WO2014097899A1 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
WO2014097899A1
WO2014097899A1 PCT/JP2013/082772 JP2013082772W WO2014097899A1 WO 2014097899 A1 WO2014097899 A1 WO 2014097899A1 JP 2013082772 W JP2013082772 W JP 2013082772W WO 2014097899 A1 WO2014097899 A1 WO 2014097899A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
hybrid
pixels
region
electrode
Prior art date
Application number
PCT/JP2013/082772
Other languages
English (en)
French (fr)
Inventor
田中 俊介
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2014553074A priority Critical patent/JP5860168B2/ja
Publication of WO2014097899A1 publication Critical patent/WO2014097899A1/ja
Priority to US14/744,677 priority patent/US9591244B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present invention relates to a solid-state imaging device capable of focus adjustment by a phase difference detection method.
  • This autofocus function includes a contrast detection method (so-called contrast AF) that performs focus adjustment so that the contrast of the image is maximized, and a phase difference detection method autofocus that performs focus adjustment based on a phase difference due to parallax (hereinafter referred to as “focus”). , Referred to as phase difference AF).
  • contrast AF it is necessary to find an inflection point of contrast while moving the imaging lens.
  • phase difference AF the focus state is known at each lens position, so that quick autofocus is possible.
  • a solid-state imaging device that performs phase difference AF selectively receives light incident from either the left or right direction in addition to normal pixels used for imaging a normal image, as described in Patent Document 1, for example.
  • Two types of phase difference pixels (right phase difference pixel and left phase difference pixel) are arranged in a predetermined pattern. Based on pixel signals (pixel values) obtained from these two types of phase difference pixels, information on the phase difference is calculated, and focus adjustment is performed by driving the imaging lens so that the phase difference becomes small.
  • the phase difference pixel is formed by making the color filter asymmetric in the left-right direction. However, the aperture is decentered with respect to the center of the photodiode, or the intralayer lens is asymmetrically formed. It is also known to form a phase difference pixel by doing so.
  • a monocular 3D imaging device that simultaneously captures two viewpoint images for stereoscopic viewing using a single solid-state imaging device.
  • this solid-state imaging device all the pixels arranged in the light receiving area are viewpoint pixels, which are arranged behind two on-chip microlenses with two photodiodes having almost half the size of a normal pixel.
  • the two photodiodes constitute a right viewpoint pixel unit that captures a right viewpoint image and a left viewpoint pixel unit that captures a left viewpoint image (Patent Document 2).
  • a solid-state imaging device in which measurement pixels are arranged at predetermined positions in the light receiving area, a plurality of control transparent electrodes are provided on the measurement pixels, and one measurement pixel is virtually divided into a plurality of areas.
  • Patent Document 3 In the measurement pixel, each control transparent electrode is individually controlled, and signals can be individually read from each region to perform photometry and color temperature detection.
  • JP 2012-003009 A International Publication 2012/026292 Pamphlet Japanese Patent Laid-Open No. 1-215063
  • Each phase difference pixel is formed, for example, in an asymmetric shape in the left-right direction, so that the obtained pixel signal is different from a normal pixel having a symmetric shape. For this reason, when the subject is imaged after the phase difference AF, the pixel signal of the phase difference pixel cannot be used as it is to obtain the pixel signal of the normal image. Therefore, it is necessary to correct the gain of the pixel signal of the phase difference pixel or interpolate using the surrounding normal pixels to create a pixel signal of the normal image at the position where the phase difference pixel exists. It is.
  • the phase difference AF can be performed by using signals from the right viewpoint pixel unit and the left viewpoint pixel unit.
  • the right viewpoint image and the left viewpoint image In order to obtain a normal image (2D image), it is necessary to use one of the right viewpoint image and the left viewpoint image, average the pixel signals of the two types of viewpoint pixel units, or add them up.
  • the resolution of the normal image is lowered.
  • the right viewpoint image and the left viewpoint image all use pixel signals obtained from asymmetric pixels, the sensitivity is poor as compared with the case of imaging with normal pixels that receive light uniformly from all directions.
  • the measurement pixel described in Patent Document 3 virtually divides one pixel into a plurality of regions, for example, when signals are individually extracted from the right and left half regions of the pixel, the phase difference AF can be performed.
  • the phase difference AF can be performed.
  • color filters of different colors are arranged for each region, even when signals are read from the entire region of the measurement pixels at the time of creating a normal image, the same signal as the normal pixels cannot be obtained. For this reason, even in Patent Document 3, correction is necessary to obtain the pixel signal of the normal image from the measurement pixel, and the resolution and sensitivity are also partially reduced.
  • An object of the present invention is to provide a solid-state imaging device that suppresses a decrease in sensitivity and resolution even when a pixel signal of a normal image is created from pixels used for phase difference AF.
  • the solid-state imaging device of the present invention includes a plurality of hybrid pixels having a photoelectric conversion region, a charge storage region, and a potential modulation electrode.
  • the photoelectric conversion area photoelectrically converts incident light from a subject and generates a charge corresponding to the amount of incident light.
  • the charge accumulation region accumulates charges generated in the photoelectric conversion region.
  • the potential modulation electrode applies a voltage to the charge storage region to modulate the potential with respect to the charge, thereby narrowing the width of the charge storage region and unevenly distributing the charge storage region.
  • Each hybrid pixel functions as a normal pixel that accumulates the charge generated in the photoelectric conversion region evenly when the width of the charge accumulation region is not narrowed. When the voltage is applied to the potential modulation electrode and the width of the charge accumulation region is narrowed, it functions as a phase difference pixel that selectively accumulates charges generated in a part of the photoelectric conversion region.
  • the hybrid pixel includes a plurality of photodiodes, and each photodiode has a photoelectric conversion region and a charge storage region.
  • the amount of the additive should be larger than that in the separation region that prevents the movement of charges between adjacent pixels, thereby increasing the potential for the charge. Is preferred.
  • the potential modulation electrode preferably has a plurality of electrodes to which a voltage can be applied independently. By applying a negative voltage to at least one electrode, the charge accumulation region is unevenly distributed below the other electrode. It is preferable to apply a positive voltage to the electrode corresponding to the position where the charge accumulation region is unevenly distributed.
  • the potential modulation electrode has a first electrode and a second electrode whose applied voltage can be controlled.
  • the plurality of hybrid pixels include a first hybrid pixel in which the first electrode and the second electrode are arranged in the first direction, and a second hybrid pixel in which the first electrode and the second electrode are arranged in reverse order to the first hybrid pixel.
  • the electrode for potential modulation preferably has at least three or more electrodes arranged in the first direction.
  • a plurality of pixels including hybrid pixels are arranged in the light receiving region.
  • the plurality of hybrid pixels include first to fourth hybrid pixels.
  • the potential modulation electrode has four electrodes of first to fourth electrodes whose applied voltage can be controlled. The same voltage is applied to the first to fourth electrodes of the first to fourth hybrid pixels.
  • first to fourth electrodes are two-dimensionally arranged along a first direction and a second direction perpendicular to the first direction.
  • the arrangement of the first to fourth electrodes is symmetric in the first direction with respect to the first hybrid pixel.
  • the arrangement of the first to fourth electrodes is symmetric in the second direction with respect to the second hybrid pixel.
  • the fourth hybrid pixel the first to fourth electrodes are symmetrical in the first direction with respect to the third hybrid pixel.
  • the potential modulation electrode is transparent and incident light enters the photoelectric conversion region through the potential modulation electrode.
  • the potential modulation electrode is made of an opaque material and is provided outside the light collection region where incident light is collected by the microlens.
  • the potential modulation electrode has a shape in which the light condensing region is notched. All the pixels in the light receiving area are preferably hybrid pixels.
  • the hybrid pixel according to the present invention can be used for both a normal pixel and a phase difference pixel because the width of the hybrid pixel can be narrowed by potential modulation of the charge storage region.
  • FIG. 6 is a cross-sectional view showing incident light and a charge accumulation region at a wide angle end when a zoom lens is used.
  • FIG. 6 is a cross-sectional view showing incident light and a charge accumulation region at a telephoto end when a zoom lens is used. It is a graph which shows the relationship between the position of each hybrid pixel in a light reception area
  • the solid-state imaging device 10 is a CMOS image sensor, and includes a light receiving region 11, a vertical scanning circuit 13, a horizontal scanning circuit 14, an output circuit 16, a control circuit 17, and the like.
  • the light receiving region 11 is a region in which a plurality of pixels 21 are arranged in a square along the horizontal direction (X direction) and the vertical direction (Y direction). An image of a subject is formed in the light receiving region 11 by an imaging lens, and each pixel 21 generates and accumulates electric charges according to the amount of incident light by photoelectric conversion.
  • the pixel 21 includes a photodiode (hereinafter referred to as PD) 22, a reset transistor (hereinafter referred to as Tr) 23, an amplifier transistor (hereinafter referred to as Ta) 24, and a selection transistor (hereinafter referred to as Ts) 25.
  • Tr23, Ta24, and Ts25 are, for example, n-type MOS transistors.
  • Each pixel 21 is provided with a color filter 41 (see FIG. 2) of any one of red (R), green (G), and blue (B), and each pixel 21 has a corresponding color filter. The same color light as the color 41 is photoelectrically converted.
  • the pixel 21 includes a normal pixel 43 and hybrid pixels 42a and 42b (see FIG. 2).
  • the normal pixels 43 are formed symmetrically in the horizontal direction and the vertical direction, and are used as pixels of a normal image acquired by photographing a subject.
  • the hybrid pixels 42a and 42b are used not only as phase difference pixels for obtaining information on parallax in the horizontal direction (horizontal direction) but also as pixels of a normal image.
  • the normal pixel 43 and the hybrid pixels 42a and 42b are different in three-dimensional structure (specifically, the presence or absence of the transparent electrodes 55A and 55B (see FIG. 3)), but photoelectric conversion of incident light, charge accumulation, charge
  • the basic electrical configuration for reading is the same. For this reason, in FIG. 1, the normal pixel 43 and the hybrid pixels 42 a and 42 b are not distinguished from each other, and are all pixels 21.
  • PD 22 generates charges (a pair of electrons and holes) according to the amount of incident light by photoelectric conversion.
  • the anode of PD 22 is connected to the ground, and the cathode is connected to the gate electrode of Ta 24.
  • a connection portion between the cathode of the PD 22 and the gate electrode of the Ta 24 is a floating diffusion (hereinafter referred to as FD) 26, and electric charges (for example, electrons) accumulated therein are applied to the gate electrode of the Ta 24 as a voltage signal.
  • FD floating diffusion
  • Tr23 has a source electrode connected to the FD 26 and a drain electrode to which a power supply voltage VDD (not shown) is applied.
  • the gate electrode of Tr 23 is connected to the reset line 27.
  • the Tr 23 is turned on when a reset pulse from the vertical scanning line 13 is applied to its gate electrode via the reset line 26.
  • the power supply voltage VDD is applied to the FD 26, and charges accumulated in the FD 26 are discarded.
  • the gate electrode is connected to the FD 26, and the power supply voltage VDD is applied to the drain electrode.
  • the source electrode from which the pixel signal (signal voltage) is output is connected to the drain electrode of Ts25.
  • the drain electrode is connected to the source electrode of Ta24, and the source electrode is connected to the signal line.
  • the gate electrode of Ts25 is connected to the row selection line 29.
  • Ts 25 is turned on when a selection pulse is input from the vertical scanning circuit 13 via the row selection line 29, and outputs the pixel signal output from the Ta 24 to the signal line 28.
  • the vertical scanning circuit 13 is for driving the pixels 21 and is connected to a reset line 27 and a row selection line 29 in each row.
  • the vertical scanning circuit 13 inputs a reset pulse to the reset line 27 of the selected row and inputs a selection pulse to the row selection line 29 to control the operation of Tr23 and Ts25.
  • the horizontal scanning circuit 14 selects a column from which pixel signals are read by turning on one of the column selection transistors (Tc) 32 provided on each signal line 28.
  • the signal line 28 is for reading a pixel signal from each pixel 21 and is provided for each column of the pixels 21.
  • a correlated double sampling (CDS) circuit 31 and a column selection transistor 32 are provided at the end of the signal line 28.
  • the CDS circuit 31 operates based on the clock signal input from the control circuit 17, and the pixel signal so that noise accompanying readout is removed from the pixel 21 on the row selection line 29 selected by the vertical scanning circuit 13. Is sampled and held.
  • the column selection transistor 32 is turned on by the horizontal scanning circuit 14, the pixel signal held by the CDS circuit 31 is output to the output circuit 16 via the output bus line 33.
  • the output circuit 16 includes an amplifier 34 that amplifies the pixel signal input from the CDS 31 and an A / D conversion circuit 35 that converts the pixel signal amplified by the amplifier 34 into digital data.
  • the gain of the amplifier 34 is variable and is appropriately adjusted according to the setting such as the shooting mode.
  • the control circuit 17 comprehensively controls each part of the solid-state imaging device 10. For example, the operations of the vertical scanning circuit 13 and the horizontal scanning circuit 14 operate based on a control signal such as a clock signal input from the control circuit 17. The operation of the CDS 31 and the gain of the amplifier 34 are also controlled by the control circuit 17.
  • the color filter 41 has a long periodicity with a color arrangement of 6 ⁇ 6 pixels as one unit. More specifically, the color filter 41 is an array in which two types of subunits 41a and 41b each having a color array of 3 ⁇ 3 pixels are arranged at diagonal positions.
  • the first subunit 41a has a green (G) filter arranged at the center and diagonal positions of 3 ⁇ 3 pixels, a blue (B) filter at the left and right center, and a red (R) filter at the top and bottom center. Is a unit.
  • the second subunit 41b is the same as the first subunit 41a in that G filters are arranged at the center and diagonal positions of 3 ⁇ 3 pixels.
  • the B filter and the R filter are opposite to the first subunit 41a, the R filter is arranged at the center of the left and right, and the B filter is arranged at the center of the top and bottom.
  • the color filter 41 has a long periodicity as compared with a Bayer arrangement in which the color arrangement of 2 ⁇ 2 pixels is one unit. Therefore, the solid-state imaging device 10 suppresses the occurrence of moire even without using an optical low-pass filter. be able to. Further, in the solid-state imaging device 10 employing the color filter 41, since RGB pixels always exist in the Y direction and the X direction, false colors can be suppressed and accurate color reproduction is possible.
  • the hybrid pixels 42a and 42b are used both as normal pixels and phase difference pixels, and are formed in the lower left G pixels of the upper right first subunit 41a and the upper left second subunit 41b, for example.
  • the hybrid pixels 42a and 42b are caused to function as phase difference pixels, focusing evaluation is performed based on pixel signals (pixel values) obtained from the hybrid pixels 42a and 42b constituting a pair. Then, the position of the imaging lens is automatically adjusted according to the result of the focus evaluation.
  • the hybrid pixels 42a and 42b are used as normal pixels, the pixel signals of the hybrid pixels 42a and 42b are not subjected to gain correction, interpolation, or the like as with the other normal pixels 43, and are processed as they are. Used as
  • the pair of hybrid pixels 42a and 42b are uniformly distributed over the entire surface of the light receiving region 11, but the hybrid pixels 42a and 42b are not necessarily provided in the 6 ⁇ 6 pixel unit of the color filter 41. There is also a unit in which the hybrid pixels 42a and 42b are not provided. In the unit where the hybrid pixels 42 a and 42 b are not provided, all are normal pixels 43. In the unit where the hybrid pixels 42a and 42b are provided, they are provided at the positions shown in FIG.
  • the solid-state imaging device 10 is a backside illuminated (BSI) type CMOS image sensor, and includes a support substrate 51, a wiring layer 52, a p-type semiconductor substrate 53, a transparent electrode layer 54, and a color.
  • the filter 41, the microlens 57, and the like are included.
  • the side on which the wiring layer 52 is provided with respect to the p-type semiconductor substrate 53 is the “front surface” of the solid-state imaging device 10, and the side on which the color filter 41, the transparent electrode layer 54, and the microlens 57 are provided is the “back surface”. It is. Light enters the solid-state imaging device 10 from the back side to the PD 22 through the microlens 57, the color filter 41, and the transparent electrode layer 54.
  • the support substrate 51 is, for example, a silicon substrate.
  • a wiring layer is formed to expose the back surface of the p-type semiconductor substrate 53 and reduce the thickness of the p-type semiconductor substrate 53. Bonded to the surface of 52.
  • the wiring layer 52 is formed on the surface of the p-type semiconductor substrate 53, and the transistor (Tr23, Ta24, Ts25) of each pixel 21 (the normal pixel 43 and the hybrid pixels 42a and 42b) is formed by the wiring 52a provided in the wiring layer 52. ), Various circuits for driving each pixel 21 (vertical scanning circuit 13, horizontal scanning circuit 14, output circuit 16, control circuit 17, CDS 31, etc.), various wirings (reset line 27, signal line 28, row selection line) 29, output bus line 33, etc.).
  • the wiring layer 52 is provided with wiring (not shown) for discharging unnecessary charges generated in each PD 22 due to dark current or the like.
  • the PD 22 is formed by a PN junction between a p-type semiconductor substrate 53 and an n-type semiconductor region 22a formed in the p-type semiconductor substrate 53.
  • the p-type semiconductor substrate 53 is thinned, and the photoelectric conversion region 22 b indicated by the alternate long and short dash line reaches the vicinity of the back surface of the p-type semiconductor substrate 53.
  • the photoelectric conversion region 22b is the entire region where charge can be generated when light is incident. Further, the charge (electrons) generated by the PD 22 is accumulated in the n-type semiconductor region (charge accumulation region 22a) having a low potential.
