WO2014097830A1 - ガラス成形体の製造方法及び成形型 - Google Patents

ガラス成形体の製造方法及び成形型 Download PDF

Info

Publication number
WO2014097830A1
WO2014097830A1 PCT/JP2013/081675 JP2013081675W WO2014097830A1 WO 2014097830 A1 WO2014097830 A1 WO 2014097830A1 JP 2013081675 W JP2013081675 W JP 2013081675W WO 2014097830 A1 WO2014097830 A1 WO 2014097830A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
glass
molded body
mold
glass material
Prior art date
Application number
PCT/JP2013/081675
Other languages
English (en)
French (fr)
Inventor
志郎 舩津
知治 林
勝浩 鈴木
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014553042A priority Critical patent/JPWO2014097830A1/ja
Priority to DE112013006145.7T priority patent/DE112013006145B4/de
Publication of WO2014097830A1 publication Critical patent/WO2014097830A1/ja
Priority to US14/738,046 priority patent/US9650278B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0302Re-forming glass sheets by bending by press-bending between shaping moulds between opposing full-face shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/76Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing a glass molded body by press molding and a mold, and in particular, a method for producing a glass molded body capable of sufficiently filling a glass in a mold and obtaining a glass molded body having a desired shape, and the method thereof.
  • the present invention relates to a mold used for a manufacturing method.
  • the mold In such a press molding process, when the glass material is heat-softened and pressed, the mold is kept at a predetermined temperature to maintain a heating temperature sufficient to process the molding material. After molding, the glass material is cooled. The mold is finally cooled to a temperature of 200 ° C. or less at which the mold is not oxidized.
  • the shape of the molding die is accurately transferred to the glass material at the time of pressing, and this is cooled and solidified to maintain the molded shape, and a press molded product with high shape accuracy.
  • the present invention has been made paying attention to the above-mentioned problems, and in manufacturing a glass molded product, the contour shape in plan view is a non-circular shape and the surface shape of the molding surface is not a flat plate.
  • Another object of the present invention is to provide a method for producing a glass molded product that can be sufficiently filled with a glass material in a mold and produce a glass molded body having a desired shape, and a mold used for the method.
  • the method for producing a glass molded body of the present invention includes a heating step of heating a plate-shaped glass material placed on the lower mold of a mold having a pair of upper mold and lower mold, and the heated plate A glass having a pressing step of pressing the glass material with the molding die to transfer the shape of the molding surface, and a cooling step of cooling and solidifying the glass molded body to which the molding surface shape has been transferred after the pressing step.
  • the contour shape in plan view of each molding surface of the upper mold and the lower mold is non-circular, and a gap formed by the molding surface increases from the inside to the outside of the molding surface.
  • the pressure distribution generated in the plate-like glass material in the pressing step is made equal in the contour region of the molding surface.
  • the molding die of the present invention is a molding die having a pair of upper mold and lower mold in which a plate-shaped glass material is formed into a glass molded body by press molding, and is a flat surface of each molding surface of the upper mold and the lower mold.
  • the pressure profile generated in the plate-shaped glass material in the press molding is formed such that the visual contour shape is non-circular, and the gap formed by the molding surface becomes wider from the inside to the outside of the molding surface.
  • the molding surface is formed to be equal in the contour region of the molding surface.
  • the glass material can be sufficiently filled inside the molding surface of the mold, and the shape defect such as insufficient filling or air retention is caused. Can be efficiently suppressed. Therefore, it contributes to the improvement of the manufacturing yield of the glass molded body, and the product productivity is increased.
  • FIG. 1 is a schematic cross-sectional view of a mold for producing the glass molded body shown in FIGS. 1A to 1C.
  • the manufacturing method of the glass forming body which is one Embodiment of this invention, it is the figure which mounted the plate-shaped glass raw material on the lower mold
  • FIG. 1 It is a figure explaining the heating process in the manufacturing method of the glass forming object which is one embodiment of the present invention. It is a figure explaining the press process in the manufacturing method of the glass forming body which is one Embodiment of this invention. It is a figure explaining the cooling process in the manufacturing method of the glass forming body which is one Embodiment of this invention. It is the figure which showed the change of the pressure distribution of the glass raw material in a press process. It is a figure explaining the processing process in the manufacturing method of the glass forming object which is one embodiment of the present invention. It is the perspective view which looked at the upper model shown in Drawing 3 from the molding side. It is the perspective view which looked at the upper mold used in comparative example 1 from the molding surface side. 3 is a schematic cross-sectional view of a mold used in Comparative Example 1. FIG.
  • the method for producing a glass molded body of the present invention includes a heating step of heating a plate-shaped glass material placed on a lower mold of a molding die having a pair of upper mold and lower mold, and the heated plate Forming a glass material by pressing a glass material with a molding die and transferring the shape of the molding surface; and a cooling step of cooling and solidifying the glass molded body having the shape of the molding surface transferred after the pressing step.
  • This is a method for manufacturing a body, and is characterized by the shape of a mold used at this time.
  • each molding surface of the upper mold and the lower mold is non-circular, and the gap between the molding surfaces formed by these molding surfaces becomes wider from the inside to the outside of the molding surface. It is formed as follows.
  • the planar view contour shape of each molding surface of the upper die and the lower die refers to the contour shape in the horizontal plane, and more specifically, the lower die is the contour shape of the molding surface in the plan view, and the upper die is in the bottom view. This is the contour shape of the molding surface.
  • the shape of the molding surface is a non-circular shape in plan view (even if there is a slight deviation), there is room for improving the filling property of the glass of the present invention, and there is no room for it. Except for the shape, any other shape may be used.
  • the contour shape in plan view include an ellipse and a polygon.
  • examples of the polygon include triangles, quadrilaterals, pentagons, hexagons, and higher polygons, and may be regular polygons in which all side lengths and vertex angles are equal, or they are different. It may be a polygon.
  • the shape may be a square, a rectangle, a parallelogram, a trapezoid, or the like, or a quadrangle whose side lengths and vertex angles are different from each other.
  • polygon as used herein includes a shape that becomes a substantially polygon.
  • the basic shape of a polygon is a polygon.
  • the vertex of the polygon is formed with a curvature.
  • shapes that are cut or chamfered at the apex are also included.
  • the flatness ratio is preferably 0.5 or more, and in the case of a polygon, it is not a regular polygon but a shape in which the deviation is large is preferable.
  • shaft which becomes line symmetry is preferable, and the shape with many axes
  • the gap between the molding surfaces formed by the molding surfaces of the upper mold and the lower mold is formed so as to increase from the inside to the outside of the molding surface.
  • the gap between the molding surfaces refers to a gap formed between the upper die and the lower die when pressed in the pressing process.
  • the distance of the gap is expressed by a distance until a straight line extending in parallel with the pressing direction and the other molding surface intersect at a desired point on one molding surface (product surface side) (for example, FIG. 3 G1, G2). That is, the distance between the molding surfaces of the upper die and the lower die on the vertical.
  • the distance between the gaps increases from the inner side to the outer side in a plan view, but the relationship only needs to satisfy a smaller molding surface among the contour shapes of the upper die and the lower die. With such a configuration, at least a portion having a small contour shape on the molding surface can be sufficiently filled with a glass material, and a shape defect does not occur.
  • the place where the pressure is first filled and becomes high pressure when pressed by the upper die and the lower die is the most in the molding die (molding die having a concave molding surface) that forms the convex surface side of the molded product.
  • a deep part is preferable, and when this is done, this is the part where the distance between the upper mold and the lower mold is the shortest.
  • the portion with the shortest gap distance may be a point or a line. From there, the upper mold and the lower mold are formed so that the distance between the gaps gradually increases toward the outer peripheral side. Further, in the pressing step, pressure is applied so that the pressure distribution generated in the plate-shaped glass material is equal in the contour region of the molding surface.
