WO2014097142A1 - Parallele herstellung von wasserstoff, kohlenstoffmonoxid und einem kohlenstoffhaltigen produkt - Google Patents

Parallele herstellung von wasserstoff, kohlenstoffmonoxid und einem kohlenstoffhaltigen produkt Download PDF

Info

Publication number
WO2014097142A1
WO2014097142A1 PCT/IB2013/061032 IB2013061032W WO2014097142A1 WO 2014097142 A1 WO2014097142 A1 WO 2014097142A1 IB 2013061032 W IB2013061032 W IB 2013061032W WO 2014097142 A1 WO2014097142 A1 WO 2014097142A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
containing gas
reaction
gas mixture
advantageously
Prior art date
Application number
PCT/IB2013/061032
Other languages
English (en)
French (fr)
Inventor
Matthias Kern
Friedrich GLENK
Dirk Klingler
Andreas Bode
Grigorios Kolios
Stephan Schunk
Guido WASSERSCHAFF
Jens Bernnat
Bernd Zoels
Sabine Schmidt
Rene König
Original Assignee
Basf Se
Basf (China) Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf (China) Company Limited filed Critical Basf Se
Priority to NO13865384A priority Critical patent/NO2935098T3/no
Priority to EP13865384.5A priority patent/EP2935098B1/de
Priority to JP2015548834A priority patent/JP6479677B2/ja
Priority to RU2015129604A priority patent/RU2650171C2/ru
Priority to AU2013365822A priority patent/AU2013365822A1/en
Priority to ES13865384.5T priority patent/ES2666141T3/es
Priority to CN201380066238.8A priority patent/CN104918882B/zh
Priority to US14/652,346 priority patent/US9834440B2/en
Priority to PL13865384T priority patent/PL2935098T3/pl
Priority to CA2895924A priority patent/CA2895924C/en
Priority to KR1020157019663A priority patent/KR102189391B1/ko
Publication of WO2014097142A1 publication Critical patent/WO2014097142A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0272Processes for making hydrogen or synthesis gas containing a decomposition step containing a non-catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a process for the parallel production of hydrogen, carbon monoxide and a carbonaceous product, which is characterized in that one or more hydrocarbons are thermally decomposed and at least part of the resulting hydrogen-containing gas mixture from the reaction zone of the decomposition reactor at a temperature of 800 to 1400 ° C withdrawn and reacted with carbon dioxide to a carbon monoxide and hydrogen-containing gas mixture (synthesis gas).
  • C02 emissions in Germany in 2010 amounted to approx. 960 million t C02 equivalent, with the chemical industry contributing around 5%.
  • Suitable basic chemicals are, for example, hydrogen and synthesis gas.
  • the latter forms the ideal interface to existing petrochemical processes for the production of e.g. Methanol, dimethyl ether or Fischer-Tropsch products.
  • the global demand for hydrogen and syngas is currently 50 million t / a, or 220 million t / a.
  • Steam reforming is currently the most widely used process for producing synthesis gas having a hydrogen to carbon monoxide ratio of 2.5 to 3.0 from light hydrocarbons. Due to the additional expense of carrying out a shift stage, the hydrogen content can be further increased to the detriment of the carbon monoxide content.
  • the feedstocks natural gas, liquid gas or naphtha are reacted with steam in catalytic tubular reactors endothermic to synthesis gas with high hydrogen content. Process heat and flue gas heat are used to generate steam.
  • the problem is the production of synthesis gas having a hydrogen to carbon monoxide ratio of 1, 0 to 2.0 by steam reforming.
  • This ratio of H2 / CO is of particular importance for downstream use in the fuels and chemicals sector and presents a particular challenge to steam reforming because it requires catalysts that are particularly stable against coking.
  • Alternative processes for the production of synthesis gas with a H2 / CO ratio of 1.0 to 2.0 are the autothermal reforming of natural gas and the partial oxidation. Both processes are technically applied, but require the use of pure oxygen, which is obtained by air separation.
  • the energetically very demanding cryogenic air separation is therefore a significant cost driver for the latter two methods.
  • synthesis gas includes methanol synthesis (hydrogen to carbon monoxide ratio of 2: 1), the oxo synthesis for the preparation of alcohols and aldehydes from olefins (hydrogen to carbon monoxide ratio of 1: 1) or Fischer Tropsch Synthesis to alkanes (hydrogen to carbon monoxide ratio of 2: 1) or the Fischer-Tropsch synthesis to olefins (hydrogen to carbon monoxide ratio of 1: 1).
  • synthesis gas serves as a source of hydrogen for ammonia synthesis.
  • a hydrogen-rich synthesis gas from the steam reforming (hydrogen to carbon monoxide ratio of 3: 1) is further enriched in hydrogen in a water gas shift reaction stage. This CO is converted into CO2, which is then separated. This will produce pure hydrogen.
  • the object of the present invention was therefore to provide a way for the parallel production of hydrogen, carbon monoxide and / or a solid carbonaceous product with low CC> 2 footprint under economically attractive conditions for the chemical industry.
  • Another object was to demonstrate a process for synthesis gas production, which can not only produce a fixed hydrogen to carbon monoxide ratio, but in which the hydrogen to carbon monoxide ratio can be adjusted as needed.
  • a further object was to disclose a process for the thermal decomposition of hydrocarbons to carbon and hydrogen and the conversion of the hydrogen with carbon dioxide to synthesis gas, which ensures the fullest possible heat integration, i. a higher efficiency than the single reaction of the thermal decomposition of hydrocarbons to carbon and hydrogen, has.
  • the coupling of the RWGS to a high-temperature process whose heat surplus is used as a driving force for the RWGS seems favorable.
  • a scenario can be created in which the heat flow of the high temperature process is used to operate the RWGS at a high temperature level.
  • the object has been achieved by a process which is characterized in that one or more hydrocarbons are thermally decomposed and at least a portion of the resulting hydrogen-containing gas mixture is withdrawn from the reaction zone of the decomposition reactor at a temperature of 800 to 1400 ° C and with carbon dioxide to a carbon monoxide - And hydrogen-containing gas mixture (synthesis gas) is reacted.
  • the hydrogen-containing gas mixture advantageously contains more than 50% by volume of hydrogen, preferably more than 60% by volume of hydrogen, more preferably more than 70% by volume, most preferably more than 80% by volume (corresponding to about 67% methane conversion) preferably more than 90% by volume, (corresponds to about 80% of methane conversion), in particular more than 95% by volume (corresponds to about 90% of methane conversion). Accordingly, the hydrogen-containing gas mixture contains not more than 20% by volume of methane, carbon monoxide, carbon dioxide and nitrogen and other gases known to the person skilled in the art, preferably not more than 10% by volume, more preferably not more than 5% by volume.
  • the hydrogen-containing gas mixture contains 50 to 100% by volume of hydrogen, preferably 85 to 100% by volume, in particular 95 to 100% by volume.
  • the proportion of methane, carbon monoxide, carbon dioxide and nitrogen is advantageously from 50 to 0% by volume, preferably from 15 to 0% by volume, in particular from 5 to 0% by volume.
  • the proportion of carbon dioxide is less than 1% by volume, preferably less than 0.1% by volume.
  • the proportion of carbon monoxide is less than 5% by volume, preferably less than 1% by volume.
  • the proportion of methane is less than 30% by volume, preferably less than 5% by volume.
  • the proportion of nitrogen is less than 20% by volume, preferably less than 6% by volume.
  • the carbon monoxide and hydrogen-containing gas mixture advantageously contains (i) 20-70 mol% of hydrogen, preferably 30 to 60 mol%, in particular 35 to 55 mol%, in particular 35 to 45 mol%; (ii) advantageously 5 to 60 mol% of carbon monoxide, preferably 7.5 to 35 mol%, in particular 15 to 30 mol%; (iii) advantageously 0 to 25 mol% of carbon dioxide, preferably 5 to 20 mol%, especially 8 to 20 mol%; (iv) advantageously 15 to 35 mol% of water, preferably 20 to 30 mol%; (V) advantageously 0 to 15 mol% of methane, preferably 0 to 10 mol .-%, in particular 0 to 5 mol .-%.
  • the hydrocarbons are advantageously fed to the decomposition reactor in the form of a hydrocarbon-containing gas.
  • Methane, ethane, propane and / or butane are advantageously used.
  • Natural gas is preferably used as the hydrocarbon-containing gas, with the methane content in natural gas typically being between 75 and 99% of the molar fraction depending on the natural gas deposit.
  • the hydrocarbons are advantageously fed to the decomposition reactor at a pressure of 1 to 50 bar, preferably 2 to 40 bar, in particular 5 to 30 bar.
  • the thermal decomposition reaction is advantageously carried out at temperatures in the reaction zone of on average greater than 500 ° C., preferably on average greater than 800 ° C., more preferably greater than 1000 ° C., very particularly preferably greater than 1100 ° C., in particular greater than 1200 ° C, performed.
  • the temperature of the decomposition reaction is in a range of 800 to 2500 ° C, preferably in a range of 1000 to 1800 ° C, further preferably in a range from 1100 to 1600 ° C, in particular in a range from 1200 to 1400 ° C.
  • the thermal energy required for carrying out the method according to the invention can, for example, via oxidative, z.
  • the combustion of natural gas, solar, e.g. High-temperature solar power plants, and / or electrical energy sources are provided (International Journal of Hydrogen Energy 35 (2010) 1 160-1 190).
  • the energy input can take place with the aid of all methods known to the person skilled in the art.
  • inductive or resistive methods, plasma methods, heating by electrically conductive heating elements / contact surfaces or by microwaves may be mentioned here.
  • the thermal decomposition reaction is advantageously carried out at a pressure of from atmospheric pressure to 70 bar, preferably 2 to 60 bar, particularly preferably 3 to 50 bar, very particularly preferably 5 to 40 bar, in particular 7 to 30 bar.
  • the reaction is favored at low pressure: At atmospheric pressure, the equilibrium temperature for 99% conversion is 875 ° C, at 10 bar, the corresponding value is over 1900 ° C.
  • a high pressure in the pyrolysis stage is compatible with both upstream and downstream stages: the pressure in natural gas lines is usually 50 bar.
  • the applications for the generated hydrogen or for the synthesis gas are high-pressure processes, for example the ammonia synthesis (> 100 bar), the methanol synthesis (> 50 bar) or the pressure storage of hydrogen (about 700 bar).
  • the residence time in the reaction zone in the thermal decomposition reaction according to the invention is advantageously 0.5 to 25 minutes, preferably 1 to 60 seconds, in particular 1 to 30 seconds.
  • the decomposition reaction according to the invention is advantageously carried out continuously or quasi-continuously.
  • the thermal decomposition of hydrocarbons is advantageously carried out in a fluidized bed reactor.
  • reaction space of the thermal decomposition reaction advantageously has a cylindrical cross section and its entire volume is accessible both for the solid and gaseous reaction streams and for possible gaseous heat transfer medium.
  • reaction space includes, in addition to the reaction zone, the zones in the reactor which are used for heating and cooling, and possibly also other elements such as supply lines, quench, etc.
  • the thermal decomposition reaction in the presence of a carrier, for example a mineral carrier (for example, corundum (AI203), quartz glass (SiO 2), mullite Al203.Si02), cordierite ((Mg, Fe 2+ ) 2 (Al 2 Si) [Al 2 Si 4 0i 8 ]), steatite (SiO 2 .MgO.Al 2 O 3)) or a carbonaceous granule.
  • the carrier preferably the carbonaceous granules, is passed as a moving bed through the reaction space, wherein the hydrocarbons to be decomposed are expediently passed in countercurrent to the carrier, preferably a carbonaceous granulate.
  • the reaction space is expediently designed as a vertical shaft, so that the movement of the moving bed alone comes about under the action of gravity.
  • the moving bed is advantageously homogeneous and uniformly flowed through.
  • a carbonaceous granulate in the present invention is to be understood as meaning a material which advantageously consists of solid grains which have at least 50% by weight, preferably at least 80% by weight, in particular at least 90% by weight of carbon.
  • the carbonaceous granules advantageously have a grain, i. an equivalent diameter, which can be determined by sieving with a certain mesh size, from 0.5 to 100 mm, preferably from 1 to 80 mm.
  • the carbonaceous granules are advantageously spherical. In the method according to the invention, a multiplicity of different carbonaceous granules can be used.
  • Such a granulate may for example consist of coal, coke, coke breeze and / or mixtures thereof.
  • Coke breeze usually has a grain size of less than 20 mm. Further, the carbonaceous granules 0 to 15 wt .-% based on the total mass of the granules, preferably 0 to 5 wt .-%, metal, metal oxide and / or ceramic. It is particularly preferred to use granules containing coke breeze and / or low value, i. Coke not suitable for the smelting process, coke bales based on lignite or hard coal and / or coke obtained from biomass.
  • the heat capacity flows of the heat exchanging media are advantageously as close to each other.
  • the mass flow of the supplied carrier preferably of the carbonaceous granules, 1 to 3 times, preferably 1, 7 to 2.5 times the mass flow of the supplied hydrocarbon (without consideration of inert gases).
  • the apparatus design and operation of the pyrolysis reactor are considerably simplified.
  • the complete removal of the hydrogen from the reaction zone of the pyrolysis is particularly advantageous if synthesis gas is to be produced as the only fluid product.
  • a carrier for example a mineral carrier or a carbonaceous granulate, is initially charged.
  • the upper section of the pyrolysis reactor is advantageously heated to the required pyrolysis temperature.
  • Methane is advantageously introduced from below into the pyrolysis reactor at ambient temperature, preferably at temperatures of less than 600 ° C., in particular less than 400 ° C., more preferably less than 250 ° C., further preferably less than 100 ° C, in particular in the range 0 to 50 ° C.
  • a solids flow is discharged, which corresponds to the produced amount of the carbonaceous product in steady-state operation. This procedure continuously renews the solid in the pyrolysis reactor.
  • a heat integration is realized.
  • the mass flow ratio of the gaseous feed and the solid product stream is advantageously between 0.65 and 3, preferably between 1.0 and 2.0, more preferably between 1.2 and 1.5.
  • the solids packing in the pyrolysis reactor advantageously forms a fluidized bed under operating conditions.
  • a moving bed is formed, which flows down in a layered manner with little axial dispersion.
  • a moving bed or a fluidized bed In the region of the reaction zone can advantageously be formed a moving bed or a fluidized bed.
  • the fluidized bed in the reaction zone has favorable heat transfer properties for heat input and for setting a uniform temperature field.
  • the temperature of the withdrawn stream advantageously corresponds to the pyrolysis reaction temperature (800 to 2500 ° C., preferably in a range from 1000 to 1800 ° C., more preferably in a range from 1100 to 1600 ° C., in particular in a range from 1200 to 1400 ° C).
  • the carrier preferably the carbonaceous granules
  • the carrier preferably the carbonaceous granules
  • the carrier is advantageously passed through the reaction space as a moving bed.
  • the carrier preferably the granules with ambient temperature, preferably at temperatures below 600 ° C, especially less than 400 ° C, more preferably less than 250 ° C, more preferably less than 100 ° C, in particular in the range 0 to 50 ° C, introduced into the reaction space, there first heated to a maximum temperature and then cooled again, the maximum temperature in a high temperature zone, the reaction zone is, in the temperatures of average greater than 800 ° C, preferably greater than 1000 ° C, more preferably greater than 1 100 ° C, in particular greater than 1200 ° C prevail.
  • the temperature of the decomposition reaction is in a range of 800 to 2500 ° C, preferably in a range of 1000 to 1800 ° C, more preferably in a range of 1100 to 1600 ° C, especially in a range of 1200 to 1400 ° C
  • the term reaction zone in the present invention means that region in the reactor in which the endothermic, ie the heat demand of the reaction, advantageously exceeds 10 kW / m 3 , preferably 100 kW / m 3 , in particular 500 kW / m 3 . This corresponds approximately to the area in the reactor which has a temperature of greater than 500 ° C.
  • the cooling can be carried out to near the ambient temperature, so that a cooling or deletion of the withdrawn from the reaction space carrier, preferably carbonaceous granules is not required.
  • the carrier preferably the hydrocarbon-containing gas
  • the carrier exchanges heat in direct contact with the moving bed, the hydrocarbon-containing gas up to more than 1000 ° C., preferably up to more than 1100 ° C., in particular up to more than 1200 ° C. heated and the moving bed is cooled simultaneously.
  • hot hydrogen-containing gas mixture is at least partially withdrawn at temperatures of 800 to 1400 ° C, on the other hand passed in countercurrent through the moving bed and cooled in direct heat exchange with this, so that hydrogen at a temperature in the vicinity of the ambient temperature can be withdrawn from the reaction space.
  • Thermal energy required for hydrogen production is generated in particular in the high-temperature zone and / or introduced into the high-temperature zone. However, the generation and / or introduction of thermal energy at other locations of the reaction space should not be excluded.
  • a sufficiently high temperature level is advantageously established in order to achieve a conversion of the thermal decomposition of the hydrocarbons of greater than 80%, preferably greater than 90%, in particular full conversion.
  • the conversion of the thermal decomposition can be controlled over the residence time. For example, a gas residence time of 2 seconds at 1200 ° C. and ambient pressure gives a relative methane conversion of about 67%, a residence time of 3 seconds a methane conversion of about 80% and a residence time of 4.5 seconds a methane conversion of about 90%.
  • the residence time is defined as the ratio of the void volume of the reaction zone to the volume flow of the gas stream at the inlet of the reaction zone.
  • the carbon formed by the decomposition reaction according to the invention is advantageously added to at least 90% by weight, based on the total mass of the carbon formed, preferably at least 95% by weight, of the carrier, advantageously of the carbonaceous granules.
  • a carbon-containing product is to be understood as meaning a product which is advantageously at least 90% by weight, preferably at least 95% by weight, particularly preferably at least 98% by weight, in particular at least 99% by weight. %, made of carbon.
  • the carbonaceous product advantageously has less than 5% by weight, preferably less than 1% by weight, more preferably less than 0.1% by weight, based on the total mass of the carbonaceous product, of ash.
  • the carbonaceous product advantageously has less than 5 wt .-%, preferably less than 1 wt .-%, more preferably less than 0.1 wt .-%, based on the total mass of the carbonaceous product, of alkalis, in particular oxides and hydroxides of Alkali and alkaline earth metals, sulfur and / or phosphorus-containing compounds.
  • alkalis in particular oxides and hydroxides of Alkali and alkaline earth metals, sulfur and / or phosphorus-containing compounds.
  • These carbonaceous products can be used, for example, in the steel industry as a blow-in coal, as a coking coal additive or as a blast furnace coke.
