CN109285900B - 二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用 - Google Patents

二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用 Download PDF

Info

Publication number
CN109285900B
CN109285900B CN201811292091.5A CN201811292091A CN109285900B CN 109285900 B CN109285900 B CN 109285900B CN 201811292091 A CN201811292091 A CN 201811292091A CN 109285900 B CN109285900 B CN 109285900B
Authority
CN
China
Prior art keywords
alloy
dimensional
substrate
preparation
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811292091.5A
Other languages
English (en)
Other versions
CN109285900A (zh
Inventor
冯伟
于苗苗
秦芳璐
刘赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Forestry University
Original Assignee
Northeast Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Forestry University filed Critical Northeast Forestry University
Priority to CN201811292091.5A priority Critical patent/CN109285900B/zh
Publication of CN109285900A publication Critical patent/CN109285900A/zh
Application granted granted Critical
Publication of CN109285900B publication Critical patent/CN109285900B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种二维Ca1‑xInxSe合金及其制备方法及在制备光电探测中的应用,属于材料制备技术及高性能可见‑近红外光电探测器领域;合金的制备方法为:将硒粉和铟镓共熔合金放入石英舟中,抽真空,升温后保温,降温得块体合金材料;将SiO2/Si基底进行预处理;透明胶带粘贴块体合金材料,然后粘贴在处理后的基底上,浸泡在丙酮中,取出基底即可在其表面获得随机分布的二维Ca1‑xInxSe合金。制备的二维合金用于制备光电探测器,在可见‑近红外光照射下电流显著增加,合金具有很好的光电探测性能,光响应值高达应变系数高达258A/W,是GaSe光响应值的92倍。

