WO2014098350A1 - 코어 (Se)-쉘 (Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지 - Google Patents

코어 (Se)-쉘 (Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지 Download PDF

Info

Publication number
WO2014098350A1
WO2014098350A1 PCT/KR2013/007946 KR2013007946W WO2014098350A1 WO 2014098350 A1 WO2014098350 A1 WO 2014098350A1 KR 2013007946 W KR2013007946 W KR 2013007946W WO 2014098350 A1 WO2014098350 A1 WO 2014098350A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
thin film
igs
core
shell
Prior art date
Application number
PCT/KR2013/007946
Other languages
English (en)
French (fr)
Inventor
조아라
윤경훈
안세진
윤재호
어영주
곽지혜
신기식
안승규
조준식
유진수
박상현
박주형
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to US14/412,055 priority Critical patent/US9634162B2/en
Publication of WO2014098350A1 publication Critical patent/WO2014098350A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the solar cell is a device that directly converts solar energy into electrical energy, and is expected to be an energy source capable of solving future energy problems due to its low pollution, infinite resources, and a semi-permanent lifetime.
  • Solar cells are classified into various types according to materials used as light absorption layers, and at present, the most commonly used are silicon solar cells using silicon.
  • the recent surge in prices due to the shortage of silicon has led to increasing interest in thin-film solar cells.
  • Thin-film solar cells have a wide range of applications because they are made of thin thickness and consume less material and are light in weight.
  • CIGS Copper Indium Galium Selenide
  • a tandem solar cell is a multi-layered solar cell in which two single-cell CIGS solar cells are stacked.
  • the lower cell is manufactured and then the upper cell is formed thereon, a problem occurs in that the lower cell already formed is damaged during the formation of the upper cell, which makes it difficult to obtain the expected energy conversion efficiency.
  • the present invention provides a method for producing an A (C) IGS-based thin film which can improve energy conversion efficiency by densifying the thin film within a short time at low temperature.
  • the present invention also provides an A (C) IGS-based thin film manufactured by the above method and a tandem solar cell comprising the same.
  • a method for manufacturing an A (C) IGS thin film according to the present invention includes a core (Se) -shell (Ag 2 Se) nanoparticle, a multicomponent nanoparticle containing (C) IGS element, and (C ) Preparing a slurry by mixing a solution precursor, an alcoholic solvent, and a binder containing an IGS-based element (step a); Non-vacuum coating the slurry to form an A (C) IGS-based thin film (step b); And performing a selenization heat treatment on the formed A (C) IGS-based thin film (step c).
  • the core (Se) -shell (Ag 2 Se) nanoparticles are formed in a form in which Se constituting the core is wrapped with Ag 2 Se.
  • the multicomponent nanoparticles may be bicomponent, semi-branched or tetracomponent nanoparticles.
  • the binder may comprise one or more selected from the group consisting of chelating agents and non-chelating agents.
  • a (C) IGS-based thin film is defined as meaning AIGS (Ag—In-Ga-Se) or ACIGS (Ag-Cu-In—Ga-Se) thin film.
  • the multi-component nanoparticles containing the (C) IGS-based element may be Cu-Se nanoparticles, In-Se nanoparticles, Ga-Se nanoparticles, Cu-S nanoparticles, In-S nanoparticles, or Ga- S nanoparticles, Cu- In-Se nanoparticles, Cu-Ga— Se nanoparticles, In-Ga-Se nanoparticles, Cu-In— S nanoparticles, Cu- Ga-S nanoparticles, In-Ga— S nanoparticles Particles, Cu-In-Ga-Se nanoparticles and Cu-In-Ga-S nanoparticles may include one or more selected from the group consisting of.
  • the multicomponent nanoparticle may be formed of two or more components of the elements constituting the ⁇ - ⁇ ⁇ VIA compound semiconductor.
  • multicomponent nanoparticles of Cu-Se, In-Se, Ga-Se, Cu-S, In-S, Ga-S combination, etc. may be mentioned.
  • Cu-Se may be CuSe, Cu 2 Se, or Cu 2 ⁇ xSe (0 ⁇ x ⁇ l)
  • In_Se is In 2 Se 3
  • Ga-Se can be Ga 2 Se 3
  • Cu-S can be CuS or Cu 2 -x S (0 ⁇ x ⁇ l)
  • In-S is InS or In 2 S 3 may be
  • Ga— S may be GaS or Ga 2 S 3 .
  • Sulfur (S) contained in the multi-component nanoparticles is substituted with selenium (Se) in the selenization heat treatment process described below. As a result, a more dense thin film is formed.
  • the multicomponent nanoparticles may be prepared by any one of a low temperature colloidal method, a solvent thermal synthesis method, a microwave method, and an ultrasonic synthesis method.
  • the present invention is not limited thereto and may be manufactured according to a method known in the art.
  • the solution precursor may include at least one (C) IGS-based single element.
  • the solution precursor may include indium acetate, gallium acetyl acetonate, and the like.
  • the solution precursor refers to a solution containing an element for forming an AIGS or ACIGS thin film, and includes an element not included in the multicomponent nanoparticle, and is prepared to meet the ratio of the AIGS or ACIGS thin film composition. . That is, when the nanoparticles are Cu-Se, the solution precursor is prepared by dissolving an In precursor and a Ga precursor which are chlorides or acetate salts with a chelating agent, and then mixing the nanoparticles to prepare a slurry.
  • the alcohol solvent may include any one or more selected from the group consisting of ethanol, methanol, pentanol, propanol and butanol.
  • the alcohol solvent may be used to adjust the viscosity.
  • the binder may be composed of a chelating agent, a non-chelating agent or a mixture of a chelating agent and a non-chelating agent.
  • the substance can be used as a binder since it has a viscosity as it is. core
  • the nanoparticles and the metal silver must be bonded through a binder, and thus the thin film is densified and smoothed.
  • the ratio of the binder in the slurry is added at a molar ratio that enables the chelating of the solution precursor.
  • the chelating agent is a monoethane amine (MEA), diethanolamine
  • DEA triethanolamine
  • EDTA ethylenediamine
  • NTA ethylenediamineacetic acid
  • HEDTA glycol-bis (2-aminoethylether) -N, N, N ', N'-tetraacetic acid
  • GEDTA triethylenetetraamine nucleus tetraacetic acid
  • HIDA hydroxyethyliminodiacetic acid
  • DHEG dihydroxyethylglycine
  • the present invention is not limited thereto, and the chelating agent, which is a ligand capable of forming a compound by chelating the nanoparticles and the metal ions forming the A (C) IGS-based thin film, may be applied within the scope of the present invention.
  • the non-chelating agent may be selected from ethylene glycol, propylene glycol, ethyl salose, polyvinylpyridone, and the like.
  • the ratio of the A (C) IGS compound nanoparticles may be adjusted to adjust the concentration of the slurry, and the ratio of the binder material may be adjusted to control the viscosity and the binding degree of the slurry.
  • the slurry may further comprise the step of sonicating for mixing and dispersing.
  • the slurry prepared in step a may be non-vacuum coated on a substrate to form an A (C) IGS thin film.
  • the substrate temperature is reduced by vacuum deposition of Cu and Se in two steps in order to make the thin film dense.
  • the Se binary densifies the thin film by raising it to its melting point ( ⁇ 533 ° C) and acting as a flux. Therefore, in this case, a high temperature process is required and a thin film is not formed at a lower temperature than the melting point of the Cu-Se binary, or a dense thin film is formed, thereby degrading the value as a CIGS solar cell.
  • the non-vacuum coating method is applied using the core (Se) -shell (Ag 2 Se) nanoparticles according to the present invention
  • the Se particles are not formed in the form of binary or ternary compounds.
  • Se mp 217 ° C
  • the egg yolk is in the core and melts from the beginning of the process, Se (mp 217 ° C) with low melting point acts as a flux at low temperatures. This allows the process to proceed at low temperatures.
  • Tandem solar cells include a light absorbing layer having a multilayer structure. It is formed in a structure including a top cell and a bottom cell.
  • the upper cell since the upper cell is formed on the lower cell and then formed on the lower cell, when the upper cell is coated at a high temperature, the lower cell may be damaged to reduce the efficiency of the solar cell.
  • the process of forming the upper cell can be performed at a low temperature, the upper cell can be formed without damaging the lower cell. As a result, the efficiency of solar cells can be maximized.