  • the inventive method at least 5 wt .-%, based on the original total mass of the granules, carbon deposited on the carbonaceous granules used, preferably at least 10 wt .-%, more preferably at least 20 wt .-%, in particular at least 30 wt .-%.
  • the mass of the carbonaceous granules used can be advantageously by the inventive method by 10 wt .-% to 80 wt .-% based on the original total mass of the granules, preferably by 20 wt .-% to 50 wt .-%, particularly preferably by 25 to 40 wt .-%, increase.
  • the CO 2 emission in the process according to the invention for 100 kg of hydrogen is advantageously less than 10 kg CO 2 / kgH 2, preferably less than 8 kg CO 2 / kgH 2, in particular less than 6 kg CO 2 / kgH 2.
  • the thermal decomposition reaction can be carried out, for example, as described in international patent application WO 2013/004398 (P1 1 C078 PCT / EP2012 / 002877) or on the basis of the literature cited therein.
  • the heat recovery of the thermal decomposition reaction is advantageously such that the average temperature of the product streams except for the hydrogen-containing gas mixture withdrawn from the reaction zone, i. Hydrogen and carbon-containing product, a maximum of 50 to 100K, preferably a maximum of 25 to 50K, in particular a maximum of 5 to 20K above the average inlet temperature of the starting stream, or of the carbonaceous granules.
  • This degree of heat integration is inventively achieved in that a partial stream of the hydrogen-rich gas stream at temperatures of 800 to 1400 ° C is withdrawn directly from the reaction zone.
  • the efficiency of the heat integration (temperature of the reaction zone-gas outlet temperature of the main stream) / (temperature of the reaction zone-solid inlet temperature) is advantageously greater than 50%, preferably greater than 75%, more preferably greater than 90%, in particular greater than 95 %.
  • At least a portion of the hydrogen-containing gas mixture produced preferably 10 to 40% (based on ratio side draw / main stream hydrogen), more preferably 15 to 35%, most preferably 18 to 30%, in particular 20 to 25% withdrawn from the reaction zone.
  • the gas take-off can be carried out by all methods known to the person skilled in the art (devices for removing gas above a fluidized bed are described, for example, in U Ilmann, Chapter "Fluidized-Bed
  • the withdrawal can be realized, for example, via a temperature-resistant connecting line between the pyrolysis reactor and the RWGS reactor (Nieken: exhaust air purification in reactors with periodic flow reversal: VDI Series 3 No. 328. VDI-Verlag 1993) 2 shows, by way of example, the flow chart of a flow control for the side take-off.
  • the control valves are advantageously installed in the cold feed and discharge lines of the pyrolysis and RWGS reactor.
  • the temperature of the withdrawn hydrogen-containing gas mixture is advantageously 500 to 2500 ° C, preferably 800 to 2000 ° C, more preferably 1000 to 1800 ° C, more preferably 1 100 to 1600 ° C, further preferably 1200 to 1400 ° C.
  • the Temperature of the side draw advantageously to a desired setpoint, for example, 800 to 2000 ° C, preferably 1000 to 1800 ° C, more preferably 1 100 to 1600 ° C, in particular 1200 to 1400 ° C, are set, ie the desired temperature in the RWGS reactor serves as a reference for the oxygen dosage.
  • This withdrawn hydrogen-containing gas mixture is advantageously introduced into the reaction zone of the RWGS stage and thus simultaneously serves as educt and as heat carrier for the supply of the RWGS reaction.
  • the addition of oxygen is particularly advantageous if the hydrogen-containing gas mixture also contains methane of greater than 5% by volume. Methane is by the addition of O 2 at a temperature of> 800 ° C largely, according to equilibrium conversion advantageously between 45 and 99.8%, preferably between 55 and 70%, partially oxidized to CO + H2.
  • a molar ratio of (residual) methane to oxygen in the hydrogen-containing gas mixture of the side draw from 0 to 10, preferably 0.1 to 5, particularly preferably from 0.3 to 3, in particular from 0.5 to 2, is selected.
  • a reactor is used for this RWGS, including
  • the oxygen stream may be added directly into the hydrogen-containing gas mixture in the side purging line of the pyrolysis and burn a portion of the hydrogen.
  • a purification of the hydrogen-containing gas mixture can take place. This purification is particularly useful when the hydrogen-containing gas mixture contains large amounts of carbon-containing dusts or aerosols, which can be problematic in the subsequent process steps. A clean-up of such dusts or aerosols can be carried out by suitable measures. Such measures may include: use of a cyclone for solids separation, use of electrostatic filters for solids separation, use of macroporous solids for solids separation, use of filter media for solids separation and other methods known in the art.
  • the purification processes described can be carried out in a wide temperature range, advantageously in the range 0 to 1400 ° C, preferably from 500 ° C to 1400, particularly preferably from 800 to 1400 ° C.
  • the side draw is advantageously fed directly into the reaction chamber of a reverse water gas shift reaction.
  • the hydrogen-containing gas withdrawn from the thermal decomposition reaction is advantageously converted with carbon dioxide to synthesis gas in a reverse water gas shift reaction.
  • the unreacted methane contained in the hydrogen-containing gas is advantageously reformed simultaneously with the reverse water gas shift reaction with carbon dioxide and the water released during the RWGS reaction.
  • the catalyst of the RWGS reaction equally catalyzes the reforming of methane.
  • the reforming of methane advantageously increases the yield of carbon monoxide and at least partially compensates for the hydrogen consumption for the Reverse Water-Gas-Shift reaction. At the same time, the residual concentration of methane in the synthesis gas is reduced.
  • the volume flow ratio between the carbon dioxide and the hydrogen-containing gas mixture advantageously varies between 0.1 and 5, preferably between 0.2 and 4, particularly preferably between 0.25 and 3, in particular between 0.3 and 2.
  • a molar ratio in the synthesis gas of hydrogen to carbon monoxide of 2: 1 is desired, advantageously the molar ratio of carbon dioxide to hydrogen in the hydrogen-containing gas mixture of about 1: 2 to 1: 2.5 set; If a molar ratio in the synthesis gas of hydrogen to carbon monoxide of 1: 1 is desired, then the molar ratio of carbon dioxide to hydrogen in the hydrogen-containing gas mixture of advantageously about 1: 1 to 1: 1, 5 is set. This ratio is stable over a wide range of thermal decomposition reaction conversion.
  • the adjustment of the desired hydrogen to carbon monoxide ratio can be carried out by the person skilled in the art according to all known processes (see FIGS. 3 and 4).
  • FIG. 3 is based on an RWGS stage with integrated heat recovery with the following assumptions: (i) pyrolysis temperature 1200 ° C., (ii) pressure: 1 bar a bs, (iü) adiabatic equilibrium stage for the RWGS reaction, (iv ) Heat exchange between the syngas and the fresh C02 in an ideal countercurrent heat exchanger (equilibrium model).
  • Figure 3 upper graph, shows the dependence of the H2: CO ratio in the synthesis gas from
  • Figure 4 illustrates the composition of the carbon monoxide and hydrogen-containing gas mixture, i. the RWGS product stream, depending on the volume flow ratio CO ⁇ F, temperature and pressure.
  • An adjustment of the ratio of hydrogen to carbon monoxide in the syngas (product stream of the RWGS stage) can also be achieved by adding hydrogen-containing gas mixture to the product stream of the RWGS stage, for example adding 10% hydrogen-containing gas mixture to the product stream of the RWGS stage, i. the carbon monoxide and hydrogen-containing gas mixture, preferably 20%, in particular 50%, or by discharging part of the hydrogen, for example 10% with respect to the hydrogen content in the synthesis gas (product stream of the RWGS stage), preferably 20%, In particular, 50%, made from the RWGS product stream.
  • the combined reverse water gas shift reaction and reforming of methane are advantageously carried out at temperatures of 500 ° C to 1500 ° C, preferably from 700 ° C to 1200 ° C, in particular from 800 to 1000 ° C.
  • the process heat required for the reverse water gas shift reaction and the reforming is advantageously added to at least 20% by the sensible heat of the injected hydrogen-containing gas mixture, preferably at least 50%, more preferably at least 80%, in particular the the reverse water gas shift reaction and the reforming required process heat completely entered by the injected hydrogen-containing gas mixture.
  • the reactor for the reverse water gas shift reaction and the reforming of methane is advantageously also equipped with integrated heat recovery.
  • the reactor for the reverse water gas shift reaction and the reforming of methane is advantageously an adiabatic reactor.
  • the reactor may include additional devices for heat generation and / or heat input.
  • the combined reverse water gas shift reaction and reforming of methane is advantageously carried out at a pressure of 1 to 50 bar.
  • the pressure of the Reverse Water-Gas-Shift reaction corresponds to the pressure of the thermal decomposition reaction, a possible pressure difference between the two reactions is advantageously less than 1 bar, preferably less than 10 mM.
  • the residence time in the reaction zone in the combined reverse water gas shift reaction according to the invention and reforming of methane is advantageously between 0.1 and 30 seconds.
  • a preferred embodiment of the RWGS reactor is a reactor with periodic flow switchover and center feed of the hot hydrogen-containing gas mixture (colony: For autothermal guidance of the styrene synthesis with periodic change of the flow direction.) In VDI Progress Reports, Series 3, vol : VDI-Verlag 1997.).
  • Fig. 5 shows a schematic diagram of the RWGS reactor.
  • the reactor is designed as an adiabatic fixed bed reactor with structured packing.
  • the middle zone contains the RWGS catalyst.
  • the fed hydrogen-containing gas mixture can be fed either centrally or distributed in the catalytically active zone.
  • the edge zones, which serve as heat exchange zones for heat integration contain an inert ceramic packing.
  • Inserts with a high specific surface area can achieve efficient heat transfer for heat integration.
  • a high specific surface area such as honeycomb monoliths with high cell density (> 100 cpsi) or small diameter spheres ( ⁇ 5mm)
  • the inflow side is switched to supply the CC> 2-rich stream.
  • the switchover advantageously takes place via a valve or flap control, as is known to the person skilled in the art from systems for the regenerative thermal afterburning of exhaust air streams.
  • the carbon dioxide advantageously has a temperature of 500 ° C. to 1200 ° C., preferably 700 ° C. to 1100 ° C., more preferably between 700 ° C. and 1000 ° C., on entering the reaction zone of the reverse water / gas shift reaction on.
  • the reaction zone of the RWGS stage can be heated, for example following the model of a reformer (Reimert et al .: Gas Production, 2nd cess. In Ullmann's Encyclopaedia of Industrial Chemsitry. Vol. 16, pp. 423-482, published by Wiley-VCH, 2012.)
  • the feed streams carbon dioxide and hydrogen-containing gas mixture
  • the product stream the synthesis gas
  • the synthesis gas may be quenched at the exit from the reaction zone in a quench to freeze the reaction equilibrium achieved at high temperature.
  • the inlet temperature of the carbon dioxide in the reaction zone is in this embodiment advantageously between 50 and 500 ° C, preferably between 200 and 500 ° C, in particular between 300 and 500 ° C.
  • the carbon dioxide conversion of the combined reverse water gas shift reaction according to the invention and reforming of methane is advantageously greater than 30%, in particular greater than 60%.
  • carbon dioxide conversion is in the range of 60 to 100%, in particular 75 to 100%.
  • the side reaction of the methanation is advantageously less than 10%, preferably less than 3%, based on the carbon dioxide used.
  • the methane contained in the hydrogen-containing gas mixture is reformed by the carbon dioxide.
  • the side reaction of coking of the RWGS catalyst is advantageously less than 0.001% based on the total amount of carbon dioxide converted, preferably less than 0.0001% based on the total amount of carbon dioxide converted.
  • the efficiency of the heat integration of the present invention coupled methods of thermal decomposition reaction of hydrocarbons with the combined reverse water gas shift reaction reforming of methane is advantageously greater than 84%, preferably greater than 88%, more preferably greater than 90%, especially at greater than 92%.
  • Efficiency is defined as the ratio of the total heat of reaction absorbed by the thermal decomposition and the RWGS, based on the total amount of heat added to the process.
  • the catalyst material for the RWGS catalyst advantageously satisfies a number of requirements in order to prove suitable for carrying out the process.
  • a material should have a high sintering stability of the active metal in order to have no loss of activity due to premature aging at the high working temperatures.
  • the hydrothermal stability of the catalyst material should be sufficient to prevent premature structural collapse of the material, since one mole of water is produced per mole of converted carbon dioxide.
  • the material should have sufficient coke stability to coke tracers such as small olefins, aliphatics, and aromatics, which may be in the hot hydrogen from the pyrolysis stage.
  • the material should, in particular in the production of CO-rich synthesis gas with a hydrogen to carbon monoxide content of less than 1.5, prevent the CO disproportionation and the associated coke build-up proportionally, or coke once formed convert by reaction with hydrogen in the sense of methanation or by reaction with carbon dioxide in the sense of the Boudouard reaction.
  • Catalysts according to the invention generally contain suitable active metal and suitable carrier material.
  • suitable active metals may include: platinum metals such as Rh, Pt, Ir, Pd or Ru. Particularly preferred are platinum metals Pt or Ir.
  • Suitable ferrous metals may include Ni, Co and Fe. Particularly preferred here are Ni or Co. Another likewise preferred active metal is copper.
  • Combinations of the mentioned active metals are also possible. In this case, such combinations of active-metal alloys or intermetallic phases can form, certain metals can be present in metallic form, others in oxide form next to one another, or certain proportions of the metal components can be present in metallic or oxidic form next to one another.
  • Suitable elements for the promotion of the active metals may be, inter alia, alkali metals, alkaline earth metals, in particular Mg, Ca and Sr, lanthanides such as La and Ce, gallium, tin, zinc, vanadium, tungsten, niobium, tantalum , Manganese or sulfur.
  • Suitable support materials for the active metal components mentioned are, in particular, those support materials which are characterized by a sufficiently high surface area, a sufficiently high interaction with the active metals and the promoters, which permits high dispersion and aging stability. Also desirable is a high thermal conductivity of the material to allow a good thermal coupling of the heat-carrying gas.
  • Suitable support materials include oxidic support materials, in particular so-called mixed metal oxides, which consist of several metallic components in oxidic matrix. Such mixed metal oxides can be present as pure-phase oxides or as phase mixtures.
  • suitable mixed metal oxides include spinels such as magnesium-aluminum spinel, fluorites such as cerium-zirconium fluorites, hexaaluminates or magnetoplumbites, perovskites, titanates, ferrites, solid solutions of zirconium oxides with lanthanides, or complex aluminosilicates and other mixed metal oxides known to those skilled in the art .
  • Other support materials also according to the invention include carbides such as WC, MoC, BC or SiC, nitrides or borides.
  • the catalysts according to the invention also include compound classes in which the active metal is liberated from a suitable precursor form under conditions of formation or reaction.
  • Such compounds may include, but are not limited to oxides, mixed oxides or carbonates.
  • the preparation of the abovementioned catalysts according to the invention can be carried out by methods known to those skilled in the art by precipitation reactions, impregnation processes, reactions of molten metals, salts or oxides or of metals, salts or oxides at high temperatures. Also included are treatment steps with oxidizing or reducing gas atmospheres at elevated temperatures and other measures known to those skilled in the art for increasing activity and stability. Also according to the invention is the use of several catalysts in a fixed catalyst bed. In this case, such a procedure can help to save the proportion of expensive but high temperature and coking resistant precious metal. Such an application is possible as a structured bed with staggered layers of different catalysts or as a mixture.
  • C02 emission lies in the novel synthesis gas process advantageous in ven negative values (C02 decrease), preferably less than -50 kgCO2 / 100 kgsynthesegas, in particular less than -100 kg C o2 / 100 kgsynthesegas.
  • the advantages of the novel process are, on the one hand, the provision of hydrogen or synthesis gas with a low CC> 2 footprint.
  • the hydrogen to carbon monoxide ratio can be adjusted as required and is also independent of the conversion of the thermal decomposition reaction in a wide range.
  • FIG. 6 shows a variant of the method according to the invention for the thermal decomposition of hydrocarbons using the reverse water gas shift reaction, in which hydrogen, synthesis gas and a carbonaceous product are obtained in parallel in a continuous process.
  • a carbonaceous granulate which is, for example, coke breeze, is introduced at ambient temperature from above into the reaction space R, through which it is subsequently guided downward under the action of gravity in a moving bed W.
  • a hydrocarbon-containing gas 2 which is preferably natural gas, is simultaneously passed from below into the pyrolysis reaction space PR and passed in countercurrent through the moving bed W upwards.
  • the gas 2 which has ambient temperature at its entry into the reaction space PR, is heated on its way up in direct heat exchange with the moving bed W up to the decomposition temperature of the hydrocarbons, which decompose under these conditions in an endothermic reaction into hydrogen and carbon ,
  • the carbon formed here advantageously accumulates more than 95% by weight of the carbonaceous grains of the moving bed W, which improves their quality.
  • the hot hydrogen formed flows further upwards, being cooled in direct heat exchange with the moving bed W, so that via line 3, a hydrogen-containing gas mixture can be withdrawn at a temperature not exceeding 25 50K above ambient temperature.
  • granules 7 is withdrawn at near ambient temperature, which can be used due to the carbon deposits, for example, as blast furnace coke or Kokereizutschsstoff.
  • Components of granules 7, which do not meet the quality requirements because they have too large (> 80 mm) or too small diameter ( ⁇ 35 mm) or, for example, too low strength (drum strength I40 for blast furnace coke> 40% according to ISO / FDIS 18894 : 2003) are separated in the separating device S by screening and / or screening and returned to the pyrolysis reaction chamber PR after a possible comminution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur parallelen Herstellung von Wasserstoff, Kohlenstoffmonoxid und einem kohlenstoffhaltigen Produkt, das dadurch gekennzeichnet ist, dass ein oder mehrere Kohlenwasserstoffe thermisch zersetzt werden und zumindest ein Teil des entstehenden Pyrolysegases aus der Reaktionszone des Zersetzungsreaktors bei einer Temperatur von 800 bis 1400 °C abgezogen und mit Kohlenstoffdioxid zu einer kohlenstoffmonoxid- und wasserstoff- haltigen Gasmischung (Synthesegas) umgesetzt wird.