Description

二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用
技术领域
本发明属于材料制备技术及高性能可见-近红外光电探测器领域;具体涉及二维Ga1-xInxSe合金及其制备方法与在制备光电探测器中的应用。
背景技术
二维GaSe是较好的非线性光学材料,在新一代纳米光电器件领域具有较好的应用前景。然而由于GaSe具有较大的间接带隙结构,导致目前二维GaSe的光响应值较低、光电探测范围较小。
为了拓展半导体材料的应用范围,合金工程是一种有效调控半导体材料的能带结构和光电性能的手段。目前能带工程在三维块体材料、零维和一维纳米材料得到了广泛的应用,并取得了显著的成果。在二维纳米材料领域,合金工程应用主要集中在过度金属硫化物(如 MoS2等),III-VI族体系没有得到开发。
发明内容
本发明为解决现有二维GaSe光电探测器的光探测性能低和探测范围小的问题,而提供了一种二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用
本发明以硒粉和铟镓共熔合金为原料制备了块体Ga1-xInxSe合金材料,采用机械剥离制备了二维Ga1-xInxSe合金,并构筑了光电探测器。
首先,本发明提供一种二维Ga1-xInxSe合金的制备方法,技术方案如下:
步骤一、将硒粉和铟镓共熔合金放入石英舟中,然后将石英舟放入管式炉并将管式炉抽真空,并通入保护气体,一次升温后进行一次保温一段时间,然后二次升温,再二次保温一段时间,降温至室温,制得块体Ga1-xInxSe合金材料;
步骤二、将SiO2/Si基底进行预处理;
步骤三、用透明胶带反复粘贴块体Ga1-xInxSe合金材料,然后将透明胶带粘贴在经步骤一处理后的SiO2/Si基底上,撕去透明胶带后,将SiO2/Si基底浸泡在丙酮中,取出SiO2/Si 基底即可在其表面获得随机分布的二维Ga1-xInxSe合金。
其中0<x<1。
所述硒粉的纯度为99.99(wt.)%以上。
所述铟镓共熔合金中,镓质量为镓、铟质量之和的75.5%,铟质量为镓、铟质量之和的24.5%;合金纯度为99.99(wt.)%以上。
步骤一中硒的物质的量和铟、镓的物质的量之和的比为(1.1-1.2):1。
所述保护气体为氩气,步骤一中Ar的流量为20-100sccm。
步骤一中抽真空真空度为50-100Torr。
步骤一中所述一次升温及二次升温的升温速度均为20-40℃/min。
步骤一中所述一次升温,升温至300℃;所述一次保温,保温时间为60-120min。
步骤一中所述二次升温,升温至960℃;所述二次保温,保持时间为120-180min。
步骤一中所述降温,降温速度为50-100℃/min。
步骤二中,所述SiO2/Si基底厚度为300nm。所述SiO2/Si基底预处理方法具体为:将SiO2/Si基底浸泡在浓硫酸/双氧水混合溶液中,然后取出,依次浸入异丙醇、丙酮、乙醇和超纯水中超声处理,用氮气吹干,待用。所述超声处理的实质是进行超声清洗,超声频率10KHz以上即可。所述浸泡,温度为83℃,浸泡时间为20-40min。所述浓硫酸/双氧水混合溶液,其中浓硫酸为质量分数97%以上的硫酸水溶液,双氧水为质量分数35%的过氧化氢水溶液,所述混合溶液中,浓硫酸与双氧水的体积比为3:1。
步骤三中,所述反复粘贴块体Ga1-xInxSe合金材料,指将透明胶带粘贴在块体Ga1-xInxSe合金材料表面,然后将透明胶带取下,重复上述操作4-9次,每次粘贴操作使用透明胶带的位置相同(大致重叠即可)。
步骤三中,所述透明胶带优选Scotch单面透明胶带。
步骤三中,所述将透明胶带粘贴在经步骤一处理后的SiO2/Si基底上,粘贴时间为5~12 小时。
步骤三中,所述将SiO2/Si基底浸泡在丙酮中,浸泡时间为2~4小时。