  • the PD 22 is the entire photoelectric conversion region 22b and charge storage region 22a formed by a PN junction. Further, each PD 22 is separated by a separation layer (not shown) (for example, p + layer), so that charges do not move between adjacent PDs 22.
  • the charge storage region 22a is connected to the FD 26.
  • the transparent electrode layer 54 is provided on the back side of the p-type semiconductor substrate 53 and is composed of transparent electrodes 55A and 55B and an insulating film 56.
  • the transparent electrodes 55A and 55B are made of a transparent and conductive material such as polysilicon (Poly-Si). Further, the transparent electrodes 55A and 55B modulate the potential of the charge storage region 22a when a voltage is applied, and thus correspond to potential modulation electrodes. When a voltage (a negative voltage when electrons are stored) is applied to the transparent electrodes 55A and 55B, the potential of the charge storage region 22a directly below the generated charge (electrons) is increased. This potential modulation does not change the n-type semiconductor region itself, but changes the effective width (size in the XY plane) of the charge storage region 22a.
  • the transparent electrodes 55A and 55B cover the left side and the right side of the PD 22, respectively.
  • the transparent electrodes 55A and 55B are provided symmetrically. Specifically, in the hybrid pixel 42a, the transparent electrode 55A is provided on the right side of the PD 22, and the transparent electrode 55B is provided on the left side. On the other hand, in the hybrid pixel 42b, the transparent electrode 55A is provided on the left side of the PD 22, and the transparent electrode 55B is provided on the right side.
  • the insulating film 56 is used as a planarizing film that insulates the transparent electrodes 55A and 55B from the p-type semiconductor substrate 53 and planarizes the transparent electrodes 55A and 55B. For this reason, the transparent electrode layer 54 on the normal pixel 43 is formed of only the insulating film 56.
  • the insulating film 56 is made of, for example, a transparent and non-conductive material such as BPSG.
  • the insulating film 56 is formed by integrating an insulating film existing below the transparent electrodes 55A and 55B, an insulating film existing between the transparent electrodes 55A and 55B, and a planarizing film existing on the transparent electrodes 55A and 55B. It has become.
  • the color filter 41 is provided on the transparent electrode layer 54 so that each color segment corresponds to the PD 22.
  • the color filter 41 selectively transmits one of R, G, and B color light.
  • the microlens 57 is provided on the color filter 41 so as to correspond to each PD 22 and has a substantially hemispherical shape.
  • the microlens 57 collects incident light on the corresponding PD 22.
  • the center of the microlens 57 substantially coincides with the center of the PD 22 at the center of the light receiving region 11, but the closer to the periphery of the light receiving region 11 is offset toward the center of the light receiving region 11 depending on the chief ray angle.
  • the solid-state imaging device 10 includes a first voltage application unit 61, a second voltage application unit 62, and wirings 63 and 64 that connect these to the transparent electrodes 55A and 55B, respectively. And the voltage applied to the transparent electrode 55B can be controlled independently.
  • the first voltage application unit 61 applies a voltage to the transparent electrode 55A via the wiring 63, and applies or applies a voltage to the transparent electrode 55A based on a control signal input from the control unit 17. Adjust the voltage magnitude. For example, the first voltage application unit 61 applies a positive voltage to the transparent electrode 55A when performing the phase difference AF. In addition, when imaging a subject after performing phase difference AF, the first voltage application unit 61 applies the voltage by setting the voltage of the transparent electrode 55A to zero (or setting the potential of the transparent electrode 55A to ground). Do not do).
  • the second voltage application unit 62 applies a voltage to the transparent electrode 55B via the wiring 64, and, like the first voltage application unit 62, based on a control signal input from the control unit 17, the transparent electrode 55B. Adjust the voltage application timing and voltage magnitude. However, when phase AF is performed, the voltage applied by the second voltage application unit 62 to the transparent electrode 55B is opposite in sign to the voltage applied by the first voltage application unit 61 to the transparent electrode 55A. That is, the second voltage application unit 62 applies a negative voltage to the transparent electrode 55B when performing the phase difference AF.
  • the second voltage application unit 62 is also applied to the transparent electrode 55B in the same manner as the first voltage application unit 61 sets the voltage of the transparent electrode 55A to zero. Set the voltage to zero.
  • the first voltage application unit 61 and the second voltage application unit 62 are formed by the wiring 52 a of the wiring layer 52 and the like, similar to the control unit 17.
  • the wirings 63 and 64 that connect the first voltage application unit 61 and the second voltage application unit 62 and the transparent electrodes 55A and 55B, respectively, are formed of the transparent electrode layer 54 by polysilicon, for example, like the transparent electrodes 55A and 55B. Formed inside.
  • the first voltage application unit 61 and the second voltage application unit 62 are connected to the wirings 63 and 64 via via holes (also referred to as through holes, not shown) that penetrate the p-type semiconductor substrate 53.
  • the hybrid pixels 42a and 42b when no voltage is applied to the transparent electrodes 55A and 55B of the hybrid pixels 42a and 42b (in the case of zero voltage), the potential of the charge storage region 22a does not change.
  • the charge storage regions 22a of the 42b and the normal pixel 43 have the same size.
  • the transparent electrodes 55A and 55B and the insulating film 56 on the normal pixel 43 are both transparent, and neither prevents the incident light from reaching the PD 22.
  • the hybrid pixels 42a and 42b and the normal pixel 43 when no voltage is applied to the transparent electrodes 55A and 55B, the hybrid pixels 42a and 42b and the normal pixel 43 have substantially the same function. That is, the hybrid pixels 42 a and 42 b function as the normal pixels 43.
  • the charge 70a generated on the right side of the PD 22 and the charge 70b generated on the left side are both accumulated in the n-type semiconductor region 22a.
  • the transparent electrodes 55A and 55B are transparent, the range of incident light does not change, and the size and shape of the photoelectric conversion region 22b do not change. For this reason, also in the hybrid pixels 42a and 42b, the charges 70a and 70b are generated in the right side and the left side of the PD 22 similarly to the normal pixel 43. However, in the hybrid pixels 42a and 42b, the effective charge storage regions 73a and 73b are biased left and right, so that only one of the generated charges 70a and 70b is stored in the charge storage regions 73a and 73b.
  • the hybrid pixel 42a since the effective charge storage region 73a is generated only on the right side, the charge 70a generated on the right side of the PD 22 is stored, but the load 70b on the left side of the PD 22 is dark current or the like. It is discharged through the wiring for removing.
  • the hybrid pixel 42b since the effective charge storage region 73b is only on the left side, the charge 70a generated on the right side of the PD 22 is not stored, but only the charge 70b generated on the left side of the PD 22 is stored. In this way, when a negative voltage is applied to the transparent electrode 55B, the hybrid pixels 42a and 42b are isotropic in the light receiving range itself, but selectively store only the charges generated on the right side or the left side. It functions as a so-called phase difference pixel.
  • the transparent electrodes 55A and 55B are set to zero voltage again, the confined charge accumulation regions 73a and 73b return to the original charge accumulation region 22a, and the hybrid pixels 42a and 42b can function as the normal pixels 43. it can.
  • the solid-state imaging device 10 adjusts the voltage applied to the transparent electrodes 55A and 55B of the hybrid pixels 42a and 42b as described above to control the charge accumulation region 22a of the hybrid pixels 42a and 42b, thereby reducing the phase difference AF. It can be carried out.
  • this phase difference AF the hybrid pixels 42a and 42b are caused to function as phase difference pixels, and when the subject is imaged after the phase difference AF, the hybrid pixels 42a and 42b are caused to function as normal pixels.
  • the hybrid pixels 42a and 42b not only function as phase difference pixels but also function as normal pixels. Therefore, when imaging a subject, the pixel signals of the hybrid pixels 42a and 42b are used as they are in a normal image. Can be used as a pixel signal. Therefore, unlike the conventional solid-state imaging device having phase difference pixels, it is not necessary to correct the pixel signals of the hybrid pixels 42a and 42b by interpolation processing, gain adjustment, or the like. Normal image sensitivity and resolution do not decrease. In addition, since there is no drive mode limitation due to the provision of the hybrid pixels 42a and 42b, it is possible to shoot a moving image and add pixels that cannot be achieved by a conventional solid-state imaging device having phase difference pixels.
  • the transparent electrodes 55A and 55B are provided so as to bisect the hybrid pixels 42a and 42b in the left-right direction, and information regarding the parallax in the left-right direction is obtained by the hybrid pixels 42a and 42b when performing phase difference AF.
  • the direction in which the transparent electrodes 55A and 55B are provided is arbitrary.
  • the transparent electrodes 55A and 55B may be provided side by side in the vertical direction, and information regarding the vertical parallax may be obtained by the hybrid pixels 42a and 42b.
  • the transparent electrodes 55A and 55B may be arranged in parallel in a 45-degree oblique direction (or 135-degree direction), and information regarding the oblique parallax may be obtained by the hybrid pixels 42a and 42b.
  • the transparent electrode 55A functions as a phase difference pixel that selectively accumulates charges generated by light incident on the right side of the hybrid pixel 42a.
  • the voltages applied to the transparent electrodes 55A and 55B may be reversed.
  • the hybrid pixel 42a the right side of the charge storage region is narrowed, and the effective charge storage region is biased to the left side.
  • the left side portion of the charge accumulation region 22a is narrowed, and an effective charge accumulation region is formed on the right side portion.
  • the hybrid pixels 42a and 42b can function as phase difference pixels in the same manner as described above even when grounded, for example. .
  • the lower left G pixel of the upper right first subunit 41a and the lower left G pixel of the upper left second subunit 41b are hybrid pixels 42a and 42b.
  • the position of the G pixel is arbitrary.
  • the center G pixel of the upper right first subunit 41a and the center G pixel of the upper left second subunit 41b may be hybrid pixels 42a and 42b, respectively.
  • the hybrid pixels 42a and 42b have two transparent electrodes 55A and 55B, respectively, but the number of transparent electrodes may be further increased.
  • the hybrid pixels 42a and 42b have two transparent electrodes 55A and 55B, respectively, but the number of transparent electrodes may be further increased.
  • four transparent electrodes that can independently control the voltage may be provided in the hybrid pixel.
  • the solid-state imaging device 80 includes four hybrid pixels 82a, 82b, 82c, and 82d in the 6 ⁇ 6 pixel unit of the color filter 41.
  • the hybrid pixel 82a is the lower left G pixel of the first subunit 41a at the upper right, and the potential of the PD 22 immediately below is controlled by the four transparent electrodes 85A, 85B, 85C, and 85D.
  • the transparent electrodes 85A, 85B, 85C, and 85D are provided at the upper right, upper left, lower left, and lower right, respectively.
  • the hybrid pixel 82b is the lower left G pixel of the upper left second subunit 41b, and the potential of the charge storage region 22a is controlled by the four transparent electrodes 85A, 85B, 85C, and 85D in the same manner as the hybrid pixel 82a.
  • the hybrid pixel 82b is different from the hybrid pixel 82a in the arrangement of the transparent electrodes 85A to 85D, and is symmetrical with the hybrid pixel 82a (arrangement in which positions in the X direction are switched).
  • the transparent electrode 85A is disposed on the upper left
  • the transparent electrode 85B is disposed on the upper right
  • the transparent electrode 85C is disposed on the lower right
  • the transparent electrode 85D is disposed on the lower left.
  • the hybrid pixel 82c is the lower left G pixel of the lower left first subunit 41a
  • the hybrid pixel 82d is the lower left G pixel of the lower right second subunit 42b.
  • the potential of the PD 22 immediately below is controlled by the four transparent electrodes 85A to 85D, but the arrangement of the transparent electrodes 85A to 85D is different.
  • the transparent electrodes 85A to 85D of the hybrid pixel 82c are arranged at the lower left, lower right, upper right, and upper left, respectively.
  • the hybrid pixel 82c is vertically symmetric (arrangement in which the positions in the Y direction are switched) with respect to the hybrid pixel 82b in which the transparent electrodes 85A to 85D are arranged on the same column.
  • the arrangement of the transparent electrodes 85A to 85D of the hybrid pixel 82c is symmetrical in the oblique direction (about 135 degrees direction).
  • the transparent electrodes 85A to 85D of the hybrid pixel 82d are arranged at the lower right, the lower left, the upper left, and the upper right, respectively, and are arranged vertically symmetrical with respect to that of the hybrid pixel 82a in the upper row. Further, as compared with that of the hybrid pixel 82b, the arrangement of the transparent electrodes 85A to 85D of the hybrid pixel 82d is a symmetrical arrangement (an arrangement in which the lower right and the upper left are interchanged).
  • These hybrid pixels 82a to 82d have a first voltage application unit 91, a second voltage application unit 92, a third voltage application unit 93, a first voltage application unit 89a, 89b, 89c, and 89d provided between the pixels.
  • Each of the four voltage application units 94 is connected.
  • the wirings 89a to 89d are provided on the transparent electrode layer 54 using polysilicon or the like as in the first embodiment.
  • the first to fourth voltage application units 91 to 94 apply voltages independently to the transparent electrodes 85A to 85D via the wirings 89a to 89d, respectively.
  • the first to fourth voltage application units 91 to 94 are formed by the wiring 52a of the wiring layer 52 and the like as in the first embodiment, and are connected to the wirings 89a to 89d through via holes (not shown). Further, the first to fourth voltage application units 91 to 94 adjust the timing and magnitude of the voltage applied to the transparent electrodes 85A to 85D based on the control signal input from the control unit 17, respectively.
  • the hybrid pixels 82a to 82d function as the normal pixels 43 when no voltage is applied to the transparent electrodes 85A to 85D, as shown in FIG.
  • the charge storage region 22a of each hybrid pixel 82a to 82d is the same as that of the normal pixel 43. For this reason, by imaging the subject without applying a voltage to the transparent electrodes 85A to 85D, the pixel signals of the hybrid pixels 82a to 82d can be used as they are without being subjected to gain correction or the like and used as pixels of a normal image. .
  • the phase difference AF based on the left and right parallax can be performed.
  • the focus evaluation is performed in a known manner based on, for example, pixel signals obtained from a pair of the hybrid pixel 82a and the hybrid pixel 82b or a pair of the hybrid pixel 82d and the hybrid pixel 82c.
  • the charge storage regions 22a of the hybrid pixels 82a to 82d are narrowed.
  • the effective charge storage region 96U and charge storage region 96D remain only under the transparent electrode 85A and the transparent electrode 85B. That is, when viewed in the unit of 6 ⁇ 6 pixels of the color filter 41, the effective charge accumulation region 96U is unevenly distributed upward in the two hybrid pixels 82a and 82b on the upper side (upstream side in the Y direction). Therefore, these function as phase difference pixels that selectively receive light beams incident on the upper side.
  • the effective charge accumulation region 96D is unevenly distributed on the lower side, so that these selectively receive the light beam incident on the lower side. Functions as a phase difference pixel.
  • the solid-state imaging device 80 can perform phase difference AF based on the upper and lower parallaxes. It can.
  • the phase difference AF based on the vertical parallax is suitable, for example, when shooting a subject that changes in the vertical direction but has little change in the horizontal direction, such as the horizon.
  • the phase difference AF based on the vertical parallax is suitable, for example, when shooting a subject that changes in the vertical direction but has little change in the horizontal direction, such as the horizon.
  • the phase difference AF based on the left and right parallax and the phase difference AF based on the vertical parallax It is also possible to switch to.
  • a conventional solid-state imaging device that provides asymmetry of a phase difference pixel by a light shielding film or the like has a position for detecting parallax in the horizontal direction in order to obtain information on parallax in the horizontal direction and vertical direction.
  • a phase difference pixel and a phase difference pixel for detecting vertical parallax are arranged in advance. For this reason, as compared with the case of obtaining only the parallax in one direction in the left-right direction or the up-down direction, twice as many phase difference pixels are required, so the number of pixels that have to be subjected to gain correction and interpolation is doubled, and the sensitivity and resolution are increased. Degradation of is likely to become more prominent.
  • the solid-state imaging device 80 of the present invention can obtain information regarding parallax in the horizontal direction and the vertical direction arbitrarily, and can also obtain hybrid pixels when capturing a normal image. Since 82a to 82d function as normal pixels, it is possible to capture normal images with particularly little deterioration in sensitivity and resolution.
  • the charge storage regions 22a of the hybrid pixels 82a to 82d are formed.
  • the effective charge storage regions 96UR, 96UL, 96DL, and 96DR can be left only under the transparent electrode 85A.
  • the hybrid pixels 82a to 82d function as phase difference pixels that selectively receive light incident from the upper right, upper left, lower left, and lower right directions, respectively.
  • phase difference AF based on diagonal parallax can be performed by performing phase difference AF based on a signal obtained from a pair of hybrid pixel 82a and hybrid pixel 82c or a pair of hybrid pixel 82b and hybrid pixel 82d. it can.
  • a positive voltage may be applied to the transparent electrodes 85A, 85B, and 85D, and a negative voltage may be applied to the transparent electrode 85C.
  • effective charge storage regions of the hybrid pixels 82a to 82d are L-shaped charge storage regions 96UR, 96UL, 96DL, and 96DR.
  • the phase difference AF based on the diagonal parallax is performed by performing the phase difference AF based on the signal obtained from the pair of the hybrid pixel 82a and the hybrid pixel 82c or the pair of the hybrid pixel 82b and the hybrid pixel 82d. be able to.
  • a plurality of transparent electrodes are two-dimensionally arranged, but these may be arranged in a line.
  • the size and position of the charge storage region 22a are controlled more finely using the hybrid pixel 112 in which four transparent electrodes 113A to 113D are arranged in the horizontal direction (X direction).
  • the solid-state imaging device 110 can be used in combination with various imaging lenses, but it is particularly preferable to use a zoom lens (not shown) having a variable focal length.
  • a portion (hereinafter referred to as a right light beam) 114R that is incident mainly from the right side of incident light is on the left side of the photoelectric conversion region 22b.