  • This contour region is a region formed with a width which is basically in a portion which becomes a shape similar to the contour shape in plan view or an offset shape inside the molding surface when seen in plan view.
  • the degree of spread of the gap between the molding surfaces can be adjusted from the inside toward the outside according to the contour shape of the molding surface.
  • FIG. 1A is a plan view of a glass molded body 1 manufactured by the method for manufacturing a glass molded body of the present invention
  • FIG. 1B is a front view of the glass molded body 1
  • FIG. 1C is a right side view of the glass molded body 1.
  • the glass molded body 1 has a substantially rectangular transfer surface 1a formed by providing a curvature at the apex based on a rectangular shape in plan view, and the contour shape is symmetrical with respect to the major axis and the minor axis, respectively. It is.
  • the transfer surface 1a is a transfer surface having a cross-sectional shape formed by a curve having a small curvature at the center and a large curvature near the outer periphery. That is, the transfer surface 1a is formed in a curved surface shape in which the central portion of the rectangle is transferred to the deepest portion of the molding surface of the mold.
  • a molding die having a molding surface whose transfer surface shape can be formed by transfer is used. That is, the transfer surface 1a of the glass molded body 1 and the molding surface of the mold that forms the transfer surface 1a have opposite concavities and convexities, but the above-described curvature and symmetry have similar characteristics. Yes.
  • FIG. 1A to 1C are cross-sectional views taken along the line AA in FIG. 2, and as shown here, the bottom surface side of the glass molded body 1 is formed as a concave surface. ing. As described above, the concave surface is obtained by a molding die that becomes wider as the gap between the upper die and the lower die goes to the outside. It is formed thicker as it goes.
  • FIG. 3 shows a schematic cross-sectional view of a mold for producing the glass molded body 1.
  • This mold is composed of a pair of upper mold 11 and lower mold 12.
  • molding operation was shown.
  • molding die was also shown, respectively.
  • the product surface is a shape determined according to its use, and this is a predetermined shape, so that the molding surface 12a of the lower mold 12 is determined accordingly.
  • the shape of the molding surface 11a of the upper mold 11 is such that the gap formed by the molding surface goes from the inside to the outside. It is characterized in that it has a predetermined shape that becomes wider as it goes.
  • the mold shown in FIG. 3 is formed with a curved surface having a curvature. Specifically, as shown in the enlarged view of the central portion of the molding surface in FIG. It is formed by a molding surface 12a of the mold and a molding surface 11a of the upper mold. Therefore, the radius of curvature R2 of the upper mold surface 11a may be made smaller than the radius of curvature R1 of the lower mold surface 12a in order to increase the distance of the gap toward the outside.
  • the curvature radius R4 of the upper molding surface 11a may be made smaller than the curvature radius R3 of the lower molding surface 12a.
  • the radius of curvature of the glass molded body 1 varies between the central portion and the outer peripheral portion, and the corresponding radius of curvature may be determined as a shape in which the gap is always widened according to the variation.
  • the above-mentioned whole molding surface refers to the whole molding surface with a small planar view outline shape among an upper mold
  • the relationship between the gaps is preferably the entire molding surface having a large contour shape.
  • the entire molding surface having a large contour shape is predetermined. This is because it is difficult to maintain the gap relationship. Therefore, it is sufficient that the above relationship is satisfied at least over the entire molding surface having a small contour shape, and it is preferable that the above relationship is satisfied over the entire molding surface having a large contour shape.
  • the shape (R2 / R1) between the radius of curvature R1 of the molding surface 12a of the lower mold and the radius of curvature R2 of the molding surface 11a of the upper mold satisfies the relationship of 0.8 ⁇ R2 / R1 ⁇ 1.0. Is preferred.
  • most of the shape of the molding surface is preferably a shape that is formed as a free-form surface with a constant curvature and satisfies the above relationship even if the curvature radius changes. Therefore, similarly in the vicinity of the outer periphery, the ratio (R4 / R3) of the curvature radius R3 of the molding surface 12a of the lower mold to the curvature radius R4 of the molding surface 11a of the upper mold is 0.8 ⁇ R4 / R3 ⁇ 1. A shape that satisfies the relationship of 0 is preferable. However, when the radius of curvature suddenly changes on the molding surface, or when the radius of curvature becomes small, such as 2 mm or less, it may deviate from this relationship. Design to be smooth.
  • the molding surfaces of the upper mold 11 and the lower mold 12 are formed so as to satisfy the ratio of the curvature radii, the pressure applied to the plate-shaped glass material gradually increases from the central portion toward the outside.
  • the reversal phenomenon in which this pressure increases from the outside toward the inside does not occur. Therefore, stable glass flow from the inside to the outside of the molding surface is always generated, the glass filling property is improved, and the occurrence of shape defects can be suppressed.
  • the pressure distribution applied to the plate-like glass material similar to the contour shape in plan view of the molding surface at this time, pressure deviation can be suppressed and the shape of the molded product can be molded stably.
  • the gap distance is set at the same rate of change in each direction starting from the central portion. Change it.
  • the shape may be adjusted so as to reach the contour portion with the same rate of change.
  • the pressure distribution can be similar to the contour shape in plan view.
  • the similar shape in this specification allows a deviation from the similar shape. This is because it is difficult to make the pressure distribution shape completely similar, and in order to achieve the effects of the present invention, the pressure only needs to be gradually increased from the inside to the outside. Note that the deviation from the similar shape allows simplification of the shape, for example, by rounding the corners of the planar view contour shape.
  • FIGS. 4A to 4D show a method of manufacturing the glass molded body 1 using the mold shown in FIG.
  • a plate-shaped glass material 50 is placed on the molding surface of the lower mold 12 and prepared (FIG. 4A).
  • the glass material 50 used here can use a well-known material if it is a glass material applicable to press molding, and is not specifically limited.
  • the glass raw material 50 used in this invention is flat form, and should just have a magnitude
  • the thickness of the glass material 50 needs to be thicker than the maximum value Gmax of the gap formed by the molding surfaces of the upper mold 11 and the lower mold 12, and is preferably 0.1 mm or more thicker than the maximum value Gmax.
  • the maximum value Gmax of the gap is a gap in the outermost peripheral portion (contour portion) of the molding surface having the smaller contour shape in plan view of the molding surfaces of the upper mold and the lower mold.
  • it is preferable that the glass material 50 has a size sufficient to cover all of the molding surfaces having larger contours in plan view of the molding surfaces of the upper mold and the lower mold.
  • This heating is performed by a heating plate in which a cartridge heater or the like is embedded so that the lower mold 12 is heated by contact with the lower mold 12 and the plate-like glass material 50 can be indirectly heated by the heat transfer.
  • a heater that directly heats and softens the plate-shaped glass material 50 from above may be used. Examples of such a heater include a heating element capable of radiation heating such as a cartridge heater, a ceramic heater, a SiC heater, and a carbon heater. Is mentioned. These heaters may be configured to be embedded in, for example, a metal plate such as stainless steel or ambiloy or a glass tube such as quartz.
  • the temperature in this heating process is set so that the glass material 50 can be heated from the temperature of the yield point (-50 ° C.) to the temperature range of the melting point.
  • the glass material 50 can be in a softened state sufficient for pressing from the heating step to the pressing step, and a glass molded body having a desired shape is obtained.
  • the rate of temperature rise is preferably about 5 to 200 ° C./min.
  • the heating temperature is preferably (bending point ⁇ 10 ° C.) or higher.
  • the glass material 50 is heated to the softening point or higher.
  • the glass material 50 is deformed by its own weight, and its central portion is bent to form the molding surface 12a of the lower mold 12. Contact. Depending on the heating temperature, the shape of the glass material 50 may be maintained and may not contact the molding surface 12a.
  • the pressing step in the method for producing a glass molded body of the present invention will be described.
  • type 11 is arrange
  • the upper mold 11 and the lower mold 12 are brought close to each other, the plate-like glass material 50 placed on the lower mold 12 is pressed and deformed, and the upper mold 11 and the lower mold 12 are thus deformed. Is transferred to the plate-like glass material 50 (FIG. 4C). Since this pressing process is performed while maintaining the pressing temperature, the pressing operation can proceed simultaneously while bringing the upper die 11 and the lower die 12 into contact with a pair of upper and lower press plates in which cartridge heaters are embedded. That's fine.