另外,本发明还提供上述方法制备的二维Ga1-xInxSe合金及其在制备光电探测器中的应用,其应用具体为:取表面带有二维Ga1-xInxSe合金的SiO2/Si基底,在二维Ga1-xInxSe合金一侧用铜掩膜板覆盖二维Ga1-xInxSe合金的中心位置,两侧各留出二维Ga1-xInxSe合金宽度至少3μm,然后置于真空镀膜机中,真空条件下在二维Ga1-xInxSe合金一侧依次蒸镀金属铬电极和金属金电极,即得到二维Ga1-xInxSe合金光电探测器,用于可见-近红外光的探测。
所述表面带有二维Ga1-xInxSe合金的SiO2/Si基底,其表面上的二维Ga1-xInxSe合金横向尺寸为30-90μm,厚度为2-10nm。
所述真空条件,真空度为1×10-4-5×10-4Pa。
所述蒸镀金属铬电极的厚度为5-10nm。
所述蒸镀金属金电极的厚度为30-50nm。
有益效果
本发明方法制备的二维Ga1-xInxSe合金具有宽的光响应范围(500-800nm)、高的光响应(258A/W)、良好的稳定性和快速的光响应速度(30ms),在高性能可见-近红外光电探测器领域具有很好的应用前景。
本发明方法制备的二维Ga1-xInxSe合金光电探测器在可见-近红外光照射下电流显著增加,说明二维Ga1-xInxSe合金具有很好的光电探测性能,光响应值高达应变系数高达258A/W,是GaSe光响应值的92倍。
本发明方法制备的二维Ga1-xInxSe合金光电探测器具有良好的稳定性和快的相应速度 (30ms),二维Ga1-xInxSe合金在高性能可见-近红外光电探测器领域具有很大的应用前景。
附图说明
图1是实施例1制备的二维Ga1-xInxSe合金的结构表征:a)元素分布图,b)能谱分析,c)低倍透射电子显微镜图像(TEM),d)选取电子衍射图像(SAED),e)高分辨图像(HRTEM)和f)荧光光谱图像(PL);
图2是实施例2制备的二维Ga1-xInxSe合金光电探测器:a)三维示意图、b)光学图像,c)原子力图像和d)高度图;
图3是实施例1制备的二维Ga1-xInxSe合金的电学输运性能:a)转移曲线和b)输出曲线;
图4是实施例2制备的二维Ga1-xInxSe合金的光电探测性能:a)不同激发光光照电流曲线和b)不同激发光的光响应值;
图5是实施例2制备的二维Ga1-xInxSe合金光电探测器的a)稳定性和b)响应速度曲线。
具体实施方式
以下实施方式中所述硒粉的纯度为为99.99(wt.)%以上。所述铟镓共熔合金中,镓质量为镓、铟质量之和的75.5%,铟质量为镓、铟质量之和的24.5%;合金纯度为99.99(wt.)%以上。
实施例1二维Ga1-xInxSe合金的制备
步骤一、将338mg硒粉和300mg铟镓共熔合金放入石英舟中,然后将石英舟放入管式炉并将管式炉抽真空至60Torr,并通入20sccmAr,将炉温在15分钟升至300℃,保持 60分钟;33分钟升温至960℃,保持120分钟;19分钟降至室温,即可制得块体Ga1-xInxSe 合金材料;
步骤二、将300nmSiO2/Si基底在83℃的浓硫酸-双氧水(体积比:3:1)的混合液中浸泡30分钟,然后依次用异丙醇、丙酮、乙醇和超纯水10KHz超声处理,超声处理时间均为10分钟,用氮气吹干,待用;
步骤三、用Scotch单面透明胶带反复粘贴块体Ga1-xInxSe合金材料8次,每次粘贴操作使用透明胶带的位置相同(大致重叠即可),然后将Scotch胶带粘贴在经步骤二处理后的300nmSiO2/Si基底上8小时,除去Scotch胶带后,将300nmSiO2/Si基底浸泡在丙酮中 4小时,取出300nmSiO2/Si基底即可在其表面获得随机分布的二维Ga1-xInxSe合金。
实施例2二维Ga1-xInxSe合金电探测器的制备
选择实施例1制备的300nmSiO2/Si基底表面上横向尺寸为40微米和厚度为8nm的二维Ga1-xInxSe合金,用银胶固定铜掩膜板覆盖二维Ga1-xInxSe合金中心位置,两侧各留出二维Ga1-xInxSe合金宽度3μm,然后置于真空镀膜机中,在真空度为2×10-4Pa条件下,在二维Ga1-xInxSe合金一侧依次蒸镀5nm金属铬和40nm金属金电极,即可得到二维 Ga1-xInxSe合金光电探测器。
