 d) 단계의 규칙적인 구조의 관통 기공의 단면이 다각형 또는 원형이며, 상기 압출체의 장축으로 관통되는 기공이 배열된 고 비표면적의 허니컴형 압출체를 얻을 수 있다. 상기 압출을 통해 상기 규칙적인 구조를 갖는 기공과 기공 간의 두께(벽 두께)가 0.1 내지 2mm인 우수한 압출체를 얻을 수 있게 된다.
상기 e) 단계에서, 압출체를 열처리한다.
상기 d) 단계에서 얻어진 압출된 혼성 망간 페라이트 허니컴형 촉매를 전기로에 넣고 100 내지 800oC 에서 열처리하여 1,3-부타디엔 제조용 허니컴형 촉매를 제조한다. 상기 열처리에 의한 균열을 방지하기 위해 100 내지 150oC의 저온 열처리 후 500 내지 700oC에서의 고온 열처리가 수행되는 2단 열처리가 더욱 바람직하다.
본 발명의 일측면은 관통 기공 단면이 다각형 또는 원형이며, 상기 관통기공은 허니컴형 촉매의 장축으로 관통되는 기공인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매를 제공한다.
본 발명의 일측면에 따른 일구체예에 따르면, 허니컴형 촉매의 기공과 기공간의 두께(벽 두께)가 0.1 내지 2mm인 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매를 제공한다.
본 발명의 일 측면에 따라 제조된 1,3-부타디엔 제조용 혼성 망간 페라이트 촉매의 X선 회절 분석 시 나타나는 피크들은 18.78~18.82, 24.18~24.22, 33.2~33.24, 35.64~35.68, 40.9~40.94, 45.22~45.26, 49.56~49.6, 54.22~54.26, 55.24~55.28, 57.92~57.96, 62.56~62.6, 64.04~64.08, 66.02~66.06, 72.16~72.2, 및 75.78~75.82의 2쎄타 범위를 가지며 가장 두드러지는 피크는 33.2~33.24의 2쎄타 범위에서 나타나는 것을 특징으로 한다.
본 발명의 일측면은 a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계 b) 상기 반응물이, 본 발명의 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응 단계; 및 c) 1,3-부타디엔을 수득하는 단계를 포함하는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔의 제조방법에 관한 것이다.
본 발명의 일측면은 a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계 b) 상기 반응물이, 본 발명의 제조방법에 따라 제조된 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응 단계; 및 c) 1,3-부타디엔을 수득하는 단계를 포함하는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔의 제조방법에 관한 것이다.
상기 a) 단계에서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 데, 여기서 C4 혼합물은 1-부텐, 2-부텐, 및 C4 라피네이트-1, 2, 2.5, 3으로 이루어진 군으로부터 선택된다.
본 발명에서는 노르말-부텐의 공급원으로 별도의 노르말-부탄 분리 공정을 수행하지 않은 C4 혼합물을 사용하여 1,3-부타디엔을 제조하는 방법을 제공한다.