Description

Parallele Herstellung von Wasserstoff, Kohlenstoffmonoxid und einem kohlenstoffhaltigen Produkt
Beschreibung
Die Erfindung betrifft ein Verfahren zur parallelen Herstellung von Wasserstoff, Kohlenstoffmonoxid und einem kohlenstoffhaltigen Produkt, das dadurch gekennzeichnet ist, dass ein oder mehrere Kohlenwasserstoffe thermisch zersetzt werden und zumindest ein Teil des entstehenden wasserstoffhaltigen Gasgemisches aus der Reaktionszone des Zersetzungsreaktors bei einer Temperatur von 800 bis 1400°C abgezogen und mit Kohlenstoffdioxid zu einer kohlenstoffmonoxid- und wasserstoffhaltigen Gasmischung (Synthesegas) umgesetzt wird.
Die C02-Emissionen in Deutschland betrugen im Jahre 2010 rd. 960 Mio. t C02-Äquivalent, wobei die Chemieindustrie mit ca. 5 % beiträgt. Unter ökologischen und ökonomischen Ge- Sichtspunkten bestehen in der Chemie-Branche hohe Anreize, die C02-Emissionen durch Veränderung der Rohstoffbasis, C02-arme Erzeugungstechnologien, Optimierung des Energiebedarfs und Verwertung von prozessbedingtem C02 zu großvolumigen Basischemikalien zu senken. Geeignete Basischemikalien sind beispielsweise Wasserstoff und Synthesegas. Letzteres bildet die ideale Schnittstelle zu vorhandenen petrochemischen Verfahren für die Produktion von z.B. Methanol, Dimethylether oder Fischer-Tropsch Produkten. Die weltweiten Bedarfe für Wasserstoff und Synthesegas liegen derzeit bei 50 Mio t/a, bzw. 220 Mio t/a.
Die Dampfreformierung ist das derzeit am weitesten verbreitete Verfahren zur Erzeugung von Synthesegas mit einem Wasserstoff zu Kohlenstoffmonoxid-Verhältnis von 2,5 bis 3,0 aus leich- ten Kohlenwasserstoffen. Durch den zusätzlichen Aufwand der Durchführung einer Shiftstufe kann der Wasserstoffanteil noch weiter zu Ungunsten des Kohlenstoffmonoxid-Anteiles heraufgesetzt werden. Die Einsatzstoffe Erdgas, Flüssiggas oder Naphtha werden mit Wasserdampf in katalytischen Rohrreaktoren endotherm zu Synthesegas mit hohem Wasserstoffgehalt umgesetzt. Prozesswärme und Rauchgaswärme werden zur Dampferzeugung genutzt.
Problematisch ist die Herstellung von Synthesegas mit einem Wasserstoff zu Kohlenstoffmonoxid-Verhältnis von 1 ,0 bis 2,0 durch Dampfreformierung. Dieses Verhältnis an H2/CO ist von besonderer Bedeutung für Downstream-Nutzung im Bereich Treibstoffe und Chemikalien und stellt für die Dampfreformierung eine besondere Herausforderung dar, da hier Katalysatoren benötigt werden, die eine besondere Stabilität gegen Verkokung aufweisen. Alternative Verfahren zur Herstellung von Synthesegas mit einem H2/CO Verhältnis von 1 ,0 bis 2,0 sind die au- totherme Reformierung von Erdgas und die Partialoxidation. Beide Verfahren werden technisch angewendet, erfordern aber den Einsatz von Reinsauerstoff, der durch Luftzerlegung gewonnen wird. Beispielsweise benötigt die Partialoxidation von Erdgas im Zulauf ein theoretisches mola- res Verhältnis C>2:CH4=1 :2. Die energetisch sehr anspruchsvolle kryogene Luftzerlegung ist daher für die beiden letzteren Verfahren ein maßgeblicher Kostentreiber. Bedeutende Abnehmer von Synthesegas sind u.a. die Methanolsynthese (Wasserstoff zu Koh- lenstoffmonoxid-Verhältnis von 2:1 ), die Oxo-Synthese zur Herstellung von Alkoholen und Aldehyden aus Olefinen (Wasserstoff zu Kohlenstoffmonoxid-Verhältnis von 1 :1 ) oder Fischer- Tropsch-Synthese zu Alkanen (Wasserstoff zu Kohlenstoffmonoxid-Verhältnis von 2:1 ) oder die Fischer-Tropsch-Synthese zu Olefinen (Wasserstoff zu Kohlenstoffmonoxid-Verhältnis von 1 :1 ).
Daneben dient Synthesegas als Wasserstoffquelle für die Ammoniaksynthese. Dafür wird ein wasserstoffreiches Synthesegas aus der Dampfreformierung (Wasserstoff zu Kohlenstoffmonoxid-Verhältnis von 3:1 ) in einer Wassergas-Shift-Reaktionsstufe weiter an Wasserstoff angerei- chert. Dabei wird CO in CO2 umgesetzt, das anschließend abgetrennt wird. Dadurch wird reiner Wasserstoff gewonnen.
Ein weiterer Nachteil der katalytischen Dampfreforming ist deren Anfälligkeit gegen Katalysatorgifte wie beispielsweise Schwefel. Um den Katalysator davor zu schützen, muss das Ein- satzgas in vorgelagerten Prozessstufen aufwendig gereinigt werden. Organische Schwefelverbindungen, beispielsweise Merkaptane oder Thiophene werden vorher an Co-Mo oder Ni-Mo- Katalysatoren zu Schwefelwasserstoff hydriert. Schwefelwasserstoff wird beispielsweise an ZnO umgesetzt, das sich dabei in ZnS umwandelt und regelmäßig ersetzt werden muss. Ferner ist die Wärmeintegration der Dampfreforming unvollständig, es werden lediglich ca. 50% der erzeugten Wärme effektiv für die Reaktion genutzt. Desweiteren weist das so hergestellte Synthesegas einen recht hohen C02-Footprint von ca. 40 kgco2/100 kgsynthesegas auf.
Die Reformierung von Methan und Kohlenstoffdioxid, ein alternativer Weg zur Herstellung von Synthesegas, ist von großem wirtschaftlichem Interesse, da diese Verfahren die Möglichkeit bietet, Synthesegas als wichtige Basischemikalie unter Verwertung von Kohlenstoffdioxid als Ausgangsstoff herzustellen. Demnach könnte Kohlenstoffdioxid, das in zahlreichen Prozessen als Abfallprodukt anfällt, auf chemischem Weg gebunden werden. Hierdurch besteht die Möglichkeit, Kohlenstoffdioxid-Emission in die Atmosphäre zu vermindern. Auch hier stellt die Katalysatorentwicklung eine besondere Herausforderung dar, da hier ebenfalls Katalysatoren benö- tigt werden, die eine besondere Stabilität gegen Verkokung aufweisen.
Derartige Verfahren sind beispielsweise aus den Patentanmeldungen US 2009/203519 und US 201 1/089378 bekannt. Beide Anmeldungen beschreiben Verfahren, bei denen Methan und Kohlenstoffdioxid über einen Katalysator geleitet und dabei durch Trockenreformierung umge- setzt werden. Aufgrund des Boudouard-Gleichgewichts sowie der thermischen Zersetzung von Methan entsteht Kohlenstoff, der sich unter anderem auf dem Katalysator absetzt und diesen vergiftet, so dass in periodischen Abständen der Katalysator ausgetauscht oder regeneriert werden muss. Ein weiterer alternativer Weg zur Herstellung von Synthesegas unter Verwendung von Kohlenstoffdioxid als Ausgangsstoff ist die Reverse Wasser-Gas-Shift (RWGS) Reaktion. Die CO2- Aktivierung mit Wasserstoff über die RWGS führt zu Kohlenstoffmonoxid und Wasser und ist mit 41 kJ/mol bei Normalbedingungen endotherm. Gemäß dem thermodynamischen Gleichgewicht sind für eine substantielle CO-Bildung Temperaturen von größer 500°C erforderlich, da bei Temperaturen unter 500°C sonst präferentiell eine Methanisierung erfolgt. Für die Reaktion sind nur Laborstudien bekannt (Luhui, W.; Shaoxing, Z.; Yuan, L: Reverse water gas shift reaction over co-precipitated Ni-Ce02 catalysts. Journal of Rare Earths 2008, 26, 66-70; Yablonsky, G.S.; Pilasombat, R.; Breen, J.P.; Bruch, R.; Hengrasmee, S.: Cycles Across an Equilibrium: A Kinetic Investigation of the Reverse and Forward WGS Reaction over a 2% Pt/Ce02 Catalyst (Experimental Data and Qualitative Interpretation). Chem. Eng. Sei. 2010, 65, 2325-2332; Jess, A.; Kaiser, P.; Kern, C; Unde, R.B.; Olshausen, C: Considerations concerning the Energy De- mand and Energy Mix for Global Weifare and Stable Ecosystems. Chemie Ingenieur Technik 201 1 , 83, 1777-1791 ).
Großtechnisch wird die RWGS-Reaktion bisher nicht ausgeführt, da bislang keine kostengünstige Wasserstoffquelle mit kleinem oder akzeptablem C02-Footprint zur Verfügung steht, die eine wirtschaftliche Durchführung der RWGS-Reaktion bei hohen Temperaturen begründen könnte.
Die kompetitivsten Verfahren zur Herstellung von Wasserstoff sind nach wie vor Dampfreformie- rungsverfahren. Diese Verfahren haben zwar einen inhärenten Preisvorteil der sich im Wasserstoffpreis niederschlägt, allerdings ist die Wasserstofferzeugung gekoppelt mit einer hohen Emission an Kohlenstoffdioxid. Daher ist es aus der technischen und wirtschaftlichen Betrachtungsweise nicht sinnvoll, den in der Dampfreformierung erzeugten Wasserstoff zur Hydrierung von Kohlenstoffdioxid in einem weiteren endothermen Verfahrensschritt einzusetzen. Alternative Wasserstoffquellen auf Basis regenerativer Rohstoffe, können zwar die Kopplung der Produktion an Kohlenstoffdioxid aus der Wasserstofferzeugung umgehen. Allerdings ist hier zu berücksichtigen, dass das für die Synthesegaserzeugung benötigte hohe Temperaturniveau der RWGS immer noch einen hohen Energieeintrag benötigt.
Obwohl Hochtemperatur-RWGS-Reaktionen wirksam zur Erzielung eines hohen Umsatzes an Kohlenstoffdioxid und zur Unterdrückung der Methanisierung und der Kohlenstoffbildung als unerwünschte Nebenreaktionen vorteilhaft wären, wurde diese bislang wenig untersucht. Die Durchführung der Reaktion auf diesem Temperaturniveau erfordert einen sehr hohen technischen Aufwand für den Wärmeeintrag oder eine energetisch günstige Kopplung mit einer Hochtemperaturquelle. Nach dem aktuellen Stand der Technik kommen für den Hochtemperatur- Energieeintrag lediglich Öfen vergleichbar den Dampfreformern in Frage. In diesen Verfahren kann die erzeugte Wärmemenge allerdings nur ca. zu 50% von der endothermen Reaktion aufgenommen werden. Die Überschusswärme muss somit in einem aufwendigen Netzwerk von Wärmeüberträgern abgeführt und in den Prozess, beispielsweise zu Vorheizung der Zuläufe, zurückgeführt werden. In der Literatur, z.B. Kreysa, CIT 80 (2008), 901-908, finden sich Hinweise, dass sich Wasserstoff mit einem geringen C02-Footprint mit Hilfe einer thermischen Zersetzung (Pyrolyse) von Kohlenwasserstoffen in einem Fließbett aus einem kohlenstoffhaltigen Granulat herstellen lässt. Durch die Gegenstromführung des gasförmigen Reaktionsgemisches und des kohlenstoffhalti- gen Granulats wird ein Verfahren mit integrierter Wärmerückführung realisiert. Mit diesem Verfahren kann allerdings bestenfalls ein Wirkungsgrad der Wärmeintegration - definiert als Verhältnis der durch die endotherme Reaktion verbrauchten zur eingetragenen Wärmemenge - von 83% erreicht werden. Grund dafür ist das Verhältnis der Wärmekapazitäten zwischen den Edukten und den Produkten der Pyrolyse: Beispielsweise beträgt die mittlere spezifische Wärmekapazität des eingesetzten Methans zwischen 100°C und 1200°C 4,15 J/g/K. Das daraus produzierte Gemisch aus H2 und C hat eine mittlere spezifische Wärmekapazität zwischen 100°C und 1200°C von 5,02 J/g/K. Dieses Verhältnis der Wärmekapazitäten legt den maximal erreichbaren Wirkungsgrad der Wärmeintegration fest.
Die Aufgabe der vorliegenden Erfindung war demnach, einen Weg zur parallelen Herstellung von Wasserstoff, Kohlenstoffmonoxid und/oder einem festen kohlenstoffhaltigen Produkt mit geringem CC>2-Fußabdruck unter wirtschaftlich attraktiven Rahmenbedingungen für die chemische Industrie bereitzustellen.
Ferner war die Aufgabe, geeignete Verfahrensbedingungen aufzufinden, die eine wirtschaftlich und technisch attraktive Durchführung der Reverse Wasser-Gas-Shift Reaktion bei hohen Temperaturen erlauben. Eine weitere Aufgabe war es, ein Verfahren zur Synthesegas-Herstellung aufzuzeigen, das nicht nur ein fixes Wasserstoff zu Kohlenstoffmonoxid-Verhältnis produzieren kann, sondern bei dem sich das Wasserstoff zu Kohlenstoffmonoxid-Verhältnis bedarfsgesteuert einstellen lässt.
Eine weitere Aufgabe war, ein Verfahren zur thermischen Zersetzung von Kohlenwasserstoffen zu Kohlenstoff und Wasserstoff und die Konvertierung des Wasserstoffes mit Kohlenstoffdioxid zu Synthesegas aufzuzeigen, die eine möglichst vollständige Wärmeintegration, d.h. einen höheren Wirkungsgrad als die Einzelreaktion der thermischen Zersetzung von Kohlenwasserstoffen zu Kohlenstoff und Wasserstoff, aufweist. Günstig erscheint die Kopplung der RWGS an einen Hochtemperatur- Prozess dessen Wärme- überschuss als treibende Kraft für die RWGS genutzt wird. Durch die angestrebte Wärmeintegration kann ein Szenario geschaffen werden in dem der Wärmestrom des Hochtemperaturprozesses genutzt wird, um die RWGS auf hohem Temperaturniveau zu betreiben. Die Aufgabe wurde durch ein Verfahren gelöst, das dadurch gekennzeichnet ist, dass ein oder mehrere Kohlenwasserstoffe thermisch zersetzt werden und zumindest ein Teil des entstehenden wasserstoffhaltigen Gasgemisches aus der Reaktionszone des Zersetzungsreaktors bei einer Temperatur von 800 bis 1400 °C abgezogen und mit Kohlenstoffdioxid zu einer kohlenstoffmonoxid- und Wasserstoff- haltigen Gasmischung (Synthesegas) umgesetzt wird.
Das wasserstoffhaltige Gasgemisch enthält vorteilhaft mehr als 50 Volumen-% Wasserstoff, bevorzugt mehr als 60 Volumen-% Wasserstoff, besonders bevorzugt mehr als 70 Volumen-%, ganz besonders bevorzugt mehr als 80 Volumen-% (entspricht ca. 67% Methanumsatz), weiter bevorzugt mehr als 90 Volumen-%, (entspricht ca. 80% Methanumsatz), insbesondere mehr als 95 Volumen-% (entspricht ca. 90% Methanumsatz). Entsprechend enthält das wasserstoffhalti- ge Gasgemisch maximal 20 Volumen-% Methan, Kohlenstoffmonoxid, Kohlenstoffdioxid und Stickstoff sowie weitere dem Fachmann in diesem Zusammenhang bekannte Gase, bevorzugt maximal 10 Volumen-%, besonders bevorzugt maximal 5 Volumen-%.
Vorteilhaft enthält das wasserstoffhaltige Gasgemisch 50 bis 100 Volumen-% Wasserstoff, bevorzugt 85 bis 100 Volumen-%, insbesondere 95 bis 100 Volumen-%. Der Anteil an Methan, Kohlenstoffmonoxid, Kohlenstoffdioxid und Stickstoff beträgt vorteilhaft 50 bis 0 Volumen-%, bevorzugt 15 bis 0 Volumen-%, insbesondere 5 bis 0 Volumen-%. Vorteilhaft beträgt der Anteil an Kohlenstoffdioxid weniger als 1 Volumen-%, bevorzugt weniger als 0,1 Volumen-%. Vorteilhaft beträgt der Anteil an Kohlenstoffmonoxid weniger als 5 Volumen-%, bevorzugt weniger als 1 Volumen-%. Vorteilhaft beträgt der Anteil an Methan weniger als 30 Volumen-%, bevorzugt weniger als 5 Volumen-%. Vorteilhaft beträgt der Anteil an Stickstoff weniger als 20 Volumen-%, bevorzugt weniger als 6 Volumen-%.