  • the present invention uses particles having a core-shell structure in which Ag 2 Se surrounds Se, not Se particles themselves. This allows the Se nanoparticles themselves are oxidized in air to be rather a melting point of Se is eonggyeo attached form a dense thin film smooth haejueo prevent current different from the larger particles in the developing ⁇ a step where the high rhenium oxide sal particles. Also, since Ag particles are coated with Ag 2 Se, AIGS thin film and ACIGS thin film, which is a wide band gap material, can be formed. Therefore, according to the present invention, it is possible to provide a non-vacuum wide band gap material.
  • the step b non-vacuum coating may be performed by any one method selected from the group consisting of a spray method, an ultrasonic spray method, a spin coating method, a doctor blade method, a screen printing method, and an inkjet printing method.
  • a spray method an ultrasonic spray method
  • a spin coating method a doctor blade method
  • a screen printing method a screen printing method
  • an inkjet printing method an inkjet printing method.
  • the present invention is not limited thereto, and all of the non-vacuum coating methods well known in the art may be applied.
  • the capital investment costs are enormous, but in the case of the non-vacuum method, the capital investment is small and the process is simple, thereby greatly reducing the manufacturing cost.
  • the method may further include drying after the coating. Through this, the solvent may be removed.
  • the coating and drying step may be performed repeatedly a plurality of times.
  • the number of repetitions varies depending on the case, but is preferably performed two to three times.
  • the non-vacuum coating and drying steps may be repeated to form an A (C) IGS thin film having a desired thickness.
  • a selenization heat treatment process is performed on the ACC GS-based thin film formed by step b. do.
  • the selenization heat treatment process is an essential process in the non-vacuum coating method, and may be performed by supplying the selenium vapor formed by applying heat to the selenium solid to evaporate the temperature of the substrate on which the thin film is formed. As a result, selenium is deposited on the precursor thin film passed through step b, and at the same time, the ACCHGS-based thin film is completed as the structure in the thin film is finally compacted.
  • the step c selenization heat treatment step may be performed for 10 to 30 minutes at a substrate temperature of 450 ⁇ 500 ° C. Unlike the conventional technology, the selenization heat treatment step may be performed in a short time at low silver.
  • the process proceeds in the above range, the most dense thin film structure can be formed, and as a result, the energy conversion efficiency can be maximized when the thin film of the dense structure is used in the solar cell.
  • the A (C) IGS-based thin film may include core (Se) -shell (Ag 2 Se) nanoparticles, multi-component nanoparticles including (C) IGS-based elements, and (C) IGS-based elements. Coated with a slurry comprising a solution precursor, an alcoholic solvent and a binder,
  • the core (Se) -shell (Ag 2 Se) nanoparticles are formed in a form in which Se constituting the core is wrapped with Ag 2 Se,
  • the multicomponent nanoparticles are bicomponent, ternary or tetracomponent nanoparticles
  • the binder may provide an A (C) IGS-based thin film comprising at least one selected from the group consisting of a chelating agent and a non-chelating agent.
  • the A (C) IGS-based thin film may be used for a top cell constituting a tandem solar cell.
  • the A (C) IGS thin film is a core (Se) -shell (Ag 2 Se) nanoparticle, a multicomponent nanoparticle including (C) IGS element, and a solution containing (C) IGS element.
  • Precursors, alcoholic solvents and bars Coated with a slurry comprising an inder,
  • the core (Se) -shell (Ag 2 Se) nanoparticles are made of a form surrounding the Se constituting the core with Ag 2 Se,
  • the multicomponent nanoparticles may be bicomponent, semi-branched or tetracomponent nanoparticles, and the binder may provide a tandem solar cell comprising one or more selected from the group consisting of a chelating agent and a non-chelating agent.
  • the core (Se) -shell (Ag 2 Se) nanoparticles are applied to the production of the (C) IGS thin film, a wide band gap A (C) is produced by preparing the A (C) IGS thin film containing Ag. IGS-based thin film can be provided.
  • Se particles are not in the form of binary or ternary compounds, but are in the core like egg yolks and melted from the start of the process, making it possible to produce thin films at low process temperatures.
  • the Se is coated with Ag 2 Se, thereby oxidizing in the air or the Se particles are entangled with each other, thereby improving the problem of larger particles.
  • the coating is made by non-vacuum method when manufacturing a thin film, there is almost no facility investment cost, and it is also advantageous for commercialization due to its excellent price competitiveness.
  • FIG. 1 is a schematic diagram of core (Se) -shell (Ag 2 Se) nanoparticles according to Preparation Example 7.
  • FIG. 2 is an SEM image of core (Se) -shell (Ag 2 Se) nanoparticles according to Preparation Example 7.
  • FIG. 3 is an XRD analysis result of core (Se) -shell (Ag 2 Se) nanoparticles according to Preparation Example 7.
  • 4 is a surface image of the ACIGS thin film according to Example 1.
  • FIG. 5 is a surface image of an ACIGS thin film subjected to selenization heat treatment according to Example 1.
  • FIG. 6 is a surface image of an ACIGS thin film according to Example 2.
  • FIG. 7 is a surface image of an ACIGS thin film according to Example 3.
  • the synthesized CIGS colloid was centrifuged at 4000 rpm for about 30 minutes, sonicated for 5 minutes, washed with distilled methanol, and the process was repeated to completely remove by-products and pyridinol in the product to remove high-purity tetracomponent CIGS nanoparticles. Synthesized.
  • In-S nanoparticles 0.11233g ⁇ Cu-Se nanoparticles prepared in Preparation Example 0.0328g ⁇ methane After mixing 1.9571 g of Ga solution precursor gallium acetyl acetonate with MEA and 0.0856 g of MEA (Binder) 0.1391 g, ultrasonic treatment was performed for 60 minutes to prepare an ACIGS slurry. At this time, the amount of methanol for adjusting the viscosity can be adjusted.
  • the prepared slurry was coated on the soda-lime glass substrate on which the Mo thin film was deposited using the doctor blade coating method. At this time, the height of the substrate and the blade was set to 50 micrometers and then coated. Three steps of drying were performed on a hot plate to remove solvent and binder. (Step 1: 80 ° C 5 min, Step 2: 120 ° C 5 min, Step 3: 200 ° C 5 min) However, other silver conditions may be possible if solvent and binder can be removed. The coating-drying process was repeated three times to form a thin film of precursor having a thickness of 0.509 mm 3.
  • the substrate is selenized for 15 minutes while supplying Se vapor at 450 ° C.
  • a heat treatment (selenization) to prepare an ACIGS thin film is
  • ⁇ 4> substrate silver was also selenized for 10 minutes while supplying Se vapor at 530 ° C to differ only in the heat treatment step, and the remaining conditions were the same as in Example 1 to prepare an ACIGS thin film.
  • 0.1470 g of In-S nanoparticles, 1.3708 g of methanol, 0.1405 g of Ga solution precursor gallium acetyl acetonate using MEA, and 0.1928 g of MEA (binder) were mixed, followed by sonication for 60 minutes to prepare an AIGS slurry. It was. However, the amount of methanol can be adjusted for viscosity control.
  • Step 1 80 ° C 5 minutes
  • Step 2 120 ° C 5 minutes
  • Step 3 Three steps of drying were carried out from above.
  • the core (Se) -shell (Ag 2 Se) nanoparticles according to Preparation Example 7 were analyzed by scanning electron microscopy, and the results are shown in FIG. 2. It can be seen that a uniform core-shell particle was formed with a particle size of 370-380 nm.
  • Core (Se) -shell (Ag 2 Se) nanoparticles according to Preparation Example 7 were analyzed by X-ray diffraction analyzer and the results are shown in FIG. 3. The Se and A g2 Se peaks are found, indicating that Se itself is present, not binary or non-nanoparticles.
  • the core (Se) -shell (Ag 2 Se) nanoparticles (Se) because the Se particles are contained in the core inside the Se element itself, not in the form of binary or ternary compounds, and melt from the start of the process. Using shell (Ag 2 Se) nanoparticles allows the reaction to proceed at low process temperatures.
  • FIG. 4 (before performing the selenization heat treatment step) and Figure 5 (after performing the selenization heat treatment step) is an ACIGS thin film prepared according to Example 1
  • Figure 6 is an ACIGS thin film prepared according to Example 2
  • Figure 7 Shows the surface image of the ACIGS thin film prepared according to Example 3. According to Example 1, it can be seen that the thin film (FIG. 5) formed when the selenization heat treatment was performed at 450 ° C. for 15 minutes was most well formed.