본 발명의 일구체예에 따르면, a) 단계에서 사용되는 C4 혼합물은 0.1 내지 50 중량%의 노르말-부탄, 40 내지 99 중량%의 노르말-부텐 및 상기 노르말-부탄과 노르말-부텐을 제외한 0.1 내지 10 중량%의 C4 혼합물을 포함한다. 상기 노르말-부탄과 노르말-부텐을 제외한 C4 혼합물은, 예를 들어, 이소부탄, 사이클로 부탄, 메틸 사이클로 프로판, 이소부텐 등을 포함한다.
본 발명에서 산화적 탈수소화 반응의 반응물인 노르말-부텐과 산소는 혼합기체의 형태로 공급하는데, 노르말-부텐은 노르말-부텐의 공급원인 C4 혼합물이 피스톤 펌프에 의해, 또 다른 반응물인 공기의 양은 질량유속조절기를 사용하여 정밀하게 조절하여 한다. 산화적 탈수소화 반응의 반응열 해소와 1,3-부타디엔의 선택도 향상에 효과가 있다고 알려진 스팀을 공급하기 위해 액상의 물을 질량유속조절기를 사용하여 주입하면서 기화시킴으로써 스팀이 반응기에 공급되도록 한다. 물 주입구 부분의 온도를 300~450oC, 바람직하는 350~450oC로 유지하여 주입되는 물이 즉시 기화하여 다른 반응물(노르말-부텐 및 공기)과 혼합되면서 촉매 층을 통과하게 한다.
본 발명의 일측면에 따른 일 구체예에 따르면, 촉매반응을 위해 일자형 스테인레스 반응기에 허니컴형 촉매를 고정시키고, 반응기를 전기로 안에 설치하여 촉매 층의 반응온도를 일정하게 유지한 후, 반응물이 반응기 안의 촉매 층을 연속적으로 통과하면서 반응이 진행되도록 할 수 있다.
산화적 탈수소화 반응을 진행시키기 위한 반응 온도는 300~600oC, 바람직하게는 350~500oC, 더욱 바람직하게는 400oC를 유지하였으며, 반응물의 주입 양은 노르말-부텐을 기준으로 공간속도 (WHSV: Weight Hourly Space Velocity)가 0.1~1.5hr-1, 바람직하게는 0.5~1h-1, 더욱 바람직하게는 0.75h-1가 되도록 촉매 양을 설정 한다. 반응물은 노르말-부텐과 공기 및 스팀의 몰 비를 1: 0.5~10: 1~30, 바람직하게는 1: 2~4: 10~30로 설정한다. 상기 혼합기체의 성분 비율이 상기 범위를 초과하거나 미치지 않는 경우에는 원하는 정도의 부타디엔 수율을 얻을 수 없거나, 반응기 운전 시 급격한 발열로 인해 문제가 발생할 수 있으므로 바람직하지 않다.
이하, 첨부한 도면 및 실시예를 참조하여 본 발명의 제조방법, 본 발명의 제조방법을 통해 제조된 촉매 및 1,3-부타디엔 제조 방법을 상세히 설명한다. 다음에 소개되는 도면 및 실시예는 당업자에게 본 발명의 사상을 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면 및 실시예에 한정하지 않고 다른 형태로 구체화될 수도 있다.
[실시예 1]
혼성 망간 페라이트의 제조
혼성 망간 페라이트 제조를 위해 망간의 전구체로는 염화망간 4수화물(MnCl2·4H2O), 철의 전구체로는 염화철 6수화물(FeCl3·6H2O)을 사용하였으며, 두 전구체 모두 증류수에 잘 용해되는 물질로 염화망간 4수화물 198그램과 염화철 6수화물 541그램을 증류수(1000ml)에 녹이고 혼합한 후 교반하였다. 충분한 교반 후 전구체가 완전히 용해된 것을 확인하고, 20oC에서 전구체 수용액을 3몰 농도의 수산화나트륨 수용액(6000ml)에 일정한 속도를 유지하여 한 방울씩 첨가되도록 하였다. 