实施例3二维Ga1-xInxSe合金的制备
步骤一、将338mg硒粉和300mg铟镓共熔合金放入石英舟中,然后将石英舟放入管式炉并将管式炉抽真空至50Torr,并通入30sccmAr,将炉温在8分钟升至300℃,保持 90分钟;20分钟升温至960℃,保持140分钟;15分钟降至室温,即可制得块体Ga1-xInxSe 合金材料;
步骤二、将300nmSiO2/Si基底在83℃的浓硫酸-双氧水(体积比:3:1)的混合液中浸泡30分钟,然后依次用异丙醇、丙酮、乙醇和超纯水20KHz超声处理,超声处理时间均为15分钟,用氮气吹干,待用;
步骤三、用Scotch单面透明胶带反复粘贴块体Ga1-xInxSe合金材料5次,每次粘贴操作使用透明胶带的位置相同(大致重叠即可),然后将Scotch胶带粘贴在经步骤二处理后的300nmSiO2/Si基底上5小时,除去Scotch胶带后,将300nmSiO2/Si基底浸泡在丙酮中2小时,取出300nmSiO2/Si基底即可在其表面获得随机分布的二维Ga1-xInxSe合金。
实施例4二维Ga1-xInxSe合金的制备
步骤一、将338mg硒粉和300mg铟镓共熔合金放入石英舟中,然后将石英舟放入管式炉并将管式炉抽真空至100Torr,并通入100sccmAr,将炉温在7.5分钟升至300℃,保持120分钟;16.5分钟升温至960℃,保持180分钟;10分钟降至室温,即可制得块体 Ga1-xInxSe合金材料;
步骤二、将300nmSiO2/Si基底在83℃的浓硫酸-双氧水(体积比:3:1)的混合液中浸泡30分钟,然后依次用异丙醇、丙酮、乙醇和超纯水40KHz超声处理,超声处理时间均为10分钟,用氮气吹干,待用;
步骤三、用Scotch单面透明胶带反复粘贴块体Ga1-xInxSe合金材料10次,每次粘贴操作使用透明胶带的位置相同(大致重叠即可),然后将Scotch胶带粘贴在经步骤二处理后的300nmSiO2/Si基底上12小时,除去Scotch胶带后,将300nmSiO2/Si基底浸泡在丙酮中3小时,取出300nmSiO2/Si基底即可在其表面获得随机分布的二维Ga1-xInxSe合金。
采用实施例2制备的二维Ga1-xInxSe合金光电探测器对650nm激发光的探测:
实施方式中,通过机械剥离法制备二维Ga1-xInxSe合金纳米片,图1是二维Ga1- xInxSe 合金的结构表征结果:a)是元素的面扫描图像,可以得知元素Ga、In和Se均匀分布在整个合金片上;b)是元素能谱图像,可以得知三种元素的摩尔比为Ga:In:Se=0.84:0.16:1,由此可以确定制备的合金为Ga0.84In0.16Se;c)-e)是透射电子显微镜表征结果,可以证明制备的合金具有很好的结晶性;f)是PL图像,可以得知制备的合金具有1.83eV的光学能带,且为直接带隙半导体。选取尺寸在20-40微米、厚度小于10纳米的二维Ga1-xInxSe 合金作为光电探测器的沟道材料。图2b是二维Ga1-xInxSe合金光电探测器的光学图像,图2c是二维Ga1-xInxSe合金光电探测器的原子力图像,如图2d所示选取的二维Ga1-xInxSe 合金纳米片的厚度是8nm。图3是制备的二维Ga1-xInxSe合金的电学输运曲线,计算得到二维Ga1-xInxSe合金的电子迁移率为0.8cm2V-1s-1,是二维GaSe的8倍。图4a是二维 Ga1-xInxSe合金光电探测器在不同波长激发光(500-800nm)激发下的电流曲线,由图4a 可以得知在500-800nm激发光作用下电流显著增加,说明二维Ga1-xInxSe合金在可见-近红外具有很好的光探测性能;图4b是计算得到施加5V电压时光电探测器对不同波长激发光的光响应值,500nm的光响应值高达258A/W,是二维GaSe光电探测器的92倍。图 5是在5V电压、193.6μW/cm2的650nm激发光测试条件下光电探测器的稳定性和响应速度曲线,由此可以得知二维Ga1-xInxSe合金光电探测器具有很好的稳定性和快速的光响应速度(30ms)。