Abstract

코어 (Se)-쉘 (Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의해 제조된 A(C) IGS계 박막 및 이를 포함하는 탠덤 태양전지에 관한 것으로서, 더욱 상세하게는 코어 (Se)-쉘 (Ag2Se) 나노입자를 이용한 슬러리를 비진공 코팅하여 치밀화된 박막을 제조하는 방법, 이에 의해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지에 관한 것이다. 본 발명에 따르면, 코어 (Se)-쉘 (Ag2Se) 나노입자를 (C) IGS계 박막 제조에 적용하여 Ag가 포함된 A(C) IGS계 박막을 제조함으로써 와이드 밴드 갭 A(C) IGS계 박막을 제공할 수 있다.

Description

【명세세
【발명의 명칭】
코어 (Se)-쉘 (Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의 해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지
【기술분야】
코어 (Se)_쉘 (Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의 해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지에 관한 것으로서, 더욱 상세하게는 코어 (Se)-쉘 (Ag2Se) 나노입자를 포함하는 슬러리를 비진공 코팅하여 치 밀화된 A(C)IGS계 박막을 제조하는 방법, 이에 의해 제조된 A(C)IGS계 박막 및 이 를 포함하는 탠덤 태양전지에 관한 것이다.
【배경기술】
최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환하는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적인 수명이 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.
태양전지는 광흡수층으로 사용되는 물질에 따라서 다양한 종류로 구분되며, 현재 가장 많이 사용되는 것은 실리콘을 이용한 실리콘 태양전지이다. 그러나 최근 실리콘의 공급부족으로 가격이 급등하면서 박막형 태양전지에 대한 관심이 증가하 고 있다ᅳ 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무게 가 가볍기 때문에 활용범위가 넓다. 이러한 박막형 태양전지의 재료로는 높은 광흡 수 계수를 가지는 CIGS( Copper Indium Galium Selenide)가 각광받고 있다. 이는
CIGS를 박막 태양전지의 제조에 사용함으로써 높은 변환효율을 얻을 수 있기 때문 이다.
한편, CIGS 태양전지의 효율을 더욱더 높이기 위한 방안으로 제시되는 랜덤 (tandem) 구조의 태양전지에 대한 관심이 높아지고 있다. 탠덤 (tandem) 구조의 태 양전지는 단일 셀 CIGS 태양전지 두 개를 적층시킨 복층 구조의 태양전지를 말한 다. 그러나 이러한 탠덤 구조의 태양전지의 경우 하부 셀을 제조한 다음 상부 셀을 그 위에 형성하게 되므로 상부 셀올 형성하는 과정에서 이미 형성된 하부 셀이 손 상되는 문제가 발생하여 기대하는 에너지 변환효율을 얻기 어려운 문제가 있다. 대한민국 공개특허 제 10— 2009— 0065894호에서는 셀 사이에 금속 나노입자 층 올 형성시켜 셀 경계면의 에너지 장벽을 낮추는 탠덤 구조 C I G S 태양전지 제조 방법을 제시하고 있으나 상부 셀을 형성하는 과정에서 이미 형성된 하부 셀이 손상 되는 문제를 해결하는 방법은 개시된 바 없다.
<6> [선행기술문헌] 대한민국 공개특허 제 10-2009ᅳ 0065894호
【발명의 상세한 설명】
【기술적 과제】
<7> 본 발명은 저온에서 짧은 시간 내에 박막을 치밀화 시켜 에너지 변환 효율을 개선할 수 있는 A(C)IGS계 박막의 제조방법을 제공한다.
<8> 또한 본 발명은 상기 방법으로 제조되는 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지를 제공한다.
【기술적 해결방법】
<9> 본 발명에 따른 A(C)IGS계 박막의 제조방법은, 코어 (Se)-쉘 (Ag2Se) 나노입 자, (C)IGS계 원소를 포함하는 다성분계 나노입자, (C)IGS계 원소를 포함하는 용액 전구체, 알코을계 용매 및 바인더를 흔합하여 슬러리를 제조하는 단계 (단계 a); 상 기 슬러리를 비진공 코팅하여 A(C)IGS계 박막을 형성하는 단계 (단계 b); 및 상기 형성된 A(C)IGS계 박막에 셀렌화 열처리하는 단계 (단계 c)를 포함한다.
<ιο> 상기 코어 (Se)-쉘 (Ag2Se) 나노입자는 코어를 구성하는 Se를 Ag2Se로 감싸고 있는 형태로 이루어진 것이다. 상기 다성분계 나노입자는 이성분계, 삼성분계 또는 사성분계 나노입자일 수 있다. 상기 바인더는 킬레이트제 및 비킬레이트제로 구성 된 군으로부터 선택된 하나 이상을 포함할 수 있다.
<ιι> 여기서 A(C)IGS계 박막이란 AIGS(Ag— In-Ga-Se) 또는 ACIGS(Ag-Cu-In— Ga-Se) 박막을 의미하는 것으로 정의한다.
<12>
<13> 술러리 제조단계 (단계 a)
<14> 상기 (C)IGS계 원소를 포함하는 다성분계 나노입자는 Cu-Se 나노입자, In-Se 나노입자, Ga-Se 나노입자, Cu-S 나노입자, In-S 나노입자, Ga-S 나노입자, Cu- In-Se 나노입자, Cu-Ga— Se 나노입자, In-Ga-Se 나노입자, Cu-In— S 나노입자, Cu- Ga-S 나노입자, In-Ga— S 나노입자, Cu-In-Ga-Se 나노입자 및 Cu—In-Ga-S 나노입자 로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있다.
<15> 상기 다성분계 나노입자는 ΙΒ-ΠΙΑᅳ VIA족 화합물 반도체를 구성하는 원소 중 두 가지 성분 이상으로 이루어질 수 있다. 예를 들면, 상기에서 설명한 것같이 Cu- Se, In-Se, Ga-Se, Cu-S, In-S, Ga-S조합의 다성분계 나노입자 등을 들 수 있다. 바람직하게는, Cu-Se는 CuSe, Cu2Se, 또는 Cu2ᅳ xSe(0<x<l)일 수 있고, In_Se는 In2Se3일 수 있고, Ga-Se는 Ga2Se3일 수 있고 Cu-S는 CuS 또는 Cu2-xS(0<x<l)일 수 있 고, In-S는 InS 또는 In2S3일 수 있고, Ga— S는 GaS 또는 Ga2S3일 수 있다. 상기 다성 분계 나노입자에 포함되는 황 (S)은 하기에서 설명하는 셀렌화 열처리 공정에서 셀 레늄 (Se)으로 치환된다. 이에 의해 더욱 치밀한 박막이 형성되게 된다.
<16>
<Π> 상기 다성분계 나노입자는 저온 콜로이달 방법, 용매열 합성법, 마이크로웨이 브법 및 초음파 합성법 중 어느 하나에 의해 제조될 수 있다. 다만 이에 한정되는 것은 아니고 본 발명이 속하는 기술 분야에서 알려진 방법에 따라 제조될 수 있다.
<18>
<19> 상기 용액 전구체는 (C)IGS계 단일원소를 적어도 하나 이상 포함할 수 있다.
<20> 상기 용액 전구체에는 인듐 아세테이트, 갈륨 아세틸 아세토네이트 등이 포함 될 수 있다.
<2i> 상기 용액 전구체는 AIGS 또는 ACIGS 박막을 형성하기 위한 원소를 포함하는 용액을 뜻하고, 상기 다성분계 나노입자에 포함되지 않은 원소를 포함하되, AIGS 또는 ACIGS 박막 구성의 비율에 부합되도록 제조한다. 즉, 나노입자가 Cu-Se이면 용액 전구체는 염화물이나 아세테이트염인 In 전구체와 Ga 전구체를 킬레이트제로 용해시켜 제조한 후 나노입자와 혼합하여 슬러리를 제조한다.