  • the upper and lower press plates are connected to a shaft, and the shaft allows the press plate to move up and down by a cylinder. Both the upper and lower plates of this press plate or either the upper or lower plate
  • the plate-shaped glass material 50 can be pressed by the forming die by narrowing the distance between the upper die 11 and the lower die 12 by moving the plate up and down.
  • the pressing is performed at a predetermined pressure, and the glass molded body shape can be imparted to the plate-shaped glass material with high accuracy.
  • the pressing direction is the vertical direction.
  • the pressure applied to the plate-shaped glass material at the time of pressing is preferably 0.01 kN / mm 2 to 2 kN / mm 2, and is appropriately determined in consideration of the thickness of the glass material, the molding shape, the amount of deformation, and the like.
  • the glass material 50 gradually increases in pressure from the inner side toward the outer side as described above, so that the glass is sequentially filled from the inner part of the molding surface and pushed outward.
  • the filling property can be improved.
  • FIG. 5 shows changes in pressure distribution in the pressing process of the glass material 50 during the press forming described above.
  • FIG. 5 (a) shows a state in which the molding surface 11a of the upper mold 11 is not yet in contact and no pressure is applied at the start of the pressing process.
  • FIG. 5B the molding surface 11a of the upper mold 11 is in contact with the glass material 50.
  • the first contacted portion is a portion slightly inside the contour of the molding surface.
  • FIG. 5 (c) pressure is applied to the entire surface of the glass material 50, but the portion where the pressure is greatly increased between the upper mold 11 and the lower mold 12 is This is a central portion that is the smallest portion of the gap formed by the molding surfaces of the mold 11 and the lower mold 12.
  • the high pressure portion gradually spreads from the central portion to the outer peripheral side.
  • the mold 12 is brought close to a predetermined position and pushed out, the entire molding surface is sufficiently pressed by the upper mold 11 and the lower mold 12 (the gap between the molding surfaces is filled with a glass material), and the desired glass molded body shape is obtained. Can be transferred.
  • the pressure distribution is similar to the contour shape in plan view. For example, each pressure region formed by this pressure difference is substantially the same as the contour region described above. Match.
  • the temperatures of the upper mold 11 and the lower mold 12 are lowered so that the molded glass material 50 is released from the upper mold 11.
  • the used glass material 50 is lowered to a temperature below its yield point, and the temperature of the upper mold 11 is also lowered to the same extent.
  • the mold is released using the difference in shrinkage between the glass material 50 and the glass material 50. Further, a mechanism for forcibly releasing the mold may be provided.
  • the cooling plate in which the cartridge heater is embedded is brought into contact with the lower die 12 and the like that have undergone press processing.
  • the lower mold 12 may be cooled, and the glass material 50 placed on the lower mold 12 may be indirectly cooled. Since there is a case where the upper part of the glass molded body placed on the lower mold 12 on the cooling plate is in an open state and the cooling rate becomes too fast, a heating source such as the heater described in the heating process is provided on the upper part of the glass material 50. It may be provided to control the cooling rate of the single glass.
  • the solidification of the plate-like glass material 50 may be performed by cooling the glass material below the glass transition point, more preferably below the strain point, and when sufficiently cooled, the glass casing shape of the plate-like glass material is stable. , Deformation is suppressed.
  • the cooling means a temperature at which the plate-like glass material 50 is solidified so that the glass casing shape can be stably imparted, and the temperature is only about 50 to 150 ° C. lower than the temperature of the pressing process. Since the temperature is still high, a heater is embedded in the cooling process.
  • the cooling rate in this cooling is preferably about 5 to 150 ° C./min.
  • This glass molded body manufacturing method may be a method in which each process of heating, pressing, and cooling is performed at one position, or one or more positions are prepared for each process, and a predetermined process is performed while raising or lowering the temperature at each position. It may be a method of performing press molding while conveying the mold.
  • the temperature of the plate-shaped glass material is raised stepwise and heated to the molding temperature immediately before the pressing process.
  • the temperature of the plate-like glass material is lowered stepwise to a temperature of 200 ° C. or lower. In this way, when heating and cooling are performed stepwise, the rapid temperature change of the plate-like glass material is suppressed, and the properties of the glass molded body, such as cracking and the occurrence of distortion, are not deteriorated. Can be.
  • the plate-like glass material is made of glass. Preheating is carried out once to a temperature below the transition point, preferably about 50 to 200 ° C. lower than the glass transition point.
  • the third heating is performed to a temperature between the glass transition point and the yield point.
  • the glass is heated to a temperature higher than the yield point of the glass, preferably about 5 to 150 ° C. higher than the softening point or the softening point.
  • a glass forming body shape is imparted by performing a molding operation while maintaining the molding temperature, and in the first cooling step, the glass material is cooled to below the glass transition point, preferably below the strain point.
  • the mold is further cooled to a temperature at which the mold of 200 ° C. or lower is not oxidized, and in the third cooling step, it is cooled to room temperature.
  • the third cooling step if the plate brought into contact with the lower mold 12 is a water-cooled plate provided with piping so that cooling water circulates instead of the heater in the other steps, the third cooling step can be efficiently cooled.
  • the glass material 50 is formed into a desired glass molded body shape through a series of operations including heating, pressing, and cooling processes.
  • the gap formed by the upper mold 11 and the lower mold 12 is sufficiently filled with a glass material, and a glass molded body having a desired shape can be obtained with good yield.
  • a final product may be obtained by performing a trimming process such as cutting, cutting, and polishing. For example, as shown in FIG. 6, the processing region 1 c on the bottom surface side indicated by the oblique lines of the glass molded body 1 is trimmed and removed to obtain the shape of the product 1 b.
  • Example 1 Using the mold shown in FIG. 3, press molding was performed as follows.
  • the upper mold the upper mold 11 having the molding surface shape shown in FIG. 7 was used.
  • This molding die has a substantially rectangular shape as a molding surface of a product having a major axis of 57 mm and a minor axis of 28 mm.
  • the curvature radius R1 of the molding surface is 1180 mm
  • R2 is 1080 mm
  • R3 is 4 mm
  • R4 is 2 mm.
  • the maximum value Gmax of the gap is 3 mm.
  • Gmax is a gap with the lower die 12 at the outermost periphery of the molding surface of the upper die 11. Further, the central portion which is the minimum value of the gap is 2 mm.
  • the upper mold 11 was lowered and pressed with a press load of 20 kN (pressure 1.3 N / mm 2 ) to transfer the molding surface shape to the glass material 50.
  • the load is set to 2 kN (pressure 0.13 N / mm 2 ), and while cooling, the glass material 50 is cooled at a cooling rate of 100 ° C./min until the strain point is lower than the strain point, and then rapidly cooled to room temperature.
  • a glass molded body was obtained.
  • the side on which the molding surface of the upper mold 11 of this glass molded body was transferred was polished by 1 mm to obtain a flat glass molded product as a product.
  • Example 1 A glass molded body was produced by the same operation and conditions as in Example 1 except that the upper mold 61 having the molding surface shape shown in FIG. The obtained glass molded body was a defective product in which a shape defect due to air accumulation occurred at the four corners of the molding surface of the lower mold 12 which was substantially rectangular.
  • FIG. 9 shows a schematic cross-sectional view of a mold including the upper mold 61 used in Comparative Example 1.
  • the shape of the molding surface of the upper mold is simply formed by a single convex surface, and although it can be sufficiently molded inside the molding surface, with respect to the rise of the outer peripheral portion of the molding surface of the lower mold 12,
  • the shape of the corresponding molding surface of the upper mold 61 is such that the centers of the radii of curvature do not coincide with each other, and the gap formed between the molding surfaces of the upper mold 61 and the lower mold 21 is narrow.
  • the outside of the glass material 50 first has no escape path for gas such as air due to the molding die, and the shape defect due to air accumulation remains at the four corners of the molding surface. It is thought that it has stopped.
  • the glass material spreads from the inside to the outside in order from the inside. It is possible to sufficiently and reliably fill the glass material into the glass, and to effectively suppress the occurrence of shape defects and the like, thereby improving the product yield.
  • the method and mold for producing a glass molded body of the present invention can be widely used when producing a glass molded body by press molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