Claims (9)

1.一种二维Ga1-xInxSe合金的制备方法,其特征在于:包括以下步骤:
步骤一、将硒粉和铟镓共熔合金放入石英舟中,然后将石英舟放入管式炉并将管式炉抽真空,并通入保护气体,一次升温后进行一次保温一段时间,然后二次升温,再二次保温一段时间,降温至室温,制得块体Ga1-xInxSe合金材料;
步骤二、将SiO2/Si基底进行预处理;步骤三、用透明胶带反复粘贴块体Ga1-xInxSe合金材料,然后将透明胶带粘贴在经步骤一处理后的SiO2/Si基底上,撕去透明胶带后,将SiO2/Si基底浸泡在丙酮中,取出SiO2/Si基底即可在其表面获得随机分布的二维Ga1-xInxSe合金;
步骤一中所述一次升温及二次升温的升温速度均为20-40℃/min;步骤一中所述一次升温,升温至300℃;所述一次保温,保温时间为60-120min;步骤一中所述二次升温,升温至960℃;所述二次保温,保持时间为120-180min;步骤一中所述降温,降温速度为50-100℃/min。
2.根据权利要求1所述的二维Ga1-xInxSe合金的制备方法,其特征在于:所述铟镓共熔合金中,镓质量为镓、铟质量之和的75.5%,铟质量为镓、铟质量之和的24.5%。
3.根据权利要求1所述的二维Ga1-xInxSe合金的制备方法,其特征在于:步骤一中硒的物质的量和铟、镓的物质的量之和的比为(1.1-1.2):1。
4.根据权利要求1所述的二维Ga1-xInxSe合金的制备方法,其特征在于:所述保护气体为氩气,步骤一中Ar的流量为20-100sccm;步骤一中抽真空真空度为50-100Torr。
5.根据权利要求1所述的二维Ga1-xInxSe合金的制备方法,其特征在于:步骤二中,所述SiO2/Si基底厚度为300nm;所述SiO2/Si基底预处理方法具体为:将SiO2/Si基底浸泡在浓硫酸/双氧水混合溶液中,然后取出,依次浸入异丙醇、丙酮、乙醇和超纯水中超声处理,用氮气吹干,待用;所述浸泡,温度为83℃,浸泡时间为20-40min;所述浓硫酸/双氧水混合溶液,其中浓硫酸为质量分数97%以上的硫酸水溶液,双氧水为质量分数35%的过氧化氢水溶液,所述混合溶液中,浓硫酸与双氧水的体积比为3:1。
6.根据权利要求1所述的二维Ga1-xInxSe合金的制备方法,其特征在于:步骤三中,所述反复粘贴块体Ga1-xInxSe合金材料,指将透明胶带粘贴在块体Ga1-xInxSe合金材料表面,然后将透明胶带取下,重复上述操作4-9次,每次粘贴操作使用透明胶带的位置相同;所述将透明胶带粘贴在经步骤一处理后的SiO2/Si基底上,粘贴时间为5~12小时;所述将SiO2/Si基底浸泡在丙酮中,浸泡时间为2~4小时。
7.一种利用权利要求1-6任一项所述二维Ga1-xInxSe合金的制备方法制备的二维Ga1- xInxSe合金。
8.一种权利要求7所述二维Ga1-xInxSe合金在制备光电探测器中的应用,其特征在于:取表面带有二维Ga1-xInxSe合金的SiO2/Si基底,在二维Ga1-xInxSe合金一侧用铜掩膜板覆盖二维Ga1-xInxSe合金的中心位置,两侧各留出二维Ga1-xInxSe合金宽度至少3μm,然后置于真空镀膜机中,真空条件下在二维Ga1-xInxSe合金一侧依次蒸镀金属铬电极和金属金电极,即得到二维Ga1-xInxSe合金光电探测器,用于可见-近红外光的探测。
9.根据权利要求8所述的二维Ga1-xInxSe合金在制备光电探测器中的应用,其特征在于:所述表面带有二维Ga1-xInxSe合金的SiO2/Si基底,其表面上的二维Ga1-xInxSe合金横向尺寸为30-90μm,厚度为2-10nm;所述真空条件,真空度为1×10-4-5×10-4Pa;所述蒸镀金属铬电极的厚度为5-10nm;所述蒸镀金属金电极的厚度为30-50nm。
CN201811292091.5A 2018-10-31 2018-10-31 二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用 Expired - Fee Related CN109285900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811292091.5A CN109285900B (zh) 2018-10-31 2018-10-31 二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811292091.5A CN109285900B (zh) 2018-10-31 2018-10-31 二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用

Publications (2)

Publication Number Publication Date
CN109285900A CN109285900A (zh) 2019-01-29
CN109285900B true CN109285900B (zh) 2020-06-05

Family

ID=65174266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811292091.5A Expired - Fee Related CN109285900B (zh) 2018-10-31 2018-10-31 二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用

Country Status (1)