Die kohlenstoffmonoxid- und Wasserstoff- haltige Gasmischung enthält vorteilhaft (i) 20-70 mol- % Wasserstoff, bevorzugt 30 bis 60 mol-%, insbesondere 35 bis 55 mol-% insbesondere 35 bis 45 mol-%; (ii) vorteilhaft 5 bis 60 mol-% Kohlenstoffmonoxid, bevorzugt 7,5 bis 35 mol-%, ins- besondere 15 bis 30 mol-%; (iii) vorteilhaft 0 bis 25 mol-% Kohlenstoffdioxid, bevorzugt 5 bis 20 mol-% insbesondere 8 bis 20 mol-%; (iv) vorteilhaft 15 bis 35 mol-% Wasser, bevorzugt 20 bis 30 mol-%; (v) vorteilhaft 0 bis 15 mol-% Methan, bevorzugt 0 bis 10 mol.-% insbesondere 0 bis 5 mol.-%. Die Kohlenwasserstoffe werden vorteilhaft in Form eines kohlenwasserstoffhaltigen Gases dem Zersetzungsreaktor zugeführt. Vorteilhaft wird Methan, Ethan, Propan und/oder Butan verwendet. Bevorzugt wird als kohlenwasserstoffhaltigen Gas Erdgas verwendet, wobei im Erdgas der Methananteil typischerweise zwischen 75 und 99 % der molaren Faktion in Abhängigkeit von der Erdgaslagerstätte liegt.
Vorteilhaft werden die Kohlenwasserstoffe mit einer Temperatur von 0 bis 100°C, bevorzugt 10 bis 50°C dem Zersetzungsreaktor zugeführt. Vorteilhaft werden die Kohlenwasserstoffe mit einem Druck von 1 bis 50 bar, bevorzugt 2 bis 40 bar, insbesondere 5 bis 30 bar dem Zersetzungsreaktor zugeführt. Vorteilhaft werden die Kohlenwasserstoffe mit einem Durchsatz von 100 bis 200000 Nm3/h, bevorzugt von 1000 bis 100000 Nm3/h, insbesondere 7000 bis 70000 Nm3/h, dem Zersetzungsreaktor zugeführt.
Die thermische Zersetzungsreaktion (Pyrolyse) wird vorteilhaft bei Temperaturen in der Reaktionszone von durchschnittlich größer als 500°C, bevorzugt durchschnittlich größer 800°C, be- sonders bevorzugt größer 1000°C, ganz besonders bevorzugt größer 1 100°C, insbesondere größer 1200°C, durchgeführt. Beispielsweise liegt die Temperatur der Zersetzungsreaktion in einem Bereich von 800 bis 2500°C, bevorzugt in einem Bereich von 1000 bis 1800°C, weiter bevorzugt in einem Bereich von 1 100 bis 1600°C, insbesondere in einem Bereich von 1200 bis 1400°C.
Die für die Durchführung des erfindungsgemäßen Verfahrens erforderliche thermische Energie kann beispielsweise via oxidative, z. B. die Verbrennung von Erdgas, solare, z.B. Hochtempera- tursolarkraftwerke, und/oder elektrische Energiequellen bereitgestellt werden (International Journal of Hydrogen Energy 35(2010)1 160-1 190). Der Energieeintrag kann mit Hilfe aller dem Fachmann bekannten Verfahren erfolgen. Um thermische Energie für die Behandlung der Prozessströme über elektrischen Strom bereitzustellen, können unterschiedliche Wege beschritten werden. Beispielsweise sind hier induktive oder resistive Verfahren, Plasmaverfahren, ein Erwärmen durch elektrisch leitfähige Heizelemente/Kontaktflächen oder durch Mikrowellen zu nennen.
Die thermische Zersetzungsreaktion wird vorteilhaft bei einem Druck von Atmosphärendruck bis 70 bar, bevorzugt 2 bis 60 bar, besonders bevorzugt 3 bis 50 bar, ganz besonders bevorzugt 5 bis 40 bar, insbesondere 7 bis 30 bar durchgeführt.
Thermodynamisch ist die Reaktion bei niedrigem Druck begünstigt: Bei Normaldruck beträgt die Gleichgewichtstemperatur für 99%-Umsatz 875°C, bei 10 bar liegt der entsprechende Wert bei über 1900°C.
Kinetisch und prozesstechnisch sind höhere Drücke vorteilhaft. Steigender Druck beschleunigt die Decarbonierungsreaktion. Darüber hinaus ist ein hoher Druck in der Pyrolysestufe kompatibel sowohl mit vorgelagerten als auch mit nachgeschalteten Stufen: Der Druck in Erdgasleitun- gen beträgt üblicherweise 50 bar. Die Anwendungen für den erzeugten Wasserstoff oder für das Synthesegas sind Hochdruckprozesse, beispielsweise die Ammoniaksynthese (>100bar), die Methanolsynthese (>50bar) oder die Druckspeicherung von Wasserstoff (ca. 700bar).
Die Verweilzeit in der Reaktionszone bei der erfindungsgemäßen thermischen Zersetzungsre- aktion beträgt vorteilhaft 0,5 bis 25 Minuten, bevorzugt 1 bis 60 Sekunden, insbesondere 1 bis 30 Sekunden.
Die erfindungsgemäße Zersetzungsreaktion wird vorteilhaft kontinuierlich oder quasikontinuierlich durchgeführt.
Die thermische Zersetzung von Kohlenwasserstoffe wird vorteilhaft in einem Fließbettreaktor durchgeführt.
Der Reaktionsraum der thermischen Zersetzungsreaktion weist vorteilhaft einen zylindrischen Querschnitt auf und sein komplettes Volumen ist sowohl für die festen und gasförmigen Reaktionsströme als auch für mögliche gasförmige Wärmeträger zugänglich. Der Begriff Reaktionsraum umfasst neben der Reaktionszone die Zonen im Reaktor, die zum Aufheizen und Abkühlen verwendet werden, ferner ggf. auch andere Elemente wie Zuleitungen, Quench etc. Vorteilhaft wird die thermische Zersetzungsreaktion in Anwesenheit eines Trägers, z.B. eines mineralischen Trägers (beispielsweise Korund (AI203), Quarzglas (Si02), Mullit AI203.Si02), Cordierit ((Mg,Fe2+)2(AI2Si) [AI2Si40i8]), Steatit (Si02.MgO.AI203)) oder eines kohlenstoffhaltigen Granulats, durchgeführt. Vorzugsweise wird der Träger, bevorzugt das kohlenstoffhaltige Granulat, als Wanderbett durch den Reaktionsraum geführt, wobei die zu zersetzenden Kohlenwasserstoffe zweckmäßigerweise im Gegenstrom zu dem Träger, bevorzugt einem kohlenstoffhaltigen Granulat geleitet werden. Der Reaktionsraum ist hierfür sinnvollerweise als senkrechter Schacht ausgeführt, so dass die Bewegung des Wanderbetts alleine unter Wirkung der Schwerkraft zustande kommt. Das Wanderbett ist vorteilhaft homogen und gleichmäßig durch- ström bar.
Unter einem kohlenstoffhaltigen Granulat ist in der vorliegenden Erfindung ein Material zu verstehen, das vorteilhaft aus festen Körnern besteht, die mindestens 50 Gew.-%, bevorzugt mindestens 80 Gew.-%, insbesondere mindestens 90 Gew.-% Kohlenstoff aufweisen. Das kohlen- stoffhaltige Granulat besitzt vorteilhaft eine Körnung, d.h. einen Äquivalenzdurchmesser, der durch Siebung mit einer bestimmten Maschengröße bestimmbar ist, von 0,5 bis 100 mm, bevorzugt von 1 bis 80 mm. Das kohlenstoffhaltige Granulat ist vorteilhaft kugelförmig. In dem erfindungsgemäßen Verfahren kann eine Vielzahl von unterschiedlichen kohlenstoffhaltigen Granulaten eingesetzt werden. Ein derartiges Granulat kann beispielsweise aus Kohle, Koks, Koksgrus und/oder Mischungen hieraus bestehen. Koksgrus weist in der Regel eine Körnung von kleiner 20 mm auf. Ferner kann das kohlenstoffhaltige Granulat 0 bis 15 Gew.-% bezogen auf die Gesamtmasse des Granulats, bevorzugt 0 bis 5 Gew.-%, Metall, Metalloxid und/oder Keramik enthalten. Mit besonderem Vorzug werden Granulate eingesetzt, die Koksgrus und/oder geringwertigen, d.h. nicht direkt für den Verhüttungsprozess geeigneten Koks, Koke- reikoks auf Braun- oder Steinkohlebasis und/oder aus Biomasse gewonnenen Koks umfassen.
Die Wärmekapazitätsströme der miteinander Wärme austauschenden Medien liegen vorteilhaft möglichst nahe beieinander. Vorteilhaft ist der Massenstrom des zugeführten Trägers, bevorzugt des kohlenstoffhaltigem Granulats, das 1 - bis 3-fache, bevorzugt das 1 ,7- bis 2,5-fache des Massenstroms des zugeführten Kohlenwasserstoffs (ohne Berücksichtigung von Inertgasen).
Falls das wasserstoffhaltige Gasgemisch vollständig aus der Reaktionszone der Pyrolyse abgezogen wird, siehe (Fig. 1 ), können vorteilhaft die obere Wärmeübertragungszone im Pyroly- sereaktor, die Feststoffrückführung und der ggf. Feststoffzulauf, eingespart werden. Dadurch werden die apparative Gestaltung und der Betrieb des Pyrolysereaktors erheblich vereinfacht. Der vollständige Abzug des Wasserstoffs aus der Reaktionszone der Pyrolyse ist insbesondere dann vorteilhaft, wenn Synthesegas als einziges fluides Produkt hergestellt werden soll. Vorteilhaft wird in diesem Fall im Pyrolysereaktor ein Träger, z.B. ein mineralischer Träger oder ein kohlenstoffhaltiges Granulat als Anfangsfüllung vorgelegt. Der obere Abschnitt des Pyrolysereaktors wird vorteilhaft auf die erforderliche Pyrolysetemperatur beheizt. Vorteilhaft wird von unten Methan bei Umgebungstemperatur in den Pyrolysereaktor eingeleitet, bevorzugt bei Temperaturen kleiner 600°C, insbesondere kleiner 400°C, weiter bevorzugt kleiner 250°C, weiter be- vorzugt kleiner als 100°C, insbesondere im Bereich 0 bis 50°C. Am unteren Reaktorende wird ein Feststoffstrom abgeführt, der im stationären Betrieb der produzierten Menge des kohlenstoffhaltigen Produktes entspricht. Durch diese Fahrweise erneuert sich kontinuierlich der Feststoff im Pyrolysereaktor. Durch die Gegenstromführung des Gas- und des Feststoffstroms im unteren Abschnitt des Pyrolysereaktors wird eine Wärmeintegration realisiert. Das Massen- stromverhältnis des gasförmigen Zulaufs und des festen Produktstroms liegt vorteilhaft zwischen 0,65 und 3, bevorzugt zwischen 1 ,0 und 2,0, besonders bevorzugt zwischen 1 ,2 und 1 ,5. Die Feststoffpackung im Pyrolysereaktor bildet vorteilhaft unter Betriebsbedingungen ein Fließbett aus. Im Bereich der Wärmeübertragungszone bildet sich vorteilhaft ein Wanderbett, das geschichtet mit geringer axialer Dispersion nach unten fließt. Im Bereich der Reaktionszone kann sich vorteilhaft ein Wanderbett oder ein Wirbelbett ausbilden. Das Wirbelbett in der Reaktionszone besitzt günstige Wärmetransporteigenschaften für den Wärmeeintrag und für die Einstellung eines gleichmäßigen Temperaturfeldes.
Falls das wasserstoffhaltige Gasgemisch vollständig aus der Reaktionszone der Pyrolyse abgezogen wird, wird dieser vorteilhaft am oberen Ende des Pyrolysereaktors heiß abgezogen. Die Temperatur des abgezogenen Stroms entspricht vorteilhaft der Reaktionstemperatur der Pyrolyse (800 bis 2500°C, bevorzugt in einem Bereich von 1000 bis 1800°C, weiter bevorzugt in einem Bereich von 1 100 bis 1600°C, insbesondere in einem Bereich von 1200 bis 1400°C).
Falls nur ein Teil des während der thermischen Zersetzungsreaktion produzierten wasserstoff- haltigen Gasgemisches abgezogen wird, wird vorteilhaft der Träger, bevorzugt das kohlenstoffhaltige Granulat als Wanderbett durch den Reaktionsraum geführt. Eine besonders bevorzugte Variante des erfindungsgemäßen Verfahrens sieht vor, dass der Träger, bevorzugt das Granulat mit Umgebungstemperatur, bevorzugt bei Temperaturen kleiner 600°C, insbesondere kleiner 400°C, weiter bevorzugt kleiner 250°C, weiter bevorzugt kleiner als 100°C, insbesondere im Bereich 0 bis 50°C, in den Reaktionsraum eingeleitet, dort zunächst bis auf eine Maximaltemperatur aufgeheizt und anschließend wieder abgekühlt wird, wobei die Maximaltemperatur in einer Hochtemperaturzone, der Reaktionszone, liegt, in der Temperaturen von durchschnittlich größer als 800°C, bevorzugt größer als 1000°C, weiter bevorzugt größer als 1 100°C, insbesondere größer als 1200°C herrschen. Beispielsweise liegt die Temperatur der Zersetzungsreaktion in einem Bereich von 800 bis 2500°C, bevorzugt in einem Bereich von 1000 bis 1800°C, weiter bevorzugt in einem Bereich von 1 100 bis 1600°C, insbesondere in einem Bereich von 1200 bis 1400°C. Unter dem Begriff Reaktionszone wird bei der vorliegenden Erfindung derjenige Bereich im Reaktor verstanden, in welchem die Endothermie, d.h. der Wärmebedarf der Reaktion, vorteilhaft 10 kW/m3, bevorzugt 100 kW/m3, insbesondere 500 kW/m3 übersteigt. Dies entspricht in etwa dem Bereich im Reaktor, der eine Temperatur von größer 500°C aufweist.
Die Abkühlung kann bis in die Nähe der Umgebungstemperatur durchgeführt werden, so dass eine Kühlung bzw. Löschung des aus dem Reaktionsraum abgezogenen Trägers, bevorzugt kohlenstoffhaltigen Granulats nicht erforderlich ist. Zur Ausbildung und Aufrechterhaltung des beschriebenen Temperaturprofils wird vorgeschlagen, zumindest den Träger, bevorzugt das kohlenwasserstoffhaltige Gas mit Umgebungstemperatur in den Reaktionsraum einzuleiten und im Gegenstrom durch das Wanderbett zu führen. Auf seinem Weg durch den Reaktionsraum tauscht der Träger, bevorzugt das kohlenwasserstoffhaltigen Gas in direktem Kontakt mit dem Wanderbett Wärme aus, wobei das kohlenwasserstoffhaltige Gas bis auf über 1000°C, bevorzugt bis auf über 1 100°C, insbesondere bis auf über 1200°C aufgeheizt und das Wanderbett gleichzeitig abgekühlt wird. In der Hochtemperaturzone gebildete heiße wasserstoffhaltige Gasgemisch wird zum einen zumindest teilweise bei Temperaturen von 800 bis 1400°C abgezogen, zum anderen weiter im Gegenstrom durch das Wanderbett geführt und in direktem Wärmetausch mit diesem abgekühlt, so dass Wasserstoff mit einer Temperatur in der Nähe der Umgebungstemperatur aus dem Reaktionsraum abgezogen werden kann.
Für die Wasserstofferzeugung erforderliche thermische Energie wird insbesondere in der Hochtemperaturzone erzeugt und/oder in die Hochtemperaturzone eingebracht. Die Erzeugung und/oder Einbringung von thermischer Energie an anderen Stellen des Reaktionsraumes soll jedoch nicht ausgeschlossen werden.
In der Reaktionszone stellt sich vorteilhaft ein ausreichend hohes Temperaturniveau ein, um einen Umsatz der thermischen Zersetzung der Kohlenwasserstoffe von größer als 80%, bevorzugt größer als 90%, insbesondere Vollumsatz zu erreichen. Ferner kann der Umsatz der thermischen Zersetzung über die Verweilzeit gesteuert werden. Beispielsweise ergibt eine Gasverweilzeit von 2 Sekunden bei 1200°C und Umgebungsdruck einen relativen Methanumsatz von ca. 67%, eine Verweilzeit von 3 Sekunden einen Methanumsatz von ca. 80% und eine Verweilzeit von 4,5 Sekunden einen Methanumsatz von ca. 90%. Die Verweilzeit ist definiert als das Verhältnis des Leerraumvolumens der Reaktionszone zum Volumenstrom des Gasstroms am Eintritt der Reaktionszone.
Der durch die erfindungsgemäße Zersetzungsreaktion gebildete Kohlenstoff lagert sich vorteilhaft zu mindestens 90 Gew.-% bezogen auf die gesamte Masse des gebildeten Kohlenstoffs, bevorzugt mindestens 95 Gew.-%, an den Träger, vorteilhaft an das kohlenstoffhaltige Granulat an.