  • a portion 114L of the incident light that enters mainly from the left side enters the right side of the photoelectric conversion region 22b. Therefore, a negative voltage is applied to the two left transparent electrodes 113A and 113B, and a positive voltage is applied to the two right transparent electrodes 113C and 113D, so that the effective charge accumulation region 115 is placed on the right side of the PD 22. If it is unevenly distributed, the charge generated by the left light beam 114L is accumulated, and the charge generated by the right light beam 114R is discarded.
  • the incident angle of light becomes gentler than that at the wide-angle end.
  • the hybrid pixel 112 is on the right side of the light receiving region 11, both the right beam 116R and the left beam 116L are incident on the right side of the photoelectric conversion region 22b.
  • the effective charge accumulation region 115 is unevenly distributed in the right half of the PD 22, both charges generated by the left and right light beams 116R and 116L are accumulated. That is, it is difficult for the hybrid pixel 112 to obtain information on parallax.
  • the effective charge storage region 117 has a width approximately half that of the wide-angle end, and is unevenly distributed only on the rightmost side of the PD 22.
  • the left and right light beams 116R and 116L are both incident on the right half of the photoelectric conversion region 22b, the charge generated by the left light beam 116L is accumulated, and the charge generated by the right light beam 116R is discarded. Is done.
  • the hybrid pixel 112 can obtain information on parallax.
  • each of the hybrid pixels 42a, 42b, and 82a to 82d of the first and second embodiments in which only two transparent electrodes are arranged in the left-right direction parallax information is obtained at the telephoto end when used in a zoom lens. It may be difficult to be confused. Therefore, if the hybrid pixel 112 in which the transparent electrodes are further finely divided in the left-right direction is used, information regarding parallax can be easily obtained even for the zoom lens, and the accuracy of the phase difference AF is improved.
  • the transparent electrodes are two-dimensionally arranged like the hybrid pixels 82a to 82d of the second embodiment, the transparent electrodes that are finely divided are arranged in the vertical direction for obtaining parallax in addition to the horizontal direction.
  • the hybrid pixel 112 similar to the hybrid pixel 112, a hybrid pixel suitable for a zoom lens can be obtained.
  • the hybrid pixel 112 functions as a phase difference pixel that accumulates the charges generated by the left light beams 114L and 116L.
  • the polarity of the voltage applied to the transparent electrodes 113A to 113D is reversed.
  • the hybrid pixel 112 can function as a phase difference pixel that accumulates charges generated by the right light beams 114R and 116R.
  • the horizontal axis represents the position of the hybrid pixel 112 in the light receiving region 11
  • the vertical axis represents the hybrid pixel 112 when the effective charge accumulation region is unevenly distributed in the right half of the charge accumulation region 22a.
  • This specific sensitivity is the ratio of the sensitivity of the hybrid pixel 112 to the sensitivity of the normal pixel 43.
  • the effective charge accumulation region 122 is one of the charge accumulation regions 22a.
  • the hybrid pixel 112 Since it is unevenly distributed to the right side with a width of / 2, the hybrid pixel 112 functions as a phase difference pixel that selectively accumulates charges generated on the right side of the photoelectric conversion region 22b.
  • the specific sensitivity is 0.5 in the hybrid pixel 112 ⁇ / b> C in the center of the light receiving region 11, but the specific sensitivity is 0. 0 in the hybrid pixel 112 ⁇ / b> R on the right side of the light receiving region 11.
  • the specific sensitivity of the hybrid pixel 112L on the left side of the light receiving region 11 is lower than 0.5.
  • the specific sensitivity of the hybrid pixel changes depending on the position in the light receiving region 11 is that the incident angle of light is different as is apparent from FIG. Specifically, in the hybrid pixel 112C in the center of the light receiving region 11, since the incident angle of light is small, the right light beam 121R of the incident light is incident on the left side of the photoelectric conversion region 22b, and the left light beam 121L is the photoelectric conversion region. Incident on the right side of 22b. As a result, the charge generated by the left light beam 121L is selectively stored in the effective charge storage region 122 that is unevenly distributed in the right half. As described above, in the central hybrid pixel 112, the left light beam 121L of about 1 ⁇ 2 of the incident light generates charges accumulated in the charge accumulation region 122, and thus the specific sensitivity is approximately 0.5.
  • the hybrid pixel 112 ⁇ / b> R on the right side (downstream side in the X direction) of the light receiving region 11 the light incident angle is inclined toward the center of the light receiving region 11. For this reason, both the left light beam 121L and the right light beam 121R are incident on the right side of the photoelectric conversion region 22b, and both the charge generated by the left light beam 121L and the charge generated by the right light beam 121R are stored in the charge storage region 122. . Therefore, the hybrid pixel 112R on the right side of the light receiving region 11 has higher specific sensitivity than the central hybrid pixel 112C, but the S / N is not good, and it is difficult to obtain information on parallax.
  • both the left beam 121L and the right beam 121R are incident on the left side of the photoelectric conversion region 22b. For this reason, both the charge generated by the left light beam 121L and the charge generated by the right light beam 121R are less likely to be stored in the charge storage region 122, and the specific sensitivity is lower than that of the central hybrid pixel 112C.
  • the effective charge accumulation region 123 is changed to the right side of the charge accumulation region 22a. Almost 1/4.
  • the effective charge accumulation region 124 is changed to approximately 3 to the right of the charge accumulation region 22a. / 4.
  • the hybrid pixel 112R on the right side of the light receiving region 11 the more the position is on the right side, the smaller the effective charge accumulation region 123 is made to be unevenly distributed on the right side. Since it is not accumulated, the specific sensitivity is lowered to the same level as the central hybrid pixel 112C, but the S / N is improved. Thereby, the accuracy of the phase difference AF using the hybrid pixel 112R is improved. Further, the hybrid pixel 112L on the left side of the light receiving region 11 can store charges by the left light beam 121L when the effective charge storage region 124 is widened to the left as the position is on the left side. Will improve. That is, the accuracy of the phase difference AF using the hybrid pixel 112L is improved.
  • the effective charge storage region 124 is unevenly distributed on the right side with a width of 3/4 of the charge storage region 22a. Instead, a negative voltage is applied to the transparent electrode 113A, the transparent electrode 113C, and the transparent electrode 113D, and a positive voltage is applied only to the second transparent electrode 113B from the left, so that it is directly below the vicinity of the arrival point of the left light beam 121L.
  • the effective charge accumulation region may be unevenly distributed.
  • the specific sensitivity is lower at the right side and the specific sensitivity is at the left side. High, but S / N is not good. For this reason, when the charge generated by the right light beam 121R is selectively stored, the sign of the voltage applied to the transparent electrodes 113A to 113D is opposite to the case of selectively storing the charge generated by the left light beam 121L. do it.
  • the accuracy of the phase difference AF is improved by changing the width of the charge accumulation region according to the position of the light receiving region 11, but this depends on the type of imaging lens. do not do.
  • the accuracy of the phase difference AF at the telephoto end is reduced for the hybrid pixel 112, and the phase difference AF due to the relationship between the arrangement in the light receiving region 11 and the incident angle of light. This is particularly preferable because accuracy reduction can be improved at once.
  • the hybrid pixel 112 having four transparent electrodes 113A to 113D is used.
  • the width of the charge storage region depends on the position in the light receiving region 11. You can make adjustments. For example, when two transparent electrodes 55A and 55B are arranged on the left and right as in the first embodiment shown in FIG. 3, the transparent electrode 55A is selected according to the position of the hybrid pixels 42a and 42b in the light receiving region 11. , 55B may be adjusted in advance. That is, the hybrid pixel 42a that accumulates the charge generated on the right side of the photoelectric conversion region 22b increases the area of the transparent electrode 55B and decreases the area of the transparent electrode 55A at the right side.
  • the transparent electrode 55A may be made small. Further, in the hybrid pixel 42b for accumulating charges generated on the left side of the photoelectric conversion region 22b, the area on the left side of the transparent electrode 55A is increased, and the area of the transparent electrode 55B is reduced. The same applies when the four electrodes 82A to 82D are two-dimensionally arranged as in the second embodiment.
  • the hybrid pixel is formed using the transparent electrode, but an opaque electrode may be used instead of the transparent electrode.
  • opaque electrodes 151A and 151B are provided on the left and right of the charge storage region 22a.
  • the electrodes 151 ⁇ / b> A and 151 ⁇ / b> B are provided so that the microlens 57 does not overlap a region 152 (hereinafter referred to as a condensing region) where the incident light is collected so as not to block the incident light.
  • the electrodes 151A and 151B correspond to the transparent electrodes 55A and 55B of the first embodiment, respectively.
  • opaque electrodes 153A to 153D may be arranged at the four corners of the charge storage region 22a as shown in FIG.
  • opaque rectangular electrodes are formed at the left and right edges or four corners of the charge storage region 22a, respectively, but the shape and size of the opaque electrode is not limited to the condensing region 152. Etc. are arbitrary. For example, as shown in FIG. 19, in the two opaque electrodes 154A and 154B arranged on the left and right, the condensing region 152 is cut out into a substantially semicircular shape. Similarly, as shown in FIG. 20, in the four opaque electrodes 155A to 155D arranged on the left and right, the condensing region 152 is cut out in an arc shape.
  • the width and the like of the charge storage region 22a can be controlled more accurately than when the rectangular electrodes are provided at the left and right ends and the four corners of the charge storage region 22a. it can.
  • the material of the opaque electrode is arbitrary as long as it has conductivity, and for example, a metal such as aluminum can be used.
  • FIG. 21 shows the R pixel and the B pixel as hybrid pixels in addition to the G pixel.
  • all the hybrid pixels may be R pixels or all B pixels.
  • only two of R, G, and B may be provided with hybrid pixels.
  • FIG. 22 shows all pixels in the light receiving region 11 as hybrid pixels.
  • the phase difference pixel is provided at a predetermined position, an AF area where focus adjustment is possible is specified.
  • all the pixels are hybrid pixels, It is possible to adjust the focus throughout the entire area.
  • the hybrid pixel 42a in which the transparent electrode 55A is arranged on the right side and the hybrid pixel 42b in which the transparent electrode 55A is arranged on the left side are mixed, but as shown in FIG. All the pixels may be the hybrid pixel 42a in which the transparent electrode 55A is arranged on the right side.
  • a positive voltage is applied to the transparent electrode 55A and a negative voltage is applied to the transparent electrode 55B to selectively accumulate charges generated by light received on the right side in all pixels. Take an image.
  • a negative voltage is applied to the transparent electrode 55A and a positive voltage is applied to the transparent electrode 55B, and the charge generated by the light received on the left side in all the pixels is selectively accumulated for imaging.
  • phase difference AF can be performed using pixel signals between two consecutive frames.
  • the image obtained in the first frame is the right viewpoint image
  • the image obtained in the second frame is the left viewpoint image
  • a stereoscopic parallax image can be obtained. That is, it is possible to easily switch between 2D shooting (when shooting a normal image using all pixels as normal pixels) and 3D shooting.
  • the 2D photographed image and the 3D photographed image use all the pixels, a high-resolution image can be obtained.
  • the solid-state imaging device 160 shown in FIG. 24 is provided with two PDs 22 in one pixel. Note that one color segment of the color filter 41 and one micro lens 75 are provided for each pixel. In the solid-state imaging device 160, the charges generated by the two PDs 22 are added together and output as a pixel signal of one pixel.
  • the transparent electrode 55A is provided on one PD 22, and the transparent electrode 55B is provided on the other PD 22.
  • a positive voltage (or negative voltage) is applied to the transparent electrode 55A and a negative voltage (or positive voltage) is applied to the transparent electrode 55B, the hybrid pixel 162 can function as a phase difference pixel.
  • four transparent electrodes 85A to 85D may be provided as in the second embodiment.
  • four PDs 22 are provided for one pixel.
  • each PD 22 is independent, there is no movement of charges between the PDs 22 and there is little noise, so that more accurate phase difference AF can be performed. it can.
  • the element isolation region 151 between the pixels is formed by p +, and the element isolation region 172 between the PDs 22 is further added with p ++. It is preferable to form by. In this case, the potential barrier against electrons in the element isolation region 172 is higher than that in the normal element isolation region 171, and thus the movement of charges between the two PDs 22 can be more reliably prevented.
  • FIG. 25 it is desirable to provide an FD 26 and a read gate 173 for each PD 22 so as to read the charges for each PD 22 without mixing the charges of the two PDs 22. In this way, the movement of charges between the PDs 22 can be more reliably prevented.
  • both the normal pixel 163 and the hybrid pixel 162 include two PDs 22, but a plurality of PDs 22 may be provided only in the hybrid pixel 162.
  • 26 and 27 show a solid-state imaging device in which pixels are arranged in a honeycomb.
  • the color arrangement of the color filter is arbitrary, but in FIG. 26, a row of G pixels and a row in which two R pixels and two B pixels are alternately arranged are alternately arranged in a 45-degree oblique direction. ing.
  • FIG. 27 the same column in which pixels, G pixels, and B pixels are alternately arranged is arranged in a 45-degree oblique direction.
  • the color filter 41 in units of 6 ⁇ 6 pixels is used, but the color arrangement of the color filter 41 is arbitrary.
  • the pixels are arranged in a square array, as shown in FIG. 28, a so-called Bayer array in which 2 ⁇ 2 pixels surrounded by a broken line are arranged vertically and horizontally may be used.
  • FIG. 29 shows a front-illuminated (FSI) solid-state imaging device 180.
  • This surface irradiation type solid-state imaging device 180 has a structure in which a wiring layer 52, a color filter 41, and a microlens 57 are stacked in this order on a p-type semiconductor substrate 53. Light enters the PD 22.
  • the transparent electrode layer 54 is provided, for example, between the p-type semiconductor substrate 53 and the wiring layer 52 (on the surface of the p-type semiconductor substrate 53).
  • the transparent electrode layer 54 is placed under the PD 22 (p-type semiconductor substrate). It may be provided on the back surface side of 53.
  • a pair of hybrid pixels when functioning as a phase difference pixel, is provided in the same row (the same row and the same column in the second embodiment).
  • the two hybrid pixels may be provided in different rows or columns.
  • one pixel has three transistors Tr23, Ta24, and Ts25, but the number of transistors in each pixel is arbitrary.
  • a transfer transistor may be provided between the PD 22 and the FD, and four transistors may be used.
  • the transparent electrode layer 54 is provided on the back surface of the p-type semiconductor substrate 53.
  • the order of stacking the transparent electrode layers 54 is arbitrary. is there.
  • a transparent electrode layer 54 may be provided between the color filter 41 and the microlens 57.
  • the transparent electrode layer 54 is preferably formed on the p-type semiconductor substrate 53.
  • the additive primary color (B, G, R) color filter 41 is used, a subtractive primary color (Y, M, C) color filter may be used.
  • the color filter may include colorless (transparent), specific colors, and the like, and this colorless filter may be provided in the hybrid pixel.
  • information about the parallax in the horizontal direction is obtained by the hybrid pixels 42a and 42b, and information on the parallax in each of the vertical, horizontal, and diagonal directions is obtained by the hybrid pixels 82a to 82d in the second embodiment.
  • parallax information in the left and right and vertical directions may be obtained by the hybrid pixels 42a and 42b of the first embodiment and two hybrid pixels that are rotated 90 degrees and arranged in the vertical direction.
  • the same voltage is applied uniformly to the same transparent electrode among all hybrid pixels, but the voltage applied to the transparent electrode may be controlled for each hybrid pixel.
  • the transparent electrode of each pixel can be controlled individually.
  • a transparent electrode layer 54 is provided between the p-type semiconductor substrate 53 and the color filter 41, and the potential of the PD 22 of the hybrid pixel is controlled from the back side.
  • the transparent electrode layer 54 is connected to the p-type semiconductor substrate 53 and the wiring layer.
  • the PD 22 of the hybrid pixel may be controlled from the front surface side.
  • an electrode can be formed using an opaque material instead of the transparent electrodes 55A and 55B.
  • one electrode may be provided in the hybrid pixel.
  • the transparent electrode 55A may be omitted and only the transparent electrode 55B may be provided.
  • the potential of the PD 22 can be controlled so that the potential of the PD 22 remains only immediately below the portion without the electrode (the portion with the transparent electrode 55A in the first embodiment). it can.
  • the controllability of potential (that is, the shape of the charge storage region) is better when using two or more electrodes. It is preferable to provide a plurality of electrodes as in the first and second embodiments.
  • a positive voltage is applied to an electrode where the charge accumulation region is unevenly distributed (for example, the transparent electrode 55A of the first embodiment), but this charge accumulation region is unevenly distributed.
  • a zero voltage may be applied to the electrode at the location.
  • the charge storage region can be unevenly distributed below the transparent electrode 55A.
  • the potential controllability is good, it is better to apply a positive voltage to the transparent electrode 55A.
  • the number and arrangement of the pair of hybrid pixels may be arbitrarily determined.
  • the solid-state imaging device of the present invention may be a CCD image sensor in addition to the CMOS image sensor as long as it performs phase difference AF.
  • the solid-state imaging device using the hybrid pixel 112 having three or more transparent electrodes tends to have a large principal ray angle in the peripheral portion such as a thin digital camera, a camera unit mounted on a mobile phone, a PDA, a smart photon, or the like. It is particularly suitable for thin and small devices.
  • Solid-state imaging device 11 Light receiving area 21 Pixel 22 PD 22a Charge storage region 22b Photoelectric conversion region 41 Color filter 42a, 42b, 82a to 82d Hybrid pixel 43 Normal pixel 54 Transparent electrode layer 55A, 55B, 85A to 85D Transparent electrode 73a, 73b, 115, 117, 122, 122 to 124 Effective Charge storage area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