<22>
<23> 상기 알코올계 용매는 에탄올, 메탄올 , 펜탄올, 프로판올 및 부탄올로 이루어 진 군으로부터 선택된 어느 하나 이상을 포함할 수 있다.
<24> 상기 알코올계 용매는 점도 조절에 이용될 수 있다.
<25>
<26> 상기 바인더는 킬레이트제, 비킬레이트제 또는 킬레이트제와 비킬레이트제의 흔합물로 이루어 질 수 있다.
<27> 상기 물질은 그 자체로서 점도를 가지므로 바인더로 사용할 수 있다. 코어
(Se)-쉘 (Ag2Se)나노입자와 이성분계 나노입자를 용액 전구체와 사용하기 위해서는 반드시 바인더를 통해 나노입자와 금속 이은을 결합시켜줘야 하고, 이에 따라 박막 이 치밀화되어 매끄럽게 된다. 또한, 상기 바인더의 슬러리 내 비율은 상기 용액 전구체의 킬레이팅이 가능한 몰비율로 첨가한다
<28> 상기 킬레이트제 (chelating agent)는 모노에탄을아민 (MEA), 디에탄올아민
(DEA) , 트리에탄올아민 (TEA), 에틸렌디아민, 에틸렌디아민아세트산 (EDTA), 니트릴 로트리아세트산 (NTA), 하이드록시에틸렌디아민트리아세트산 (HEDTA), 글리콜 -비스 (2-아미노에틸에테르) -N , N, N ' ,Ν ' -테트라아세트산 (GEDTA), 트리에틸렌테트라아민핵 사아세트산 (ΤΊΉΑ), 하이드록시에틸이미노디아세트산 (HIDA) 및 디하이드록시에틸글 리신 (DHEG)으로 이루어진 군으로부터 선택된 어느 하나 이상을 포함할 수 있다. 다 만 이에 한정되는 것은 아니고 A(C)IGS계 박막을 형성하는 나노입자와 금속이온을 킬레이트하여 화합물을 형성할 수 있는 리간드인 킬레이트제는 본 발명의 범주 내 에서 모두 적용할 수 있다.
<29> 상기 비킬레이트제는 에틸렌글리콜, 프로필렌글리콜, 에틸샐를로오스, 폴리비 닐피를리돈 등에서 선택될 수 있다.
<30> 이때, 상기 슬러리의 농도를 조절하기 위해 A(C)IGS계 화합물 나노입자의 비 을 조절할 수 있고, 상기 슬러리의 점도 및 바인딩 정도를 조절하기 위하여 바인더 물질의 비율을 조절할 수 있다.
<31>
<32> 상기 슬러리는 흔합 및 분산을 위해 초음파 처리하는 단계를 더 포함할 수 있 다.
<33>
<34> A(C)IGS계 박막 형성단계 (단계 b)
<35> 단계 a에서 제조된 슬러리를 기판에 비진공 코팅하여 A(C)IGS계 박막을 형성할 수 있다.
<36>
<37> 일반적으로 공지된 진공증착법에 의해 CIGS 박막 제조시 사용되는 3-단계 동 시증발법 (co-evaporation)에서는 박막을 치밀하게 하기 위해 2 단계에서 Cu와 Se 를 진공 증착하면서 기판온도를 Cu-Se 바이너리가 녹는점 (~533 °C)까지 올려서 플 럭스 (flux)역할을 하게 하여 박막을 치밀화 시킨다. 따라서 이 경우 높은 온도의 공정이 요구되고 상기 Cu-Se 바이너리의 녹는점보다 저온에서는 박막이 형성되지 않거나 형성되어도 치밀하지 않은 박막이 얻어져, CIGS 태양전지로서의 가치를 떨 어뜨릴 수 있다.
<38>
<39> 그러나 본 발명에 따라 코어 (Se)-쉘 (Ag2Se) 나노입자를 이용하여 비진공방법으로 코팅하는 방법을 적용하게 되면 Se 입자가 바이너리나 터너리 화합물 형태가 아닌 Se원소 자체로 계란 노른자처럼 안에 코어로 들어있다가 공정 시작할 때부터 녹아 나오게 되므로 녹는점이 낮은 Se(mp 217 °C)가 플럭스 (flux) 역할을 저온에서 수행 할 수 있게 되어 저온에서 공정이 진행될 수 있다.
<40> 저온에서 박막을 형성하는 경우 특히 하기에서 설명하는 탠덤 태양전지 제조에 매우 유리할 수 있다. 탠덤 태양전지는 복층 구조의 광 흡수층을 포함한다. 죽 상 부 셀 (top cell)과 하부 셀 (bottom cell)을 포함하는 구조로 형성된다. 이때, 상부 샐은 하부 셀이 형성된 다음 그 위에 형성되기 때문에 고온에서 상부 샐을 코팅하 는 경우 하부 셀이 손상되어 태양전지의 효율을 떨어뜨릴 수 있다. 그러나 본 발명 에 따르면 상부 셀을 형성하는 공정을 저온에서 수행할 수 있으므로 하부 셀의 손 상 없이 상부 셀을 형성할 수 있게 된다. 이에 따라 결국 태양전지의 효율을 극대 화할 수 있게 된다.
<4i> 또한 본 발명은 Se 입자 자체가 아닌 Ag2Se가 Se를 감싸고 있는 코어-쉘 구조의 입자를 사용한다. 이는 Se 나노입자 자체가 공기 중에서 산화되어 오히려 녹는점이 높은 산화샐레늄 입자가 되는현상과 공정 중에 Se가 엉겨 붙어 입자가 커지는 현 상이 발생하지 않도록 해주어 매끄럽고 치밀한 박막이 형성될 수 있도록 해준다. <42> 또한 Ag2Se를 이용하여 Se 입자를 코팅하므로 와이드 밴드 갭 물질인 AIGS박 막, ACIGS 박막의 형성도 가능하게 한다. 따라서 본 발명에 따르면 비진공 방식의 와이드 밴드 갭 물질을 제공할 수 있게 된다.
<43>
<44> 상기 단계 b 비진공 코팅은 스프레이법, 초음파 스프레이법, 스핀코팅법, 닥터 블레이드법, 스크린 인쇄법 및 잉크젯 프린팅법으로 이루어진 군에서 선택되는 어 느 하나의 방법으로 수행될 수 있다. 다만 이에 한정되는 것은 아니고 본 발명이 속하는 기술 분야에서 잘 알려진 비진공 코팅법을 모두 적용할 수 있다. 진공방식 의 코팅을 이용하는 경우 설비 투자비가 막대하게 들어가지만, 비진공 방식을 이용 하는 경우 설비 투자비가 작고 공정도 단순하여 제조 비용을 크게 절감할 수 있다.
<45> 상기 코팅 후에 건조하는 단계를 더 포함할 수 있다. 이를 통해, 상기 용매를 제거할 수 있다.
<46> 상기 코팅 및 건조 단계는 순차적으로 반복하여 복수 회 수행할 수 있다. 반복 횟수는 경우에 따라 다르나 2회 내지 3회 수행하는 것이 바람직하다.
<47> 상기 비진공 코팅 및 건조 단계를 반복 수행하여 목적하는 두께의 A(C)IGS계 박막을 형성할 수 있다.
<48>
<49> 셀렌화 열처리 단계 (단계 C)
<50> 상기 단계 b에 의해 형성된 ACC GS계 박막에 대해 샐렌화 열처리 공정을 수행 한다.
<51> 셀렌화 열처리 공정은 비진공 코팅법에서 필수적인 공정으로, 샐레늄 고체에 열을 가해 증발시켜 형성된 샐레늄 증기를 공급하면서, 상기 박막이 형성된 기판의 온도를 높여 수행할 수 있다. 이에 의해, 상기 단계 b를 거친 전구체 박막에 셀렌 화가 이투어지고, 동시에, 박막 내 구조가 최종적으로 치밀화되면서 ACCHGS계 박 막이 완성된다.
<52> 상기 단계 c 셀렌화 열처리 단계는 450~500°C의 기판 온도에서 10~30분간 수행 될 수 있다. 상기 셀렌화 열처리 단계는 기존 기술과 달리 저은에서 짧은 시간 내 에 수행될 수 있다. 상기 범위로 공정을 진행할 때 가장 치밀한 박막 구조를 형성 할 수 있고 결과적으로 이러한 치밀한 구조의 박막을 태양전지에 이용하는 경우 에 너지 변환 효율을 극대화할 수 있게 된다.
<53>
<54> 또한, 본 발명에 따르면,
<55> 탠덤 태양전지의 광흡수층으로 이용되는 A(C)IGS계 박막으로서,
<56> 상기 A(C)IGS계 박막은 코어 (Se)-쉘 (Ag2Se) 나노입자, (C)IGS계 원소를 포함하 는 다성분계 나노입자, (C)IGS계 원소를 포함하는 용액 전구체, 알코을계 용매 및 바인더를 포함하는 슬러리로 코팅되고,
<57> 상기 코어 (Se)-쉘 (Ag2Se) 나노입자는 코어를 구성하는 Se를 Ag2Se로 감싸고 있 는 형태로 이루어지고,
<58> 상기 다성분계 나노입자는 이성분계, 삼성분계 또는 사성분계 나노입자이고,