Unter einem kohlenstoffhaltigen Produkt ist in der vorliegenden Erfindung ein Produkt zu verstehen, dass vorteilhaft zu mindestens 90 Gew.-%, bevorzugt zu mindestens 95 Gew.-%, besonders bevorzugt zu mindestens 98 Gew.-%, insbesondere zu mindestens 99 Gew.-%, aus Kohlenstoff besteht. Das kohlenstoffhaltige Produkt weist vorteilhaft weniger als 5 Gew.-%, be- vorzugt weniger als 1 Gew.-%, besonders bevorzugt weniger als 0,1 Gew.-%, bezogen auf die Gesamtmasse des kohlenstoffhaltigen Produkts, an Asche auf. Das kohlenstoffhaltige Produkt weist vorteilhaft weniger als 5 Gew.-%, bevorzugt weniger als 1 Gew.-%, besonders bevorzugt weniger als 0,1 Gew.-,% bezogen auf die Gesamtmasse des kohlenstoffhaltigen Produkts, an Alkalien, insbesondere Oxide und Hydroxide der Alkali- und Erdalkalimetalle, schwefel- und/oder phosphorhaltigen Verbindungen auf. Diese kohlenstoffhaltigen Produkte lassen sich beispielsweise in der Stahlbranche als Einblaskohle, als Kokskohlenzusatzstoff oder als Hochofenkoks einsetzen. Vorteilhaft werden durch das erfindungsgemäße Verfahren mindestens 5 Gew.-%, bezogen auf die ursprüngliche Gesamtmasse des Granulats, Kohlenstoff auf dem eingesetzten kohlenstoffhaltigen Granulat abgeschieden, bevorzugt mindestens 10 Gew.-%, besonders bevorzugt mindestens 20 Gew.-%, insbesondere mindestens 30 Gew.-%. Die Masse des eingesetzten koh- lenstoffhaltigen Granulats lässt sich vorteilhaft durch das erfindungsgemäße Verfahren um 10 Gew.-% bis 80 Gew.-% bezogen auf die ursprüngliche Gesamtmasse des Granulats, bevorzugt um 20 Gew.-% bis 50 Gew.-%, besonders bevorzugt um 25 bis 40 Gew.-%, vergrößern.
Die C02-Emission liegt beim erfindungsgemäßen Verfahren für 100 kg Wasserstoff vorteilhaft bei weniger als 10 kg C02/kgH2, bevorzugt bei weniger als 8 kg C02/kgH2, insbesondere bei weniger als 6 kg C02/kgH2.
Die thermische Zersetzungsreaktion kann beispielsweise wie in der internationalen Patentanmeldung WO 2013/004398 (P1 1 C078 PCT/EP2012/002877) oder anhand der dort zitierten Lite- ratur beschrieben durchgeführt werden.
Durch die Gegenstromführung des Gas- und des Feststoffstroms wird eine wärmeintegrierte Fahrweise erreicht. Die Wärmerückführung der thermischen Zersetzungsreaktion ist vorteilhaft derart, dass die mittlere Temperatur der Produktströme ausgenommen des aus der Reaktionszone abgezogenen wasserstoffhaltigen Gasgemisches, d.h. Wasserstoff und kohlenstoffhaltiges Produkt, maximal 50 bis 100K, bevorzugt maximal 25 bis 50K, insbesondere maximal 5 bis 20K über der mittleren Eintrittstemperatur des Ausgangsstroms, bzw. des kohlenstoffhaltigen Granulats liegt.
Dieser Grad der Wärmeintegration wird erfindungsgemäß dadurch erreicht, dass ein Teilstrom des wasserstoffreichen Gasstroms mit Temperaturen von 800 bis 1400°C direkt aus der Reaktionszone abgezogen wird.
Der Wirkungsgrad der Wärmeintegration ^(Temperatur der Reaktionszone - Gasaustritts- temperatur des Hauptstroms)/(Temperatur der Reaktionszone-Feststoffeintrittstemperatur) liegt vorteilhaft bei größer als 50%, bevorzugt bei größer als 75%, weiter bevorzugt größer als 90%, insbesondere größer als 95%.
Vorteilhaft wird zumindest ein Teil des erzeugten wasserstoffhaltigen Gasgemisches, bevorzugt 10 bis 40 % (bezogen auf Verhältnis Seitenabzug/Hauptstrom Wasserstoff), besonders bevorzugt 15 bis 35 %, ganz besonders bevorzugt 18 bis 30 %, insbesondere 20 bis 25 % aus der Reaktionszone abgezogen.
Alternativ wird der gesamte im thermischen Zersetzungsverfahren erzeugte heiße Wasserstoff abgezogen.
Der Gas-Abzug kann durch alle dem Fachmann bekannten Verfahren (Vorrichtungen zum Gas- Abzug oberhalb eines Wirbelbettes werden beispielsweise in U Ilmann Kapitel„Fluidized-Bed Reactors" beschrieben) durchgeführt werden. Der Abzug kann beispielsweise über eine temperaturbeständige Verbindungsleitung zwischen dem Pyrolyse- und dem RWGS-Reaktor realisiert werden (Nieken: Abluftreinigung in Reaktoren mit periodischer Strömungsumkehr. VDI Reihe 3 Nr. 328. VDI-Verlag 1993). Fig. 2 zeigt beispielhaft das Fließbild einer Durchflussregelung für den Seitenabzug. Die Regelarmaturen sind vorteilhaft in den kalten Zu- und Ableitungen des Pyrolyse- und des RWGS-Reaktors installiert.
Die Temperatur des abgezogenen wasserstoffhaltigen Gasgemisches beträgt vorteilhaft 500 bis 2500°C, bevorzugt 800 bis 2000°C, weiter bevorzugt 1000 bis 1800°C, weiter bevorzugt 1 100 bis 1600°C, weiter besonders bevorzugt 1200 bis 1400°C.
Durch die geregelte Zugabe eines sauerstoffhaltigen Gases zum Seitenabzug, beispielsweise von Luft, bevorzugt jedoch von Sauerstoff technischer Reinheit (vorteilhaft größer als 95% Vol.- % Sauerstoff, bevorzugt größer 99% Sauerstoff, besonders bevorzugt größer 99.5% Sauer- stoff), kann die Temperatur des Seitenabzugs (wasserstoffhaltige Gasmischung) vorteilhaft auf einen gewünschten Sollwert von beispielsweise 800 bis 2000°C, bevorzugt 1000 bis 1800°C, besonders bevorzugt 1 100 bis 1600°C, insbesondere 1200 bis 1400°C, eingestellt werden, d.h. die gewünschte Temperatur im RWGS-Reaktor dient als Führungsgröße für die Sauerstoffdosierung. Diese abgezogene wasserstoffhaltige Gasmischung wird vorteilhaft in die Reaktions- zone der RWGS-Stufe eingeleitet und dient somit gleichzeitig als Edukt und als Wärmeträger für die Versorgung der RWGS-Reaktion. Beispielsweise wird ein atomares Verhältnis, bzw. Wasserstoff zu Sauerstoff von 10:1 bis 100:1 , bevorzugt 20:1 bis 80:1 , besonders bevorzugt 25:1 bis 60:1 , insbesondere 30:1 bis 50:1 verwendet; dies entspricht gegenüber dem Betrieb ohne Sauerstoffzugabe einer adiabaten Temperaturerhöhung am Austritt der Reaktionszone der Reverse-Water-Gas-Shift-Reaktion vorzugsweise von 15K bis 350K, bevorzugt von 20K bis 200K, besonders bevorzugt von 25K bis 170K, ganz besonders bevorzugt von 30K bis 60K (die Angaben entsprechen den Bereichen des H2:02-Verhältnisses unter folgenden Randbedingungen: molare Feedzusammensetzung: H2:C02:CH4=2:1 :0,2, Feedtemperatur: 900°C, Druck: 10bar).
Die Zugabe von Sauerstoff ist insbesondere vorteilhaft, falls das wasserstoffhaltige Gasgemisch auch Methan von größer als 5 Volumen-% enthält. Methan wird durch die Zugabe von 02 bei einer Temperatur von >800°C weitgehend, gemäß Gleichgewichtsumsatz vorteilhaft zwischen 45 und 99,8 %, bevorzugt zwischen 55 und 70 %, zu CO + H2 partiell oxidiert.
Vorteilhaft wird ein molares Verhältnis von (Rest-)Methan zu Sauerstoff im wasserstoffhaltigen Gasgemisch des Seitenabzugs von 0 bis 10, bevorzugt 0,1 bis 5, besonders bevorzugt von 0,3 bis 3, insbesondere von 0,5 bis 2, gewählt. In einer vorteilhaften Ausführung wird für diese RWGS ein Reaktor verwendet, beinhaltend
(1 ) einem Gasfreiraum im oberen Teil, in den Kohlenstoffdioxid, das wasserstoffhaltige Gasgemisch (incl. Rest-Methan) und Sauerstoff gemeinsam oder getrennt eingeleitet werden, sich mischen und vorreagieren (2) einem Katalysatorbett darunter, wo RWGS und Reformierungsreaktionen ins Gleichgewicht gebracht werden.
Alternativ kann der Sauerstoffstrom direkt in das wasserstoffhaltige Gasgemisch in die Seiten- abzugsleitung der Pyrolyse zugegeben werden und einen Teil des Wasserstoffs verbrennen. In besonderen Ausführungsformen der Erfindung kann eine Aufreinigung des wasserstoffhalti- gen Gasgemisches erfolgen. Diese Aufreinigung ist insbesondere dann sinnvoll, wenn das wasserstoffhaltige Gasgemisch große Mengen an Kohlenstoff-haltigen Stäuben oder Aerosolen enthält, die in den nachfolgenden Verfahrensstufen problematisch werden können. Eine Aufrei- nigung von solchen Stäuben oder Aerosolen kann durch geeignete Maßnahmen erfolgen. Solche Maßnahmen können unter anderem sein: Nutzung eines Zyklons zur Feststoffabscheidung, Nutzung von elektrostatischen Filtern zur Feststoffabscheidung, Nutzung makroporöser Festkörper zur Feststoffabscheidung, Nutzung von Filtermedien zur Feststoffabscheidung und weiterer dem Fachmann bekannter Verfahren. Die beschriebenen Aufreinigungsverfahren können in einem weiten Temperaturspektrum durchgeführt werden, vorteilhaft im Bereich 0 bis 1400°C, bevorzugt von 500°C bis 1400, besonders bevorzugt von 800 bis 1400 °C.
Der Seitenabzug wird vorteilhaft direkt in die Reaktionskammer einer Reverse-Water-Gas-Shift- Reaktion eingespeist.
Das aus der thermischen Zersetzungsreaktion abgezogene wasserstoffhaltige Gas wird in einer Reverse-Water-Gas-Shift-Reaktion vorteilhaft mit Kohlenstoffdioxid zu Synthesegas umgesetzt. Das im wasserstoffhaltigem Gas enthaltene nicht-umgesetzte Methan wird vorteilhaft simultan zur Reverse-Water-Gas-Shift-Reaktion mit Kohlenstoffdioxid und das bei der RWGS Reaktion freigesetzte Wasser reformiert. Vorteilhaft katalysiert der Katalysator der RWGS-Reaktion gleichermaßen die Reformierung von Methan. Durch die Reformierung von Methan wird vorteilhaft die Ausbeute an Kohlenstoffmonoxid erhöht und der Wasserstoffverbrauch für die Reveres- Water-Gas-Shift-Reaktion wenigstens teilweise kompensiert. Gleichzeitig wird die Restkonzentration an Methan im Synthesegas reduziert.
Vorteilhaft wird der für die Reverse-Water-Gas-Shift-Reaktion benötigte Wasserstoff zu mehr als 80% (im Bezug auf den gesamten Wasserstoffbedarf), bevorzugt zu mehr als 90%, durch den Seitenabzug, das wasserstoffhaltige Gasgemisch, aus der Reaktionszone der thermischen Zersetzungsreaktion zur Verfügung gestellt, insbesondere wird der benötigte Wasserstoff aus- schließlich durch den Seitenabzug, das wasserstoffhaltige Gasgemisch, aus der Reaktionszone der thermischen Zersetzungsreaktion zur Verfügung gestellt.
Das Volumenstromverhältnis zwischen dem Kohlenstoffdioxid und dem wasserstoffhaltigen Gasgemisch variiert vorteilhaft zwischen 0,1 und 5, bevorzugt zwischen 0,2 und 4, besonders bevorzugt zwischen 0,25 und 3, insbesondere zwischen 0,3 und 2.
Falls ein molare Verhältnis im Synthesegas von Wasserstoff zu Kohlenstoffmonoxid von 2:1 gewünscht wird, wird vorteilhaft das molares Verhältnis von Kohlenstoffdioxid zu Wasserstoff in dem wasserstoffhaltigen Gasgemisch von ca. 1 :2 bis 1 :2,5 eingestellt; falls ein molares Verhältnis im Synthesegas von Wasserstoff zu Kohlenstoffmonoxid von 1 :1 gewünscht wird, so wird das molares Verhältnis von Kohlenstoffdioxid zu Wasserstoff in dem wasserstoffhaltigen Gasgemisch von vorteilhaft ca. 1 :1 bis 1 :1 ,5 eingestellt. Dieses Verhältnis ist über einen weiten Be- reich des Umsatzes der thermischen Zersetzungsreaktion stabil. Die Einstellung des gewünschten Wasserstoffs zu Kohlenstoffmonoxid Verhältnis kann der Fachmann nach allen bekannten Verfahren durchführen (siehe Figuren 3 und 4).
Die Figur 3 basiert auf einer RWGS-Stufe mit integrierter Wärmerückführung mit folgenden Annahmen: (i) Abzugstemperatur aus der Pyrolyse 1200°C, (ii) Druck: 1 barabs, (iü) Adiabate Gleichgewichtsstufe für die RWGS-Reaktion, (iv) Wärmerücktausch zwischen dem Syngas und dem Frisch-C02 in einem idealen Gegenstromwärmetauscher (Gleichgewichtsmodell). Figur 3, obere Graphik, zeigt die Abhängigkeit des H2:CO-Verhältnis im Synthesegas vom
Volumenstromverhältnis CO^F . Figur 3, untere Graphik, zeigt die Abhängigkeit vom CO2- Umsatz, die Austrittstemperatur des Synthesegases aus der Reaktionszone und die
Austrittstemperatur nach dem Wärmerücktausch in der RWGS-Stufe. Figur 4 verdeutlicht die Zusammensetzung der kohlenstoffmonoxid- und Wasserstoff- haltigen Gasmischung, d.h. dem RWGS-Produktstroms, in Abhängigkeit von dem Volumenstromverhältnis CO^F , Temperatur und Druck.
Eine Anpassung des Verhältnisses von Wasserstoff zu Kohlenstoffmonoxid im Synthesegas (Produktstrom der RWGS Stufe) kann auch durch Zugabe von wasserstoffhaltigem Gasgemisch zum Produktstrom der RWGS Stufe, beispielsweise eine Zugabe von 10 % wasserstoffhaltigen Gasgemisches in Bezug auf das Produktstrom der RWGS Stufe, d.h. dem kohlenstoff- monoxid- und Wasserstoff- haltige Gasmischung, bevorzugt 20 %, insbesondere 50 %, bzw. durch Ausschleusen von einem Teil des Wasserstoffs, beispielsweise 10 % im Bezug auf den Wasserstoffgehalt im Synthesegas (Produktstrom der RWGS Stufe), bevorzugt 20 %, Insbesondere 50 %, aus dem RWGS Produktstrom erfolgen. Die kombinierte Reverse-Water-Gas-Shift-Reaktion und Reformierung von Methan werden vorteilhaft bei Temperaturen von 500°C bis 1500°C, bevorzugt von 700°C bis 1200°C, insbesondere von 800 bis 1000°C durchgeführt.
Die für die Reverse-Water-Gas-Shift-Reaktion und die Reformierung benötigte Prozesswärme wird vorteilhaft zu mindestens 20% durch die sensible Wärme des eingespeisten wasserstoffhaltigen Gasgemisches eingetragen, bevorzugt zu mindestens 50%, besonders bevorzugt zu mindestens 80%, insbesondere wird die für die Reverse-Water-Gas-Shift-Reaktion und die Reformierung benötigte Prozesswärme vollständig durch den eingespeisten wasserstoffhaltigen Gasgemisches eingetragen.
Der Reaktor für die Reverse-Water-Gas-Shift-Reaktion und die Reformierung von Methan ist vorteilhaft ebenfalls mit integrierter Wärmerückführung ausgestattet. Dazu wird der C02-haltige Zulaufstrom vorteilhaft kalt in den Reaktor eingeleitet und tauscht im Gegenstrom Wärme aus mit dem Produktstrom der RWGS.
Der Reaktor für die Reverse-Water-Gas-Shift-Reaktion und die Reformierung von Methan ist vorteilhaft ein adiabatischer Reaktor. Der Reaktor kann zusätzliche Vorrichtungen zur Wärmeerzeugung und/oder zum Wärmeeintrag beinhalten.
Die kombinierte Reverse-Water-Gas-Shift-Reaktion und Reformierung von Methan wird vorteilhaft bei einem Druck von 1 bis 50 bar durchgeführt. Vorteilhaft entspricht der Druck der Rever- se-Water-Gas-Shift-Reaktion dem Druck der thermischen Zersetzungsreaktion, eine mögliche Druckdifferenz zwischen den beiden Reaktionen ist vorteilhaft kleiner als 1 bar, bevorzugt kleiner als l OOmbar.