 位相差画素に起因する撮影画像の感度や解像度の低下を抑止する固体撮像装置を提供する。 固体撮像装置(10)は、複数のハイブリッド画素(42a,42b)を備える。ハイブリッド画素は、電荷蓄積領域(22a)と光電変換領域(22b)とを有するフォトダイオード(22)と、透明電極(55A,55B)を備える。透明電極は、電荷蓄積領域に電圧を印加して電荷に対するポテンシャルを変調することにより、電荷蓄積領域の幅を狭窄し、実効的な電荷蓄積領域(73a)を形成する。ハイブリッド画素は、ポテンシャル変調がされないと通常画素として機能する。ポテンシャル変調がされると、光電変換領域の一部で発生した電荷を選択的に蓄積する位相差画素として機能する。

Description

固体撮像装置
 本発明は、位相差検出方式の焦点調節が可能な固体撮像装置に関する。
 デジタルカメラや、携帯電話機及びスマートフォン等の携帯電子機器のカメラモジュールには、オートフォーカス機能が標準的に備えられている。このオートフォーカス機能には、像のコントラストが最大になるように焦点調節を行うコントラスト検出方式(いわゆるコントラストAF)や、視差による位相差に基づいて焦点調節を行う位相差検出方式のオートフォーカス(以下、位相差AFという)等がある。コントラストAFでは、撮像レンズを移動しながら、コントラストの変曲点を見つけ出すことが必要であるが、位相差AFでは各レンズ位置で焦点状態が分かるので、迅速なオートフォーカスが可能となる。
 位相差AFを実行する固体撮像装置は、例えば特許文献1に記載されているように、通常画像の撮像に使用する通常画素の他に、左右いずれかの方向から入射する光を選択的に受光する2種類の位相差画素(右位相差画素と左位相差画素)が所定のパターンで配置されている。この2種類の位相差画素から得られる画素信号(画素値)に基づいて、位相差に関する情報を算出し、位相差が小さくなるように撮像レンズを駆動することにより焦点調節を行う。また、特許文献1ではカラーフィルタを左右方向に非対称にすることで位相差画素を形成しているが、フォトダイオードの中心に対して開口を偏心して配置したり、層内レンズを非対称形状にしたりすることで位相差画素を形成するものも知られている。
 また、1つの固体撮像装置によって、立体視用の2つの視点画像を同時に撮像する単眼の3D撮像装置も知られている。この固体撮像装置は、受光領域に配置された全画素が視点画素であり、これは1個のオンチップマイクロレンズの背後に、通常画素のほぼ半分のサイズを有する2個のフォトダイオードを併置した構成をしている。2個のフォトダイオードは、右視点画像を撮像する右視点画素部と、左視点画像を撮像する左視点画素部とを構成している(特許文献2)。
 さらに、受光領域の所定位置に測定用画素を配置し、この測定用画素には複数の制御用透明電極を設け、1個の測定画素を仮想的に複数の領域に区画した固体撮像装置も知られている(特許文献3)。測定用画素では、各制御用透明電極が個別に制御され、各領域から個別に信号を読み出して、測光と色温度検出を行うことができる。
特開2012-003009号公報 国際公開2012/026292号パンフレット 特開平1-215063号公報
 各位相差画素は、例えば左右方向で非対称な形状に形成されているので、対称な形状した通常画素とは、得られる画素信号が異なっている。このため、位相差AFの後に、被写体を撮像する場合は、位相差画素の画素信号をそのまま用いて、通常画像の画素信号とすることができない。そこで、位相差画素の画素信号のゲインを補正したり、周辺の通常画素を用いて補間したりして、位相差画素が存在する位置に対して、通常画像の画素信号を作成することが必要である。このように、ゲイン補正や補間処理で通常画像の画素信号を作成する場合は、被写体の具体的態様、ゲイン補正や補間の精度等によっては、位相差画素に対応した位置では、画素の感度や解像度が実質的に低下することがある。
 さらに、近年のカメラモジュールやデジタルカメラ等においては、動画の撮影や、画素加算をする駆動モードが用意されているものがある。しかし、位相差画素を有する固体撮像装置では、位相差画素の存在により通常画像の画質が劣化することがあるため、これらの駆動モードを採用できないことがある。このため、位相差画素を有する固体撮像装置では、位相差AFによる正確な焦点調節が可能になる代わりに、その他の利便性が損なわれることがある。
 また、受光領域の全てに視点画素が配置された3D撮像装置では、右視点画素部と左視点画素部からの信号を用いることにより位相差AFを行うことができる。通常画像(2D画像)を得る場合には、右視点画像あるいは左視点画像の一方を用いたり、2種類の視点画素部の画素信号を平均したり、合算したりすることが必要である。しかし、これらの方法では得られる通常画像の画素数は、受光領域に配列された左右視点画素部の総数の半分であるため、通常画像の解像度が低くなってしまう。また、右視点画像と左視点画像は、全て非対称な画素から得た画素信号を用いているので、全方向から均等に受光する通常画素で撮像する場合と比較して感度が悪い。
 特許文献3に記載された測定用画素は、1個の画素を仮想的に複数の領域に区画しているので、例えば画素の右半分と左半分の領域から個別に信号を取り出すと、位相差AFを実行することが可能である。ところで、領域毎に異なる色のカラーフィルタを配置しているので、通常画像の作成時に、測定用画素の全領域から信号を読み出しても、通常画素と同じ信号を得ることはできない。このため、特許文献3でも、測定画素から通常画像の画素信号を得るには補正が必要であり、やはり部分的に解像度や感度が低下することになる。
 本発明は、位相差AFに用いられる画素から、通常画像の画素信号を作成する場合でも、感度や解像度の低下を抑止した固体撮像装置を提供することを目的とする。
 上記目的を達成するために、本発明の固体撮像装置は、光電変換領域、電荷蓄積領域、及びポテンシャル変調用電極を有する複数のハイブリッド画素を備えている。光電変換領域は、被写体からの入射光を光電変換し、入射光量に応じた電荷を発生させる。電荷蓄積領域は、光電変換領域で発生した電荷を蓄積する。ポテンシャル変調用電極は、電荷蓄積領域に電圧を印加して電荷に対するポテンシャルを変調することによって、電荷蓄積領域の幅を狭窄して、電荷蓄積領域を偏在させる。各ハイブリッド画素は、電荷蓄積領域の幅が狭窄されていない場合に、光電変換領域で発生した電荷を偏りなく蓄積する通常画素として機能する。そして、ポテンシャル変調用電極に電圧が印加されて電荷蓄積領域の幅が狭窄された場合に、光電変換領域の一部で発生した電荷を選択的に蓄積する位相差画素として機能する。
 ハイブリッド画素は、複数のフォトダイオードを含み、各フォトダイオードは光電変換領域と電荷蓄積領域とを有する。各フォトダイオードの間での電荷の移動を妨げる分離領域には、隣接する画素との間での電荷の移動を妨げる分離領域よりも添加物の量を多くして、電荷に対するポテンシャルを高くすることが好ましい。
 ポテンシャル変調用電極は、各々独立して電圧を印加可能な複数の電極を有することが好ましい。少なくとも1つの電極に負電圧を印加することにより、電荷蓄積領域が他方の電極の下へ偏在する。電荷蓄積領域が偏在される位置に対応する電極には、正電圧を印加することが好ましい。
 ポテンシャル変調用電極は、印加電圧が制御可能な第1電極と第2電極を有することが好ましい。複数のハイブリッド画素には、第1電極と第2電極が第1方向に配置された第1ハイブリッド画素と、第1電極と第2電極が第1ハイブリッド画素と逆順に配置された第2ハイブリッド画素の2種類がある。第1ハイブリッド画素と第2ハイブリッド画素の両方とも、第1電極には第1電圧が印加される。また、第1ハイブリッド画素と第2ハイブリッド画素の両方とも、第2電極には第2電圧が印加される。
 ポテンシャル変調用電極は、第1方向に配列された少なくとも3以上の電極を有することが好ましい。
 焦点距離が調節可能なズームレンズを用いて、被写体の像を受光領域に結像することが好ましい。この受光領域には、ハイブリッド画素を含む複数の画素が配列されている。ズームレンズの焦点距離に応じて、第1方向に配置された各電極の印加電圧を変えることにより、電荷蓄積領域を偏在させる位置が変わる。
 複数のハイブリッド画素は、第1~第4ハイブリッド画素を含んでいることが好ましい。ポテンシャル変調用電極は、印加電圧が制御可能な第1~第4電極の4つの電極を有している。第1~第4ハイブリッド画素の各第1~第4電極には、同じ電圧が印加される。第1ハイブリッド画素は、第1方向とこの第1方向に垂直な第2方向に沿って、第1~第4電極が2次元に配列されている。第2ハイブリッド画素は、第1ハイブリッド画素に対して、第1~第4電極の配列が第1方向に対称である。第3ハイブリッド画素は、第2ハイブリッド画素に対して、第1~第4電極の配列が第2方向に対称である。第4ハイブリッド画素は、第3ハイブリッド画素に対して、第1~第4電極が第1方向に対称である。
 受光領域内におけるハイブリッド画素の位置に応じて、電荷蓄積領域を偏在させる位置を変えることが好ましい。
 ポテンシャル変調用電極は透明であり、ポテンシャル変調用電極を通って入射光が光電変換領域に入射することが好ましい。
 ハイブリッド画素毎にマイクロレンズを設け、入射光をフォトダイオードに集光することが好ましい。また、ポテンシャル変調用電極は、不透明な材料で形成され、マイクロレンズによって入射光が集光される集光領域の外に設けられている。
 ポテンシャル変調用電極が集光領域を切り欠いた形状をしていることが好ましい。受光領域にある全ての画素が、ハイブリッド画素であることが好ましい。
 本発明のハイブリッド画素は、電荷蓄積領域をポテンシャル変調することで、その幅を狭窄可能にするから、通常画素と位相差画素のいずれにも使用可能である。これにより、本発明では、高精度な位相差AFを行うことができる他に、通常画像の画素信号を作成する場合でも、感度や解像度の低下を抑止することができる。
本発明の固体撮像装置を示す説明図である。 カラーフィルタの配列を示す説明図である。 固体撮像装置の部分断面図である。 ハイブリッド画素の透明電極を示す説明図である。 固体撮像装置の作用を示す説明図である。 4つの透明電極を用いる固体撮像装置を示す説明図である。 左右の視差を得る場合の説明図である。 上下の視差を得る場合の説明図である。 斜めの視差を得る場合の説明図である。 斜めの視差を得る別の例を示す説明図である。 4つの透明電極を有するハイブリッド画素の断面図である。 ズームレンズを用いる場合に、広角端での入射光と電荷蓄積領域を示す断面図である。 ズームレンズを用いる場合に、望遠端での入射光と電荷蓄積領域を示す断面図である。 受光領域内での各ハイブリッド画素の位置と比感度の関係を示すグラフである。 受光領域内での位置によらず、電荷蓄積領域を一律に制御する場合での入射光と電荷蓄積領域を示す断面図である。 受光領域内での位置に応じて電荷蓄積領域を制御する場合での入射光と電荷蓄積領域を示す断面図である。 不透明な電極を用いる場合の電極の配置を示す説明図である。 不透明な電極を4つ用いる場合の電極の配置を示す説明図である。 不透明な電極を用いる場合の他の電極形状を示す説明図である。 不透明な電極を4つ用いる場合の他の電極形状を示す説明図である。 ハイブリッド画素を赤色画素や青色画素にも設ける場合の説明図である。 全画素をハイブリッド画素にする例の説明図である。 全画素をハイブリッド画素にする別の例を示す説明図である。 1画素に2つのPDを設けた例を示す説明図である。 1画素の2つのPD間をp++にした例を示す説明図である。 ハニカム配列の固体撮像装置を示す説明図である。 別のハニカム配列の固体撮像装置を示す説明図である。 カラーフィルタがベイヤー配列の固体撮像装置を示す説明図である。 表面照射型の固体撮像装置を示す断面図である。
[第1実施形態]
 図1に示すように、固体撮像装置10はCMOS型イメージセンサであり、受光領域11と、垂直走査回路13、水平走査回路14、出力回路16、制御回路17等を備えている。
 受光領域11は、複数の画素21が水平方向(X方向)及び垂直方向(Y方向)に沿って正方配列された領域である。受光領域11には、撮像レンズによって被写体の像が結像され、各画素21は光電変換により、入射光量に応じた電荷を発生して蓄積する。
 画素21は、フォトダイオード(以下、PDという)22、リセットトランジスタ(以下、Trという)23、アンプトランジスタ(以下、Taという)24、選択トランジスタ(以下、Tsという)25を備えている。Tr23,Ta24,Ts25は、例えばn型のMOSトランジスタである。また、各画素21には、赤色(R),緑色(G),青色(B)のいずれかの色のカラーフィルタ41(図2参照)が設けられており、各画素21は対応するカラーフィルタ41の色と同じ色光を光電変換する。
 画素21には、通常画素43と、ハイブリッド画素42a、42bとがある(図2参照)。通常画素43は、水平方向及び垂直方向に対称に形成されており、被写体の撮影で取得する通常画像の画素として用いられる。一方、ハイブリッド画素42a、42bは、左右方向(水平方向)の視差に関する情報を得るための位相差画素として用いられる他に、通常画像の画素としても用いられる。通常画素43とハイブリッド画素42a、42bは、立体的構造(具体的には、透明電極55A,55B(図3参照)の有無)が異なっているが、入射光の光電変換、電荷の蓄積、電荷の読出しに関する基本的な電気的構成は同じである。このため、図1では、通常画素43とハイブリッド画素42a、42bとを区別せずに、全て画素21としている。
 PD22は、光電変換によって入射光量に応じた電荷(電子と正孔の対)を発生する。PD22のアノードはグラウンドに接続されており、カソードはTa24のゲート電極に接続されている。PD22のカソードとTa24のゲート電極の接続部分が、フローティングディフュージョン(以下、FDという)26であり、ここに蓄積された電荷(例えば電子)が電圧信号としてTa24のゲート電極に印加される。
 Tr23は、ソース電極がFD26に接続され、ドレイン電極には電源電圧VDD(図示しない)が印加される。また、Tr23のゲート電極はリセット線27に接続されている。Tr23は、そのゲート電極にリセット線26を介して垂直走査線13からのリセットパルスが印加されると、オン状態になる。Tr23がオン状態になると、FD26に電源電圧VDDが印加され、FD26に蓄積された電荷が破棄される。
 Ta24は、ゲート電極がFD26に接続され、ドレイン電極には電源電圧VDDが印加されている。また、画素信号(信号電圧)が出力されるソース電極は、Ts25のドレイン電極に接続されている。Ta24かオンすると、FD26に蓄積された電荷量に応じた画素信号をソース電極に出力する。
 Ts25は、ドレイン電極がTa24のソース電極に接続され、ソース電極は信号線28に接続されている。また、Ts25のゲート電極は、行選択線29に接続されている。Ts25は、行選択線29を介して垂直走査回路13から選択パルスが入力されるとオン状態になり、Ta24から出力された画素信号を信号線28に出力する。
 垂直走査回路13は、画素21を駆動するためのものであり、各行のリセット線27と行選択線29が接続されている。垂直走査回路13は、選択された行のリセット線27にリセットパルスを入力し、また行選択線29に選択パルスを入力してTr23やTs25の動作を制御する。
 水平走査回路14は、各信号線28上に設けられた列選択トランジスタ(Tc)32のうち1つをオンにすることにより、画素信号の読み出しを行う列を選択する。