<59> 상기 바인더는 킬레이트제 및 비킬레이트제로 구성된 군으로부터 선택된 하나 이상을 포함하는 것을 특징으로 하는 A(C)IGS계 박막을 제공할 수 있다.
<60>
<6i> 상기 A(C)IGS계 박막은 탠덤 태양전지를 구성하는 상부 샐 (top cell)에 이용될 수 있다.
<62>
<63> 또한 본 발명에 따르면,
<64> A(C)IGS계 박막을 광흡수층인 상부 샐 (top cell)에 이용하는 탠덤 태양전지로 서,
<65> 상기 A(C)IGS계 박막은 코어 (Se)-쉘 (Ag2Se)나노입자, (C)IGS계 원소를 포함하는 다성분계 나노입자, (C)IGS계 원소를 포함하는 용액 전구체, 알코을계 용매 및 바 인더를 포함하는 슬러리로 코팅되고,
상기 코어 (Se)-쉘 (Ag2Se)나노입자는 코어를 구성하는 Se를 Ag2Se로 감싸고 있는 형태로 이루어지고,
상기 다성분계 나노입자는 이성분계, 삼성분계 또는 사성분계 나노입자이고, 상기 바인더는 킬레이트제 및 비킬레이트제로 구성된 군으로부터 선택된 하나 이상을 포함하는 것을 특징으로 하는 탠덤 태양전지를 제공할 수 있다.
【유리한 효과】
본 발명에 따르면, 코어 (Se)-쉘 (Ag2Se) 나노입자를 (C)IGS계 박막 제조에 적 용하므로 Ag가 포함된 A(C)IGS계 박막을 제조함으로써 와이드 밴드 갭 A(C)IGS계 박막을 제공할 수 있다. 또한 Se 입자가 바이너리나 터너리 화합물 형태가 아니라 계란 노른자처럼 코어로 안에 들어있다가 공정이 시작되면서부터 녹아 나오게 되어 낮은 공정온도에서 박막을 제조할 수 있다. 그리고 상기 Se는 Ag2Se로 코팅되어 있 어 공기 중에서 산화되거나 Se 입자가 서로 엉겨 붙어 입자가 커지게 되는 문제를 개선할 수 있다.
또한 박막 제조시 비진공 방법으로 코팅하므로 설비 투자비가 거의 없어 가 격경쟁력도 우수하여 상용화에 유리하다.
【도면의 간단한 설명】
도 1은 제조예 7에 따른 코어 (Se)-쉘 (Ag2Se) 나노입자의 모식도이다. 도 2는 제조예 7에 따른 코어 (Se)-쉘 (Ag2Se) 나노입자의 SEM이미지이다. 도 3은 제조예 7에 따른 코어 (Se)-쉘 (Ag2Se) 나노입자의 XRD 분석결과이다. 도 4는 실시예 1에 따른 ACIGS 박막의 표면 이미지이다. (셀렌화 열처리 수 행 전)
도 5는 실시예 1에 따라 셀렌화 열처리를 수행한 ACIGS 박막의 표면 이미지 이다.
도 6은 실시예 2에 따른 ACIGS 박막의 표면 이미지이다.
도 7은 실시예 3에 따른 ACIGS 박막의 표면 이미지이다.
[부호의 설명]
10: 셀레늄 (Se)
20: 셀렌화은 (Ag2Se) 【발명의 실시를 위한 형태】
<82> 이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 본 발명의 목적 , 특징, 장점은 이하의 실시예를 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되 는 실시예로 한정되지 않고 다를 형태로 구체화될 수 있다. 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술분 야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하 기 위해 제공되는 것이다. 따라서 이하의 실시예에 의하여 본 발명이 제한되어서는 안된다.
<83>
<84> 제조예 1: Cu-Se 이성분계 나노입자의 제조
<85> 글로브 박스 내에서 Cul 7.618 g을 증류된 피리딘 용매 60 ^와 흔합하고, 이를 증류된 메탄올 40 m.e에 녹아있는 Na2Se 3.1216 g와 흔합시켰다. 이는 원자비로
Cu : Se = 1 : 1에 해당하며 , 그 후 메탄을 /피리딘 흔합물을 O'C 아이스 배스 안에 서 기계적으로 교반하면서 7분 동안 반웅시켜 Cu-Se 나노입자를 포함하는 콜로이드 를 합성하였다. 상기 콜로이드를 10000 rpiii으로 약 10분간 원심분리 후 1분간 초음 파 처리를 하고 증류된 메탄을로 세척하였다. 이러한 과정을 반복하여 생산물 안의 부산물 및 피리딘을 완전히 제거하여 고 순도의 Cu-Se 이성분계 나노입자를 합성하 였다.
<86>
<87> 제조예 2: Inᅳ Se 이성분계 나노입자의 제조
<88> 글로브 박스 내에서 Inl3 4.9553 g올 증류된 테트라하이드로퓨란 용매 30 n 와 흔합하고, 이를 증류된 메탄을 20 ^에 녹아있는 N Se 1.874 g와 흔합시켰다. 이는 원자비로 In : Se = 2 : 3에 해당하며, 그 후 메탄을 /피리딘 흔합물을 0°C 아 이스 배스 안에서 기계적으로 교반하면서 7분 동안 반웅시켜 In-Se 나노입자를 포 함하는 콜로이드를 합성하였다. 상기 콜로이드를 10000 rpm으로 약 10분간 원심분 리 후 1분간 초음파 처리를 하고 증류된 메탄올로 세척하였다. 이러한 과정올 반복 하여 생산물 안의 부산물 및 피리딘을 완전히 제거하여 고 순도의 In-Se 이성분계 나노입자를 합성하였다.
<89>
<90> 제조예 3: Ga-Se 이성분계 나노입자의 제조
<9i> 글로브 박스 내에서 Gal3 4.5044 g을 증류된 테트라하이드로퓨란 용매 30 mi 와 흔합하고, 이를 증류된 메탄을 20 에 녹아있는 Na2Se 1.874 g와 흔합시켰다. 이는 원자비로 Ga : Se = 2 : 3에 해당하며, 그 후 메탄을 /피리딘 흔합물을 0°C 아 이스 배스 안에서 기계적으로 교반하면서 7분 동안 반웅시켜 Ga-Se 나노입자를 포 함하는 콜로이드를 합성하였다. 상기 콜로이드를 10000 rpm으로 약 10분간 원심분 리 후 1분간 초음파 처리를 하고 증류된 메탄올로 세척하였다. 이러한 과정을 반복 하여 생산물 안의 부산물 및 피리딘을 완전히 제거하여 고 순도의 Ga-Se 이성분계 나노입자를 합성하였다.
<92>
<93> 제조예 4: In-S 이성분계 나노입자의 제조
<94> 글로브 박스 내에서 Inl3 4.9553 g을 증류된 테트라하이드로퓨란 용매 30 n 와 흔합하고, 이를 증류된 메탄올 20 ni.e에 녹아있는 Na2S 1.874 g와 흔합시켰다. 이 는 원자비로 In : S = 2 : 3에 해당하며, 그 후 메탄을 /피리딘 흔합물을 0°C 아이 스 배스 안에서 기계적으로 교반하면서 7분 동안 반웅시켜 In-S 나노입자를 포함하 는 콜로이드를 합성하였다. 상기 콜로이드를 10000 rpm으로 약 10분간 원심분리 후 1분간 초음파 처리를 하고 증류된 메탄을로 세척하였다. 이러한 과정을 반복하여 생산물 안의 부산물 및 피리딘을 완전히 제거하여 고 순도의 In-S 이성분계 나노입 자를 합성하였다.
<95>
<96> 제조예 5: Cu-In-Se삼성분계 나노입자의 제조
<97> 글로브 박스 내에서 Cul 0.343 g, Inl30.991g 을 증류된 피리딘 용매 30 와 흔합하고 이를 50°C의 핫 플레이트 위에서 약 10 분간 교반하였다. 약 10 분간 의 교반 후 불투명하던 용액이 투명해지는 것을 확인하였다. 이러한 Cu, In 흔합물 을 증류된 메탄을 20 ηι£ 안에 녹아있는 Na2Se 0.5 g와 흔합시켰다. 이는 원자비로
Cu : In : Se = 0.9 : 1 : 2에 해당하며, 그 후 메탄을 /피리딘 흔합물을 0°C 아이 스 배스 안에서 기계적으로 교반하면서 1분 동안 반웅시켜 CIS 나노 입자를 합성하 였다. 합성된 CIS 콜로이드를 4000 rpm으로 약 30 분간 원심분리 후 5 분간 초음파 처리를 하고 증류된 메탄올로 세척하였고 이러한 과정을 반복하여 생산물안의 부산 물 및 피리딘을 완전히 제거하여 고순도의 CIS 화합물 나노입자를 합성하였다.