Die Verweilzeit in der Reaktionszone bei der erfindungsgemäßen kombinierten Reverse-Water- Gas-Shift-Reaktion und Reformierung von Methan beträgt vorteilhaft zwischen 0,1 und 30 Se- künden.
Die erfindungsgemäße Reverse-Water-Gas-Shift-Reaktion wird vorteilhaft kontinuierlich oder quasi-kontinuierlich durchgeführt. Eine bevorzugte Ausgestaltung des RWGS-Reaktors ist ein Reaktor mit periodischer Strö- mungsumschaltung und Mitteneinspeisung des heißen wasserstoffhaltigen Gasgemisches (Ko- lios: Zur autothermen Führung der Styrolsynthese mit periodischem Wechsel der Strömungsrichtung. In VDI-Fortschrittsberichte, Reihe 3, vol. 501. Düsseldorf: VDI-Verlag 1997.). Fig. 5 zeigt eine Prinzip-Skizze des RWGS-Reaktors. Der Reaktor ist als adiabater Festbettreaktor mit strukturierter Packung ausgeführt. Die mittlere Zone enthält den RWGS-Katalysator. Das eingespeiste wasserstoffhaltige Gasgemisch kann in der katalytisch aktiven Zone entweder zentral oder verteilt eingespeist werden. Die Randzonen, die als Wärmetauscherzonen für die Wärmeintegration dienen, enthalten eine inerte keramische Packung. Durch Einbauten mit ho- her spezifischer Oberfläche, beispielsweise Wabenmonolithe mit hoher Zelldichte (> 100 cpsi) oder Kugeln mit kleinem Durchmesser (<5mm) kann eine effiziente Wärmeübertragung für die Wärmeintegration erreicht werden. Vorteilhaft wird in periodischen Zeitintervallen zwischen 10sec und 30min, bevorzugt 30sec und 10min, besonders bevorzugt 60sec und 300sec die Anströmseite für die Zuführung des CC>2-reichen Stromes umgeschaltet. Die Umschaltung er- folgt vorteilhaft über eine Ventil- oder Klappensteuerung wie sie dem Fachmann aus Anlagen der regenerativen thermischen Nachverbrennung von Abluftströmen bekannt ist.
Das Kohlenstoffdioxid weist vorteilhaft beim Eintritt in die Reaktionszone der Reverse-Water- Gas-Shift-Reaktion eine Temperatur von 500°C bis 1200°C, bevorzugt 700°C bis 1 100°C, besonders bevorzugt zwischen 700°C und 1000°C auf.
In einer weiteren alternativen Ausgestaltung kann die Reaktionszone der RWGS-Stufe beheizt sein, beispielsweise nach dem Vorbild eines Reformers (Reimert et al.: Gas Production, 2. Pro- cess. In Ullmann's Encyclopedia of Industrial Chemsitry. Vol. 16, pp. 423-482, Verlag Wiley- VCH, 2012.) Bei dieser Form der Ausgestaltung können die Feedströme (Kohlenstoffdioxid und wasserstoffhaltiges Gasgemisch) und der Produktstrom, das Synthesegas, thermisch voneinander entkoppelt werden. Das Synthesegas kann am Austritt aus der Reaktionszone in einem Quench abgeschreckt werden, um das bei hoher Temperatur erzielte Reaktionsgleichgewicht einzufrieren. Die Eintrittstemperatur des Kohlenstoffdioxids in die Reaktionszone liegt bei dieser Ausgestaltung vorteilhaft zwischen 50 und 500°C, bevorzugt zwischen 200 und 500°C, insbesondere zwischen 300 und 500°C. Der Kohlenstoffdioxid-Umsatz der erfindungsgemäßen kombinierten Reverse-Water-Gas-Shift- Reaktion und Reformierung von Methan beträgt vorteilhaft größer als 30%, insbesondere größer als 60%. Vorteilhaft liegt Kohlenstoffdioxid-Umsatz im Bereich von 60 bis 100%, insbesondere 75 bis 100%. Die Nebenreaktion der Methanisierung beträgt vorteilhaft weniger als 10%, bevorzugt weniger als 3% bezogen auf den eingesetzten Kohlenstoffdioxid. Insbesondere wird das im wasserstoff- haltigem Gasgemisch enthaltene Methan durch den Kohlenstoffdioxid reformiert.
Die Nebenreaktion der Verkokung des RWGS Katalysators beträgt vorteilhaft weniger als 0,001 % bezogen auf die gesamte konvertierte Kohlenstoffdioxidmenge, bevorzugt weniger als 0,0001 % bezogen auf die gesamte konvertierte Kohlenstoffdioxidmenge.
Der Wirkungsgrad der Wärmeintegration der erfindungsgemäß gekoppelten Verfahren der thermischen Zersetzungsreaktion von Kohlenwasserstoffen mit der kombinierten Reverse- Water-Gas-Shift-Reaktion Reformierung von Methan liegt vorteilhaft bei größer 84 %, bevorzugt bei größer 88 %, besonders bevorzugt bei größer 90 %, insbesondere bei größer 92 %. Der Wirkungsgrad ist definiert als das Verhältnis der insgesamt von der thermischen Zersetzung und der RWGS aufgenommenen Reaktionswärme bezogen auf die gesamte dem Prozess zugeführte Wärmemenge.
Das Katalysatormaterial für den RWGS-Katalysator genügt vorteilhaft einer Reihe von Anforderungen, um sich als geeignet für die Durchführung des Verfahrens zu erweisen. Zum ersten sollte ein solches Material eine hohe Sinterstabilität des Aktivmetalles besitzen, um bei den hohen Arbeitstemperaturen keinen Aktivitätsverlust durch vorzeitige Alterung aufzuweisen. Zum zweiten sollte die hydrothermale Stabilität des Katalysatormaterials hinreichend sein, um einen vorzeitigen strukturellen Kollaps des Materiales zu verhindern, denn pro Mol konvertiertem Kohlenstoffdioxid wird ein Mol Wasser produziert. Zum dritten sollte das Material eine hinreichende Koksstabilität gegenüber Koksprekursoren wie kleinen Olefinen, Aliphaten und Aromaten aufweisen, die sich im Heiss-Wasserstoff aus der Pyrolysestufe befinden können. Zum vierten soll- te das Material, insbesondere bei der Herstellung von CO-reichem Synthesegas mit einem Wasserstoff zu Kohlenstoffmonoxidanteil kleiner als 1 ,5 die CO-Disproportionierung und den damit verbundenen Koksaufbau anteilig verhindern, beziehungsweise einmal gebildeten Koks durch Reaktion mit Wasserstoff im Sinne der Methanisierung oder durch Reaktion mit Kohlenstoffdioxid im Sinne der Boudouard-Reaktion verkonvertieren.
Erfindungsgemäße Katalysatoren beinhalten in der Regel geeignetes Aktivmetall und geeigne- tes Trägermaterial. Geeignete Aktivmetalle können unter anderem sein: Platinmetalle wie Rh, Pt, Ir, Pd oder Ru. Besonders bevorzugt sind bei en Platinmetallen Pt oder Ir. Geeignete Eisenmetalle können unter anderem sein Ni, Co und Fe. Besonders bevorzugt sind hier Ni oder Co. Ein weiteres ebenfalls bevorzugtes Aktivmetall ist Kupfer. Kombinationen aus den genannten Aktivmetallen sind ebenfalls möglich. Dabei können solche Kombinationen aus Aktivmetal- len Legierungen oder intermetallische Phasen bilden, es können bestimmte Metalle metallisch, andere oxidisch nebeneinander vorliegen, oder bestimmte Anteile der Metall-Komponenten können metallisch oder oxidisch nebeneinander vorliegen. Geeignete Elemente zur Promotie- rung der Aktivmetalle, die oxidisch oder elementar vorliegen können, können unter anderem sein Alkalimetalle, Erdalkalimetalle, insbesondere Mg, Ca und Sr, Lanthanoide wie La und Ce, Gallium, Zinn, Zink, Vanadium, Wolfram, Niob, Tantal, Mangan oder Schwefel.
Geeignete Trägermaterialien für die genannten Aktivmetallkomponenten sind insbesondere solche Trägermaterialien, die sich durch eine hinreichend hohe Oberfläche, eine hinreichend hohe Wechselwirkung mit den Aktivmetallen und den Promotoren, die eine hohe Dispersion und Alterungsstabilität erlaubt. Ebenfalls erwünscht ist eine hohe Wärmeleitfähigkeit des Materiales, um eine gute thermische Einkopplung des wärmetragenden Gases zur ermöglichen. Geeignete Trägermaterialien sind unter anderem oxidische Trägermaterialien, insbesondere auch sogenannte Mischmetalloxide, die aus mehreren metallischen Komponenten in oxidischer Matrix bestehen. Solche Mischmetalloxide können als reinphasige Oxide vorliegen, oder als Phasenmischungen. Beispiele für geeignete Mischmetalloxide sind unter anderem Spinelle wie Magnesium-Aluminium-Spinell, Fluorite wie Cer-Zirkon Fluorite, Hexaaluminate oder Magnetoplumbite, Perovskite, Titanate, Ferrite, feste Lösungen der Zirkon-Oxide mit Lanthanoiden, oder komplexe Alumosilikate und andere dem Fachmann bekannte Mischmetalloxide. Andere ebenfalls erfindungsgemäße Trägermaterialien sind unter anderem Carbide wie WC, MoC, BC oder SiC, Nitride oder Boride.
Zu den erfindungsgemäßen Katalysatoren gehören ebenfalls Verbindungsklassen, bei denen das Aktivmetall aus einer geeigneten Precursorform unter Formierungs- oder Reaktionsbedingungen freigesetzt wird. Solche Verbindungen können unter anderem sein Oxide, gemischte Oxide oder Carbonate.
Die Herstellung der oben genannten erfindungsgemäßen Katalysatoren kann nach dem Fachmann bekannten Methoden erfolgen durch Fällungsreaktionen, Imprägnierverfahren, Reaktionen von geschmolzenen Metallen, Salzen oder Oxiden oder von Metallen, Salzen oder Oxiden bei hohen Temperaturen. Ebenfalls eingeschlossen sind Behandlungsschritte mit oxidierenden oder reduzierenden Gasatmosphären bei erhöhten Temperaturen und andere dem Fachmann bekannte Maßnahmen zur Erhöhung von Aktivität und Stabilität. Ebenfalls erfindungsgemäß ist der Einsatz von mehreren Katalysatoren in einem Katalysatorfestbett. Dabei kann eine solche Verfahrensweise dazu beitragen den Anteil an teurem aber hochtemperatur- und verkokungsresistentem Edelmetall einzusparen. Eine solche Anwendung ist als strukturiertes Bett mit gestaffelten Schichten aus verschiedenen Katalysatoren oder als Mischung möglich.
Andere Möglichkeiten des Einsatzes des Katalysators sind alternative Betriebsvarianten wie die Verwendung im Wirbelbett oder die Verwendung als Beschichtungsmaterial/Washcoat auf metallischen bzw. keramischen Monolithen oder Wärmetauschern. Die Gasabtrennung des Synthesegases von erzeugtem Wasser, Kohlenstoffdioxid und ggf. Methan kann nach allen dem Fachmann bekannten Verfahren erfolgen (Gas Production 3. In U II- mann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim, 2012)
Die C02-Emission liegt beim erfindungsgemäßen Synthesegas-Verfahren vorteilhaft bei negati- ven Werten (C02-Senkung), bevorzugt bei weniger als -50 kgco2/100 kgsynthesegas, insbesondere bei weniger als -100 kgCo2/100 kgsynthesegas.
Für eine Anlage mit einer Wasserstoffkapazität von 100kt/a (entsprechend einer Synthesegaskapazität von 700kt/a bei H2:CO=2:1 ) ergibt sich eine Gutschrift durch die C02-Einsparung von 14 Mio€/a. Dabei wird ein Zertifikatwert von 20€/tCO2 angenommen.
Die Vorteile des neuartigen Verfahrens liegen zum einen in der Bereitstellung von Wasserstoff bzw. Synthesegas mit geringem CC>2-Footrpint. Zum anderen kann bei dem erfindungsgemäßen Verfahren das Wasserstoff zu Kohlenstoffmonoxid-Verhältnis bedarfs-gesteuert eingestellt werden und ist ferner in einem weiten Bereich unabhängig vom Umsatz der thermischen Zersetzungsreaktion.
Durch das erfindungsgemäß gekoppelte Verfahren können Einsparungen von Betriebskosten durch die verbesserte Wärmeintegration erreicht werden. Ferner können Kapitalkosten durch die einfache Gestaltung der RWGS-Stufe eingespart werden.
Ferner kann durch das erfindungsgemäß gekoppelte Verfahren in der Pyrolysestufe eine vollständige Wärme Integration erreicht werden. Die Wärmeverluste konnten somit im Vergleich zu zwei separaten Prozessen halbiert werden. Durch die hohen Reaktionstemperaturen der Re- verse-Water-Gas-Shift-Reaktion konnte die Methanisierung und die Verkokung in dieser Reaktion wirksam verhindert werden.
Die Figur 6 zeigt eine Variante des erfindungsgemäß gekoppelten Verfahrens der thermischen Zersetzung von Kohlenwasserstoffen mit der Reverse Water Gase Shift Reaktion, bei dem Wasserstoff, Synthesegas und einem kohlenstoffhaltigen Produkt parallel in einem kontinuierlichen Prozess gewonnen werden. Über die Zuführung 1 wird ein kohlenstoffhaltiges Granulat, bei dem es sich beispielsweise um Koksgrus handelt, mit Umgebungstemperatur von oben in den Reaktionsraum R eingeleitet, durch den es nachfolgend unter Wirkung der Schwerkraft in einem Wanderbett W nach unten geführt wird. Ein Kohlenwasserstoffe enthaltendes Gas 2, bei dem es sich vorzugsweise um Erdgas handelt, wird gleichzeitig von unten in den Pyrolyse-Reaktionsraum PR geleitet und im Gegenstrom durch das Wanderbett W nach oben geführt. Das Gas 2, das bei seinem Eintritt in den Reaktionsraum PR Umgebungstemperatur aufweist, wird auf seinem Weg nach oben in direktem Wärmetausch mit dem Wanderbett W bis zur Zersetzungstemperatur der Kohlenwasserstoffe aufgeheizt, die unter diesen Bedingungen in einer endothermen Reaktion in Wasser- stoff und Kohlenstoff zerfallen. Der hierbei gebildete Kohlenstoff lagert sich vorteilhaft zu mehr als 95 Gew.-% an die kohlenstoffhaltigen Körner des Wanderbetts W an, wodurch deren Qualität verbessert wird. Zusammen mit nicht oder nur zum Teil umgesetzten Kohlenwasserstoffen strömt der gebildete heiße Wasserstoff weiter nach oben, wobei er in direktem Wärmetausch mit dem Wanderbett W abgekühlt wird, so dass über Leitung 3 ein Wasserstoff enthaltendes Gasgemisch mit einer Temperatur abgezogen werden kann, die maximal 25 bis 50K oberhalb der Umgebungstemperatur liegt.
Aus der Reaktionszone RZ des Pyrolyse-Reaktionsraums PR wird ein Teil des heißen wasser- stoffhaltigen Gasgemisches 4 abgezogen, der direkt dem Reverse Water Gas Shift Reaktor RWGS-R zugeführt wird. Der heiße Wasserstoff 4 wird im Reverse Water Gas Shift Reaktor RWGS-R mit Kohlenstoffdioxid 5, das von unten dem Reaktor RWGS-R zugeführt wird, umgesetzt. Das entstehende Synthesegas 6 wird von oben aus dem Reaktor RWGS-R abgezogen. Die Wärme des Synthesegas-Stroms 6 wird zur Aufheizung des Kohlenstoffdioxid-Stroms 5 verwendet.
Am unteren Ende des Pyrolyse-Reaktionsraums PR wird Granulat 7 mit nahezu Umgebungstemperatur abgezogen, das aufgrund der Kohlenstoffanlagerungen beispielsweise als Hochofenkoks oder Kokereizuschlagsstoff eingesetzt werden kann. Bestandteile des Granulats 7, die die Qualitätsanforderungen nicht erfüllen, weil sie einen zu großen (> 80 mm) oder zu kleinen Durchmesser (< 35 mm) oder beispielsweise eine zu geringe Festigkeit (Trommelfestigkeit I40 für Hochofenkoks > 40% aufweisen gemäß ISO/FDIS 18894:2003) aufweisen, werden in der Trenneinrichtung S durch Siebung und/oder Sichtung abgetrennt und nach einer eventuellen Zerkleinerung wieder in den Pyrolyse-Reaktionsraums PR zurückgeführt.