 信号線28は、各画素21からの画素信号を読み出すためのものであり、画素21の列毎に設けられている。また、信号線28の末端には、相関二重サンプリング(CDS)回路31と列選択トランジスタ32が設けられている。CDS回路31は、制御回路17から入力されるクロック信号に基づいて動作し、垂直走査回路13によって選択された行選択線29上の画素21から、読み出しに伴うノイズが除去されるように画素信号をサンプリングホールドする。水平走査回路14によって列選択トランジスタ32がオンにされると、CDS回路31が保持する画素信号は出力バスライン33を介して出力回路16に出力される。
 出力回路16は、CDS31から入力される画素信号を増幅するアンプ34と、アンプ34で増幅された画素信号をデジタルデータに変換するA/D変換回路35を備える。アンプ34のゲインは可変であり、撮影モード等の設定に応じて適宜調節される。
 制御回路17は、固体撮像装置10の各部を統括的に制御する。例えば、垂直走査回路13や水平走査回路14の動作は、制御回路17から入力されるクロック信号等の制御信号に基づいて動作する。また、CDS31の動作やアンプ34のゲイン等も制御回路17によって制御される。
 図2に示すように、カラーフィルタ41は、6×6画素の色配列を1単位とする長い周期性を有している。より詳しくは、カラーフィルタ41は、3×3画素の色配列からなる2種類のサブユニット41a,41bをそれぞれ対角の位置に配置した配列である。第1サブユニット41aは、3×3画素の中央及び対角位置に緑色(G)フィルタが配置され、左右中央に青色(B)フィルタを、上下中央に赤色(R)フィルタが配置されたサブユニットである。第2サブユニット41bは、3×3画素の中央及び対角位置にGフィルタが配置されている点は、第1サブユニット41aと同様である。しかし、BフィルタとRフィルタが第1サブユニット41aとは逆になっており、左右中央にはRフィルタが配置され、上下中央にはBフィルタが配置される。
 例えば、2×2画素の色配列を1単位としたベイヤー配列と比較すると、カラーフィルタ41は長い周期性を有するので、固体撮像装置10では光学的ローパスフィルタを用いなくてもモアレの発生を抑えることができる。また、カラーフィルタ41を採用した固体撮像装置10では、Y方向及びX方向に必ずRGBの画素が存在するので、偽色が抑えられ、正確な色再現が可能である。
 固体撮像装置10の受光領域11の殆どは通常画素43であり、この通常画素43はY方向とX方向から入射する光を均等に受光する。ハイブリッド画素42a,42bは、通常画素と位相差画素に兼用されるものであり、例えば、右上の第1サブユニット41aと左上の第2サブユニット41bの各左下のG画素に形成される。
 ハイブリッド画素42a,42bを位相差画素として機能させる場合に、一対を構成するハイブリッド画素42a,42bから得られる画素信号(画素値)に基づいて合焦評価が行われる。そして、合焦評価の結果に応じて撮像レンズの位置が自動調節される。また、ハイブリッド画素42a,42bを通常画素として用いる場合には、ハイブリッド画素42a,42bの画素信号は、他の通常画素43と同様にゲイン補正や補間等をせずに、そのまま通常画像の画素信号として用いる。
 一対のハイブリッド画素42a,42bは、受光領域11の全面に均一に分布されているが、カラーフィルタ41の6×6画素の単位中に必ずハイブリッド画素42a,42bが設けられているわけではなく、ハイブリッド画素42a,42bが設けられていない単位もある。ハイブリッド画素42a,42bが設けられていない単位においては、全てが通常画素43である。なお、ハイブリッド画素42a,42bが設けられている単位では、図2に示す位置に設けられる。
 図3に示すように、固体撮像装置10は、裏面照射(BSI;back side illuminated)型のCMOSイメージセンサであり、支持基板51、配線層52、p型半導体基板53、透明電極層54、カラーフィルタ41、マイクロレンズ57等で構成される。p型半導体基板53に対して配線層52が設けられている側が、固体撮像装置10の「表面」であり、カラーフィルタ41や透明電極層54,マイクロレンズ57が設けられている側が「裏面」である。固体撮像装置10には、マイクロレンズ57、カラーフィルタ41、透明電極層54を介して裏面側からPD22に光が入射される。
 支持基板51は、例えばシリコン基板であり、裏面照射型の固体撮像装置10を製造する過程で、p型半導体基板53の裏面を露呈させ、p型半導体基板53を薄型化するために、配線層52の表面に接合される。
 配線層52は、p型半導体基板53の表面に形成され、配線層52内に設けられた配線52aによって、各画素21(通常画素43及びハイブリッド画素42a,42b)のトランジスタ(Tr23,Ta24,Ts25)や、各画素21を駆動するための各種回路(垂直走査回路13,水平走査回路14,出力回路16,制御回路17,CDS31等)、各種配線(リセット線27,信号線28,行選択線29、出力バスライン33等)が形成される。なお、配線層52には、暗電流等によって各PD22で発生する不要な電荷を排出するための配線(図示しない)が設けられている。
 PD22は、p型半導体基板53と、p型半導体基板53内に形成されたn型半導体領域22aとのPN接合によって形成される。p型半導体基板53は薄型化されており、一点鎖線で示す光電変換領域22bは、p型半導体基板53の裏面近傍にまで達している。光電変換領域22bは、光が入射した場合に電荷を生成可能な領域の全体である。また、PD22が生成した電荷(電子)は、ポテンシャルが低いn型半導体領域(電荷蓄積領域22a)に蓄積される。なお、PD22は、PN接合によって形成される光電変換領域22bと電荷蓄積領域22aの全体である。また、各PD22は図示しない分離層(例えばp+層)によって分離されており、隣接するPD22間では電荷が移動しないようになっている。なお、電荷蓄積領域22aはFD26に接続されている。
 透明電極層54は、p型半導体基板53の裏面側に設けられ、透明電極55A,55Bと絶縁膜56とからなる。透明電極55A,55Bは、例えば、ポリシリコン(Poly-Si)等の透明で導電性のある材料で形成される。また、透明電極55A,55Bは、電圧が印加されることによって電荷蓄積領域22aのポテンシャルを変調するので、ポテンシャル変調用電極に相当する。透明電極55A,55Bに電圧(電子を蓄積する場合は負電圧)が印加された場合に、生成及び蓄積する電荷(電子)に対して直下の電荷蓄積領域22aのポテンシャルを上げる。このポテンシャル変調により、n型半導体領域自体は変化しないが、実効的な電荷蓄積領域22aの幅(XY面内での大きさ)が変化する。
 PD22を左側部(X方向での上流側)と右側部とに2分したときに、透明電極55A,55Bは、PD22の左側部と右側部とをそれぞれ覆っている。また、対になっているハイブリッド画素42a及びハイブリッド画素42bでは、透明電極55A,55Bが左右対称に設けられている。具体的には、ハイブリッド画素42aでは、PD22の右側部に透明電極55Aが設けられ、左側部に透明電極55Bが設けられる。一方、ハイブリッド画素42bでは、PD22の左側部に透明電極55Aが設けられ、右側部に透明電極55Bが設けられる。
 絶縁膜56は、透明電極55A,55Bとp型半導体基板53との間を絶縁するとともに、透明電極55A,55B上を平坦化する平坦化膜として用いられている。このため、通常画素43上の透明電極層54は、絶縁膜56のみで形成されている。絶縁膜56は、例えば、BPSG等の透明で導電性のない材料で形成される。なお、絶縁膜56は、透明電極55A,55Bの下に存在する絶縁膜と、透明電極55A,55Bの間に存在する絶縁膜、及び透明電極55A,55B上に存在する平坦化膜とを一体化したものである。
 カラーフィルタ41は、透明電極層54上で、各色セグメントがPD22にそれぞれ対応するように設けられている。このカラーフィルタ41は、R,G,Bのいずれかの色光を選択的に透過する。
 マイクロレンズ57は、各PD22に対応するように、カラーフィルタ41上に設けられており、形状は概ね半球である。このマイクロレンズ57は、入射光を対応するPD22に集光させる。なお、受光領域11の中心では、マイクロレンズ57の中心はPD22の中心にほぼ一致しているが、受光領域11の周辺部分にあるものほど主光線角度に応じて受光領域11の中心方向にオフセットして配置(スケーリング)されている。これにより、受光領域11の周辺部分において、PD22に斜めに入射する光束も対応するPD22に効率良く集光される。
 図4に示すように、固体撮像装置10は、第1電圧印加部61、第2電圧印加部62、及びこれらと透明電極55A,55Bをそれぞれ接続する配線63、64を有し、透明電極55Aと透明電極55Bとに印加する電圧をそれぞれ独立に制御できるようになっている。
 第1電圧印加部61は、配線63を介して透明電極55Aに電圧を印加するものであり、制御部17から入力される制御信号に基づいて、透明電極55Aに電圧を印加するタイミングや印加する電圧の大きさを調節する。例えば、第1電圧印加部61は、位相差AFを行う場合に、透明電極55Aに正電圧を印加する。また、位相差AFを行った後、被写体の撮像をする場合に、第1電圧印加部61は透明電極55Aの電圧を零にする(あるいは透明電極55Aの電位をグラウンドにする等により電圧を印加しない状態にする)。
 第2電圧印加部62は、配線64を介して透明電極55Bに電圧を印加するものであり、第1電圧印加部62と同様に、制御部17から入力される制御信号に基づいて透明電極55Bに電圧を印加するタイミングや電圧の大きさを調節する。但し、位相AFを行う場合に、第2電圧印加部62が透明電極55Bに印加する電圧は、第1電圧印加部61が透明電極55Aに印加する電圧と符号が逆である。すなわち、第2電圧印加部62は、位相差AFを行う場合に、透明電極55Bに負電圧を印加する。一方、位相差AFを行った後、被写体を撮像する場合は、第1電圧印加部61が透明電極55Aの電圧を零にするのと同様に、第2電圧印加部62も透明電極55Bに印加する電圧を零にする。
 なお、第1電圧印加部61及び第2電圧印加部62は、制御部17と同様に配線層52の配線52a等によって形成される。一方、第1電圧印加部61及び第2電圧印加部62と、透明電極55A,55Bとをそれぞれ接続する配線63,64は、例えば透明電極55A,55Bと同様に、ポリシリコンによって透明電極層54内に形成される。このため、第1電圧印加部61及び第2電圧印加部62と、配線63,64とは、p型半導体基板53を貫通するビアホール(スルーホールとも言う。図示しない)を介して接続される。
 図5(A)に示すように、ハイブリッド画素42a,42bの透明電極55A,55Bに電圧を印加しない場合(零電圧の場合)に、電荷蓄積領域22aのポテンシャルが変化しないので、ハイブリッド画素42a,42bと通常画素43とは、各電荷蓄積領域22aは同じ大きさである。また、透明電極55A,55Bと、通常画素43上の絶縁膜56のいずれも透明であり、どちらも入射光がPD22に到達することを妨げない。このため、透明電極55A,55Bに電圧を印加しない場合に、ハイブリッド画素42a,42bと通常画素43とは、実質的に同じ機能を有する。すなわち、ハイブリッド画素42a,42bは、通常画素43として機能する。例えば、通常画素43及びハイブリッド画素42a,42bのそれぞれにおいて、PD22の右側部で発生した電荷70aと、左側部で発生した電荷70bは、ともにn型半導体領域22aに蓄積される。
 一方、図5(B)に示すように、透明電極55Aに正電圧を印加し、透明電極55Bに負電圧を印加すると、電荷(電子)に対して透明電極55Bの直下のポテンシャルが高くなり、電荷蓄積領域22aはX方向に狭窄される。このため、ハイブリッド画素42aでは、もともとの電荷蓄積領域22aのうち左側部のポテンシャルが高くなるので、実効的な電荷蓄積領域73aは右側部に偏る。逆に、ハイブリッド画素42bの実効的な電荷蓄積領域73bは左側部に偏る。
 但し、透明電極55A,55Bは透明であるから、入射光の範囲は変わらず、また光電変換領域22bの大きさや形状も変化しない。このため、ハイブリッド画素42a,42bにおいても、通常画素43と同様に、PD22の右側部でも左側部でも電荷70a,70bは生成される。しかし、ハイブリッド画素42a,42bでは、実効的な電荷蓄積領域73a,73bが左右に偏っているので、発生した電荷70a,70bのうち、一方だけが電荷蓄積領域73a,73bに蓄積される。
 すなわち、ハイブリッド画素42aでは、実効的な電荷蓄積領域73aが右側部にしか発生しないので、PD22の右側部で発生した電荷70aは蓄積されるが、PD22の左側部で荷70bは、暗電流等を除去するための配線を介して排出される。また、ハイブリッド画素42bでは、実効的な電荷蓄積領域73bが左側部にしかないので、PD22の右側部で発生した電荷70aは蓄積されず、PD22の左側部で発生した電荷70bだけが蓄積される。このように、透明電極55Bに負電圧を印加した場合、ハイブリッド画素42a,42bは、受光範囲自体は等方的であるが、右側部または左側部で発生した電荷のみを選択的に蓄積するので、いわゆる位相差画素として機能する。
 もちろん、透明電極55A,55Bを再び零電圧にすれば、狭窄されていた電荷蓄積領域73a,73bはもとの電荷蓄積領域22aに戻り、ハイブリッド画素42a,42bを通常画素43として機能させることができる。
 固体撮像装置10は、上述のようにハイブリッド画素42a,42bの透明電極55A,55Bに印加する電圧を調節して、ハイブリッド画素42a,42bの電荷蓄積領域22aを制御することで、位相差AFを行うことができる。この位相差AFでは、ハイブリッド画素42a,42bを位相差画素として機能させ、また位相差AF後に被写体を撮像する場合にはハイブリッド画素42a,42bを通常画素として機能させる。
 このように、ハイブリッド画素42a,42bは、位相差画素として機能するだけでなく、通常画素としても機能するので、被写体の撮像をする場合にはハイブリッド画素42a,42bの画素信号を、そのまま通常画像の画素信号として使用することができる。このため、従来の位相差画素を有する固体撮像装置のように、ハイブリッド画素42a,42bの画素信号を補間処理やゲイン調節等によって補正する必要がないので、ハイブリッド画素42a,42bの対応位置において、通常画像の感度や解像度が低下しない。また、ハイブリッド画素42a,42bを設けることによる駆動モードの制限がないから、従来の位相差画素を有する固体撮像装置ではできなかった動画の撮影や、画素加算をすることができる。
 上記第1実施形態では、ハイブリッド画素42a,42bを左右方向で二分するように透明電極55A,55Bを設け、位相差AFを行う際に、ハイブリッド画素42a,42bで左右方向の視差に関する情報を得ているが、透明電極55A,55Bを設ける方向は任意である。例えば、上下方向に透明電極55A,55Bを並べて設け、ハイブリッド画素42a,42bで上下方向の視差に関する情報を得てもよい。また、斜め45度方向(あるいは135度方向)に透明電極55A,55Bを並設して、ハイブリッド画素42a,42bで斜め方向の視差に関する情報を得てもよい。
 また、透明電極55Aに正電圧を印加し、透明電極55Bに負電圧を印加することによって、ハイブリッド画素42aの右側に入射した光によって発生した電荷を選択的に蓄積する位相差画素として機能させ、ハイブリッド画素42bの左側に入射した光によって発生した電荷を選択的に蓄積する位相差画素として機能させているが、透明電極55A,55Bに印加する電圧は逆でもよい。この場合、ハイブリッド画素42aでは電荷蓄積領域の右側部が狭窄され、実効的な電荷蓄積領域が左側部に偏る。また、ハイブリッド画素42bでは電荷蓄積領域22aの左側部が狭窄され、右側部に実効的な電荷蓄積領域が形成される。
 また、透明電極55Bに負電圧を印加すれば、透明電極55Aには電圧を印加せず、例えばグラウンドにしておいても上述と同様にハイブリッド画素42a,42bを位相差画素として機能させることができる。