<98>
<99> 제조예 6: Cu-In-Ga-Se사성분계 나노입자의 제조
<ιοο> 글로브 박스 내에서 Cul 0.343 g, Inl30.674 g, Gal30.207 g을 증류된 피리 딘 용매 30 와 흔합하고 이를 80°C의 핫 플레이트 위에서 약 10 분간 교반하였 다. 약 10 분간의 교반 후 불투명하던 용액이 투명해지는 것을 확인하였다. 이러한 Cu, In, Ga 흔합물올 증류된 메탄올 20 mi 안에 녹아있는 Na2Se 0.478 g와 흔합시켰 다. 이는 원자비로 Cu : In : Ga : Se = 0.9 : 0.68 : 0.23 : 1.91에 해당하며, 그 후 메탄올 /피리딘 흔합물을 0°C 아이스 배스 안에서 기계적으로 교반하면서 60분 동안 반웅시켜 CIGS 나노 입자를 합성하였다. 합성된 CIGS 콜로이드를 4000 rpm으 로 약 30 분간 원심분리 후 5 분간 초음파 처리를 하고 증류된 메탄올로 세척하였 고 이러한 과정을 반복하여 생산물 안의 부산물 및 피리딘올 완전히 제거하여 고순 도의 사성분계 CIGS 나노입자를 합성하였다.
<101>
<102> 제조예 7: 코어 (Se)-쉘 (Ag2Se) 나노입자 합성
<103> 아샐렌산 (selenious acid, H2Se03 , 99.999%), 하이드라진 모노하이드레이트
(hydrazine monohydrate, N2H4 - H20, 98%) , 폴리 (비닐 피돌리돈) (polyCvinyl pyrrol i done), PVP, MW = 55000은 Aldrich 社에서 구매하였다. 에틸렌 글리콜 (H0C¾CH20H; EG; 99.9%)은 Fluka 社에서 구매하였다. 에틸렌 글리콜 (EG, 20 mL,
0.7 M)를 용매로 한 하이드라진 하이드레이트 용액이 들어있는 250 mL 둥근 바닥 폴라스크에 에틸렌 글리콜 80 mL을 첨가한 후 워터 배스 (water bath)에서 15 ~ 20 °C를 유지하였다. 자석교반장치로 10분간 교반한 후 아샐렌산 용액 20 mL(0.07 M, 용매: 에틸렌 글리콜)을 첨가한 다음 1시간 동안 반응을 진행시켰다. 그 다음 PVP 용액 (PVP 2.4 g, EG 80 mL)을 첨가시켰다. 진공증류기에서 하이드라진을 완전히 제 거한 후 AgN03 용액 (AgN030.1 g, EG 1.5 mL) 10분 동안 한 방울씩 떨어뜨렸고 이에 의해 밝은 적색에서 어두운 갈색으로 색변화를 나타내었다. 2시간 동안 반웅을 진 행시키고 나서 이 흔합물에 물 210 mL을 첨가하고 코어쉘 입자를 원심분리 하였다. 그 다음 EG와 과잉의 PVP 제거를 위하여 물로 4번 세척하였다. 그 후 외기 조건 (ambient conditions) 하에서 증발 공정에 의하여 건조시켜 코어 (Se)ᅳ쉘 (Ag2Se) 나 노입자를 합성하였다. (도 1 참조)
<104>
<ιο5> 실시예 1: ACIGS 박막 제조
<106> 제조예 7에서 제조된 코어 (Se)-쉘 (Ag2Se)나노입자 0.0758g, 제조예 4에서 제조된
In-S 나노입자 0.11233gᅳ 제조예 1에서 제조된 Cu_Se 나노입자 0.0328gᅳ 메탄을 1.9571g, MEA를 용매로 한 Ga용액 전구체 갈륨 아세틸 아세토네이트 0.0856g, MEA( 바인더) 0.1391g을 흔합한 후, 초음파 처리를 60분간 수행하여 ACIGS 슬러리를 제 조하였다. 이때, 점도 조절올 위해 메탄올의 양은 조절될 수 있다.
<107> 이후, 제조한 슬러리를 Mo 박막이 증착된 소다라임 유리기판상에 닥터 블레이 드 코팅법을 사용하여 코팅하였다. 이때, 기판과 블레이드의 높이를 50 마이크로 미터로 설정 후 코팅하였다. 용매와 바인더 제거를 위해 핫 플레이트 (hot plate) 위에서 3단계 건조를 실시하였다. (1단계: 80°C 5분, 2단계: 120°C 5분, 3단계: 200 °C 5분) 다만 용매와 바인더의 제거가 가능하다면 다른 은도 조건도 가능할 수 있다. 상기 코팅—건조 공정을 3회 반복하여 0.509 卿의 두께를 갖는 전구체 박막을 형성하였다.
<108> 마지막으로, 기판 은도 450°C에서 Se 증기를 공급하면서 15분간 셀렌화
(selenization) 열처리하여 ACIGS 박막을 제조하였다.
<109>
<ιιο> 실시예 2
<πι> 기판 온도 530°C에서 Se 증기를 공급하면서 60분간 셀렌화하여 열처리 단계 만 상이하게 하고 나머지 조건은 실시예 1과 동일조건으로 하여 ACIGS 박막을 제조 하였다.
<112>
<113> · 실시예 3
<Π4> 기판 은도 530°C에서 Se 증기를 공급하면서 10분간 셀렌화하여 열처리 단계 만 상이하게 하고 나머지 조건은 실시예 1과 동일조건으로 하여 ACIGS 박막을 제조 하였다.
<115>
<ιΐ6> 실시예 4: AIGS 박막 제조
<Π7> 제조예 7에서 제조된 코어 (Se)-쉘 (Ag2Se)나노입자 0.1050g, 제조예 4에서 제조된
In-S 나노입자 0.1470g, 메탄올 1.3708g, MEA를 용매로 한 Ga용액 전구체 갈륨 아 세틸 아세토네이트 0.1405g, MEA (바인더) 0.1928g을 흔합한 후, 초음파 처리를 60 분간 수행하여 AIGS 슬러리를 제조하였다. 다만 점도 조절을 위해 메탄올의 양은 조절될 수 있다ᅳ
<>18> 이후, 제조한 슬러리를 Mo 박막이 증착된 소다라임 유리기판상에 닥터 블레이 드 코팅법을 사용하여 코팅하였다. 이때, 기판과 블레이드의 높이를 50 마이크로 미터로 설정 후 코팅하였다. 용매와 바인더 제거를 위해 핫 플레아트 (hot plate) 위에서 3단계 건조를 실시하였다. (1단계: 80°C 5분, 2단계: 120°C 5분, 3단계:
200 °C 5분) 다만 용매와 바인더의 제거가 가능하다면 다른 온도 조건도 가능할 수 있다. 상기 코팅 -건조 공정을 3회 반복하여 0.787 의 두께를 갖는 전구체 박막을 형성하였다.
<Π9> 마지막으로, 기판 온도 45CTC에서 Se 증기를 공급하면서 15분간 셀렌화
(selenization) 열처리하여 AIGS 박막을 제조하였다.
<120>
<i2i> 실험예 1: SEM 이미지 분석
<122> 제조예 7에 따른 코어 (Se)-쉘 (Ag2Se) 나노입자를 주사전자현미경으로 분석하 여 그 결과를 도 2에 나타내었다. 입자 크기 (size)가 370~380nm로 균일 코어-쉘 입 자가 형성되었음 확인할 수 있다.
<123>
<124> 실험예 2: XRD분석
<125> 제조예 7에 따른 코어 (Se)-쉘 (Ag2Se) 나노입자를 X선 회절 분석기로 분석하여 그 결과를 도 3에 나타내었다. Se와 Ag2Se 피크가 발견된 것으로 보아 바이너리 나 노입자가 아닌 Se 자체가 확실히 존재함을 알 수 있다. 상기 코어 (Se)-쉘 (Ag2Se) 나 노입자는 Se 입자가 바이너리나 터너리 화합물 형태가 아닌 Se원소 자체로 안쪽에 코어로 들어있다가 공정 시작할 때부터 녹아 나오기 때문에 상기 코어 (Se)-쉘 (Ag2Se) 나노입자를 이용하면 낮은 공정온도에서 반웅을 진행시킬 수 있게 된다.
<126>
<|27> 실험예 3: ACIGS 박막 표면 특성 비교
<128> 도 4(셀렌화 열처리 단계 수행 전) 및 도 5(셀렌화 열처리 단계 수행 후)는 실시예 1에 따라 제조된 ACIGS 박막, 도 6은 실시예 2에 따라 제조된 ACIGS 박막, 도 7은 실시예 3에 따라 제조된 ACIGS 박막의 표면 이미지를 나타낸 것이다. 실시 예 1에 따라 450°C에서 15분간 셀렌화 열처리를 수행한 경우의 박막 (도 5)이 가장 치밀하게 잘 형성되었음을 확인할 수 있다.