Country Link
CN (1) CN109285900B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950364B (zh) * 2019-04-02 2021-07-27 中国科学院半导体研究所 基于二维硒化亚锗光电探测器的成像元件制备方法
CN112309440B (zh) * 2020-10-21 2022-04-26 西北工业大学 基于铂-二维硒化铟-少层石墨肖特基二极管的光存储器件及存储方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352861B1 (ko) * 2012-12-21 2014-02-18 한국에너지기술연구원 코어(Se)-쉘(Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119893A (ja) * 1993-10-27 1995-05-12 Chiyoda Corp 低温液化ガス配管の制御方法
KR101030780B1 (ko) * 2007-11-14 2011-04-27 성균관대학교산학협력단 Ⅰ-ⅲ-ⅵ2 나노입자의 제조방법 및 다결정 광흡수층박막의 제조방법
MX2014010452A (es) * 2012-02-29 2015-03-03 Alliance Sustainable Energy Sistemas y metodos para formar celdas solares con peliculas de cuinse2 y cu(in,ga)se2.
CN107058791A (zh) * 2017-04-27 2017-08-18 柳州豪祥特科技有限公司 铜铟镓硒合金的制备方法
CN107246929A (zh) * 2017-06-01 2017-10-13 哈尔滨工业大学 二维硒化铟力学传感器的制备方法及其应用
CN107464847A (zh) * 2017-07-25 2017-12-12 西安电子科技大学 基于碱金属溶液掺杂的二硫化钼晶体管及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352861B1 (ko) * 2012-12-21 2014-02-18 한국에너지기술연구원 코어(Se)-쉘(Ag2Se) 나노입자를 이용한 A(C)IGS계 박막의 제조방법, 이에 의해 제조된 A(C)IGS계 박막 및 이를 포함하는 탠덤 태양전지

Also Published As

Publication number Publication date
CN109285900A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
Wang et al. Rectangular porous ZnO–ZnS nanocables and ZnS nanotubes
Tajik et al. Photoluminescence model of sulfur passivated p-InP nanowires
Mahalingam et al. Low temperature wet chemical synthesis of good optical quality vertically aligned crystalline ZnO nanorods
Pawar et al. Improved solar cell performance of chemosynthesized cadmium selenide pebbles
Wang et al. Simple fabrication and improved photoresponse of ZnO–Cu2O core–shell heterojunction nanorod arrays
CN109411331B (zh) 二维超晶格硒化铟及其制备方法与在制备光电探测器中的应用
CN109285900B (zh) 二维Ga1-xInxSe合金及其制备方法及在制备光电探测中的应用
Murkute et al. Emerging material zinc magnesium oxide based nanorods: Growth process optimization and sensor application towards humidity detection
CN110104675B (zh) 一种碘化铅纳米材料及其制备方法和应用
Cano et al. “White” emission of ZnO nanosheets with thermal annealing
Rybaltovskiy et al. Synthesis of photoluminescent Si/SiO x core/shell nanoparticles by thermal disproportionation of SiO: structural and spectral characterization
Maity et al. Improvement in optical and structural properties of ZnO thin film through hexagonal nanopillar formation to improve the efficiency of a Si–ZnO heterojunction solar cell
CN109256435B (zh) 一种利用银纳米柱阵列结构增强近红外量子剪裁的方法
Salman et al. Improved performance of a crystalline silicon solar cell based on ZnO/PS anti-reflection coating layers
Khan et al. Comparative study on electronic, emission, spontaneous property of porous silicon in different solvents
Li 4 nm ZnO nanocrystals fabrication through electron beam irradiation on the surface of a ZnO nanoneedle formed by thermal annealing
Kubota et al. Characteristics of ZnO whiskers prepared from organic-zinc
Coxon et al. An abrupt switch between the two photoluminescence bands within alkylated silicon nanocrystals
Shi et al. Preparation and photoelectric property of a Cu 2 FeSnS 4 nanowire array
CN115895647B (zh) 一种掺铒硅纳米材料、其制备方法及硅基光电集成电路
Abdalameer et al. Effect of Pulsed Laser Frequency on CdTe Deposited as Solar Cells Device
CN114014367B (zh) 一种WO3-x-WS2一维-二维异质结、制备方法及应用
Hlel et al. Photothermal deflection investigation of thermally oxidized mesoporous silicon
CN116885024B (zh) 一种基于PdSe2/ZrTe3异质结的红外光电探测器及其制备方法
Gardelis et al. Ultra-thin films with embedded Si nanocrystals fabricated by electrochemical dissolution of bulk crystalline Si in the transition regime between porosification and electropolishing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200605

Termination date: 20201031