 本発明は、成形型内にガラス素材を十分に充填し、所望の形状のガラス成形体を製造できるガラス成形品の製造方法及び成形型を提供する。一対の上型及び下型を有する成形型の前記下型上に載置した板状のガラス素材を加熱する加熱工程と、加熱した前記板状のガラス素材を成形型で加圧してその成形面形状を転写するプレス工程と、プレス工程後、成形面形状が転写されたガラス素材を冷却して固化させる冷却工程と、を有するガラス成形体の製造方法であって、上型及び下型の各成形面の平面視輪郭形状が非円形であり、成形面で形成される間隙が、成形面の内側から外側に向かうにつれて広くなるように形成されており、プレス工程において、板状のガラス素材に生じる圧力分布が、前記成形面の輪郭領域において等しくされているガラス成形体の製造方法。

Description

ガラス成形体の製造方法及び成形型
 本発明は、プレス成形によるガラス成形体の製造方法及び成形型に係り、特に、成形型内にガラスを十分に充填し、所望の形状のガラス成形体が得られるガラス成形体の製造方法及びその製造方法に用いる成形型に関する。
 近年、成形型内に収容したガラス素材を、加熱軟化させてプレスし、ガラス製のプレス成形品を製造する方法が種々使用されるようになり、これは、光学素子や情報記録媒体用のガラス基板等の製造に使用されている(例えば、特許文献1~3参照)。
 このようなプレス成形工程において、ガラス素材の加熱軟化時とプレス時には、成形型を所定の温度にして、成形素材を加工するのに十分な加熱温度を維持し、成形後は、ガラス素材を冷却して固化させ、最終的には、成形型が酸化されない200℃以下の温度にまで冷却される。このように、プレス成形によるガラス成形体の製造では、プレス時に成形型の形状を正確にガラス素材に転写して、これを冷却、固化させて成形形状を保持し、形状精度の高いプレス成形品とする。
 一方、電子製品の進歩は目覚ましく、様々な携帯型の電子製品が開発され、その形状は小型化、薄型化しており、このようなコンパクトな電子製品の筐体として、樹脂製、金属製等の素材を使用した筐体が知られている。このような電子製品の筐体をガラス製の筐体にできると、意匠性に優れた外観や高い質感を備える、という利点がある。ガラス製の筐体は、一部では切削、研磨等の手法により製造され、プレス成形による製造も検討されている。
特開2004-67423号公報 国際公開第2007/086558号 国際公開第2010/065371号
 ところで、ガラス筐体を含めガラス成形体のプレス成形による製造は、基本的に光学素子等と同様の操作で可能である。
 ところが、光学素子のように平面視輪郭形状が円形の中心から全方向に同一距離の形状や表裏の表面形状がほぼ平行な平板状の成形体の場合にはあまり問題にはならないが、平面視輪郭形状が方向により異なる非円形形状や、成形体の表面が曲面その他の複雑な形状を持つ成形体の場合には、その形状に見合ったガラス素材の充填が不十分になったり、空気などのガスがトラップされて気泡が残ってしまったり、成形品の形状不良が生じて歩留まりが低下する問題があった。
 そこで、本発明は、上記の問題点に着目してなされたもので、ガラス成形品の製造にあたって、その平面視輪郭形状が非円形のものや成形面の表面形状が平板ではないものであっても、成形型内にガラス素材を十分に充填し、所望の形状のガラス成形体を製造できるガラス成形品の製造方法及びその製造方法に用いる成形型の提供を目的とする。
 本発明者らは、鋭意検討した結果、本発明のガラス成形品の製造方法及び成形型により、上記問題を解決できることを見出し、本発明を完成した。
 すなわち、本発明のガラス成形体の製造方法は、一対の上型及び下型を有する成形型の前記下型上に載置した板状のガラス素材を加熱する加熱工程と、加熱した前記板状のガラス素材を前記成形型で加圧してその成形面形状を転写するプレス工程と、プレス工程後、前記成形面形状が転写されたガラス成形体を冷却して固化させる冷却工程と、を有するガラス成形体の製造方法であって、前記上型及び下型の各成形面の平面視輪郭形状が非円形であり、前記成形面で形成される間隙が、前記成形面の内側から外側に向かうにつれて広くなるように形成されており、前記プレス工程において、前記板状のガラス素材に生じる圧力分布が、前記成形面の輪郭領域において等しくされていることを特徴とする。
 また、本発明の成形型は、板状のガラス素材をプレス成形によりガラス成形体とする一対の上型及び下型を有する成形型であって、前記上型及び下型の各成形面の平面視輪郭形状が非円形であり、前記成形面で形成される間隙が、前記成形面の内側から外側に向かうにつれて広くなるように形成され、前記プレス成形における前記板状のガラス素材に生じる圧力分布が、前記成形面の輪郭領域において等しくなるように成形面が形成されていることを特徴とする。
 本発明のガラス成形体の製造方法及び成形型によれば、成形型の成形面内部にガラス素材を十分に充填でき、充填が不十分になったり、空気溜まりを生じさせたりする等の形状不良の発生を効率的に抑制できる。したがって、ガラス成形体の製造歩留まりの向上に寄与し、製品の生産性が高められる。
本発明の一実施形態であるガラス成形体の製造方法により得られるガラス成形体の平面図である。 図1Aのガラス成形体の正面図である。 図1Aのガラス成形体の側面図である。 図1Aで示したガラス成形体のA-A断面図である。 図1A~1Cに示したガラス成形体を製造する成形型の概略断面図である。 本発明の一実施形態であるガラス成形体の製造方法において、下型上に板状のガラス素材を載置した図である。 本発明の一実施形態であるガラス成形体の製造方法における加熱工程を説明する図である。 本発明の一実施形態であるガラス成形体の製造方法におけるプレス工程を説明する図である。 本発明の一実施形態であるガラス成形体の製造方法における冷却工程を説明する図である。 プレス工程におけるガラス素材の圧力分布の変化を示した図である。 本発明の一実施形態であるガラス成形体の製造方法における加工工程を説明する図である。 図3で示した上型を成形面側から見た斜視図である。 比較例1で用いる上型を成形面側から見た斜視図である。 比較例1で用いた成形型の概略断面図である。
 以下、本発明について詳細に説明する。
 本発明のガラス成形体の製造方法は、上記した通り、一対の上型及び下型を有する成形型の下型上に載置した板状のガラス素材を加熱する加熱工程と、加熱した前記板状のガラス素材を成形型で加圧してその成形面形状を転写するプレス工程と、プレス工程後、成形面形状が転写されたガラス成形体を冷却して固化させる冷却工程と、を有するガラス成形体の製造方法であり、このとき用いる成形型の形状に特徴を有する。
 この成形型としては、上型及び下型の各成形面の平面視輪郭形状が非円形であり、それら成形面で形成される成形面の間隙が、成形面の内側から外側に向かうにつれて広くなるように形成されている。
 ここで、上型及び下型の各成形面の平面視輪郭形状は、水平面における輪郭形状をいい、より具体的には、下型は平面図における成形面の輪郭形状、上型は底面図における成形面の輪郭形状である。この成形面の輪郭形状は、平面視形状が非円形であれば(偏りが少しでもあれば)、本発明のガラスの充填性を良好なものへと改良する余地があり、その余地のない円形状は除き、それ以外の形状であればどのようなものでもよい。
 この平面視輪郭形状としては、具体的には、楕円、多角形等の形状が挙げられる。ここで、多角形としては、三角形、四角形、五角形、六角形、及びそれ以上の多角形形状が挙げられ、全ての辺の長さ及び頂点の角度が等しい正多角形でもよいし、それらが異なる多角形でもよい。例えば、四角形を例に挙げれば、正方形、長方形、平行四辺形、台形等の形状でもよいし、辺の長さや頂点の角度が個々に異なるような四角形でもよい。
 また、ここでいう多角形とは、略多角形となる形状も含み、ここで略多角形とは、基本的な形状は多角形であるが、例えば、その多角形の頂点が曲率をもって形成されている形状や頂点部分が面取りで切り欠かれた形状等も含む。
 楕円としては、その偏平率は0.5以上が好ましく、多角形の場合も正多角形ではなく、偏りが大きくなる形状が好ましい。しかし、偏りが高まるほど成形時のガラスの充填性が低下すると考えられるため、線対称となる軸を少なくとも1つ有する形状が好ましく、線対称となる軸が多い形状がより好ましい。
 そして、上型及び下型の各成形面で形成される成形面の間隙は、成形面の内側から外側に向かうにつれて広くなるように形成されている。このように成形型を形成しておくと、成形素材である板状のガラス素材が上型と下型とで押圧された際に、成形面において、まず内側の圧力が高くなっていき、順番にその圧力が外側へと移動しながら成形型内がガラス素材で充填されていくため、板状のガラス素材は内側から逆流せずに成形面外周部まで内側から外側へと押し出されていく。
 このように充填すると、途中で圧力が十分にかからない部分が生じたり、先に外側の圧力が高くなり、気体の逃げ場がなくなってトラップされたりする不具合が生じにくくなり、充填不十分な部分や気泡が残ってしまう等の形状不良が発生するのを効果的に抑制できる。
 ここで、成形面の間隙は、プレス工程において、押し切った際の上型と下型との間に形成される間隙をいう。このとき間隙の距離は、一方の成形面(製品面側)の所望の点において、プレス方向と平行に延長した直線と他方の成形面とが交差するまでの距離で表される(例えば、図3のG1、G2)。すなわち、鉛直上における上型と下型の成形面間の距離である。このとき、この間隙の距離は、平面視したときの内側から外側に向かうにつれて大きくなるが、その関係は、上型及び下型の輪郭形状のうち小さい成形面まで満たしていればよい。このような構成としておけば、少なくとも成形面の輪郭形状の小さい部分までは十分にガラス素材を充填でき、形状不良が発生しない。