Claims

【청구의 범위】
【청구항 1】
코어 (Se)-쉘 (Ag2Se) 나노입자, (C)IGS계 원소를 포함하는 다성분계 나노입 자, (C)IGS계 원소를 포함하는 용액 전구체, 알코올계 용매 및 바인더를 흔합하여 술러리를 제조하는 단계 (단계 a);
상기 슬러리를 비진공 코팅하여 A(C)IGS계 박막을 형성하는 단계 (단계 b); 상기 형성된 A(C)IGS계 박막에 샐렌화 열처리하는 단계 (단계 c)를 포함하되, 상기 코어 (Se)-쉘 (Ag2Se) 나노입자는 코어를 구성하는 Se를 Ag2Se로 감싸고 있는 형태로 이루어진 것이고,
상기 다성분계 나노입자는 이성분계, 삼성분계 또는 사성분계 나노입자이고, 상기 바인더는 킬레이트제 및 비킬레이트제로 구성된 군으로부터 선택된 하 나 이상을 포함하는 것을 특징으로 하는 A(C)IGS계 박막의 제조방법 .
【청구항 2]
청구항 1에 있어서,
상기 다성분계 나노입자는 Cu-Se 나노입자, In-Se 나노입자, Ga-Se 나노입 자, Cu-S 나노입자, In-S 나노입자, Ga-S 나노입자, Cu- In-Se 나노입자, Cu-Ga-Se 나노입자, In-Ga-Se 나노입자, Cu-In-S 나노입자, Cu-Ga-S 나노입자, In-Ga-S 나노 입자, Cu-In-Ga-Se 나노입자 및 Cu-In-Ga-S 나노입자로 이루어지는 군으로부터 선 택되는 하나 이상을 포함하는 것을 특징으로 하는 A(C)IGS계 박막의 제조방법.
【청구항 3]
청구항 1에 있어서,
상기 다성분계 나노입자는 저은 콜로이달 방법, 용매열 합성법, 마이크로웨 이브법 및 초음파 합성법 중 어느 하나에 의해 제조된 것을 특징으로 하는 ACOIGS 계 박막의 제조방법 .
【청구항 4]
청구항 1에 있어서,
상기 용액 전구체는 상기 다성분계 나노입자에 포함되지 않은 (OIGS계 단일 원소를 적어도 하나 이상 포함하는 것을 특징으로 하는 A(C)IGS계 박막의 제조방
I컴
【청구항 5】
청구항 1에 있어서, 상기 용액 전구체는 인듐 아세테이트 및 갈륨 아세틸 아세토네이트로 이루어 진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는 A(C)IGS계 박막의 제 조방법 .
【청구항 6】
청구항 1에 있어서,
상기 알코을계 용매는 에탄을, 메탄올, 펜탄을, 프로판을 및 부탄올로 이루 어진 군으로부터 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 A(C)IGS계 박막의 제조방법 .
【청구항 7]
청구항 1에 있어서,
상기 킬레이트제는 모노에탄올아민 (MEA), 디에탄을아민 (DEA), 트리에탄을아 민 (TEA), 에틸렌디아민, 에틸렌디아민아세트산 (EDTA), 니트릴로트리아세트산 (NTA), 하이드록시에틸렌디아민트리아세트산 ( HEDTA ), 글리콜 -비스 ( 2-아미노에틸에테르) - Ν,Ν,Ν' ,Ν'-테트라아세트산 (GEDTA), 트리에틸렌테트라아민핵사아세트산 (TTHA), 하이 드록시에틸이미노디아세트산 (HIDA) 및 디하이드록시에틸글리신 (DHEG)으로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 A(C)IGS계 박막 의 제조방법.
【청구항 8】
청구항 1에 있어서,
상기 비킬레이트제는 에틸렌글리콜, 프로필렌글리콜, 에틸셀를로오스 및 폴 리비닐피롤리돈으로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 A(C)IGS계 박막의 제조방법 .
【청구항 9】
청구항 1에 있어서,
상기 단계 a는 슬러리 성분이 흔합 및 분산되도록 초음파 처리하는 단계를 더 포함하는 것을 특징으로 하는 A(C)IGS계 박막의 제조방법 .
【청구항 10]
청구항 1에 있어서,
상기 단계 b 비진공 코팅은 스프레이법, 초음파 스프레이법, 스핀코팅법, 닥 터블레이드법, 스크린 인쇄법 및 잉크젯 프린팅법으로 이루어진 군에서 선택되는 어느 하나의 방법으로 수행되는 것을 특징으로 하는 A(C)IGS계 박막의 제조방법 .
【청구항 11】 청구항 1에 있어서,
상기 단계 b는 코팅 후 건조하는 단계를 더 포함하는 것을 특징으로 하는 ACCHGS계 박막의 제조방법 .
【청구항 12】
청구항 1에 있어서,
상기 단계 b는 코팅 및 건조 단계를 순차적으로 반복하여 복수 회 수행하는 것을 특징으로 하는 A(C)IGS계 박막의 제조방법.
【청구항 13]
청구항 1에 있어서,
상기 단계 c는 450~500°C의 기판 온도에서 10~30분간 수행되는 것을 특징으 로 하는 ACOIGS계 박막의 제조방법 .
【청구항 14]
탠덤 태양전지의 광흡수층으로 이용되는 ACCHGS계 박막으로서,
상기 ACCHGS계 박막은 코어 (Se)-쉘 (Ag2Se) 나노입자, (C)IGS계 원소를 포함 하는 다성분계 나노입자, (CHGS계 원소를 포함하는 용액 전구체, 알코을계 용매 및 바인더를 포함하는 슬러리로 코팅되고,
상기 코어 (Se)-쉘 (Ag2Se) 나노입자는 코어를 구성하는 Se를 Ag2Se로 감싸고 있는 형태로 이루어지고,
상기 다성분계 나노입자는 이성분계, 삼성분계 또는 사성분계 나노입자이고, 상기 바인더는 킬레이트제 및 비킬레이트제로 구성된 군으로부터 선택된 하 나 이상을 포함하는 것을 특징으로 하는 A(C)IGS계 박막.
【청구항 15]
청구항 14에 있어서,
상기 A(C)IGS계 박막은 탠¾ 태양전지를 구성하는 상부 셀 (top cell)에 이용 되는 것올 특징으로 하는 ACOIGS계 박막.
【청구항 16】
A(C)IGS계 박막을 광흡수층인 상부 셀 (top cell)에 이용하는 탠덤 태양전지 로서 ,
상기 A(C)IGS계 박막은 코어 (Se)_쉘 (Ag2Se)나노입자, (C)IGS계 원소를 포함 하는 다성분계 나노입자, (C)IGS계 원소를 포함하는 용액 전구체, 알코을계 용매 및 바인더를 포함하는 슬러리로 코팅되고, 상기 코어 (Se)-쉘 (Ag2Se)나노입자는 코어를 구성하는 Se를 Ag2Se로 감싸고 있는 형 태로 이루어지고,
상기 다성분계 나노입자는 이성분계, 삼성분계 또는 사성분계 나노입자이고 , 상기 바인더는 킬레이트제 및 비 킬레이트제로 구성된 군으로부터 선택된 하 나 이상을 포함하는 것을 특징으로 하는 탠덤 태양전지 .
PCT/KR2013/007946 2012-12-21 2013-09-03 코어 (Se)-쉘 (Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지 WO2014098350A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/412,055 US9634162B2 (en) 2012-12-21 2013-09-03 Method of fabricating A(C)IGS based thin film using Se-Ag2Se core-shell nanoparticles, A(C)IGS based thin film fabricated by the same, and tandem solar cells including the A(C)IGS based thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120150680A KR101352861B1 (ko) 2012-12-21 2012-12-21 코어(Se)-쉘(Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지
KR10-2012-0150680 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014098350A1 true WO2014098350A1 (ko) 2014-06-26