상기의 혼합용액은 충분한 교반이 이루어지도록 교반기를 이용하여 상온에서 12시간 교반시킨 후, 다시 상 분리를 위해 상온에서 12시간 동안 방치하였다. 침전된 용액을 충분한 양의 증류수를 이용하여 세척한 후, 감압여과기로 거르고 얻은 고체 시료를 120oC에서 24시간 건조하였다. 생성된 고체 시료를 공기분위기의 전기로에서 650oC의 온도를 유지하여 3시간 동안 열처리를 함으로써 혼성 망간 페라이트를 제조하였다. 제조된 촉매의 상은 이하의 조건에 의한 X선 회절 분석을 통하여 확인하였고, 표 1에 그 결과를 나타내었다. 표 1에서 나타낸 바와 같이 상온에서 제조한 촉매는 산화철(α-Fe2O3), 망간 산화철(MnFeO3)이 포함된 혼성 망간 페라이트 임을 확인하였다.
< X-선 회절분석 조건>
X-선 발생장치: 3kW, Cu-Kα 선 (λ= 1.54056Å)
관전압: 40kV
관전류: 40mA
2쎄타 측정범위: 5deg ~ 90deg
샘플링 폭: 0.02deg
주사속도: 5deg의 2쎄타/분
발산슬릿: 1deg
산란슬릿: 1deg
수광슬릿: 0.15mm
표 1
Figure PCTKR2013011740-appb-T000001
[실시예 2]
3.6mm의 피치를 갖는 혼성 망간 페라이트 허니컴형 촉매의 제조
실시예 1에서 열처리 단계 전, 건조된 혼성 망간 페라이트 80g, 슈도보에마이트(SASOL) 20g, 메틸셀룰로오스 4.8g, 증류수 65.5g 및 질산(60%) 6.7g을 상온에서 혼합한 후 토련(Kneading)하여 반죽을 제조하였다. 상기 제조된 반죽을 실린더형 압출기에 투입하고, 압출기 내부를 진공상태로 유지하고 실린더 회전속도를 50rpm으로 하여, 400mm/min의 성형속도로 압출체를 제조하였다. 소성로(Furnace)를 이용하여 제조된 압출체를 120oC에서 2시간 열처리한 후, 650oC에서 3시간 열처리하여 도 1과 같은 형상을 가지며 피치(Pitch: 기공 중심간 간격)가 3.6mm인 1,3-부타디엔 제조용 허니컴형 촉매를 제조하였다. 제조된 1,3-부타디엔 제조용 허니컴형 촉매의 물리적 형상을 도 1에 기재한 부호를 기준으로 표 2에 정리하였다.
표 2
Figure PCTKR2013011740-appb-T000002
[실시예 3]
1.96mm 피치를 갖는 혼성 망간 페라이트 허니컴형 촉매의 제조
실시예 2의 압출 및 열처리와 동일한 조건으로 1.96mm 피치를 갖는 1,3-부타디엔 제조용 허니컴형 촉매를 제조하였다. 제조된 1,3-부타디엔 제조용 허니컴형 촉매의 물리적 형상을 도 1에 기재한 부호를 기준으로 하기의 표 3에 정리하였다.
표 3
Figure PCTKR2013011740-appb-T000003
[비교예 1]
타정 성형된 약 1mm의 크기를 갖는 혼성 망간 페라이트 입상형 촉매의 제조
실시예 1에서 완성된 혼성 망간 페라이트를 타정(Pelletizing) 공정을 통해 펠렛(Pellet) 형태로 제조하였고, 0.9~1.2mm 크기로 분쇄하였다.
[비교예 2]
무기바인더가 첨가되지 않은 혼성 망간 페라이트 허니컴형 촉매의 제조
슈도보에마이트와 질산을 제외하고, 실시예 2와 동일한 방법으로 반죽을 제조하여 동일한 조건에서 압출하였다. 비교예 2의 결과, 촉매의 강도의 저하로 형상을 잃은 무정형의 압출체를 얻었을 뿐, 허니컴 형상으로 압출되지 못하였다.
[실시예 4]