 なお、ここで上型及び下型で押圧されたときに最初に充填されて高い圧力となる箇所は、成形品の凸面側を形成する成形型(凹状の成形面を有する成形型)において一番深い部分が好ましく、そうすると、ここが上型及び下型で形成される間隙の距離が最も短い部分となる。この間隙の距離が最も短い部分は、点でも線でもどちらでもよい。そこから外周側に向かって、間隙の距離が徐々に広くなるように、上型及び下型は形成されている。さらに、プレス工程では、成形面の輪郭領域において、板状のガラス素材に生じる圧力分布が等しくなるように加圧される。すなわち、ある輪郭領域においてほぼ等しい圧力を加えられるように形成され、圧力分布と輪郭領域の形状がほぼ一致するように形成されている。この輪郭領域は、平面視したとき成形面の内側に、基本的には平面視輪郭形状と相似形状又はオフセット形状となる部分にある幅をもって形成される領域である。この輪郭領域においてガラス素材へかかる圧力を相似状とするには、成形面の間隙の広がり度合いを、内側から外側に向かって成形面の輪郭形状に合わせて調整して達成できる。
 以下、図1A~図1Cに示した形状のガラス成形体を製造する場合を例に、さらに具体的に説明する。
 図1Aは、本発明のガラス成形体の製造方法で製造されるガラス成形体1の平面図、図1Bはガラス成形体1の正面図、図1Cはガラス成形体1の右側面図を示している。このガラス成形体1は、平面視輪郭形状が長方形をベースにして、頂点に曲率を設けて形成した略長方形の転写面1aを有し、この輪郭形状は、その長軸と短軸においてそれぞれ対称である。また、この転写面1aは、中央部分が小さな曲率を有し、外周部近傍においてその曲率が大きくなった、曲線で形成される断面形状を有する転写面である。すなわち、この転写面1aは、その長方形の中央部分が成形型の成形面の最も深い部分が転写された曲面形状に形成されている。
 このようなガラス成形体を製造するには、その転写面形状を転写により形成できる成形面を有する成形型を用いる。すなわち、ガラス成形体1の転写面1aと、その転写面1aを形成する成形型の成形面とは、凹凸が逆となるが、上記説明した曲率や対称性等は同様の特性を有している。
 そして、この図1A~図1Cで示したガラス成形体1のA-A断面図を図2に示したが、ここで示したように、このガラス成形体1の底面側は、凹面として形成されている。この凹面は、上記でも説明したように、上型及び下型の間隙が外側に向かうにつれて広くなる成形型により得られるため、このガラス成形体1の肉厚も中央部分が一番薄く、外側に向かうにつれ厚く形成されている。
 ここで、図3には、ガラス成形体1を製造するための成形型の概略断面図を示した。この成形型は、対になる上型11と下型12とから構成される。ここで、ガラス成形体1を製造するにあたっては、その成形操作のためガラス成形体1の凸側の面(製品面)が下側を向いて製造される例を示した。なお、成形型の成形面の中央部分と外周部分の拡大図もそれぞれ示した。
 ここで、製品面は、その用途に合わせて定まる形状であり、これは既定の形状となるため、下型12の成形面12aはそれに従って定まる。一方、ガラスの充填性を良好にし、その形状を歩留まり良く形成するために、本発明においては、上型11の成形面11aの形状を、その成形面で形成される間隙が内側から外側にいくにつれて広くなる所定の形状とする点に特徴を有する。
 図3に示した成形型は、製品面が曲率を有する曲面で形成されており、具体的には、図3の成形面の中央部分の拡大図に示したように、これらの間隙は、下型の成形面12aと上型の成形面11aとで形成される。そのため、この間隙の距離を外側にいくにつれて広くするには、下型の成形面12aの曲率半径R1よりも上型の成形面11aの曲率半径R2を小さくすればよい。
 この特徴は、成形面全体について及ぼすことが好ましく、その場合、成形面の途中で曲率半径が変わる場合でも、この関係を継続して保持できるように他方の型の成形面を形成する。具体的には、図3の成形面の外周部分の拡大図に示したように、下型の成形面12aの曲率半径R3よりも上型の成形面11aの曲率半径R4を小さくすればよい。すなわち、このガラス成形体1は、中央部分と外周部分とで曲率半径が変わるが、その変化に応じて対応する曲率半径を、間隙が常に広がっていく形状に決定すればよい。なお、上記した成形面全体とは、上型及び下型のうち平面視輪郭形状が小さい成形面全体を指す。上記間隙の関係は、輪郭形状の大きい成形面の全体とするのが好ましいが、それは上型及び下型の各成形面の大きさの相違が大きいと、輪郭形状の大きい成形面全体で所定の間隙の関係を継続するのが困難なためである。したがって、上記の関係は、少なくとも輪郭形状の小さい成形面全体で満たしていればよく、輪郭形状の大きい成形面全体で満たしていると好ましい。
 このとき、下型の成形面12aの曲率半径R1と上型の成形面11aの曲率半径R2との比(R2/R1)が、0.8 ≦ R2/R1 < 1.0 の関係を満たす形状が好ましい。
 また、成形面形状は、その多くが、曲率が一定ではない自由曲面として形成され、曲率半径が変化しても上記関係を満たす形状が好ましい。そのため、外周付近においても同様に、下型の成形面12aの曲率半径R3と上型の成形面11aの曲率半径R4との比(R4/R3)が、0.8 ≦ R4/R3 < 1.0 の関係を満たす形状とするのが好ましい。しかし、成形面において曲率半径が急激に変化するような場合や、曲率半径が2mm以下のように小さくなった場合には、この関係から外れてもよく、その場合には、ガラス素材の流動が円滑になるように設計する。
 すなわち、このような曲率半径の比を満たすように上型11及び下型12の各成形面を形成しておくと、板状のガラス素材にかかる圧力は中央部分から徐々に外側へ向かって高くなっていき、この圧力が外側から内側に向かって高くなる逆転現象が生じない。そのため、成形面の内側から外側へ向かう、常に安定したガラスの流動が生じ、ガラスの充填性を良好とし、形状不良の発生を抑制できる。
 また、このとき板状のガラス素材にかかる圧力分布を、成形面の平面視輪郭形状と相似状にすることで、圧力の偏りを抑え、成形品の形状を安定して成形できる。図1A~1Cに記載したような成形面の輪郭形状において、長軸及び短軸がそれぞれ対称となる形状であれば、中央部分を起点に各方向について同程度の変化率で、間隙の距離を変化させればよい。
 また、形状によっては、成形型の成形面の最も深い部分が中央ではなくずれている場合も考えられるが、その場合には、その最も深い部分から成形面の輪郭までの距離に応じて、各方向において、変化率が同一のものとして輪郭部分まで到達するように形状を調節すればよい。このようにすると、圧力分布は平面視輪郭形状と相似状の形状とできる。なお、本明細書における相似状とは、相似形状からのずれを許容する。これは、圧力分布形状を完全に相似形状にするのが困難であり、本発明の効果を奏するためには、内側から外側へ徐々に圧力が高められればよいためである。なお、相似形状からのずれは、例えば、平面視輪郭形状の角を丸めるなど形状の単純化を許容する。
 次に、図4A~図4Dを参照しながら、本発明のガラス成形体の製造方法について説明する。図4A~図4Dは、図3に示した成形型を用いてガラス成形体1を製造する方法を示している。
 まず、本発明のガラス成形体の製造方法における加熱工程について説明する。加熱工程にあたっては、下型12の成形面上に板状のガラス素材50を載置し準備する(図4A)。
 なお、ここで使用するガラス素材50は、プレス成形に適用可能なガラス素材であれば公知の素材が使用でき、特に限定されない。また、本発明において用いるガラス素材50は平板状であり、プレス成形によりガラス成形体が形成できる大きさを有すればよい。特に、このガラス素材50の厚さは、上型11及び下型12の成形面で形成される間隙の最大値Gmaxよりも厚い必要があり、最大値Gmaxより0.1mm以上厚いものが好ましい。なお、上記間隙の最大値Gmaxは、上型及び下型の成形面の平面視輪郭形状が小さい方の成形面の最外周部分(輪郭部分)における間隙である。また、平面的には、ガラス素材50が上型及び下型の成形面の平面視輪郭形状の大きい方の成形面全てを覆うだけの大きさを有するものが好ましい。
 次に、下型12に載置された板状のガラス素材50を変形可能な状態とするため、所定の温度まで加熱し、上型11をガラス素材50の上方に配置する(図4B)。
 この加熱は、下型12との接触により下型12を加熱し、その伝熱により板状のガラス素材50を間接的に加熱できるように内部にカートリッジヒータ等が埋め込まれた加熱プレートで行う。さらに、板状のガラス素材50の上方から直接加熱して軟化させるヒータを有してもよく、このようなヒータとしてはカートリッジヒータ、セラミックスヒータ、SiCヒータ、カーボンヒーター等の輻射加熱可能な発熱体が挙げられる。これらヒータを、例えば、ステンレス、アンビロイ等の金属板や石英などのガラス管の内部に埋め込んで構成してもよい。
 この加熱工程における温度は、ガラス素材50を(屈伏点-50℃)の温度から融点の温度範囲に加熱できるように設定する。このような温度にまで加熱すると、ガラス素材50は、加熱工程からプレス工程において、プレスするのに十分な軟化状態とでき、所望の形状のガラス成形体が得られる。このとき、昇温速度は5~200℃/分程度が好ましい。なお、加熱温度は(屈伏点-10℃)以上が好ましい。
 なお、図4Bは、ガラス素材50を軟化点以上に加熱した場合を示しており、この場合には、ガラス素材50が自重により変形し、その中央部分は撓んで下型12の成形面12aと接触する。なお、加熱温度によっては、ガラス素材50の形状が維持され、成形面12aと接触しない場合もある。