 カラーフィルタ41の6×6画素の単位において、右上の第1サブユニット41aの左下G画素と、左上の第2サブユニット41bの左下G画素をハイブリッド画素42a,42bにしているが、ハイブリッド画素42a,42bにするG画素の位置は任意である。例えば、右上の第1サブユニット41aの中央のG画素と、左上の第2サブユニット41bの中央のG画素をそれぞれハイブリッド画素42a,42bとしてもよい。
[第2実施形態]
 第1実施形態ではハイブリッド画素42a,42bがそれぞれ2つの透明電極55A,55Bを有しているが、透明電極をさらに増やしてもよい。例えば、図6に示す固体撮像装置80のように、ハイブリッド画素に、独立に電圧の制御が可能な4つの透明電極を設けてもよい。
 固体撮像装置80は、カラーフィルタ41の6×6画素の単位の中に、4つのハイブリッド画素82a,82b,82c,82dを有する。
 ハイブリッド画素82aは右上の第1サブユニット41aの左下G画素であり、4つの透明電極85A,85B,85C,85Dにより、直下のPD22のポテンシャルが制御される。ハイブリッド画素82aの場合に、透明電極85A,85B,85C,85Dはそれぞれ右上,左上,左下,右下に設けられる。
 ハイブリッド画素82bは、左上の第2サブユニット41bの左下G画素であり、ハイブリッド画素82aと同様に4つの透明電極85A,85B,85C,85Dによって電荷蓄積領域22aのポテンシャルが制御される。但し、ハイブリッド画素82bは、透明電極85A~85Dの配置がハイブリッド画素82aと異なっており、ハイブリッド画素82aのものと左右対称(X方向の位置を入れ替えた配置)である。すなわち、ハイブリッド画素82bでは、透明電極85Aは左上に、透明電極85Bは右上に、透明電極85Cは右下に、透明電極85Dは左下にそれぞれ配置される。
 また、ハイブリッド画素82cは、左下の第1サブユニット41aの左下G画素であり、ハイブリッド画素82dは右下の第2サブユニット42bの左下G画素である。そして、これらもハイブリッド画素82a,82bと同様に、4つの透明電極85A~85Dによって直下のPD22のポテンシャルが制御されるが、透明電極85A~85Dの配列が異なっている。
 ハイブリッド画素82cの透明電極85A~85Dはそれぞれ、左下,右下,右上,左上に配置される。すなわち、ハイブリッド画素82cは、透明電極85A~85Dの配置が同列上方にあるハイブリッド画素82bと上下対称(Y方向の位置を入れ替えた配置)である。また、ハイブリッド画素82aのものと比較すれば、ハイブリッド画素82cの透明電極85A~85Dの配列は、斜め方向(約135度方向)に対称である。
 また、ハイブリッド画素82dの透明電極85A~85Dは、それぞれ右下,左下,左上,右上に配置され、同列上方にあるハイブリッド画素82aのものに対して上下対称な配列になっている。また、ハイブリッド画素82bのものと比較すれば、ハイブリッド画素82dの透明電極85A~85Dの配置は、斜め方向に対称な配置(右下と左上を入れ替えた配置)である。
 これらのハイブリッド画素82a~82dは、各画素間に設けられた配線89a,89b,89c,89dを介して、第1電圧印加部91,第2電圧印加部92,第3電圧印加部93,第4電圧印加部94にそれぞれ接続される。配線89a~89dは、第1実施形態と同様にポリシリコン等を用いて、透明電極層54に設けられる。第1~第4電圧印加部91~94は、配線89a~89dを介し、透明電極85A~85Dにそれぞれ独立に電圧を印加する。第1~第4電圧印加部91~94は、第1実施形態と同様に配線層52の配線52a等により形成され、配線89a~89dとは図示しないビアホールを通じて接続される。また、第1~第4電圧印加部91~94は、制御部17から入力される制御信号に基づいて、透明電極85A~85Dに電圧を印加するタイミングや電圧の大きさをそれぞれ調節する。
 上述のように構成される固体撮像装置80は、図7(A)に示すように、透明電極85A~85Dに電圧を印加しない場合に、各ハイブリッド画素82a~82dは通常画素43として機能する。各ハイブリッド画素82a~82dの電荷蓄積領域22aは、通常画素43のものと同じである。このために透明電極85A~85Dに電圧を印加せずに被写体を撮像することにより、ハイブリッド画素82a~82dの画素信号をゲイン補正等せずにそのまま用いて通常画像の画素としても用いることができる。
 一方、透明電極85Aと透明電極85Dに正電圧を印加し、透明電極85Bと透明電極85Cに負電圧を印加すると、各ハイブリッド画素82a~82dの電荷蓄積領域22aは狭窄され、透明電極85A及び透明電極85D下だけに実効的な電荷蓄積領域96R,PD96Lが残る。すなわち、カラーフィルタ41の6×6画素の単位で見たときに、右側にある2つのハイブリッド画素82a,82dでは、実効的な電荷蓄積領域96Rが右側に偏在しているので、これらは右側から入射する光束を選択的に受光する位相差画素として機能する。一方、左側にある2つのハイブリッド画素82b,82cでは、実効的な電荷蓄積領域96Lが左側に偏在しているので、これらは左側に入射する光束を選択的に受光する位相差画素として機能する。
 したがって、透明電極85Aと透明電極85Dに正電圧を印加し、透明電極85Bと透明電極85Cに負電圧を印加することにより、左右の視差に基づいた位相差AFを行うことができる。なお、合焦評価は、例えば、ハイブリッド画素82aとハイブリッド画素82bの対や、ハイブリッド画素82dとハイブリッド画素82cの対から得られる画素信号に基づいて、周知のように行われる。
 また、図8に示すように、透明電極85Aと透明電極85Bに正電圧を印加し、透明電極85Cと透明電極85Dに負電圧を印加すると、ハイブリッド画素82a~82dの電荷蓄積領域22aは狭窄され、透明電極85Aと透明電極85Bの下だけ実効的な電荷蓄積領域96U,電荷蓄積領域96Dが残る。すなわち、カラーフィルタ41の6×6画素の単位で見たときに、上側(Y方向で上流側)にある2つのハイブリッド画素82a,82bでは、実効的な電荷蓄積領域96Uが上側に偏在しているので、これらは上側に入射する光束を選択的に受光する位相差画素として機能する。一方、下側(Y方向で下流側)にある2つのハイブリッド画素82c,82dでは、実効的な電荷蓄積領域96Dが下側に偏在するので、これらは下側に入射する光束を選択的に受光する位相差画素として機能する。
 したがって、透明電極85Aと透明電極85Bに正電圧を印加し、透明電極85Cと透明電極85Dに負電圧を印加することにより、固体撮像装置80は上下の視差に基づいた位相差AFを行うことができる。上下の視差に基づいた位相差AFは、例えば、地平線等、上下方向に変化があるが左右方向に変化が少ない被写体を撮影する場合に好適である。もちろん、被写体に応じて透明電極85A~85Dに印加する電圧のパターンを変化させることにより、左右の視差に基づく位相差AFと、上下方向の視差に基づく位相差AFとのうち、精度が良い方に切り換えを行うこともできる。
 なお、遮光膜等によって位相差画素の非対称性を与えている従来の固体撮像装置は、左右方向と上下方向の視差に関する情報を両方とも得るためには、左右方向の視差を検出するための位相差画素と、上下方向の視差を検出するための位相差画素を予め配置されている。このため、左右方向あるいは上下方向の一方向の視差だけを得る場合に比べて、2倍の位相差画素が必要となるので、ゲイン補正や補間をしなければならない画素が倍増し、感度や解像度の劣化はさらに顕著になりやすい。この従来の固体撮像装置と比較すると、本発明の固体撮像装置80では、左右方向と上下方向の視差に関する情報を任意に切り換えて得ることができる上に、通常画像を撮像する場合にはハイブリッド画素82a~82dが通常画素として機能するので、感度や解像度の劣化が特に少ない通常画像を撮像することができる。
 さらに、図9に示すように、固体撮像装置80では、透明電極85Aに正電圧を印加し、透明電極85B~85Dに負電圧を印加することにより、ハイブリッド画素82a~82dの電荷蓄積領域22aを狭窄し、透明電極85Aの下だけに実効的な電荷蓄積領域96UR,96UL,96DL,96DRを残すこともできる。この場合に、ハイブリッド画素82a~82dは、それぞれ右上,左上,左下,右下の各方向から入射する光を選択的に受光する位相差画素として機能する。例えば、ハイブリッド画素82aとハイブリッド画素82cの対や、ハイブリッド画素82bとハイブリッド画素82dの対から得られる信号に基づいて位相差AFを行うことにより、斜め方向の視差に基づく位相差AFを行うことができる。
 また、図10に示すように、透明電極85A,85B,85Dに正電圧を印加し、透明電極85Cに負電圧を印加してもよい。この場合に、各ハイブリッド画素82a~82dの実効的な電荷蓄積領域は、L字型の電荷蓄積領域96UR,96UL,96DL,96DRになる。この場合も、ハイブリッド画素82aとハイブリッド画素82cの対や、ハイブリッド画素82bとハイブリッド画素82dの対から得られる信号に基づいて位相差AFを行うことにより、斜め方向の視差に基づく位相差AFを行うことができる。また、例えば、透明電極85Aに正電圧を印加し、透明電極85Cに負電圧を印加し、透明電極85B,85Dには電圧を印加しない場合も同様である。
 なお、第2実施形態では複数の透明電極が2次元に配列されているが、これらは一列に配置してもよい。例えば、図11に示す固体撮像装置110では、4つの透明電極113A~113Dを横方向(X方向)に配置したハイブリッド画素112を用いて、電荷蓄積領域22aの大きさ及び位置をさらに細かく制御している。この固体撮像装置110は各種の撮像レンズと組み合わせて用いることができるが、焦点距離が可変なズームレンズ(図示しない)を用いるのが特に好適である。
 図12に示すように、ズームレンズを広角端(最短焦点距離)で使用する場合に、入射光のうち主に右側から入射する部分(以下、右側光束という)114Rは光電変換領域22bの左側に入射し、入射光のうち主に左側から入射する部分(以下、左側光束という)114Lは光電変換領域22bの右側に入射する。このため、左側2つの透明電極113A及び透明電極113Bに負電圧を印加し、右側2つの透明電極113C及び透明電極113Dに正電圧を印加して、実効的な電荷蓄積領域115をPD22の右側に偏在させれば、左側光束114Lによって発生した電荷を蓄積し、右側光束114Rによって発生した電荷は破棄される。
 一方、図13に示すように、ズームレンズを望遠端(最長焦点距離)で使用する場合に、光の入射角度は広角端の場合よりも緩やかになる。そして、例えば、ハイブリッド画素112が受光領域11の右側にある場合に、右側光束116Rも左側光束116Lも主に光電変換領域22bの右側に入射する。この場合、広角端の場合と同じように、実効的な電荷蓄積領域115をPD22の右側半分に偏在させただけでは左右の各光束116R,116Lによって発生した電荷が両方とも蓄積されてしまう。すなわち、ハイブリッド画素112では、視差に関する情報が得られ難い。このため、固体撮像装置110では、ズームレンズを望遠端で使用する場合に、左側3つの透明電極113A~113Cに負電圧を印加し、最も右側の透明電極113Dにだけ正電圧を印加して、実効的な電荷蓄積領域117を広角端に比べて約半分の幅にして、PD22の最も右側にだけ偏在させる。こうすると、左右の各光束116R,116Lが、ともに光電変換領域22bの右側1/2の領域に入射した場合でも、左側光束116Lによって発生した電荷が蓄積され、右側光束116Rによって発生した電荷が破棄される。これにより、ハイブリッド画素112は、視差に関する情報を得ることができる。
 左右方向には、2つの透明電極しか配置していない第1,第2実施形態の各ハイブリッド画素42a,42b,82a~82dでは、ズームレンズに使用する場合に、望遠端では視差に関する情報を得られにくくなることがある。そこで、左右方向にさらに細かく透明電極を分割して配置したハイブリッド画素112を用いれば、ズームレンズに対しても視差に関する情報が得やすくなり、位相差AFの精度も向上する。
 なお、第2実施形態のハイブリッド画素82a~82dのように2次元に透明電極を配置する場合には、左右方向の他に、視差を求める上下方向等にも、細かく分割した透明電極を配置すれば、ハイブリッド画素112と同様に、ズームレンズに好適なハイブリッド画素とすることができる。
 また、図12及び図13では、ハイブリッド画素112を左側光束114L,116Lによって発生した電荷を蓄積する位相差画素として機能させているが、透明電極113A~113Dに印加する電圧の正負を逆にすれば、ハイブリッド画素112を右側光束114R,116Rによって発生した電荷を蓄積する位相差画素として機能させることができる。
 図14に示すグラフは、横軸がハイブリット画素112の受光領域11内での位置を表し、縦軸が電荷蓄積領域22aの右半分に実効的な電荷蓄積領域を偏在させたときのハイブリッド画素112の比感度を表している。この比感度は、通常画素43の感度に対するハイブリッド画素112の感度の比である。図15に示すように、左側の透明電極113A,113Bに負電圧を印加し、右側の透明電極113C,113Dに正電圧を印加すると、実効的な電荷蓄積領域122は、電荷蓄積領域22aの1/2の幅で右側に偏在するから、ハイブリッド画素112は、光電変換領域22bの右側で発生した電荷を選択的に蓄積する位相差画素として機能する。この場合に、図14の実線で示すように、受光領域11の中央にあるハイブリッド画素112Cでは比感度は0.5であるが、受光領域11の右側にあるハイブリッド画素112Rでは比感度が0.5よりも高くなり、逆に受光領域11の左側にあるハイブリッド画素112Lでは比感度が0.5よりも低くなる。
 受光領域11内での位置によって、ハイブリッド画素の比感度が変化する理由は、図15から明らかなように、光の入射角度が異なるからである。具体的には、受光領域11の中央にあるハイブリッド画素112Cでは、光の入射角が小さいため、入射光のうち右側光束121Rは光電変換領域22bの左側に入射し、左側光束121Lは光電変換領域22bの右側に入射する。これにより、右半分に偏在させた実効的な電荷蓄積領域122には、左側光束121Lによって発生した電荷が選択的に蓄積される。このように、中央のハイブリッド画素112では、入射光のうち約1/2の左側光束121Lが、電荷蓄積領域122に蓄積される電荷を生成するので、比感度は概ね0.5となる。
 一方、受光領域11の右側(X方向での下流側)にあるハイブリッド画素112Rでは、光の入射角が受光領域11の中心方向に傾斜する。このため、左側光束121Lと右側光束121Rが両方とも光電変換領域22bの右側に入射し、左側光束121Lによって発生した電荷と、右側光束121Rによって発生した電荷の両方が電荷蓄積領域122に蓄積される。したがって、受光領域11の右側にあるハイブリッド画素112Rは、中央のハイブリッド画素112Cよりも比感度が高くなるが、S/Nが良くなく、視差に関する情報が得られ難い。
 逆に、受光領域11の左側にあるハイブリッド画素112Lでは、左側光束121Lと右側光束121Rの両方が光電変換領域22bの左側に入射する。このために、電荷蓄積領域122には、左側光束121Lによって発生した電荷と右側光束121Rによって発生した電荷のいずれも蓄積されにくくなり、中央のハイブリッド画素112Cと比較して比感度が小さくなる。