혼성 망간 페라이트 허니컴형 및 입상형 촉매 상에서의 노르말-부텐의 산화적 탈수소화 반응
실시예 2, 3 및 비교예 1에 따른 혼성의 망간 페라이트 허니컴형 및 입상형 촉매를 사용하여 노르말-부텐의 산화적 탈수소화 반응을 수행하였는데 구체적인 실험 조건은 다음과 같다.
노르말-부텐의 산화적 탈수소화 반응에 사용한 반응물은 C4 혼합물로서 그 조성을 하기 표 4에 나타내었다. 반응물인 C4 혼합물은 공기, 스팀과 함께 혼합 기체의 형태로 주입되었으며, 반응기로는 스테인레스 재질의 일자형 고정층 반응기를 사용하였다.
반응물의 구성 비율은 C4 혼합물 내의 노르말-부텐을 기준으로 설정하여, 노르말-부텐: 공기: 스팀의 몰 비가 1: 2.75: 10이 되도록 설정하였다. 스팀은 액상의 물이 350oC에서 기화되어 다른 반응물인 C4 혼합물 및 공기와 함께 혼합된 후 반응기로 유입되었으며 C4 혼합물의 양은 피스톤 펌프를 이용하여 제어하고, 공기 및 스팀의 양은 질량유속조절기를 통하여 조절하였다.
반응물의 주입 속도는 C4 혼합물 내의 노르말-부텐을 기준으로 공간속도(WHSV)가 0.75hr-1가 되도록 촉매 양을 설정하여 반응하였으며, 반응 온도는 고정층 반응기의 촉매 층 입구 온도가 400oC가 되도록 유지하였다. 반응 후 생성물에는 생성물 내에 목표로 하는 1,3-부타디엔 이외에, 완전 산화의 부산물인 이산화탄소, 크래킹에 의한 부산물, 이성화 반응에 의한 부산물 및 반응물 내에 포함된 노르말-부탄 등이 포함되어 있어 이를 분리, 분석하기 위해 가스크로마토그래피를 이용하여 분석하였다. 노르말-부텐의 산화적 탈수소화 반응에 대해 혼성 망간 페라이트 허니컴형 및 입상형 촉매를 통한 노르말-부텐의 전환율, 1,3-부타디엔 선택도 및 수율은 다음의 수학식 1, 2, 및 3에 의해 계산하였다.
수학식 1
Figure PCTKR2013011740-appb-M000001
수학식 2
Figure PCTKR2013011740-appb-M000002
수학식 3
Figure PCTKR2013011740-appb-M000003
표 4
Figure PCTKR2013011740-appb-T000004
실시예 2, 3 및 비교예 1의 제조방법에 의해 제조된 촉매들을 실시예 4의 반응 실험 방법에 의해 C4 혼합물의 산화적 탈수소화 반응에 적용하였으며, 그 결과를 표 5에 나타내었다.
혼성 망간 페라이트 허니컴형 촉매가 입상형 촉매에 비해 현저한 활성과 발열제어를 보였으며 특히 1.96mm 피치를 갖는 혼성 망간 페라이트 허니컴형 촉매의 경우, 노르말-부텐의 전환율 74wt%, 1,3-부타디엔의 선택도 94wt%, 1,3-부타디엔의 수율 70wt%를 얻을 수 있었다.
표 5
Figure PCTKR2013011740-appb-T000005
이는 상기 표 5에서 보는 바와 같이 혼성 망간 페라이트 허니컴형 촉매가 비록 입상형 촉매에 비해 단위부피당 표면적은 작지만, 축방향으로의 물질 전달(Mass Transfer) 및 열 전달이 용이하기 때문으로 판단된다.
이상과 같이 본 발명에서는 구체적인 물질, 첨가량과 같이 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
[부호의 설명]
a는 길이(length), b는 너비(width), c는 오프닝(opening), d는 벽 두께(wall thickness), 핏치(pitch)는 c+d이다.