 次に、本発明のガラス成形体の製造方法におけるプレス工程について説明する。まず、上記加熱工程で加熱された板状のガラス素材50の上方に上型11を配置する。所定の位置関係となったところで上型11と下型12とを接近させて、下型12上に載置された板状のガラス素材50を押圧して変形させ、上型11及び下型12の有する成形面形状を板状のガラス素材50に転写する(図4C)。このプレス工程は、プレス温度に維持しながら行われるため、上型11及び下型12をそれぞれ、内部にカートリッジヒータが埋め込まれた上下一対のプレスプレートと接触させながら、プレス動作を同時に進行させればよい。
 なお、このプレス工程において、上下のプレスプレートがシャフトと接続され、このシャフトはシリンダーによってプレスプレートの上下動を可能としておき、このプレスプレートの上下プレート両方又は上側及び下側のいずれか一方のプレートを上下動させることにより、上型11及び下型12間の距離を狭めることで成形型によって板状のガラス素材50をプレスできる。このときプレスは所定の圧力で行われ、板状のガラス素材に高精度にガラス成形体形状を付与できる。このときプレス方向は鉛直方向である。
 また、このプレス工程におけるプレスは、ガラス素材50の粘度ηがlogη=4からlogη=7となる温度にして行うもので、軟化点程度の温度が望ましい。また、プレス時の板状のガラス素材にかかる圧力は0.01kN/mm~2kN/mmが好ましく、ガラス素材の厚さ、成形形状、変形量などを考慮して適宜決定する。
 そして、このプレス成形において、ガラス素材50は、上記説明したように内側から外側に向かって圧力が徐々に高くなっていくため、成形面の内側部分から順番にガラスが充填され外側に押し出されていき、充填性を良好にできる。
 図5には、上記説明したプレス成形時のガラス素材50のプレス工程における圧力分布の変化を示した。
 図5(a)は、プレス工程の開始の段階で、まだ上型11の成形面11aが接触しておらず圧力がかかっていない状態を示している。次に、図5(b)は、上型11の成形面11aがガラス素材50と接触するが、ここでは、製品形状のため、最初に接触する部分は成形面の輪郭よりやや内側部分である。さらにプレス動作を進めていくと、図5(c)に示したように、ガラス素材50の全面に圧力が加わるが、上型11と下型12で挟まれて圧力が大きくかかる部分は、上型11及び下型12の成形面で形成される間隙の一番小さい部分である中央部分である。
 さらに、プレス動作を進めると、図5(d)及び5(e)に示したように中央部分から徐々に圧力の高い部分が外周側に広がっていき、最終的には、上型11及び下型12を所定の位置まで接近させて押し切ると、成形面全体が上型11及び下型12で十分に押圧され(成形面の間隙にガラス素材が充填され)、所望のガラス成形体の形状が転写できる。図5(a)~(e)の説明で示したように、圧力分布は平面視輪郭形状の相似状となり、例えば、この圧力差によって形成される各圧力領域が上記で説明した輪郭領域とほぼ一致する。
 そして、このプレス工程で形状の転写が終了したら、成形したガラス素材50が上型11から離型するように、上型11及び下型12の温度を低下させる。ガラス素材50を上型11から離型させるには、使用したガラス素材50を、その屈伏点未満の温度にまで下げ、上型11の温度も同程度にまで低下させ、主に、上型11とガラス素材50の収縮率の差を利用して離型させる。また、強制的に離型させる機構を設けてもよい。
 本発明の冷却工程は、ガラス成形体形状が付与されたガラス素材50を冷却、固化するため、その内部にカートリッジヒータが埋め込まれた冷却プレートとプレス処理を経た下型12等とを接触させて下型12を冷却し、さらに下型12上に載置されているガラス素材50も間接的に冷却すればよい。冷却プレート上の下型12に載置されたガラス成形体の上部は開放状態となり冷却速度が速くなりすぎるケースがあるため、ガラス素材50の上部に加熱工程で説明したヒータのような加熱源を設けてガラス単体の冷却速度をコントロールしてもよい。
 この板状のガラス素材50の固化は、その素材のガラス転移点以下、より好ましくは歪点以下に冷却すればよく、十分に冷却されると板状のガラス素材のガラス筐体形状は安定し、変形が抑制される。ここで冷却とは、ガラス筐体形状を安定して付与できるように板状のガラス素材50を固化させる温度をいい、その温度は、プレス工程の温度よりも50~150℃程度低いだけで、依然として高温であるため、この冷却工程にもその内部にヒータが埋め込まれている。この冷却における降温速度は5~150℃/分程度が好ましい。
 このガラス成形体の製造方法は、1ポジションで加熱、プレス、冷却の各処理を行う方法でもよいし、各工程について1以上のポジションを用意し、各ポジションで温度の上げ下げを行いながら所定の処理を行うという、成形型を搬送させながらプレス成形する方法でもよい。
 なお、上記した加熱工程及び冷却工程は、それぞれ段階的に温度を変化させることが好ましい。加熱工程においては、段階的に板状のガラス素材の温度を上昇させて、プレス工程の直前で、成形温度にまで加熱する。また、冷却工程においても、段階的に板状のガラス素材の温度を下降させて、200℃以下の温度とする。このように、加熱及び冷却を段階的にすると、板状のガラス素材の急激な温度変化を抑制し、ワレの発生を抑制したり歪が生じたりする等のガラス成形体の特性を悪化させないようにできる。
 このガラス成形体の製造を、例えば、加熱工程を3段階、冷却工程を3段階に分けて、段階的に加熱及び冷却する場合には、第1の加熱工程では、板状のガラス素材をガラス転移点以下、好ましくはガラス転移点よりも50~200℃程度低い温度に一旦加熱する予備加熱を行い、第2の加熱工程ではガラス転移点と屈伏点の間の温度にまで、第3の加熱工程ではガラスの屈伏点以上、好ましくは軟化点または軟化点よりも5~150℃程度高い温度にまで加熱する。
 また、プレス工程では成形温度を維持しながら、成形型による成形操作を行ってガラス成形体形状を付与し、第1の冷却工程ではガラス素材のガラス転移点以下、好ましくは歪点以下まで冷却し、第2の冷却工程では、さらに200℃以下の成形型が酸化されない温度にまで冷却し、第3の冷却工程では、室温にまで冷却する。
 ここで、第3の冷却工程は、下型12と接触させるプレートを、他の工程におけるヒータの代わりに冷却水が循環するように配管を設けた水冷プレートとすると、効率的に冷却できる。
 以上説明したように、ガラス素材50は、加熱、プレス、冷却の各プロセスからなる一連の動作を経て、所望のガラス成形体形状に成形される。これにより、プレスの際に、上型11及び下型12で形成される間隙にガラス素材を十分に充填させて、所望の形状のガラス成形体が歩留まり良好に得られる。
 さらに、その後、得られたガラス成形体を、所望の製品形状とするために、切断、切削、研磨等のトリミング処理する加工工程を行い最終的な製品とすればよい。例えば、図6に示したように、ガラス成形体1の斜線で示した底面側の加工領域1cをトリミング加工して除去し、製品1bの形状が得られる。
 以下、本発明を実施例によりさらに詳細に説明する。
(実施例1)
 図3に示した成形型を用い、以下の通りプレス成形を行った。なお、ここで、上型としては、図7に示した成形面形状を有する上型11を使用した。この成形型は、製品の成形面である略長方形の形状が、長軸57mm、短軸28mmであり、成形面の曲率半径R1が1180mm、R2が1080mm、R3が4mm、R4が2mmである。また、間隙の最大値Gmaxは3mmである。ここでGmaxは、上型11の成形面の最外周における下型12との間隙である。また、間隙の最小値である中央部分は2mmである。
 まず、下型12の上にソーダライムガラスからなる長辺170mm、短辺90mm、厚さ4mmのガラス素材50を載置し、ガラス素材を、その粘性がlogη=5となる温度にまで加熱して軟化させ、上型11を下降させて、プレス荷重20kN(圧力1.3N/mm)でプレスして、成形面形状をガラス素材50に転写させた。転写終了後、荷重を2kN(圧力0.13N/mm)とし、圧力をかけたままガラス素材50の歪点以下となるまで降温速度100℃/分で冷却し、その後、室温まで急冷してガラス成形体を得た。このガラス成形体の上型11の成形面が転写された側を1mm研磨して平面とし製品としてのガラス成形品を得た。
(比較例1)
 成形型の上型として、図8に示した成形面形状を有する上型61を使用した以外は、実施例1と同一の動作、条件によりガラス成形体を製造した。得られたガラス成形体は、下型12の略長方形である成形面の4隅に空気溜まりによる形状不良が生じた不良品であった。
 この比較例1で使用した上型61を含む成形型の概略断面図を図9に示した。図9からわかるように、単に上型の成形面形状を単一の凸面で形成しており、成形面の内側では十分に成形できるものの、下型12の成形面外周部分の立ち上がりに対して、対応する上型61の成形面形状は、その曲率半径の中心が互いに一致しておらず、上型61と下型21の各成形面で形成される間隙が狭くなっている。このように間隙が内側から外側に向かって狭くなっていたため、ガラス素材50の外側が先に成形型によって空気等のガスの逃げ道がなくなり、成形面の4隅に空気溜まりによる形状不良が残ってしまったと考えられる。
 以上のように、本発明のガラス成形体の製造方法及び成形型によれば、ガラス素材は、成形型内を内側から順に外側へと広がっていくため、空気溜まり等が生じることなく成形型内へのガラス素材の充填を十分かつ確実にでき、形状不良等の発生を有効に抑制するため、製品歩留まりを向上できる。
 本発明のガラス成形体の製造方法及び成形型は、プレス成形によりガラス成形体を製造する際に広く使用できる。
 1…ガラス成形体、11…上型、12…下型、50…ガラス素材。