 上記のように、S/Nが良くない場合や、比感度が小さい場合には、位相差AFの精度が低下するが、図16に示すように、受光領域11内の位置に応じて各ハイブリッド画素112の実効的な電荷蓄積領域の幅を制御することで、S/Nや比感度を向上させることができる。具体的には、中央のハイブリッド画素112Cでは、透明電極113A,113Bに負電圧を印加し、透明電極113C,113Dに正電圧を印加することにより、実効的な電荷蓄積領域122を電荷蓄積領域22a(図11参照)の右側でそのほぼ半分に偏在させる。一方、右側のハイブリッド画素112Rでは、透明電極113A~113Cに負電圧を印加し、透明電極113Dに正電圧を印加することによって、実効的な電荷蓄積領域123を電荷蓄積領域22aの右側で、そのほぼ1/4に偏在させる。また、左側のハイブリッド画素112Rでは、透明電極113Aに負電圧を印加し、透明電極113B~113Dに正電圧を印加することによって、実効的な電荷蓄積領域124を電荷蓄積領域22aの右寄りのほぼ3/4にする。
 このように、受光領域11の右側にあるハイブリッド画素112Rでは、位置が右側にあるほど、実効的な電荷蓄積領域123の幅を小さくして右側に偏在させると、右側光束121Rによって発生する電荷が蓄積されなくなるので、比感度は中央のハイブリッド画素112Cと同程度まで低くなるが、S/Nが向上する。これにより、ハイブリッド画素112Rを用いた位相差AFの精度が向上する。また、受光領域11の左側にあるハイブリッド画素112Lは、位置が左側にあるほど、実効的な電荷蓄積領域124の幅を左側へ広げると、左側光束121Lによる電荷を蓄積することができるので比感度が向上する。すなわち、ハイブリッド画素112Lを用いた位相差AFの精度を向上する。
 図15では、受光領域11の左側にあるハイブリッド画素112Lにおいて、実効的な電荷蓄積領域124は、電荷蓄積領域22aの3/4の幅で右側に偏在している。この代わりに、透明電極113Aと透明電極113C及び透明電極113Dに負電圧を印加し、左から2番目の透明電極113Bにだけ正電圧を印加することで、左側光束121Lの到達点近傍の直下に、実効的な電荷蓄積領域を偏在させてもよい。
 また、右側光束121Rによって発生する電荷を選択的に蓄積するハイブリッド画素112の場合には、図14の破線で示すように、右側にあるものほど比感度が低く、左側にあるものほど比感度が高いが、S/Nが良くない。このため、右側光束121Rによって発生する電荷を選択的に蓄積する場合には、透明電極113A~113Dに印加する電圧の正負を、左側光束121Lによって発生する電荷を選択的に蓄積する場合の逆にすればよい。
 一つのハイブリッド画素に3以上の透明電極を用いる場合に、受光領域11の位置に応じて電荷蓄積領域の幅を変えることで位相差AFの精度が向上するが、これは撮像レンズの種類に依存しない。但し、撮像レンズとしてズームレンズを用いると、ハイブリッド画素112に対しては、望遠端での位相差AFの精度低下と、受光領域11内での配置と光の入射角の関係による位相差AFの精度低下を一挙に改善することができるので、特に好ましい。
 図15及び図16では、4つの透明電極113A~113Dを有するハイブリッド画素112を用いているが、2つ以上の透明電極があれば、受光領域11内の位置に応じて電荷蓄積領域の幅の調節をすることができる。例えば、第3図に示す第1実施形態のように左右に2つの透明電極55A,55Bを配置する場合に、各ハイブリッド画素42a,42bの受光領域11内での位置に応じて、透明電極55A,55Bの大きさを予め調節しておけばよい。すなわち、光電変換領域22bの右側で発生した電荷を蓄積するハイブリッド画素42aは、右側にあるものほど透明電極55Bの面積を大きくし、これとともに透明電極55Aの面積を小さくする。なお、透明電極55Aだけを小さくしてもよい。また、光電変換領域22bの左側で発生した電荷を蓄積するハイブリッド画素42bでは、左側にあるものほど透明電極55Aの面積を大きくし、これとともに透明電極55Bの面積を小さくする。なお、第2実施形態のように4つの電極82A~82Dを2次元に配列する場合も同様である。
 第1,第2実施形態では、透明電極を用いてハイブリッド画素を形成しているが、透明電極の代わりに不透明な電極を用いてもよい。例えば、図17に示すように、電荷蓄積領域22aの左右に不透明な電極151A,151Bが設けられる。但し、電極151A,151Bは、入射光を遮光しないように、マイクロレンズ57が入射光を集光する領域(以下、集光領域という)152に重ならないように設ける。電極151A,151Bは、第1実施形態の透明電極55A,55Bにそれぞれ対応するものであり、例えば、電極151Aに正電圧を印加し、電極151Bに負電圧を印加すれば、実効的な電荷蓄積領域を右側に偏在させることができる。また、第2実施形態のように4つの電極を2次元に配列する場合、図18に示すように、電荷蓄積領域22aの四隅に不透明な電極153A~153Dを配置すればよい。
 図17及び図18では、電荷蓄積領域22aの左右の端または四隅にそれぞれ不透明な四角形の電極が形成されているが、集光領域152に重ならない範囲であれば、不透明な電極の形状や大きさ等は任意である。例えば、図19に示すように、左右に配置された2つの不透明な電極154A,154Bは、集光領域152の部分がほぼ半円形に切り欠かれている。同様に、図20に示すように、左右に配置された4つの不透明な電極155A~155Dは、集光領域152の部分が円弧状に切り欠かれている。このように、集光領域152の部分を切り欠いた電極を用いると、電荷蓄積領域22aの左右の端や四隅に四角形の電極を設ける場合よりも、正確に電荷蓄積領域22aの幅等を制御できる。不透明な電極の材料は導電性があれば任意であり、例えば、アルミニウム等の金属を用いることができる。
 図21は、G画素の他に、R画素やB画素もハイブリッド画素にしたものである。もちろん、ハイブリッド画素を全てR画素としてもよいし、あるいは全てB画素としてもよい。また、R,G,Bのいずれか2種にだけハイブリッド画素を設けてもよい。
 図22は、受光領域11内の全ての画素をハイブリッド画素としたものである。従来の固体撮像装置では、位相差画素が所定位置に設けられているため、焦点調節が可能なAFエリアが特定されることになるが、全ての画素をハイブリッド画素にすれば、撮像フィールド内の全域で焦点調節をすることが可能となる。
 また、図22では、右側部に透明電極55Aが配置されたハイブリッド画素42aと、左側部に透明電極55Aが配置されたハイブリッド画素42bとを混在させているが、図23に示すように、例えば全画素を、右側部に透明電極55Aが配置されたハイブリッド画素42aにしてもよい。この場合に、例えば、あるフレームでは、透明電極55Aに正電圧を印加し、透明電極55Bに負電圧を印加して、全画素において右側で受光した光によって発生した電荷を選択的に蓄積して撮像をする。次のフレームでは、透明電極55Aに負電圧を印加し、透明電極55Bに正電圧を印加して、全画素において左側で受光した光によって発生した電荷を選択的に蓄積して撮像をする。こうすると、連続した2つのフレーム間での画素信号を用いて位相差AFを行うことができる。また、1フレーム目で得た画像を右視点画像、2フレーム目で得た画像を左視点画像とすれば、立体視用の視差画像を得ることもできる。すなわち、2D撮影(全画素を通常画素として通常画像を撮影する場合)と、3D撮影を容易に切り換えることができる。また、2D撮影画像と3D撮影画像とは、全画素を使用しているから高解像度の画像を得ることができる。
 図24に示す固体撮像装置160は、1画素に2つのPD22を設けたものである。なお、カラーフィルタ41の色セグメントやマイクロレンズ75は1画素に1つである。この固体撮像装置160では、2つのPD22で発生した電荷が合算され、1つの画素の画素信号として出力される。この場合に、ハイブリッド画素162では、一方のPD22上に透明電極55Aを設け、他方のPD22上に透明電極55Bを設ける。透明電極55Aに正電圧(または負電圧)を、透明電極55Bに負電圧(または正電圧)をそれぞれ印加すれば、ハイブリッド画素162を位相差画素として機能させることができる。なお、第2実施形態のように4つの透明電極85A~85Dを設けてもよい。この場合には、1画素に4つのPD22が設けられる。このように、1画素に複数のPD22を含むようにすると、各PD22が独立しているので、各PD22間での電荷の移動がなく、ノイズが少ないのでさらに正確な位相差AFを行うことができる。
 1画素に複数のPD22を含ませる場合は、図25に示すように、画素間等の素子分離領域151をp+で形成した上で、さらにPD22間の素子分離領域172をより添加物が多いp++で形成することが好ましい。こうすると、素子分離領域172の電子に対するポテンシャル障壁が通常の素子分離領域171よりも高くなるので、2つのPD22間の電荷の移動をより確実に防止することができる。例えば、2つのPD22のうち一方のPDに対応する透明電極に負電圧を印加し、他方のPDに対応する透明電極に正電圧を印加する場合に、負電圧が印加されたPDで発生した電子は、素子分離領域172のポテンシャル障壁を乗り越えられないので、負電圧を印加されていない他方のPDには流入しない。負電圧が印加されたPDでは、光電変換により電荷を生成されるが、生成された電荷は負電圧が印加されているために蓄積されず、グランドに接続された配線(図示しない)を介して排出される。
 また、図25において、各PD22に対してFD26と読み出しゲート173とを設けて、2つのPD22の電荷を混合せずに、PD22毎に電荷の読み出しを行うのが望ましい。こうすると、各PD22間の電荷の移動をさらに確実に防止することができる。
 図24及び図25では、通常画素163とハイブリッド画素162の両方が、2つのPD22を含んでいるが、ハイブリッド画素162だけに複数のPD22を設けてもよい。
 図26及び図27は、画素がハニカム配列された固体撮像装置を示す。このハニカム配列では、カラーフィルタの色配列は任意であるが、図26ではG画素の列と、R画素及びB画素が2個ずつ交互に並んだ列を、斜め45度方向に交互に配置している。図27では、画素、G画素、B画素が交互に並んだ同じ列が、斜め45度方向に配置されている。
 また、第1,第2実施形態では、6×6画素を単位としたカラーフィルタ41を用いているが、カラーフィルタ41の色配列は任意である。例えば、画素を正方配列にする場合には、図28に示すように、破線で囲む2×2画素を上下左右に並べたいわゆるベイヤー配列にしてもよい。
 図29は、表面照射型(FSI;front side illuminated)の固体撮像装置180を示す。この表面照射型の固体撮像装置180は、p型半導体基板53上に配線層52、カラーフィルタ41、マイクロレンズ57が、この順番で積層された構造を有し、配線層52を介して表面側からPD22に光が入射する。透明電極層54は、例えばp型半導体基板53と配線層52の間(p型半導体基板53の表面上)に設けられる。但し、透明電極層54の透明電極55A,55Bによって、PD22のポテンシャルを制御することができるのであれば、表面照射型の固体撮像装置180でも、透明電極層54をPD22の下(p型半導体基板53の裏面側)に設けてもよい。
 前述した第1,第2実施形態では、位相差画素として機能させる場合に、対になるハイブリッド画素が同じ行(第2実施形態では同じ行かつ同じ列)に設けられているが、対になる2つのハイブリッド画素は異なる行または列に設けてもよい。
 また、1つの画素は、3つのトランジスタTr23,Ta24,Ts25を有するが、各画素のトランジスタの数等は任意である。例えば、PD22とFDの間に転送用のトランジスタを設け、4つのトランジスタを用いて構成してもよい。
 裏面照射型の固体撮像装置では、p型半導体基板53の裏面に透明電極層54を設けているが、透明電極によってPD22のポテンシャルを制御することができれば、透明電極層54の積層順は任意である。例えば、カラーフィルタ41とマイクロレンズ57の間に透明電極層54を設けてもよい。但し、透明電極とPD22の距離が近いほど制御性が良いので、透明電極層54はp型半導体基板53上に形成されていることが好ましい。
 また、加色法の3原色(B,G,R)カラーフィルタ41を用いているが、減色法の3原色(Y,M,C)カラーフィルタを用いてもよい。また、カラーフィルタには無色(透明)、特定色等が含まれていてもよく、この無色等のフィルタをハイブリッド画素に設けてもよい。
 第1実施形態では、ハイブリッド画素42a,42bで左右方向の視差に関する情報を得ており、第2実施形態ではハイブリッド画素82a~82dで上下左右及び斜めの各方向の視差に関する情報を得ている。この他に、第1実施形態のハイブリッド画素42a,42bと、これらを90度回転して上下方向に配置した2個のハイブリッド画素とにより、左右と上下方向での視差情報を得てもよい。
 全てのハイブリッド画素間では、同じ透明電極に一律に同じ電圧を印加しているが、透明電極に印加する電圧をハイブリッド画素毎に制御してもよい。特に、全画素をハイブリッド画素にする場合に、各画素の透明電極を個別に制御できると、2D撮影と3D撮影の切り換えが容易である。
 また、p型半導体基板53とカラーフィルタ41の間に透明電極層54を設け、ハイブリッド画素のPD22のポテンシャルを裏面側から制御しているが、透明電極層54をp型半導体基板53と配線層52の間に設け、表面側からハイブリッド画素のPD22を制御してもよい。この場合、透明電極55A,55B等の代わりに、不透明な材料を使用して電極を形成することができる。
 PD22のポテンシャルを制御するための透明電極は、1つのハイブリッド画素に2以上設けられているが、ハイブリッド画素に設ける電極は1つでもよい。例えば、第1実施形態のハイブリッド画素42a,42bの場合、透明電極55Aをなくし、透明電極55Bだけを設けてもよい。この場合、透明電極55Bに負電圧を印加すれば、PD22のポテンシャルを電極がない部分(第1実施形態で透明電極55Aがある部分)の直下だけが残るようにPD22のポテンシャルを制御することができる。但し、1つの電極に負電圧を印加してPD22の電荷蓄積領域22aを狭窄するよりも、2以上の電極を用いた方がポテンシャル(すなわち電荷蓄積領域の形状等)の制御性が良いので、第1,第2実施形態のように複数の電極を設けておくことが好ましい。
 ハイブリッド画素を位相差画素として機能させる場合に、電荷蓄積領域を偏在させる箇所の電極(例えば、第1実施形態の透明電極55A)に正電圧を印加しているが、この電荷蓄積領域を偏在させる箇所の電極には零電圧(あるいはグランド)にしもよい。例えば、第1実施形態において、透明電極55Bに負電圧を印加し、透明電極55Aを零電圧にした場合も、電荷蓄積領域は透明電極55Aの下に偏在させることができる。但し、ポテンシャルの制御性が良いので、透明電極55Aには正電圧を印加した方がよい。
 受光領域11内に複数のハイブリッド画素を均一に設けているが、位相差AFを行うためにはハイブリッド画素は、少なくとも対となる2個があればよい。一対のハイブリッド画素を複数設ける場合には、一対のハイブリッド画素の数や配置は任意に決めればよい。
 本発明の固体撮像装置は、位相差AFを行うものであれば、CMOSイメージセンサの他に、CCD型イメージセンサでもよい。また、3以上の透明電極を有するハイブリッド画素112を用いる固体撮像装置は、薄型のデジタルカメラ、携帯電話機やPDA、スマーフォトン等に搭載されるカメラユニット等、周辺部で主光線角度が大きくなりやすい薄型,小型のものに特に好適である。
 10,80,160,180 固体撮像装置
 11 受光領域
 21 画素
 22 PD
 22a 電荷蓄積領域
 22b 光電変換領域
 41 カラーフィルタ
 42a,42b,82a~82d ハイブリッド画素
 43 通常画素
 54 透明電極層
 55A,55B,85A~85D 透明電極
 73a,73b,115,117,122,122~124 実効的な電荷蓄積領域