Claims (15)

  1. a) 망간 전구체 및 철 전구체를 갖는 전구체 수용액을 준비하여 염기성 용액에 혼합시키면서 공침하는 단계
    b) 상기 공침된 용액을 세척 및 여과하여 고체 시료를 얻고 건조시키는 단계
    c) 상기 건조된 고체 시료, 무기바인더, 유기바인더, 증류수 및 산의 무게비를 1: 0.05~0.5: 0.01~0.1: 0.1~1.5: 0.005~0.15로 조절하여 혼합한 후 토련(Kneading)하여 반죽을 얻는 단계
    d) 상기 c) 단계의 반죽을 규칙적인 구조의 관통 기공을 갖는 압출체로 압출하는 단계; 및
    e) 상기 압출체(extrudate)를 열처리하는 단계를 포함하는 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
  2. 청구항 1에 있어서, 상기 e) 단계에서 열처리는 100 내지 800oC에서 수행되는 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
  3. 청구항 1에 있어서, 상기 e) 단계에서 열처리는 100 내지 150oC의 저온 열처리 후 500 내지 700oC에서의 고온 열처리가 수행되는 2단 열처리인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
  4. 청구항 1에 있어서, d) 단계의 상기 관통 기공은 단면이 다각형 또는 원형이며, 상기 압출체의 장축으로 관통되는 기공인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
  5. 청구항 1에 있어서, d) 단계의 상기 기공과 기공 간의 두께(벽 두께)는 0.1 내지 2mm인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
  6. 청구항 1에 있어서, 상기 무기바인더는 비표면적이 10~250m2/g인 알루미나 또는 실리카인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
  7. 청구항 6에 있어서, 상기 알루미나는 전구체로 슈도보에마이트 또는 알루미나졸인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
  8. 청구항 6에 있어서, 상기 실리카는 전구체로 실리케이트 또는 실리카졸인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
  9. 청구항 1에 있어서, 상기 유기바인더는 메틸셀룰로오스계인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매 제조방법.
  10. 관통 기공 단면이 다각형 또는 원형이며, 상기 관통기공은 허니컴형 촉매의 장축으로 관통되는 기공인 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매.
  11. 청구항 10에 있어서, 상기 허니컴형 촉매의 기공과 기공간의 두께(벽 두께)가 0.1 내지 2mm인 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매.
  12. 청구항 10 또는 11에 있어서, 상기 혼성 망간 페라이트 허니컴형 촉매의 X-선 회절 분석 시, 18.78~18.82, 24.18~24.22, 33.2~33.24, 35.64~35.68, 40.9~40.94, 45.22~45.26, 49.56~49.6, 54.22~54.26, 55.24~55.28, 57.92~ 57.96, 62.56~62.6, 64.04~64.08, 66.02~66.06, 72.16~72.2, 및 75.78~75.82의 2쎄타 범위에서 피크를 갖는 것을 특징으로 하는 1,3-부타디엔 제조용 혼성 망간 페라이트 허니컴형 촉매.
  13. a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계
    b) 상기 반응물이, 상기 청구항 10 내지 청구항 12 중 어느 한 항의 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응 단계; 및
    c) 1,3-부타디엔을 수득하는 단계를 포함하는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔의 제조방법.
  14. a) 반응물로서 C4 혼합물, 공기 및 스팀의 혼합기체를 제공하는 단계
    b) 상기 반응물이, 상기 청구항 1 내지 청구항 9 중 어느 한 항에 의하여 제조된 촉매가 고정된 촉매층을 통과하여 이루어지는 산화적 탈수소화 반응 단계; 및
    c) 1,3-부타디엔을 수득하는 단계를 포함하는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔의 제조방법.
  15. 청구항 13 또는 14에 있어서, 상기 C4 혼합물은 1-부텐, 2-부텐, 및 C4 라피네이트-1, 2, 2.5, 3으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 혼성 망간 페라이트 허니컴형 촉매를 이용한 1,3-부타디엔 제조방법.
PCT/KR2013/011740 2012-12-18 2013-12-17 혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법 WO2014098448A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0148452 2012-12-18
KR1020120148452A KR101953919B1 (ko) 2012-12-18 2012-12-18 혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법