Claims (15)

  1.  一対の上型及び下型を有する成形型の前記下型上に載置した板状のガラス素材を加熱する加熱工程と、加熱した前記板状のガラス素材を前記成形型で加圧してその成形面形状を転写するプレス工程と、プレス工程後、前記成形面形状が転写されたガラス成形体を冷却して固化させる冷却工程と、を有するガラス成形体の製造方法であって、
     前記上型及び下型の各成形面の平面視輪郭形状が非円形であり、前記成形面で形成される間隙が、前記成形面の内側から外側に向かうにつれて広くなるように形成されており、前記プレス工程において、前記板状のガラス素材に生じる圧力分布が、前記成形面の輪郭領域において等しくされていることを特徴とするガラス成形体の製造方法。
  2.  前記平面視輪郭形状が楕円又は多角形である請求項1記載のガラス成形体の製造方法。
  3.  前記成形面の一方が凸面、他方が前記凸面に対応する凹面を有する請求項1又は2記載のガラス成形体の製造方法。
  4.  前記凹面及び凸面の対応する面におけるそれぞれの曲率半径R1と曲率半径R2との比(R2/R1)が、0.8 ≦ R2/R1 < 1.0 の関係を満たす請求項3記載のガラス成形体の製造方法。
  5.  前記加熱工程における加熱温度が、前記板状のガラス素材の(屈伏点-50℃)以上の温度である請求項1乃至4のいずれか1項記載のガラス成形体の製造方法。
  6.  前記加熱工程における加熱温度が、前記板状のガラス素材の(屈伏点-10℃)以上の温度である請求項5記載のガラス成形体の製造方法。
  7.  前記加熱工程における加熱温度が、前記板状のガラス素材の軟化点以上である請求項6記載のガラス成形体の製造方法。
  8.  前記成形面の平面視輪郭形状が、長軸とそれに直交する短軸とを有し、前記長軸及び短軸の少なくとも一方に対して、前記平面視輪郭形状が線対象である請求項1乃至7のいずれか1項記載のガラス成形体の製造方法。
  9.  前記圧力分布の変化率が、前記長軸及び短軸の少なくとも一方に対して線対象である請求項8記載のガラス成形体の製造方法。
  10.  前記冷却工程後に、得られたガラス成形体の一方の成形面を切削又は研磨により除去する加工工程を有する請求項1乃至9のいずれか1項記載のガラス成形体の製造方法。
  11.  前記ガラス素材の厚さが、プレス工程で押し切った際の前記凸面及び凹面とで形成される成形面の間隙の最大値Gmaxよりも0.1mm以上厚い請求項1乃至10のいずれか1項記載のガラス成形体の製造方法。
  12.  板状のガラス素材をプレス成形によりガラス成形体とする一対の上型及び下型を有する成形型であって、
     前記上型及び下型の各成形面の平面視輪郭形状が非円形であり、前記成形面で形成される間隙が、前記成形面の内側から外側に向かうにつれて広くなるように形成され、前記プレス成形における前記板状のガラス素材に生じる圧力分布が、前記成形面の輪郭領域において等しくなるように成形面が形成されていることを特徴とする成形型。
  13.  前記平面視輪郭形状が楕円又は多角形である請求項12記載の成形型。
  14.  前記成形面の一方が凸面、他方が前記凸面に対応する凹面を有する請求項12又は13記載の成形型。
  15.  前記凹面及び凸面の対応する面におけるそれぞれの曲率半径R1と曲率半径R2との比(R2/R1)が、0.8 ≦ R2/R1 <1.0を満たす請求項14記載の成形型。
PCT/JP2013/081675 2012-12-21 2013-11-25 ガラス成形体の製造方法及び成形型 WO2014097830A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014553042A JPWO2014097830A1 (ja) 2012-12-21 2013-11-25 ガラス成形体の製造方法及び成形型
DE112013006145.7T DE112013006145B4 (de) 2012-12-21 2013-11-25 Verfahren zur Herstellung eines Glasformkörpers und Formwerkzeug
US14/738,046 US9650278B2 (en) 2012-12-21 2015-06-12 Manufacturing method of glass forming body and forming die