Claims

Patentansprüche Verfahren zur parallelen Herstellung von Wasserstoff, Kohlenstoffmonoxid und einem kohlenstoffhaltigen Produkt, dadurch gekennzeichnet, dass ein oder mehrere Kohlenwasserstoffe thermisch zersetzt werden und zumindest ein Teil des entstehenden wasser- stoffhaltigen Gasgemisches aus der Reaktionszone des Zersetzungsreaktors bei einer Temperatur von 800 bis 1400 °C abgezogen und mit Kohlenstoffdioxid zu einer kohlenstoffmonoxid- und Wasserstoff- haltigen Gasmischung umgesetzt wird. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass 10 bis 40 % des wasserstoff- haltigen Gasgemisches bezogen auf das gesamte in der Reaktion entstehende wasser- stoffhaltig Gasgemisch aus der Reaktionszone der thermischen Zersetzung abgezogen wird. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die für die Umsetzung von Wasserstoff und/oder Methan mit Kohlenstoffdioxid zu einer kohlenstoffmonoxid- und Wasserstoff- haltigen Gasmischung benötigte Prozesswärme zu mindestens 80 % durch das eingespeiste wasserstoffhaltige Gasgemisch eingetragen wird. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das wasserstoffhaltige Gasgemisch mehr als 80 Volumen-% Wasserstoff enthält. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wirkungsgrad - das Verhältnis der insgesamt von der thermischen Zersetzung und der RWGS aufgenommenen Reaktionswärme bezogen auf die gesamte dem Prozess zugeführte Wärmemenge - der Wärmeintegration bei größer 84 % liegt. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Nebenreaktion der Verkokung weniger als 0,001 % bezogen auf die gesamte konvertierte Kohlenstoffdioxidmenge und die Nebenreaktionen der Methanisierung weniger als 3% bezogen auf den eingesetzten Kohlenstoffdioxid in der RWGS-Reaktion betragen. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zu dem abgezogenen wasserstoffhaltigen Gasgemisch vor der Umsetzung mit Kohlenstoffdioxid ein sauerstoffhaltiges Gas gegeben wird. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Umsetzung des wasserstoffhaltigen Gasgemisch mit Kohlenstoffdioxid in einem Reaktor stattfindet, der oberhalb des Katalysatorbettes einen Gasfreiraum aufweist, in den das wasserstoffhaltige Gasgemisch und das sauerstoffhaltige Gas gemeinsam oder getrennt eingeleitet werden und sich vermischen und ggf. vorreagieren. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das sauerstoffhaltige Gas in die Seitenabzugsleitung, die sich zwischen dem Zersertzngsreaktor und dem RWGS- Reaktor befindet, zu dem wasserstoffhaltigen Gasgemisch gegeben wird. 0. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass ein Verhältnis von Sauerstoff zu (Rest-)Methan im wasserstoffhaltigen Gasgemisch des Seitenabzugs von 0,1 bis 5 gewählt wird.
1 . Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass als sauerstoffhaltiges Gas Sauerstoff technischer Reinheit eingesetzt wird.
2. Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass bei einem angestrebten molaren Verhältnis im Synthesegas von Wasserstoff zu Kohlenstoffmonoxid von 2:1 das molare Verhältnis von Kohlenstoffdioxid zu Wasserstoff in dem wasserstoffhaltigen Gasgemisch von 1 :2 bis 1 :2,5 eingestellt wird und bei einem angestrebten molaren Verhältnis im Synthesegas von Wasserstoff zu Kohlenstoffmonoxid von 1 :1 das molare Verhältnis von Kohlenstoffdioxid zu Wasserstoff in dem wasserstoffhaltigen Gasgemisch von 1 :1 bis 1 :1 ,5 eingestellt wird.
PCT/IB2013/061032 2012-12-21 2013-12-17 Parallele herstellung von wasserstoff, kohlenstoffmonoxid und einem kohlenstoffhaltigen produkt WO2014097142A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
NO13865384A NO2935098T3 (de) 2012-12-21 2013-12-17
EP13865384.5A EP2935098B1 (de) 2012-12-21 2013-12-17 Parallele herstellung von wasserstoff, kohlenstoffmonoxid und einem kohlenstoffhaltigen produkt
JP2015548834A JP6479677B2 (ja) 2012-12-21 2013-12-17 水素、一酸化炭素及び炭素含有生成物の並行製造
RU2015129604A RU2650171C2 (ru) 2012-12-21 2013-12-17 Параллельное получение водорода, монооксида углерода и углеродсодержащего продукта
AU2013365822A AU2013365822A1 (en) 2012-12-21 2013-12-17 Parallel preparation of hydrogen, carbon monoxide and carbon-comprising product
ES13865384.5T ES2666141T3 (es) 2012-12-21 2013-12-17 Preparación paralela de hidrógeno, monóxido de carbono y un producto que contiene carbono
CN201380066238.8A CN104918882B (zh) 2012-12-21 2013-12-17 平行制备氢气、一氧化碳和含碳产物的方法
US14/652,346 US9834440B2 (en) 2012-12-21 2013-12-17 Parallel preparation of hydrogen, carbon monoxide and a carbon-comprising product
PL13865384T PL2935098T3 (pl) 2012-12-21 2013-12-17 Równoległe wytwarzanie wodoru, tlenku węgla i produktu zawierającego węgiel
CA2895924A CA2895924C (en) 2012-12-21 2013-12-17 Parallel preparation of hydrogen, carbon monoxide and a carbon-comprising product
KR1020157019663A KR102189391B1 (ko) 2012-12-21 2013-12-17 수소, 일산화탄소 및 탄소-함유 생성물의 병행 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12199043.6 2012-12-21
EP12199043 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014097142A1 true WO2014097142A1 (de) 2014-06-26

Family

ID=47471596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/061032 WO2014097142A1 (de) 2012-12-21 2013-12-17 Parallele herstellung von wasserstoff, kohlenstoffmonoxid und einem kohlenstoffhaltigen produkt

Country Status (14)

Country Link
US (1) US9834440B2 (de)
EP (1) EP2935098B1 (de)
JP (1) JP6479677B2 (de)
KR (1) KR102189391B1 (de)
CN (1) CN104918882B (de)
AR (1) AR094247A1 (de)
AU (1) AU2013365822A1 (de)
CA (1) CA2895924C (de)
ES (1) ES2666141T3 (de)
NO (1) NO2935098T3 (de)
PL (1) PL2935098T3 (de)
RU (1) RU2650171C2 (de)
TW (1) TWI633049B (de)
WO (1) WO2014097142A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2987769A1 (de) 2014-08-19 2016-02-24 Linde Aktiengesellschaft Verfahren zur Erzeugung von Synthesegas und elektrischer Energie
WO2016026562A1 (de) * 2014-08-19 2016-02-25 Linde Aktiengesellschaft Verfahren zur erzeugung von synthesegas
DE102015015968A1 (de) 2015-12-01 2017-06-01 Basf Se Verfahren zur Erzeugung von Synthesegas
DE102015015531A1 (de) 2015-12-01 2017-06-01 Basf Se Verfahren zur Erzeugung von Synthesegas
RU2633354C1 (ru) * 2016-12-20 2017-10-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Катализатор и способ раздельного получения водорода и монооксида углерода из метана
WO2017186482A1 (de) * 2016-04-28 2017-11-02 CCP Technology GmbH Verfahren und vorrichtung zur herstellung von synthesegas
EP3415466A1 (de) * 2017-06-12 2018-12-19 SunFire GmbH Russvermeidungs- und/oder russverminderungsverfahren sowie -anordnung und russbeseitigungsverfahren sowie -anordnung in abkühlstrecken sowie rekuperatoren
DE102017120814A1 (de) * 2017-09-08 2019-03-14 Karlsruher Institut für Technologie Konvertierungsreaktor und Verfahrensführung
WO2020127838A2 (de) 2018-12-20 2020-06-25 Thyssenkrupp Industrial Solutions Ag Verfahren und vorrichtung zur herstellung von wasserstoff, kohlenmonoxid und einem kohlenstoffhaltigen produkt
CN113148952A (zh) * 2021-04-09 2021-07-23 集美大学 沼气干重整制合成气及氢燃料系统
DE102020211407A1 (de) 2020-09-10 2022-03-10 Caphenia Gmbh Verfahren und Vorrichtung zur Herstellung von Synthesegas