Publications (1)

Publication Number Publication Date
WO2014098448A1 true WO2014098448A1 (ko) 2014-06-26

Family

ID=50978701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011740 WO2014098448A1 (ko) 2012-12-18 2013-12-17 혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법

Country Status (2)

Country Link
KR (1) KR101953919B1 (ko)
WO (1) WO2014098448A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655369A (zh) * 2018-04-10 2020-09-11 株式会社Lg化学 金属络合物催化剂的制备方法和由此制备的金属络合物催化剂
EP3269448B1 (en) * 2016-04-18 2022-05-18 LG Chem, Ltd. Catalyst for surface coating of microporous material and method for surface treatment of microporous material

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102001144B1 (ko) * 2016-03-04 2019-07-17 주식회사 엘지화학 페라이트계 촉매 복합체, 제조방법 및 부타디엔의 제조방법
US10799856B2 (en) 2016-03-30 2020-10-13 Lg Chem, Ltd. Ferrite-based catalyst, preparation method therefor, and method for preparing butadiene using same
KR101947645B1 (ko) * 2016-09-01 2019-02-13 국방과학연구소 고농도 과산화수소 분해를 위한 촉매 조성물 및 그 제조 방법
WO2018190641A1 (ko) * 2017-04-12 2018-10-18 (주) 엘지화학 산화적 탈수소화 반응용 촉매, 이의 제조방법 및 이를 이용한 산화적 탈수소화방법
KR102224278B1 (ko) 2017-04-12 2021-03-08 주식회사 엘지화학 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
WO2018190642A2 (ko) * 2017-04-12 2018-10-18 (주) 엘지화학 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
KR102239677B1 (ko) 2017-04-12 2021-04-13 주식회사 엘지화학 산화적 탈수소화 반응용 촉매, 이의 제조방법 및 이를 이용한 산화적 탈수소화방법
KR102262896B1 (ko) 2017-11-30 2021-06-09 주식회사 엘지화학 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
KR102353147B1 (ko) 2018-03-13 2022-01-18 주식회사 엘지화학 페라이트계 코팅 촉매의 제조방법 및 이를 이용한 부타디엔의 제조방법
KR102353146B1 (ko) 2018-03-13 2022-01-18 주식회사 엘지화학 페라이트계 코팅 촉매의 제조방법 및 이를 이용한 부타디엔의 제조방법
KR102025311B1 (ko) * 2018-05-16 2019-09-25 한국화학연구원 과산화수소 분해용 촉매 및 이의 제조방법
KR20210086511A (ko) 2019-12-31 2021-07-08 주식회사 엘지화학 산화적 탈수소화 반응용 촉매의 제조방법, 산화적 탈수소화 반응용 촉매 및 이를 이용한 부타디엔의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020118A1 (en) * 1998-04-01 2001-09-06 Sud-Chemie, Inc. (Formerly United Catalysts, Inc.) Dehydrogenation catalysts
KR20030014220A (ko) * 2000-05-08 2003-02-15 코닝 인코포레이티드 압출된 허니컴 탈수소화 촉매 및 촉매의 제조방법
JP2009502451A (ja) * 2005-07-22 2009-01-29 ビーエーエスエフ ソシエタス・ヨーロピア 二次触媒材料を含有する、炭化水素の脱水素または水素化触媒
KR100888143B1 (ko) * 2007-12-12 2009-03-13 에스케이에너지 주식회사 혼성 망간 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
KR20120009687A (ko) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 혼성 망간 페라이트가 코팅된 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020118A1 (en) * 1998-04-01 2001-09-06 Sud-Chemie, Inc. (Formerly United Catalysts, Inc.) Dehydrogenation catalysts
KR20030014220A (ko) * 2000-05-08 2003-02-15 코닝 인코포레이티드 압출된 허니컴 탈수소화 촉매 및 촉매의 제조방법
JP2009502451A (ja) * 2005-07-22 2009-01-29 ビーエーエスエフ ソシエタス・ヨーロピア 二次触媒材料を含有する、炭化水素の脱水素または水素化触媒
KR100888143B1 (ko) * 2007-12-12 2009-03-13 에스케이에너지 주식회사 혼성 망간 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
KR20120009687A (ko) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 혼성 망간 페라이트가 코팅된 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3269448B1 (en) * 2016-04-18 2022-05-18 LG Chem, Ltd. Catalyst for surface coating of microporous material and method for surface treatment of microporous material
CN111655369A (zh) * 2018-04-10 2020-09-11 株式会社Lg化学 金属络合物催化剂的制备方法和由此制备的金属络合物催化剂
CN111655369B (zh) * 2018-04-10 2024-01-30 株式会社Lg化学 金属络合物催化剂的制备方法和由此制备的金属络合物催化剂