Family

ID=50269378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007946 WO2014098350A1 (ko) 2012-12-21 2013-09-03 코어 (Se)-쉘 (Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지

Country Status (3)

Country Link
US (1) US9634162B2 (ko)
KR (1) KR101352861B1 (ko)
WO (1) WO2014098350A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734362B1 (ko) 2015-10-30 2017-05-12 한국에너지기술연구원 Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
CN109285900B (zh) * 2018-10-31 2020-06-05 东北林业大学 二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用
CN110015645A (zh) * 2019-05-13 2019-07-16 东华大学 一种自支撑网格状Cu2-xSe纳米材料的制备方法
WO2020257510A1 (en) 2019-06-20 2020-12-24 Nanosys, Inc. Bright silver based quaternary nanostructures
CN111346651B (zh) * 2020-04-08 2022-09-30 中国科学技术大学 一种具有图灵结构的硒化银-二硒化钴复合材料、其制备方法及应用
CN111864045A (zh) * 2020-06-30 2020-10-30 同济大学 一种制备高性能聚乙烯吡咯烷酮/硒化银/尼龙柔性复合热电薄膜的方法
US11407940B2 (en) 2020-12-22 2022-08-09 Nanosys, Inc. Films comprising bright silver based quaternary nanostructures
US11926776B2 (en) 2020-12-22 2024-03-12 Shoei Chemical Inc. Films comprising bright silver based quaternary nanostructures
US11360250B1 (en) 2021-04-01 2022-06-14 Nanosys, Inc. Stable AIGS films

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242033A1 (en) * 2006-07-24 2009-10-01 Seok-Hyun Yoon Method For Preparing Cis Compounds and Thin Layer, and Solar Cell Having Cis Compound Thin Layer
US20110139251A1 (en) * 2006-06-12 2011-06-16 Robinson Matthew R Bandgap grading in thin-film devices via solid group iiia particles
WO2012066386A1 (en) * 2010-11-18 2012-05-24 Robert Bosch (Sea) Pte. Ltd. A photovoltaic device and method for the production of a photovoltaic device
WO2012075267A1 (en) * 2010-12-03 2012-06-07 E. I. Du Pont De Nemours And Company Inks and processes for preparing copper indium gallium sulfide/selenide coatings and films
US20120168910A1 (en) * 2011-01-05 2012-07-05 Jackrel David B Multi-nary group ib and via based semiconductor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412150B1 (ko) 2007-12-18 2014-06-26 엘지전자 주식회사 탠덤 구조 cigs 태양전지 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110139251A1 (en) * 2006-06-12 2011-06-16 Robinson Matthew R Bandgap grading in thin-film devices via solid group iiia particles
US20090242033A1 (en) * 2006-07-24 2009-10-01 Seok-Hyun Yoon Method For Preparing Cis Compounds and Thin Layer, and Solar Cell Having Cis Compound Thin Layer
WO2012066386A1 (en) * 2010-11-18 2012-05-24 Robert Bosch (Sea) Pte. Ltd. A photovoltaic device and method for the production of a photovoltaic device
WO2012075267A1 (en) * 2010-12-03 2012-06-07 E. I. Du Pont De Nemours And Company Inks and processes for preparing copper indium gallium sulfide/selenide coatings and films
US20120168910A1 (en) * 2011-01-05 2012-07-05 Jackrel David B Multi-nary group ib and via based semiconductor

Also Published As

Publication number Publication date
KR101352861B1 (ko) 2014-02-18
US20150287854A1 (en) 2015-10-08
US9634162B2 (en) 2017-04-25

Similar Documents

Publication Publication Date Title
KR101352861B1 (ko) 코어(Se)-쉘(Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지
KR101129194B1 (ko) 고밀도를 갖는 태양전지용 cis계 화합물 박막의 제조방법 및 상기 cis계 화합물 박막을 이용한 박막 태양전지의 제조방법
EP1922761B1 (en) Process for preparation of absorption layer of solar cell
JP2012515708A (ja) CuInS2ナノ粒子を含む前駆体層のセレン化
JP6302546B2 (ja) 高いクラックフリー限界を有するcigsナノ粒子インキ調製物
CN103534818B (zh) 具有高密度的cis系列薄膜的制造方法
KR101388451B1 (ko) 탄소층이 감소한 ci(g)s계 박막의 제조방법, 이에 의해 제조된 박막 및 이를 포함하는 태양전지
US9496449B2 (en) Method for manufacturing CI(G)S-based thin film comprising Cu-Se thin film using Cu-Se two-component nanoparticle flux, and CI(G)S-based thin film manufactured by the method
KR101192289B1 (ko) 이성분계 나노입자 하이브리드 방법을 이용한 ci(g)s계 박막의 제조방법 및 그 방법에 의해 제조된 ci(g)s계 박막
TWI589008B (zh) 用於製造太陽能電池光吸收層之積聚前驅物及其製造方法、墨液組成物及利用此墨液組成物製造薄膜之方法、薄膜及太陽能電池
WO2013008512A1 (ja) 化合物半導体太陽電池材料およびそれを用いた太陽電池
KR101369167B1 (ko) 이성분계 나노입자를 포함하는 슬러리의 숙성 단계가 도입된 ci(g)s계 박막의 제조방법 및 그 방법에 의해 제조된 ci(g)s계 박막
KR101137434B1 (ko) 급속열처리 공정을 사용한 cis계 화합물 박막의 제조방법 및 상기 cis계 화합물 박막을 이용한 박막 태양전지의 제조방법
EP2811538B1 (en) Method for manufacturing photovoltaic ci(g)s-based thin film using flux having low melting point
KR20120131535A (ko) CIGS/CIS 나노입자의 셀렌화에 의한 치밀한 CIGSe/CISe 박막 제조방법
TWI675890B (zh) 具有高無裂縫限度之cigs奈米粒子墨水調配物
WO2015030275A1 (ko) 이성분계 나노입자를 포함하는 슬러리의 숙성 단계가 도입된 ci(g)s계 박막의 제조방법 및 그 방법에 의해 제조된 ci(g)s계 박막
JP2015142097A (ja) 半導体層形成用塗工液、その製造方法、半導体層の製造方法及び太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14412055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865945

Country of ref document: EP

Kind code of ref document: A1