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510687A (ja) 2013-03-07 2016-04-11 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 二酸化炭素の存在下において炭化水素を改質するためのニッケルヘキサアルミネート含有触媒
WO2018219986A1 (de) * 2017-06-02 2018-12-06 Basf Se Verfahren zur kohlenstoffdioxid-hydrierung in gegenwart eines iridium- und/oder rhodiumhaltigen katalysators
CN107416769A (zh) * 2017-08-03 2017-12-01 山西潞安煤基合成油有限公司 一种甲烷二氧化碳重整制备合成气的方法
JP7332597B2 (ja) * 2017-12-08 2023-08-23 トプソー・アクチエゼルスカベット 炭化水素ガスを改質するための方法および装置
JP7365341B2 (ja) 2017-12-08 2023-10-19 トプソー・アクチエゼルスカベット 合成ガスを生産するためのプラントと方法
WO2019110267A1 (en) * 2017-12-08 2019-06-13 Haldor Topsøe A/S Process and system for producing synthesis gas
BR112020011429A2 (pt) 2017-12-08 2020-11-24 Haldor Topsøe A/S sistema e processo para produção de gás de síntese
CN108302953B (zh) * 2018-03-27 2024-04-30 中山大学 一种工业高温固体散料余热回收系统和方法
AU2019393943B2 (en) 2018-12-03 2022-03-17 Shell Internationale Research Maatschappij B.V. A process and reactor for converting carbon dioxide into carbon monoxide
BR112021021438A2 (pt) * 2019-04-23 2022-01-04 Haldor Topsoe As Vaso de reação de alta temperatura, planta e método
EP3744812B1 (de) * 2019-05-27 2022-01-12 Covestro Deutschland AG Verfahren zur verwertung von polyurethan material abfall zur herstellung von chemikalischen rohstoffen für die herstellung von isocyanaten und polyurethanen
KR20220088767A (ko) * 2019-10-25 2022-06-28 바스프 에스이 탄화수소 열분해와 전기화학적 수소 분리를 결합한 고순도 수소의 제조 방법
EP3819259A1 (de) * 2019-11-06 2021-05-12 Covestro Deutschland AG Verfahren zur isocyanat- und polyurethan-herstellung mit verbesserter nachhaltigkeit
US20230348268A1 (en) * 2020-05-19 2023-11-02 National University Corporation Shizuoka University Reaction system, method for collecting solid carbon, method for producing gas containing hydrogen, catalyst set, and catalyst for solid carbon collection
AU2021284990B2 (en) * 2020-06-01 2023-12-07 Shell Internationale Research Maatschappij B.V. A flexible process for converting carbon dioxide, hydrogen, and methane into synthesis gas
EP4157790B1 (de) * 2020-06-01 2024-04-10 Shell Internationale Research Maatschappij B.V. Verfahren und reaktor zur umwandlung von kohlendioxid in kohlenmonoxid unter verwendung eines katalysators
KR102421182B1 (ko) * 2020-07-30 2022-07-13 부산대학교 산학협력단 탄소 연료를 이용한 수소 또는 수소 합성 가스의 생산방법 및 이의 생산장치
KR102506154B1 (ko) * 2021-03-03 2023-03-07 한국에너지기술연구원 수소 및 탄소체 제조장치 및 제조방법
KR102333666B1 (ko) * 2021-05-11 2021-12-02 한국기계연구원 이산화탄소를 배출하지 않는 수소 생산 시스템 및 수소 생산 방법
KR102592537B1 (ko) * 2021-08-27 2023-10-25 한국에너지기술연구원 부생 가스를 이용한 고부가가치 화학물질의 제조방법 및 장치
KR102419495B1 (ko) * 2021-09-03 2022-07-11 주식회사 제로시스 수소 생산 장치
CN114570423B (zh) * 2021-12-27 2023-09-15 中国科学院山西煤炭化学研究所 一种合成气制乙醇、丙醇的催化剂及其制备方法和应用
KR102520557B1 (ko) * 2022-02-03 2023-04-13 주식회사 에이피그린 탄소 포집 방법 및 장치
WO2024015306A2 (en) * 2022-07-10 2024-01-18 Czero, Inc. Carbon formation chemical looping using oxygen
WO2024039872A1 (en) * 2022-08-18 2024-02-22 Czero, Inc. Processes and methods for producing hydrogen and carbon from hydrocarbons

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601956A2 (de) * 1992-12-10 1994-06-15 Haldor Topsoe A/S Verfahren zur Herstellung eines kohlenoxydreichen Gases
CN101249949A (zh) * 2008-03-27 2008-08-27 中国科学院过程工程研究所 一种由烃类气体制备氢气的工艺
US20090203519A1 (en) 2004-04-06 2009-08-13 Universite De Sherbrooke Non-porous catalysts for co2 sequestration through dry reforming
WO2010069549A1 (en) * 2008-12-17 2010-06-24 Saudi Basic Industries Corporation Process for increasing the carbon monoxide content of a syngas mixture
US20110089378A1 (en) 2008-07-04 2011-04-21 Murata Manufacturing Co., Ltd. Carbon dioxide reforming process
DE112010003184T5 (de) 2009-08-04 2012-06-28 Sk Innovation Co., Ltd. Verfahren zur Vergasung von kohlenstoffhaltigen Material ien mittels thermischer Zersetzung von Methan und Umwandlung von Kohlendioxid
WO2013004398A2 (de) 2011-07-05 2013-01-10 Linde Aktiengesellschaft Verfahren zur parallelen herstellung von wasserstoff und kohlenstoffhaltigen produkten

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB365912A (en) * 1930-04-30 1932-01-28 Humphreys & Glasgow Ltd Improvements in or relating to the manufacture of combustible gas rich in hydrogen
US3919114A (en) 1969-11-21 1975-11-11 Texaco Development Corp Synthesis gas process
US4410504A (en) * 1982-04-30 1983-10-18 United Technologies Corporation Method of producing high density carbon
GB2168718B (en) * 1984-10-29 1988-06-29 Humphreys & Glasgow Ltd Process for the production of synthesis gas and its utilisation
AU654612B2 (en) * 1992-01-27 1994-11-10 Shell Internationale Research Maatschappij B.V. Process for producing a hydrogen-containing gas
US5767165A (en) * 1995-03-16 1998-06-16 Steinberg; Meyer Method for converting natural gas and carbon dioxide to methanol and reducing CO2 emissions
JP2000219508A (ja) * 1999-02-01 2000-08-08 Mitsui Eng & Shipbuild Co Ltd 水素psaのオフガスからcoを製造する方法
US6749829B2 (en) * 2002-07-23 2004-06-15 Bp Corporation North America Inc. Hydrogen to steam reforming of natural gas to synthesis gas
JP5402683B2 (ja) * 2009-02-02 2014-01-29 株式会社村田製作所 逆シフト反応用触媒、その製造方法、および合成ガスの製造方法
RU2408529C1 (ru) * 2009-06-04 2011-01-10 Алексей Дмитриевич Романов Способ получения синтез-газа и водорода
FR2955865B1 (fr) * 2010-02-01 2012-03-16 Cotaver Procede de recyclage du dioxyde de carbone (co2)
RU2441837C2 (ru) * 2010-04-19 2012-02-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Чувашский государственный университет имени И.Н. Ульянова" Способ производства монооксида углерода
DE102011106642A1 (de) 2011-07-05 2013-01-10 Linde Ag Verfahren zur Synthesegaserzeugung
EP2584023A1 (de) * 2011-10-21 2013-04-24 Neste Oil Oyj Verfahren zur Herstellung einer Syngaszusammensetzung
DE102012010542A1 (de) * 2011-12-20 2013-06-20 CCP Technology GmbH Verfahren und anlage zur erzeugung von synthesegas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601956A2 (de) * 1992-12-10 1994-06-15 Haldor Topsoe A/S Verfahren zur Herstellung eines kohlenoxydreichen Gases
US20090203519A1 (en) 2004-04-06 2009-08-13 Universite De Sherbrooke Non-porous catalysts for co2 sequestration through dry reforming
CN101249949A (zh) * 2008-03-27 2008-08-27 中国科学院过程工程研究所 一种由烃类气体制备氢气的工艺
US20110089378A1 (en) 2008-07-04 2011-04-21 Murata Manufacturing Co., Ltd. Carbon dioxide reforming process
WO2010069549A1 (en) * 2008-12-17 2010-06-24 Saudi Basic Industries Corporation Process for increasing the carbon monoxide content of a syngas mixture
DE112010003184T5 (de) 2009-08-04 2012-06-28 Sk Innovation Co., Ltd. Verfahren zur Vergasung von kohlenstoffhaltigen Material ien mittels thermischer Zersetzung von Methan und Umwandlung von Kohlendioxid
WO2013004398A2 (de) 2011-07-05 2013-01-10 Linde Aktiengesellschaft Verfahren zur parallelen herstellung von wasserstoff und kohlenstoffhaltigen produkten

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Ullmann's Encyclopedia of Industrial Chemistry", 2012, WILEY-VCH, article "Gas Production 3"
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 35, 2010, pages 1160 - 1190
JESS, A. ET AL: "Considerations concerning the Energy Demand and Energy Mix for Global Welfare and Stable Ecosystems", CHEMIE INGENIEUR TECHNIK, vol. 83, 2011, pages 1777 - 1791
KOLIOS: "VDI-Fortschrittsberichte", vol. 501, 1997, VDI-VERLAG, article "Zur autothermen Führung der Styrolsynthese mit periodischem Wechsel der Strömungsrichtung"
KREYSA, CIT, vol. 80, 2008, pages 901 - 908
LUHUI, W. ET AL: "Reverse water gas shift reaction over co-precipitated Ni-Ce02 catalysts", JOURNAL OF RARE EARTHS, vol. 26, 2008, pages 66 - 70, XP022934058, DOI: doi:10.1016/S1002-0721(08)60039-3
NIEKEN: "VDI Reihe 3 Nr. 328", 1993, VDI-VERLAG, article "Abluftreinigung in Reaktoren mit periodischer Strömungsumkehr"
REIMERT ET AL.: "Ullmann's Encyclopedia of Industrial Chemsitry", vol. 16, 2012, VERLAG WILEY-VCH, article "Gas Production, 2. Process", pages: 423 - 482
YABLONSKY, G.S. ET AL: "Cycles Across an Equilibrium: A Kinetic Investigation of the Reverse and Forward WGS Reaction over a 2% Pt/Ce02 Catalyst (Experimental Data and Qualitative Interpretation", CHEM. ENG. SCI., vol. 65, 2010, pages 2325 - 2332, XP026944140, DOI: doi:10.1016/j.ces.2009.09.004

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026562A1 (de) * 2014-08-19 2016-02-25 Linde Aktiengesellschaft Verfahren zur erzeugung von synthesegas
CN106573782A (zh) * 2014-08-19 2017-04-19 巴斯夫欧洲公司 产生合成气的方法
US9938144B2 (en) 2014-08-19 2018-04-10 Basf Se Process for producing synthesis gas and electrical energy
US10099923B2 (en) 2014-08-19 2018-10-16 Basf Se Process for producing synthesis gas
EP2987769A1 (de) 2014-08-19 2016-02-24 Linde Aktiengesellschaft Verfahren zur Erzeugung von Synthesegas und elektrischer Energie
US11078077B2 (en) 2015-12-01 2021-08-03 Thyssenkrupp Industrial Solutions Ag Method for producing synthesis gas
DE102015015968A1 (de) 2015-12-01 2017-06-01 Basf Se Verfahren zur Erzeugung von Synthesegas
DE102015015531A1 (de) 2015-12-01 2017-06-01 Basf Se Verfahren zur Erzeugung von Synthesegas
WO2017092873A1 (de) * 2015-12-01 2017-06-08 Linde Aktiengesellschaft Verfahren zur erzeugung von synthesegas
WO2017186482A1 (de) * 2016-04-28 2017-11-02 CCP Technology GmbH Verfahren und vorrichtung zur herstellung von synthesegas
RU2633354C1 (ru) * 2016-12-20 2017-10-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Катализатор и способ раздельного получения водорода и монооксида углерода из метана
EP3415466A1 (de) * 2017-06-12 2018-12-19 SunFire GmbH Russvermeidungs- und/oder russverminderungsverfahren sowie -anordnung und russbeseitigungsverfahren sowie -anordnung in abkühlstrecken sowie rekuperatoren
WO2018228642A1 (de) 2017-06-12 2018-12-20 Sunfire Gmbh Russvermeidungs- und/oder russverminderungsverfahren sowie -anordnung
AU2018283056B2 (en) * 2017-06-12 2020-07-16 Sunfire Gmbh Soot removal process and assembly in cooling sectors and recuperators
WO2018228641A1 (de) 2017-06-12 2018-12-20 Sunfire Gmbh Russbeseitigungsverfahren sowie -anordnung in abkühlstrecken sowie rekuperatoren
US11612872B2 (en) 2017-06-12 2023-03-28 Sunfire Gmbh Soot removal process and assembly in cooling sectors and recuperators
DE102017120814A1 (de) * 2017-09-08 2019-03-14 Karlsruher Institut für Technologie Konvertierungsreaktor und Verfahrensführung
WO2020127838A2 (de) 2018-12-20 2020-06-25 Thyssenkrupp Industrial Solutions Ag Verfahren und vorrichtung zur herstellung von wasserstoff, kohlenmonoxid und einem kohlenstoffhaltigen produkt
DE102018222463A1 (de) 2018-12-20 2020-06-25 Basf Se Verfahren und Vorrichtung zur Herstellung von Wasserstoff, Kohlenmonoxid und einem kohlenstoffhaltigen Produkt
DE102020211407A1 (de) 2020-09-10 2022-03-10 Caphenia Gmbh Verfahren und Vorrichtung zur Herstellung von Synthesegas
CN113148952A (zh) * 2021-04-09 2021-07-23 集美大学 沼气干重整制合成气及氢燃料系统

Also Published As

Publication number Publication date
KR102189391B1 (ko) 2020-12-11
JP2016501823A (ja) 2016-01-21
CN104918882B (zh) 2019-03-01
EP2935098A4 (de) 2016-10-26
PL2935098T3 (pl) 2018-08-31
JP6479677B2 (ja) 2019-03-06
CA2895924A1 (en) 2014-06-26
EP2935098B1 (de) 2018-02-14
RU2015129604A (ru) 2017-01-27
ES2666141T3 (es) 2018-05-03
AR094247A1 (es) 2015-07-22
US9834440B2 (en) 2017-12-05
CA2895924C (en) 2021-03-16
RU2650171C2 (ru) 2018-04-09
TW201438987A (zh) 2014-10-16
AU2013365822A1 (en) 2015-07-23
US20150336795A1 (en) 2015-11-26
CN104918882A (zh) 2015-09-16
NO2935098T3 (de) 2018-07-14
TWI633049B (zh) 2018-08-21
EP2935098A1 (de) 2015-10-28
KR20150100805A (ko) 2015-09-02

Similar Documents

Publication Publication Date Title
EP2935098B1 (de) Parallele herstellung von wasserstoff, kohlenstoffmonoxid und einem kohlenstoffhaltigen produkt
Roslan et al. A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions
EP0112613B1 (de) Verfahren zur Herstellung von wasserstoffreichem Gas aus Kohlenwasserstoffen
Tijm et al. Methanol technology developments for the new millennium
EP2935517B1 (de) Verfahren zur verwertung von kuppelgasen, begleitgasen und/oder biogasen
Caballero et al. Reforming processes for syngas production: A mini-review on the current status, challenges, and prospects for biomass conversion to fuels
AU2017328489B2 (en) Novel, highly efficient eco-friendly processes for converting CO2 or CO-rich streams to liquid fuels and chemicals
Kawi et al. CO2 as an oxidant for high-temperature reactions
WO2012035173A1 (de) Rohrbündelreaktor zur durchführung katalytischer gasphasenreaktionen
US20220348472A1 (en) Catalytic reactor system and catalyst for conversion of captured c02 and renewable h2 into low-carbon syngas
US20200038844A1 (en) Catalyst composition and catalytic processes for producing liquid hydrocarbons
Nabgan et al. Production of hydrogen and valuable fuels from polyethylene terephthalate waste dissolved in phenol reforming and cracking reactions via Ni-Co/CeO2 nano-catalyst
WO2018083002A1 (de) Verfahren und vorrichtung zur durchführung endothermer gasphasen- oder gas- feststoff-reaktionen
Vadarlis et al. Catalytic biomass gasification in supercritical water and product gas upgrading
Gao et al. Autothermal reforming and trireforming for syngas production
Berger et al. 14 CO2 Utilization: Methane, Methanol, and Synthetic Fuels
Natakaranakul Direct synthesys of LPG from co2 by using CZZA and HY zeolite hybrid catalyst
KR910009208B1 (ko) 수소 농축 가스의 생산 방법
CN113710613A (zh) 具有提高的能效的甲醇生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865384

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2013865384

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14652346

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2895924

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 139450140003003454

Country of ref document: IR

ENP Entry into the national phase

Ref document number: 2015548834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157019663

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201507313

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2015129604

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201504501

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2013365822

Country of ref document: AU

Date of ref document: 20131217

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015014399

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015014399

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150617