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012279699 2012-12-21
JP2012-279699 2012-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/738,046 Continuation US9650278B2 (en) 2012-12-21 2015-06-12 Manufacturing method of glass forming body and forming die

Publications (1)

Publication Number Publication Date
WO2014097830A1 true WO2014097830A1 (ja) 2014-06-26

Family

ID=50978171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081675 WO2014097830A1 (ja) 2012-12-21 2013-11-25 ガラス成形体の製造方法及び成形型

Country Status (5)

Country Link
US (1) US9650278B2 (ja)
JP (1) JPWO2014097830A1 (ja)
DE (1) DE112013006145B4 (ja)
TW (1) TWI607974B (ja)
WO (1) WO2014097830A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170081243A1 (en) * 2015-09-22 2017-03-23 Samsung Display Co., Ltd. Method for molding glass
CN109111092A (zh) * 2018-11-22 2019-01-01 瑞声光学科技(常州)有限公司 玻璃基材加工模具及玻璃基材加工方法
US11066321B2 (en) 2017-11-09 2021-07-20 AGC Inc. Mold, molding apparatus, production method of molded body, and molded body

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9745219B2 (en) * 2015-12-04 2017-08-29 61C&S Co., Ltd. Apparatus for forming front glass for display of electronic device
CN108811496A (zh) * 2017-03-06 2018-11-13 阿格拉斯有限公司 曲面板玻璃的成型方法及装置
CN112441725A (zh) * 2019-09-03 2021-03-05 Oppo广东移动通信有限公司 电子设备、电池盖、及其制造方法
KR20220060582A (ko) * 2020-11-04 2022-05-12 삼성디스플레이 주식회사 윈도우 성형 장치 및 이를 이용한 윈도우 성형 방법
CN113979623A (zh) * 2021-10-26 2022-01-28 东南大学 一种基于硅模具的圆片级玻璃微结构制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320232A (ja) * 2004-04-29 2005-11-17 Schott Ag 光学素子の成形方法及び装置、基板及び成形型
JP2010285308A (ja) * 2009-06-10 2010-12-24 Hitachi Maxell Ltd 光学素子製造装置及び方法
JP2011068506A (ja) * 2009-09-24 2011-04-07 Ohara Inc ガラス成形体の製造方法
JP2011201739A (ja) * 2010-03-26 2011-10-13 Panasonic Corp ガラスモールド用プリフォーム材
JP2011246308A (ja) * 2010-05-26 2011-12-08 Asahi Glass Co Ltd 光学素子用成形型及び光学素子の成形方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH569999B5 (ja) * 1971-12-09 1975-11-28 Agency Ind Science Techn
JPH1179765A (ja) * 1997-09-03 1999-03-23 Futaba Corp ガラス容器の製造方法および製造装置
US6539750B1 (en) * 1999-04-30 2003-04-01 Matsushita Electric Industrial Co., Ltd. Glass substrate forming mold and production method for glass substrate
TWI225849B (en) * 2001-09-21 2005-01-01 Toshiba Machine Co Ltd Apparatus for forming glass elements
JP4174261B2 (ja) * 2002-08-05 2008-10-29 松下電器産業株式会社 プレス成形方法およびガラス基板の製造方法
JP4569365B2 (ja) * 2005-04-14 2010-10-27 コニカミノルタオプト株式会社 ビーム整形素子の製造方法、該方法により得られるビーム整形素子
KR101049366B1 (ko) * 2006-01-30 2011-07-13 도시바 기카이 가부시키가이샤 글래스 소자의 성형용 금형
US20100127420A1 (en) 2008-11-25 2010-05-27 Thierry Luc Alain Dannoux Method of forming a shaped article from a sheet of material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320232A (ja) * 2004-04-29 2005-11-17 Schott Ag 光学素子の成形方法及び装置、基板及び成形型
JP2010285308A (ja) * 2009-06-10 2010-12-24 Hitachi Maxell Ltd 光学素子製造装置及び方法
JP2011068506A (ja) * 2009-09-24 2011-04-07 Ohara Inc ガラス成形体の製造方法
JP2011201739A (ja) * 2010-03-26 2011-10-13 Panasonic Corp ガラスモールド用プリフォーム材
JP2011246308A (ja) * 2010-05-26 2011-12-08 Asahi Glass Co Ltd 光学素子用成形型及び光学素子の成形方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170081243A1 (en) * 2015-09-22 2017-03-23 Samsung Display Co., Ltd. Method for molding glass
US11066321B2 (en) 2017-11-09 2021-07-20 AGC Inc. Mold, molding apparatus, production method of molded body, and molded body
CN109111092A (zh) * 2018-11-22 2019-01-01 瑞声光学科技(常州)有限公司 玻璃基材加工模具及玻璃基材加工方法

Also Published As

Publication number Publication date
DE112013006145B4 (de) 2020-11-05
TW201429887A (zh) 2014-08-01
US9650278B2 (en) 2017-05-16
US20150353410A1 (en) 2015-12-10
TWI607974B (zh) 2017-12-11
JPWO2014097830A1 (ja) 2017-01-12
DE112013006145T5 (de) 2015-09-03

Similar Documents

Publication Publication Date Title
WO2014097830A1 (ja) ガラス成形体の製造方法及び成形型
JP6086954B2 (ja) 光学用曲げガラス板及びその製造方法
JP7511108B2 (ja) 3dカバーガラス、およびその成形用金型
JP6327823B2 (ja) 磁気ディスク用ガラス基板の製造方法及び円盤形状のガラス基板
JP7230348B2 (ja) 3dカバーガラス、およびその成形用金型
CN105712612A (zh) 一种3d玻璃盖板的制作方法
JP4951166B2 (ja) レンズブランク及びレンズの製造方法
TW201943659A (zh) 玻璃製光學零件成形用模具及使用該模具的玻璃製光學零件的製造方法
JP6374951B2 (ja) 光学素子成形用型セット、及び、光学素子の製造方法
JPS5838766B2 (ja) タシヨウテンレンズノセイゾウホウ
JP4856027B2 (ja) ガラス板の製造方法、プレス成形用ガラス素材の製造方法、および光学部品の製造方法
CN206204145U (zh) 一种三板成型的热弯模具
CN206266425U (zh) 一种可改善四边热弯产品质量的两板模具
JP2017071534A (ja) ガラス成形装置及びガラス成形方法
JP7043036B2 (ja) 新規な転写金型用入れ子の製造方法
JP3869231B2 (ja) プレス成形装置及び光学素子の製造方法
CN108779013A (zh) 玻璃坯料、玻璃坯料的制造方法以及磁盘用玻璃基板的制造方法
JP5445087B2 (ja) 光学素子用成形型及び光学素子の成形方法
JP5389517B2 (ja) ガラス母材の製造方法、精密プレス成形用プリフォームの製造方法、及び、光学素子の製造方法
KR20170123743A (ko) 반사시트 성형층 제조방법
CN102157167A (zh) 玻璃毛坯及其制造方法,磁记录介质和磁记录介质的衬底
JPH1179762A (ja) ガラス光学素子の製造方法
WO2018025844A1 (ja) プレス成形用ガラス素材及びこれを用いた光学素子の製造方法
CN108994104A (zh) 连接叉模具及连接叉制造工艺
JP2011126758A (ja) 光学素子用成形型及びそれを用いた光学素子の成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553042

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013006145

Country of ref document: DE

Ref document number: 1120130061457

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865309

Country of ref document: EP

Kind code of ref document: A1