Also Published As

Publication number Publication date
KR101953919B1 (ko) 2019-03-04
KR20140082869A (ko) 2014-07-03

Similar Documents

Publication Publication Date Title
WO2014098448A1 (ko) 혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
KR101713328B1 (ko) 혼성 망간 페라이트가 코팅된 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
WO2017171441A2 (ko) 페라이트계 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
CN101896267B (zh) 混合型铁酸锰催化剂、其制备方法、以及使用该催化剂制备1,3-丁二烯的方法
WO2009119975A2 (ko) 연속 흐름식 2중 촉매 반응 장치를 이용하여 노르말-부텐으로부터 1,3-부타디엔을 제조하는 방법
CN107771101B (zh) 铁氧体金属氧化物催化剂的制备方法
EP2331256A1 (de) Hochporöse schaumkeramiken als katalysatorträger zur dehydrierung von alkanen
KR20180115228A (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
KR20130037509A (ko) 노르말-부탄의 산화적 탈수소화 반응 촉매용 마그네시아-지르코니아 복합담체의 단일 단계 침전법에 의한 제조방법, 그에 의해 제조된 마그네시아-지르코니아 복합담체에 담지된 마그네슘 오르소바나데이트 촉매 및 상기 촉매를 이용한 노르말-부텐과 1,3-부타디엔의 제조방법
WO2019039749A1 (ko) 메탄 및 프로판 공동 반응물의 직접 탈수소방향족화 반응을 위한 중형기공성 hzsm-11에 담지된 금속 산화물 촉매의 제조 방법 및 상기 촉매를 이용한 btx 제조 방법
US4491637A (en) Cobalt-containing supported catalysts and their preparation
JP2001233608A (ja) Vpo触媒の合成法
WO2017090864A1 (ko) 저온 개질반응용 코발트 담지촉매 및 이의 제조방법
WO2014182026A1 (ko) 부타디엔 제조를 위한 산화촉매 및 그 제조방법
WO2018190642A9 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
WO2020009318A1 (ko) 전환율 및 선택도가 향상된 올레핀 제조용 촉매 및 그 제조방법
WO2018212542A1 (ko) 이산화탄소를 이용한 메탄 개질 반응용 촉매 및 이의 제조방법
WO2018190641A1 (ko) 산화적 탈수소화 반응용 촉매, 이의 제조방법 및 이를 이용한 산화적 탈수소화방법
WO2022045640A1 (ko) 세리아-지르코니아 복합 산화물의 제조방법, 세리아-지르코니아 복합 산화물, 이를 포함하는 촉매 및 부타디엔의 제조방법
US20120245382A1 (en) Producing acetaldehyde and/or acetic acid from bioethanol
CN105126804B (zh) 一种合成1,6‑六亚甲基二氨基甲酸甲酯的催化剂及制法和应用
CN109529923B (zh) 一种氧化物改性微孔分子筛择形催化剂的制备方法
RU2780406C2 (ru) Способ получения винил-н-бутилового эфира
US4567314A (en) Process for producing diolefins
CN115487819B (zh) 脱氢催化剂及其制备方法和应用以及烷基苯脱氢制备烷烯基苯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864045

Country of ref document: EP

Kind code of ref document: A1