Claims (13)

  1.  被写体からの入射光を光電変換し、入射光量に応じた電荷を発生させる光電変換領域と、前記光電変換領域で発生した電荷を蓄積する電荷蓄積領域と、前記電荷蓄積領域に電圧を印加して前記電荷に対するポテンシャルを変調することによって前記電荷蓄積領域の幅を狭窄し、前記電荷蓄積領域を偏在させるポテンシャル変調用電極とを有するハイブリッド画素を複数備え、
     前記ハイブリッド画素は、前記電荷蓄積領域の幅が狭窄されていない場合に、前記光電変換領域で発生した前記電荷を偏りなく蓄積する通常画素として機能し、そして前記ポテンシャル変調用電極に電圧が印加されて前記電荷蓄積領域の幅が狭窄された場合に、前記電荷のうち前記光電変換領域の一部で発生した前記電荷を選択的に蓄積する位相差画素として機能する固体撮像装置。
  2.  前記ハイブリッド画素は複数のフォトダイオードを含み、各フォトダイオードは前記光電変換領域と前記電荷蓄積領域とを有し、
     前記各フォトダイオードの間での前記電荷の移動を妨げる分離領域には、隣接する画素との間での前記電荷の移動を妨げる分離領域よりも添加物の量が多く、前記電荷に対するポテンシャルが高くなっている請求項1に記載の固体撮像装置。
  3.  前記ポテンシャル変調用電極は、各々独立して電圧を印加可能な複数の電極を有し、この少なくとも1つの各電極に負電圧を印加することにより、前記電荷蓄積領域を他方の電極の下へ偏在させる請求項1または2に記載の固体撮像装置。
  4.  前記電荷蓄積領域が偏在される位置に対応する前記電極には、正電圧が印加される請求項3に記載の固体撮像装置。
  5.  前記ポテンシャル変調用電極は、印加電圧が制御可能な第1電極と第2電極を有し、
     複数の前記ハイブリッド画素は、前記第1電極と前記第2電極が第1方向に配置された第1ハイブリッド画素と、前記第1電極と前記第2電極が前記第1ハイブリッド画素と逆順に配置された第2ハイブリッド画素の2種類であり、
     前記第1電極には、前記第1ハイブリッド画素と前記第2ハイブリッド画素の両方に第1電圧を印加され、前記第2電極には前記第1ハイブリッド画素と前記第2ハイブリッド画素の両方に第2電圧が印加される請求項3または4に記載の固体撮像装置。
  6.  前記ポテンシャル変調用電極は、前記第1方向に配列された少なくとも3以上の電極である請求項3または4に記載の固体撮像装置。
  7.  前記ハイブリッド画素を含む複数の画素が配列された受光領域に、焦点距離が調節可能なズームレンズによって被写体の像が結像される際に、
     前記ズームレンズの焦点距離に応じて、前記第1方向に配置された前記各電極の印加電圧を変えることにより、前記電荷蓄積領域を偏在させる位置を変える請求項6に記載の固体撮像装置。
  8.  前記ポテンシャル変調用電極は、印加電圧が制御可能な第1~第4電極の4つの電極を有し、
     複数の前記ハイブリッド画素は第1~第4ハイブリッド画素を含み、
     前記第1ハイブリッド画素は、前記第1方向とこの第1方向に垂直な第2方向に沿って、前記第1~第4電極が2次元に配列され
     前記第2ハイブリッド画素は、前記第1ハイブリッド画素に対して、前記第1~第4電極の配列が前記第1方向に対称であり、
     前記第3ハイブリッド画素は、前記第2ハイブリッド画素に対して、前記第1~第4電極の配列が前記第2方向に対称であり、
     前記第4ハイブリッド画素は、前記第3ハイブリッド画素に対して、前記第1~第4電極が前記第1方向に対称であり、
     前記第1~第4ハイブリッド画素の各前記第1~第4電極には同じ電圧が印加される請求項3または4に記載の固体撮像装置。
  9.  前記被写体の像が結像される受光領域に、前記ハイブリッド画素を含む複数の画素が配列され、
     前記受光領域内における前記ハイブリッド画素の位置に応じて、前記電荷蓄積領域を偏在させる位置を変える請求項3~8のいずれか1項に記載の固体撮像装置。
  10.  前記ポテンシャル変調用電極は透明であり、前記ポテンシャル変調用電極を通って前記入射光が前記光電変換領域に入射する請求項1~9のいずれか1項に記載の固体撮像装置。
  11.  前記ハイブリッド画素毎に前記入射光を前記フォトダイオードに集光するマイクロレンズを備え、
     前記ポテンシャル変調用電極は不透明な材料で形成され、前記マイクロレンズによって前記入射光が集光される集光領域の外に設けられている請求項1~9のいずれか1項に記載の固体撮像装置。
  12.  前記ポテンシャル変調用電極が前記集光領域を切り欠いた形状をしている請求項11に記載の固体撮像装置。
  13.  受光領域にある全ての画素が前記ハイブリッド画素である請求項1~12のいずれか1項に記載の固体撮像装置。
PCT/JP2013/082772 2012-12-21 2013-12-06 固体撮像装置 WO2014097899A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014553074A JP5860168B2 (ja) 2012-12-21 2013-12-06 固体撮像装置
US14/744,677 US9591244B2 (en) 2012-12-21 2015-06-19 Solid-state imaging device having plural hybrid pixels with dual storing function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012279535 2012-12-21
JP2012-279535 2012-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/744,677 Continuation US9591244B2 (en) 2012-12-21 2015-06-19 Solid-state imaging device having plural hybrid pixels with dual storing function

Publications (1)

Publication Number Publication Date
WO2014097899A1 true WO2014097899A1 (ja) 2014-06-26

Family

ID=50978234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082772 WO2014097899A1 (ja) 2012-12-21 2013-12-06 固体撮像装置

Country Status (3)

Country Link
US (1) US9591244B2 (ja)
JP (1) JP5860168B2 (ja)
WO (1) WO2014097899A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033981A (ja) * 2014-07-31 2016-03-10 キヤノン株式会社 固体撮像素子および撮像システム
WO2016039152A1 (ja) * 2014-09-10 2016-03-17 ソニー株式会社 固体撮像装置およびその駆動方法、並びに電子機器
JPWO2016111004A1 (ja) * 2015-01-09 2017-10-19 オリンパス株式会社 固体撮像装置
EP3245547A4 (en) * 2015-01-14 2018-12-26 Invisage Technologies, Inc. Phase-detect autofocus
JP2021068758A (ja) * 2019-10-18 2021-04-30 ブリルニクス インク 固体撮像装置、固体撮像装置の製造方法、および電子機器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904197B (zh) * 2012-12-05 2016-12-28 富士胶片株式会社 摄像装置及异常倾斜入射光检测方法
WO2014087804A1 (ja) * 2012-12-07 2014-06-12 富士フイルム株式会社 撮像装置、画像処理方法及びプログラム
JPWO2014112002A1 (ja) * 2013-01-15 2017-01-19 オリンパス株式会社 撮像素子、及び撮像装置
JP5802858B2 (ja) * 2013-03-05 2015-11-04 富士フイルム株式会社 撮像装置、画像処理装置、画像処理方法及びプログラム
CN111479066B (zh) * 2013-09-26 2022-11-18 株式会社尼康 摄像元件以及摄像装置
JP6789643B2 (ja) * 2016-03-04 2020-11-25 キヤノン株式会社 撮像装置
WO2018075583A1 (en) 2016-10-20 2018-04-26 Invisage Technologies, Inc. Image sensors with crosstalk mitigation
KR102414024B1 (ko) 2017-04-04 2022-06-29 에스케이하이닉스 주식회사 광학필터를 구비하는 이미지 센서 및 그 동작방법
JP6947590B2 (ja) * 2017-09-08 2021-10-13 オリンパス株式会社 撮像装置、撮像装置の制御方法
US10498947B2 (en) * 2017-10-30 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor including light shielding layer and patterned dielectric layer
KR102524415B1 (ko) 2018-03-21 2023-04-24 에스케이하이닉스 주식회사 Pd 바이어스 패턴들을 갖는 이미지 센서
KR102632474B1 (ko) 2019-02-11 2024-02-01 삼성전자주식회사 이미지 센서의 픽셀 어레이 및 이를 포함하는 이미지 센서
EP3936786B1 (en) 2019-03-06 2023-10-04 Mitsubishi Electric Corporation Refrigeration cycle device
CN116830593A (zh) * 2021-03-24 2023-09-29 三星电子株式会社 能够通过共用孔来同时进行照明功能和光源检测功能的装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325139A (ja) * 2006-06-03 2007-12-13 Nikon Corp 固体撮像素子及びこれを用いた撮像装置
JP2008193527A (ja) * 2007-02-06 2008-08-21 Nikon Corp 光電変換部の連結/分離構造、固体撮像素子及び撮像装置
WO2011158567A1 (ja) * 2010-06-18 2011-12-22 富士フイルム株式会社 固体撮像素子及びデジタルカメラ
US20120038904A1 (en) * 2010-08-11 2012-02-16 Fossum Eric R Unit pixel, photo-detection device and method of measuring a distance using the same
JP2012049201A (ja) * 2010-08-24 2012-03-08 Fujifilm Corp 撮像素子及び撮像装置
JP2012084816A (ja) * 2010-10-14 2012-04-26 Fujifilm Corp 裏面照射型撮像素子及び撮像装置
JP2012113027A (ja) * 2010-11-22 2012-06-14 Nikon Corp 撮像素子及び撮像装置
WO2012165255A1 (ja) * 2011-06-02 2012-12-06 富士フイルム株式会社 固体撮像装置及びその製造方法
JP2013153050A (ja) * 2012-01-25 2013-08-08 Canon Inc 固体撮像素子、該固体撮像素子を備えた距離検出装置、及びカメラ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215063A (ja) 1988-02-24 1989-08-29 Fuji Photo Film Co Ltd イメージセンサ
JP2005268609A (ja) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 多層積層型多画素撮像素子及びテレビカメラ
JP2012003009A (ja) 2010-06-16 2012-01-05 Fujifilm Corp 固体撮像素子及びその製造方法並びに撮影装置
JP5513623B2 (ja) 2010-08-24 2014-06-04 富士フイルム株式会社 固体撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325139A (ja) * 2006-06-03 2007-12-13 Nikon Corp 固体撮像素子及びこれを用いた撮像装置
JP2008193527A (ja) * 2007-02-06 2008-08-21 Nikon Corp 光電変換部の連結/分離構造、固体撮像素子及び撮像装置
WO2011158567A1 (ja) * 2010-06-18 2011-12-22 富士フイルム株式会社 固体撮像素子及びデジタルカメラ
US20120038904A1 (en) * 2010-08-11 2012-02-16 Fossum Eric R Unit pixel, photo-detection device and method of measuring a distance using the same
JP2012049201A (ja) * 2010-08-24 2012-03-08 Fujifilm Corp 撮像素子及び撮像装置
JP2012084816A (ja) * 2010-10-14 2012-04-26 Fujifilm Corp 裏面照射型撮像素子及び撮像装置
JP2012113027A (ja) * 2010-11-22 2012-06-14 Nikon Corp 撮像素子及び撮像装置
WO2012165255A1 (ja) * 2011-06-02 2012-12-06 富士フイルム株式会社 固体撮像装置及びその製造方法
JP2013153050A (ja) * 2012-01-25 2013-08-08 Canon Inc 固体撮像素子、該固体撮像素子を備えた距離検出装置、及びカメラ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033981A (ja) * 2014-07-31 2016-03-10 キヤノン株式会社 固体撮像素子および撮像システム
CN109378321A (zh) * 2014-07-31 2019-02-22 佳能株式会社 固态图像拾取元件和图像拾取系统
CN109378321B (zh) * 2014-07-31 2023-11-07 佳能株式会社 固态图像拾取元件和图像拾取系统
WO2016039152A1 (ja) * 2014-09-10 2016-03-17 ソニー株式会社 固体撮像装置およびその駆動方法、並びに電子機器
US10178332B2 (en) 2014-09-10 2019-01-08 Sony Semiconductor Solutions Corporation Solid-state imaging device using a phase difference signal, method for driving the same, and electronic device
US11882359B2 (en) 2014-09-10 2024-01-23 Sony Semiconductor Solutions Corporation Solid-state imaging device, method for driving the same, and electronic device for improved auto-focusing accuracy
JPWO2016111004A1 (ja) * 2015-01-09 2017-10-19 オリンパス株式会社 固体撮像装置
US10170507B2 (en) 2015-01-09 2019-01-01 Olympus Corporation Solid-state imaging device
EP3245547A4 (en) * 2015-01-14 2018-12-26 Invisage Technologies, Inc. Phase-detect autofocus
JP2021068758A (ja) * 2019-10-18 2021-04-30 ブリルニクス インク 固体撮像装置、固体撮像装置の製造方法、および電子機器

Also Published As

Publication number Publication date
US9591244B2 (en) 2017-03-07
JP5860168B2 (ja) 2016-02-16
US20150288901A1 (en) 2015-10-08
JPWO2014097899A1 (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5860168B2 (ja) 固体撮像装置
US11444115B2 (en) Solid-state imaging device and electronic apparatus
US9749556B2 (en) Imaging systems having image sensor pixel arrays with phase detection capabilities
EP2738812B1 (en) A pixel array
JP6408372B2 (ja) 固体撮像装置及びその駆動制御方法、並びに、電子機器
JP2020077886A (ja) 撮像素子
JP5045012B2 (ja) 固体撮像素子及びこれを用いた撮像装置
JP4839990B2 (ja) 固体撮像素子及びこれを用いた撮像装置
JP5566457B2 (ja) 固体撮像素子及びデジタルカメラ
JP2008227253A (ja) 裏面照射型固体撮像素子
JP2013145292A (ja) 固体撮像装置および電子カメラ
KR20140113923A (ko) 고체 촬상 소자 및 카메라 시스템
WO2014097884A1 (ja) 固体撮像装置
US20150163464A1 (en) Solid-state imaging device
JP5461343B2 (ja) 撮像素子及び撮像装置
JP2012004264A (ja) 固体撮像素子および撮影装置
JP4759396B2 (ja) 固体撮像素子
JP5730419B2 (ja) 撮像装置
JP5961720B2 (ja) 撮像装置
JP2011066685A (ja) 固体撮像素子及びその駆動方法並びに撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553074

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864176

Country of ref document: EP

Kind code of ref document: A1